Przedmiotem wynalazku jest sposób wytwarzania stabilnych podstawionych przy azocie pochodnych nitrylu kwasu |3-amino- a-benzyloakrylowego o ogól¬ nym wzorze 1, w którym symbole R1, R2, R3 i R4 sa jednakowe lub rózne i kazdy z nich oznacza atom wodoru lub chlorowca, rodnik alkilowy lub alkoksy- lowy, przy czym gdy R1 i R2 oznaczaja atomy wo¬ doru, wówczas R3 i R4 razem moga oznaczac grupe dwuoksymetylowa, a -NR5R6 oznacza alifatyczna, heterocykliczna lub aromatyczna grupe aminowa, w której tylko jeden z symboli R5 i R6 moze ozna¬ czac atom wodoru.Zwiazki te moga byc przeksztalcone w benzylopiry- midyny lub inne produkty posrednie do wytwarza¬ nia benzylopirymidyn ewentualnie innych zwiazków heterocyklicznych.Sposoby wytwarzania niektórych pochodnych ni¬ trylu kwasu (3-amino- a-benzyloakrylowego zostaly ujawnione przez Stenbucka i in. J.Org.Chem. 1963, 28, 1893 i w brytyjskim opisie patentowym nr 957797.Sposób podany w opisie patentowym nr 957797 do¬ tyczyl wytwarzania 2,4-dwuamino-5-benzylopirymi- dyn, w którym nitryle kwasu (3-amino- a-benzylo¬ akrylowego stanowily produkty posrednie otrzymy¬ wano je na drodze reakcji, miedzy aldehydem ben¬ zoesowym i nitrylem podstawionego kwasu propio- nowego, przedstawionej schematem 1, gdzie Ar ozna¬ cza grupe fenylowa ewentualnie podstawiona gru¬ pami alkoksylowymi i/lub alkilowymi i/lub atomami chlorowców, Y oznacza grupe nukleofilowa, a Z oznacza grupe Y albo grupe alkoksylowa pochodza- ca od alkoholu stanowiacego rozpuszczalnik. Przy¬ kladami grup nukleofilowych Y byly grupy alkoksy- lowe, alkilotio, dwualkiloaminowe lub atomy chlo¬ rowców. W wyniku tej reakcji otrzymywano mieszanine izomerów benzylowych i benzalowych, która w tej postaci poddawano reakcji z guanidyna otrzymujac 2,4-dwuamino-5-benzylopirymidyne. Wy¬ dajnosc tego procesu nie byla duza. Obecnosc izo¬ meru benzalowego, zwlaszcza w wiekszej ilosci, wplywala ujemnie na jakosc otrzymanej benzylopiry- midyny i wydajnosc procesu. Produkt zawieral bar¬ wne zanieczyszczenia polimeryczne, zwlaszcza gdy pierscien fenylowy w tych izomerach nie mial pod- stawnika w pozycji para. Oczyszczanie produktu od towarzyszacych zanieczyszczen, tak, aby nadawal sie do celów farmaceutycznych, bylo bardzo klopotliwe.Wynalazek umozliwia wytwarzanie podstawionych przy azocie pochodnych nitrylu kwasu P-amino-a- benzyloakrylowego o wzorze ogólnym 1, w którym wszystkie symbole maja wyzej podane znaczenie, z uniknieciem wad znanych sposobów. Produkty otrzy¬ mane sposobem wedlug wynalazku nie zawieraja zanieczyszczen izomerem benzalowym, sa nieocze¬ kiwanie trwale i zachowuja swoja budowe, a rów¬ noczesnie sa podatne do reakcji w róznych warun¬ kach. Izomery benzylowe tych zwiazków nie maja wcale, lub prawie wcale tendencji do przechodzenia w izomery benzalowe.Sposobem wedlug wynalazku zwiazki o wzorze ogólnym 1, wytwarza sie na drodze reakcji (3-hydro- ksy^|3-fenyloetylometylosulfonu lub sulfotlenku o 92 4403 wzorze ogólnym 2, w którym R1, R2, R3 i R4 maja powyzsze znaczenie, a n jest równe 1 lub 2 z nitry¬ lem kwasu p-aminopropionowego o wzorze ogólnym 3, w którym grupa aminowa -NR5R6 jak podano powyzej dla wzoru 1 oznacza alifatyczna, heterocy¬ kliczna lub aromatyczna grupe aminowa i tylko jeden z symboli R5 i R6 moze oznaczac atom wodoru.Na ogól korzystnie jest, jezeli wolna amina o wzo¬ rze HNR5R6, od której wyprowadza sie wspomniana grupe -NR5R6, ma wartosc p Ka nie mniejsza niz 0 i nie wyzsza niz 6. Szczególnie korzystnie grupa -NR5R« oznacza grupe anilinowa, przy czym pier¬ scien fenylowy w tej grupie moze'zawierac jeden lub kilka podstawników, takich jak atomy chlorow¬ ca, rodniki alkilowe lub alkoksylowe, ale korzy¬ stniejsze wlasciwosci maja te zwiazki, w których pierscien ten nie Jest podstawiony. Grupa -NR5R5 mozV"tez oznaczac grupe o-toluidynowa, p-toluidy- nowa, p-anizydynowa; p-chloroanilinowa, 2,5-dwu- chloroanilinowa i 3,4~dwuchloroanilinowa. Grupa -NR5R6 moze tez oznaczac inna drugorzedowa grupe aminowa, na przyklad monoalkiloaminowa, benzylo- aminowa, lub naftyloaminowa, korzystnie p-naftylo- aminowa, albo trzeciorzedowa grupe aminowa, taka jak grupa dwualkiloaminowa, pirolidynowa, pipery- dynowa, N-metyloanilinowa, lub piperazynowa, a zwlaszcza morfolinowa.Rodniki alkilowe lub alkoksylowe moga zawierac 1—4 atomy wegla i oznaczaja na przyklad rodniki metylowe, etylowe, propylowe lub butyloWe, izo- butylowe Illrz.butylowe i odpowiadajace im grupy alkoksylowe. Podstawnikami chlorowcowymi sa ato¬ my chloru, bromu, fluoru lub jodu. Korzystnie jest, gdy grupa -NR5R6 zawiera nie wiecej niz 12 atomów wegla, a szczególnie cenne sa zwiazki o wzorze 1, w których pozycja para w rodniku fenylowym jest podstawiona grupa wodorotlenowa, a zwlaszcza al- kóksylówa taka, jak metoksylówa, w której obie sasiednie pozycje pierscienia fenylówego sa podsta¬ wione równiez podobna lub indentyczna grupa alko- ksylowa. Korzystne wlasciwosci maja równiez te zwiazki, w których grupa alkoksylowa, na przyklad metoksylówa wystepuje w pozycji para, zas w po¬ zycji orto znajduje sie rodnik alkilowy na przyklad metylowy.Reakcja miedzy 0-hydroksy-|3-fenyloetylometylo- sulfonem lub sulfotlenkiem a nitrylem kwasu |3-a- minopropionowego przedstawiona schematem 2 prze¬ biega bardzo korzystnie w obecnosci zasady w sro¬ dowisku polarnego, niewodnego rozpuszczalnika w temperaturze powyzej 30°C. Jako rozpuszczalnik stosuje sie alkanol taki jak metanol, etanol lub izo- propanol albo polarny rozpuszczalnik aprotyczny taki jak madi kwasu szesciometylofosforowego, amid kwasu N,N-dwumetylooctowego lub korzystnie sul- fotlenek dwumetylu. Zasada powinna byc dostatecz¬ nie mocna, aby odpowiednia ilosc reagenta sulfono¬ wego lub sulfotlenkowego przeprowadzic w postac anionowa. Odpowiednimi do tego celu zasadami sa na przyklad takie jak wodorotlenki i alkoholany metali alkalicznych, korzystnie metanolany lub Illrz.-butanolany. Sposób ten nadaje sie zwlaszcza do wytwarzania zwiazków o wzorze 1, w których grupa -NR5R6 oznacza grupe anilinowa podstawio¬ na w pozycji p, zwlaszcza gdy wytwarza sie zwiazki !440 4 o wzorze 1, w którym pierscien fenylowy w grupie benzylowej zawiera podstawniki alkoksylowe w po¬ zycjach para i/lub meta, poniewaz tego typu zwia¬ zki wyjsciowe sa szczególnie latwe do wytwarzania.Stosowane w tym procesie jako produkty wyjscio¬ we sulfony lub sulfotlenki wytwarza sie korzystnie w sposób, polegajacy na tym, ze podstawiony ester kwasu benzoesowego poddaje sie reakcji z sulfonem lub z sulfotlenkiem dwumetylu, korzystnie w obe- cnosci zasady i otrzymany metylosulfonoacetofenon lub metylosulfinyloacetofenon redukuje selektywnie na przyklad za pomoca borowodorku lub izopropa- nolanu glinu.Wynalazek mozna zilustrowac ponizszymi przy- kladami.Przyklad I. 565 g kwasu trójmetylogalusowego zmieszano z 2300 ml metanolu i ogrzewano w tem¬ peraturze 55°C w ciagu 5 godzin, wprowadzajac równoczesnie do mieszaniny 46 g bezwodnego chlo¬ rowodoru. Nastepnie mieszanine wylano do 8 litrów lodowatej wody, zawierajacej 290 ml 10 n roztworu wodorotlenku sodowego stale mieszajac. Odsaczono powstala zawiesine, przemyto osad lodowata woda i osuszono pod zmniejszonym cisnieniem w tempe¬ raturze 50°C, otrzymujac 523 g benzoesanu 3,4,5-trój- metoksymetylowego o temperaturze topnienia 87— 88°C. 27 g (0,69 mola) amidku sodowego, 225 ml sulfo- tlenku dwumetylu i 56,5 g (0,6 mola) dwumetylosul- fonu ogrzewano w ciagu 1 godziny w temperaturze 55°C, a nastepnie ochlodzono do temperatury 0°C dodano 65,4 g (0,29 mola) benzoesanu 3,4,5-trójme- toksymetylowego i ogrzewano w temperaturze 60°C w ciagu 1 godziny. Mieszanine wylano nastepnie na 1100 g lodu, zakwaszono 150 ml rozcienczonego (1 :1) kwasu solnego i ochlodzono lodem. Odsaczono pow¬ staly krystaliczny osad, przemyto go dwukrotnie 150 ml lodowatej wody i dwukrotnie 100 ml ochlo- 40 dzonego lodem etanolu. Po wysuszeniu w powietrzu w ciagu okolo 12 godzin otrzymano 14 g sulfonu me¬ tylowa-(3,4,5-trójmetoksyacetofenonu) o temperatu¬ rze topnienia 147—148°C. 38,1 g otrzymanego sulfonu, 100 ml odsolonej wody 45 i 30 ml etanolu zmieszano i chlodzono do tempera¬ tury 15°C, po czym dodano stopniowo ochlodzony roztwór 2 g borowodorku sodowego w 40 ml odsolo¬ nej wody. Nastepnie usunieto kapiel chlodzaca i mieszanine reakcyjna mieszano w ciagu 1 godziny. 50 Otrzymana zawiesine ochlodzono do temperatury 2°C, odsaczono i przemyto lodowata woda i osuszo¬ no pod zmniejszonym cisnieniem w temperaturze 50°C. Otrzymano 34,2 g j3-hydroksy-|3-3,4,5-trójmeto- ksyfenyloetylosulfonu o temperaturze topnienia 153— 55 154°C.A. 29 g otrzymanego sulfonu, 16,5 g nitrylu kwa¬ su (3-anilinopropionowego i 40 ml sulfotlenku dwu¬ metylu ogrzano do temperatury 40°C i dodano powoli 13,6% roztworu Illrz.-butanolanu potasowego w 60 Illrz. butanolu, po czym utrzymywano mieszanine w temperaturze 45°C przez 1 godzine. Nastepnie od¬ destylowano pod zmniejszonym cisnieniem alkohol i pozostalosc Wlano do 200 ml lodowatej wody. Kry¬ staliczny surowy produkt odsaczono i przekrystali- €5 zowano z etanolu, przemywajac etanolem i heksa-92 440 6 nem. Otrzymano 26 g nitrylu kwasu 0-anilino-a- -3,4,5-trójmetoksybenzyloakrylowego.W analogiczny sposób, przez kondensacje nitrylu kwasu p-anilinoproplonowego i podanych nizej sul¬ fonów otrzymano nizej wymienione nitryle: B. z p-hydroksy-P-(3,4-dwuchlorofenyloetylo)-me- tylosulfonu otrzymano nitryl kwasu p-anilino-a-3,4- -dwuchlorobenzyloakrylowego.C. z p-hydroksy-0-(2-jjodofenyloetylo)-metylosulfo- nu otrzymano nitryl kwasu 0-anilino-a-2-jodobenzy- loakrylowego, D. z 0-hydroksy-0-(3-jodofenyloetylo)-metylosul- fonu otrzymano nitryl kwasu p-anilino-a-3-jodo- benzyloakrylowego, E. z p-hydroksy-P-(4-jódofenyloetylo)-metylosulfo- nu otrzymano nitryl kwasu p-anilino-a-4-jodoben- zyloakrylowego i F. z p-hydroksy-P-(2-bromofenyloetylo)-metylosul- fonu otrzymano nitryl kwasu |3-aniliny-a-2-bromo- benzyloakrylowego.Przyklad II. Postepujac w sposób opisany w przykladzie I lecz stosujac zamiast sulfotlenku dwu- metylu 40 ml amidu kwasu szesciometylofosforowe- go, otrzymano 26 g nitrylu kwasu f$-anilino-a-3,4,5- -trójmetoksybenzyloakrylowego o temperaturze top¬ nienia 126—128°C.Przyklad III. 5 g 0-hydroksy-a-3,4,5-trójme- toksyfenyloetylometylosulfonu, 3 g nitrylu kwasu |3- -anilinopropionowego, 20 ml sulfotlenku dwumetylu i 2 ml 20% roztworu wodorotlenku potasu w meta¬ nolu poddano reakcji w temperaturze 90—95°C w ciagu 20 minut. Po dalszej obróbce i po przekry- stalizowaniu produktu z etanolu otrzymano 3 g ni¬ trylu kwasu |3-anilino-a-3,4,5-trójmetoksybenzylo- akrylowego o temperaturze topnienia 126—129°C.Przyklad IV. Postepujac w sposób opisany w przykladzie III, lecz stosujac zamiast sulfotlenku dwumetylu, 20 ml ^amidu kwasu szesciometylofosfo- rowego, otrzymano 2 g nitrylu kwasu |3-anilino-a-3, 4,5-trójmetoksybenzyloakrylowego. Po przekrystali- zowaniu z etanolu produkt posiadal temperature topnienia 125—127°C.Przyklad V. Postepujac w sposób opisany w przykladzie III, lecz stosujac zamiast wodorotlenku potasowego w metanolu, 0,5 g metanolanu sodowego, otrzymano 3 g nitrylu kwasu |3-anilino-a-3,4,5-trój- metoksybenzyloakrylowego o temperaturze topnie¬ nia 128—130°C.Przyklad VI. 10 g f5-hydroksy-a-3,4,5-trójme- toksyfenyloetylometylosulfonu, 5,1 g nitrylu kwasu [3-anilinopropionowego, 20 ml amidu kwasu szescio- metylofosforowego i 1 g metanolanu sodowego pod¬ dano reakcji w temperaturze 60°C w ciagu 30 minut.Po dalszej obróbce otrzymano 6 g nitrylu kwasu |3-anilino-a-3,4,5-trójmetoksybenzyloakrylowego o temperaturze topnienia 127—129°C.Przyklad VII. Postepujac w sposób opisany w przykladzie V, lecz stosujac zamiast sulfotlenku dwumetylu 25 ml N,N-dwumetyloacetamidu, po przerobieniu otrzymano 2,5 g nitrylu kwasu (3-ani- lino-a-3,4,5-trójmetoksybenzyloakrylowego o tempe¬ raturze topnienia 125—128°C.Przyklad VIII. 5,4 g metanolanu sodowego rozpuszczono w 50 ml goracego sulfotlenku dwu¬ metylu, ochlodzono do temperatury pokojowej, do¬ dano 18 g aldehydu 3,4,5-trójmetoksybenzoesowego io i mieszano w temperaturze pokojowej w ciagu 2 go¬ dzin. Nastepnie dodano 100 ml wody i roztwór ekstrahowano chloroformem, wyciag chloroformowy plukano woda, osuszono nad bezwodnym siarcza* nem sodowym i odparowano do sucha. Pozostaly zólty olej krystalizowano po dodaniu octanu etylu.Otrzymane krysztaly odsaczono i przemyto penta¬ nem, otrzymujac 14,8 g sulfotlenku 0-hydroksy-P- -3,4,5-trójmetoksyfenyloetylometylu, który po prze- krystalizowaniu z octanu etylu topnial w tempe- raturze 160—162°C. ,4 g otrzymanego sulfotlenku, 3 g nitrylu kwasu P-anilinopropionowego, 25 ml sulfotlenku dwumetylu i 0,5 g metanolanu sodowego poddano reakcji w temperaturze 90—95°C w ciagu 1 godziny, po czym mieszanine wlano do lodowatej wody, odsaczono osad i przekrystalizowano go ze skazonego etanolu, otrzymujac 2 g nitrylu kwasu (J-anilino-a-3,4,5-trój- metoksybenzyloakrylowego o temperaturze topnie¬ nia 125—127°C.Przyklad IX. Postepujac w sposób opisany w przykladzie VIII, lecz stosujac zamiast metanolanu sodowego roztwór 2 g wodorotlenku potasowego w ml metanolu, otrzymano 2 g nitrylu kwasu 0-ahi- lino-a-3,4,5-trójmetoksybenzyloakrylowego o tempe¬ raturze topnienia 125—128°C.Przyklad X. Postepujac w sposób podany w przykladzie VIII lecz stosujac 2 g metanolanu sodo- 40 wego i amid kwasu szesciometylofosforowego za¬ miast sulfotlenku dwumetylu, otrzymano 2 g nitrylu kwasu 0-anilino-a-3,4,5-trójmetoksybenzyloakrylo- wego o temperaturze topnienia 125—129°C. 4g Przyklad XI. Postepujac w sposób opisany w przykladzie VIII, lecz stosujac zamiast metanolanu sodowego 15 ml 13,6% roztworu Illrz.-butanolanu potasowego w Illrz.-butanolu, otrzymano 1 g nitrylu kwasu |3-anilino-a-3,4,5-trójmetoksybenzyloakrylo- 50 wego o temperaturze topnienia 128—130°C.Przyklad XII. Postepujac w sposób opisany w przykladzie IX, lecz stosujac zamiast sulfotlenku dwumetylu 25 ml amidu kwasu szesciometylofosfo- 55 rowego, otrzymano 1 g nitrylu kwasu p-anilino-a- -3,4,5-trójmetoksybenzyloakrylowego o temperaturze topnienia 123—126°C.Przyklad XIII. 3,0 g nitrylu kwasu morfolino- 60 propionowego,~2,9 g i|3-hydroksy-|3-3,4,5-trójmetoksy- fenylometylosulfonu, 0,3 g metanolanu sodowego i 6 ml amidu kwasu szesciometylofosforowego pod¬ dano reakcji w temperaturze 60—65°C w ciagu 40 minut, a nastepnie wlano do 50 ml lodowatej wody. 66 Powstaly surowy produkt oddzielono przez dekanta-92 440 8 cje i przekrystalizowano z 10 ml etanolu, otrzymujac 2 g nitrylu kwasu |3-morfolino-a-3,4,5-trójmetoksy- benzyloakrylowego.Przyklad XIV. Postepujac w sposób opisany w przykladzie XII, lecz stosujac zamiast metano- lanu sodowego wodorotlenek benzylotrójmetyloamo- niowy, otrzymano nitryl kwasu |3-morfolino- -trójmetoksybenzyloakrylowego z wydajnoscia 50% wydajnosci teoretycznej. PLThe present invention relates to a process for the preparation of nitrogen-stable β-amino-α-benzylacrylic acid nitrile derivatives of the general formula I, in which the symbols R1, R2, R3 and R4 are the same or different and each of them represents a hydrogen atom or a halogen atom. , an alkyl or alkoxy radical, where when R1 and R2 are hydrogen, then R3 and R4 together may be a dioxymethyl group, and -NR5R6 is an aliphatic, heterocyclic or aromatic amino group in which only one of the symbols R5 and R6 may be a hydrogen atom. These compounds may be converted into benzylpyrimidines or other intermediates to produce benzylpyrimidines or other heterocyclic compounds. Methods for the preparation of some nitrile derivatives (3-amino-α-benzylacrylic acid are disclosed by Stenbuck et al. J.Org. Chem. 1963, 28, 1893 and British Patent No. 957 797. The method described in Patent No. 957 797 for the preparation of 2,4-diamino-5-benzene. zylpyrimidines, in which the nitriles of the (3-amino-a-benzyl acrylic acid were intermediate products) were obtained by reaction between benzaldehyde and substituted propionic acid nitrile shown in Scheme 1, where Ar is A total phenyl group optionally substituted with alkoxy and / or alkyl groups and / or halogen atoms, Y represents a nucleophilic group and Z represents a Y group or an alkoxy group derived from the solvent alcohol. Examples of the nucleophilic groups of Y are alkoxy, alkylthio, dialkylamino or halogen atoms. As a result of this reaction, a mixture of benzyl and benzal isomers was obtained, which was reacted in this form with guanidine to give 2,4-diamino-5-benzylpyrimidine. The process was not very efficient. The presence of the benzal isomer, especially in larger amounts, negatively influenced the quality of the obtained benzylpyrimidine and the efficiency of the process. The product contained colored polymer impurities, especially when the phenyl ring in these isomers had no para substituent. It was very troublesome to clean the product from the accompanying contaminants so that it could be suitable for pharmaceutical purposes. The invention allows the preparation of nitrogen-substituted β-amino-α-benzylacrylic acid nitrile derivatives of the general formula 1, in which all symbols have the meaning given above, with avoiding the disadvantages of known methods. The products obtained by the method according to the invention do not contain benzal isomer impurities, are unexpectedly stable and retain their structure, and at the same time are susceptible to reaction under various conditions. The benzyl isomers of these compounds have no or hardly any tendency to convert into benzal isomers. According to the invention, compounds of the general formula I are prepared by the reaction (3-hydroxy ^ | 3-phenylethylmethylsulfone or sulfoxide of the general formula 92 4403). 2, in which R1, R2, R3 and R4 are as defined above, and n is equal to 1 or 2 with a p-aminopropionic acid nitrile of the general formula III, in which the amino group -NR5R6 as indicated above for formula 1 is aliphatic, heterocyte A cyclic or aromatic amino group and only one of the symbols R5 and R6 may represent a hydrogen atom. In general, it is preferred that the free amine of the formula HNR5R6 from which the group -NR5R6 is derived has a pK value of not less than 0 and not higher than 6. Particularly preferably, the -NR5R "group is an anilino group, the phenyl ring of this group may have one or more substituents, such as halogen atoms, alkyl or alkoxy radicals, but preferably These properties have those compounds in which the ring is not substituted. The -NR5R5 group can also designate o-toluidine, p-toluidine, p-anisidine; p-chloroaniline, 2,5-dichloroaniline and 3,4-dichloroaniline. The -NR5R6 group can also designate another secondary amino group , for example monoalkylamino, benzylamine, or naphthylamino, preferably p-naphthylamino, or a tertiary amino group such as dialkylamino, pyrrolidine, piperidine, N-methylaniline, or piperazine, especially morpholino or alkyd radicals. they may contain 1-4 carbon atoms and are, for example, methyl, ethyl, propyl or butyl radicals, isobutyl tert-butyl radicals and the corresponding alkoxy groups. Halogen substituents are chlorine, bromine, fluorine or iodine atoms. the group -NR5R6 contains no more than 12 carbon atoms, and especially valuable are the compounds of formula 1 in which the para position in the phenyl radical is substituted with a hydroxyl group, and in particular with an alkoxyl group such as methoxy, in which both adjacent positions of the phenyl ring are substituted also by a similar or identical alkoxy group. Compounds in which an alkoxy group, for example, methoxy, is in the para position, and in the ortho position there is an alkyl radical, for example, methyl. The reaction between 0-hydroxy-| 3-phenylethylmethylsulfone or sulfoxide and nitrile The β-α-amino-propionic acid shown in Scheme 2 operates very preferably in the presence of a base in a polar, non-aqueous solvent, at a temperature above 30 ° C. The solvent used is an alkanol such as methanol, ethanol or isopropanol, or a polar aprotic solvent such as hexamethylphosphoric acid madi, N, N-dimethylacetic acid amide or preferably dimethyl sulfoxide. The base should be sufficiently strong to convert the appropriate amount of the sulfone or sulfoxide reagent to the anionic form. Suitable bases for this purpose are, for example, alkali metal hydroxides and alkoxides, preferably methanolates or tert-butoxides. This process is particularly suitable for the preparation of compounds of formula I in which the -NR5R6 group is a p-substituted anilino group, especially when preparing compounds of formula I in which the phenyl ring in the benzyl group contains alkoxy substituents in the p-position. Since such starting compounds are particularly easy to prepare, the sulfones or sulfoxides used as starting products in this process are preferably prepared by a method whereby the substituted benzoic acid ester is processed Reaction with a sulfone or with dimethyl sulfoxide, preferably in the presence of a base, and the obtained methylsulfonoacetophenone or methylsulfinylacetophenone is selectively reduced, for example, with, for example, aluminum borohydride or isopropanolate. The invention can be illustrated by the following examples. Example I. 2,300 ml of methanol and heated to 55 ° C for 5 hours, simultaneously introducing a mixture of 46 g of anhydrous hydrogen chloride. The mixture was then poured into 8 liters of ice-water containing 290 ml of 10N sodium hydroxide solution with constant stirring. The resulting suspension was filtered off by suction, washed with ice water and dried in vacuo at 50 ° C to give 523 g of 3,4,5-trimethoxymethyl benzoate, mp 87-88 ° C. 27 g (0.69 mol) of sodium amide, 225 ml of dimethyl sulfoxide and 56.5 g (0.6 mol) of dimethylsulfone were heated for 1 hour at 55 ° C and then cooled to 0 ° C. 65.4 g (0.29 mol) 3,4,5-trimethoxymethyl benzoate was added and heated at 60 ° C for 1 hour. The mixture was then poured onto 1100 g of ice, acidified with 150 ml of dilute (1: 1) hydrochloric acid and cooled with ice. The solid crystalline precipitate was filtered off, washed twice with 150 ml of ice water and twice with 100 ml of ice-cold ethanol. After drying in air for about 12 hours, 14 g of methyl sulfone (3,4,5-trimethoxyacetophenone) were obtained, mp 147-148 ° C. 38.1 g of the obtained sulfone, 100 ml of desalted water 45 and 30 ml of ethanol were mixed and cooled to 15 ° C., and then a cooled solution of 2 g of sodium borohydride in 40 ml of desalted water was gradually added. The cooling bath was then removed and the reaction mixture was stirred for 1 hour. The resulting slurry was cooled to 2 ° C, filtered and washed with ice water and dried in vacuo at 50 ° C. 34.2 g of β-hydroxy- β3,4,5-trimethoxy-phenylethylsulfone with a melting point of 153-55 154 ° C were obtained. 29 g of the obtained sulfone, 16.5 g of acid nitrile (3-anilinopropionic acid and 40 ml of dimethyl sulphoxide) were heated to 40 ° C. and 13.6% of a solution of potassium tert-butoxide in 60 IU butanol was added slowly. The mixture was kept at 45 ° C. for 1 hour. The alcohol was then distilled under reduced pressure and the residue was poured into 200 ml of ice water. The crystalline crude product was filtered off and recrystallized from ethanol, washing with ethanol and hexa-92 440 6 nem. 26 g of O-anilino-α -3,4,5-trimethoxybenzylacrylic acid nitrile were obtained. In a similar manner, condensation of p-anilinoproplonic acid nitrile and the sulphones indicated below gave the following nitriles: B. from p. -hydroxy-P- (3,4-dichlorophenylethyl) -methylsulfone nitrile of p-anilino-α-3,4-dichlorobenzylacrylic acid C. from p-hydroxy-O- (2-iodophenylethyl) -methylsulfone O-anilino-α-2-iodobenzylacrylic acid nitrile was obtained, D. from 0-hydroxy-O- (3-iodophyll of enylethyl) -methylsulfone the nitrile of p-anilino-a-3-iodo-benzylacrylic acid was obtained, E. p-hydroxy-P- (4-iodophenylethyl) -methylsulfone was obtained from p-anilino-a-4- acid nitrile iodobenzylacrylic acid and F. from p-hydroxy-P- (2-bromophenylethyl) -methylsulfone the nitrile of β-aniline-α-2-bromobenzylacrylic acid was obtained. Example II. Following the procedure described in Example 1, but using 40 ml of hexamethylphosphoric amide instead of dimethylsulfoxide, 26 g of α-anilino-α-3,4,5-tri-methoxybenzylacrylic acid nitrile were obtained, mp 126-128 ° C. Example III. 5 g of O-hydroxy-α-3,4,5-trimethoxy-phenylethylmethylsulfone, 3 g of β-anilinopropionic acid nitrile, 20 ml of dimethyl sulfoxide and 2 ml of a 20% solution of potassium hydroxide in methanol were reacted at 90 ° C. 95 ° C within 20 minutes. After further work-up and recrystallization of the product from ethanol, 3 g of β-anilino-α-3,4,5-trimethoxybenzyl-acrylic acid nitrile was obtained, m.p. 126-129 ° C. Proceeding as described in Example 3, but using 20 ml of hexamethylphosphonic acid amide instead of dimethylsulfoxide, 2 g of? -Anilino-? -3,4,5-trimethoxybenzylacrylic acid nitrile were obtained. After recrystallization from ethanol, the product had a melting point of 125-127 ° C. EXAMPLE 5 Following the procedure of example 3, but using 0.5 g of sodium methoxide instead of potassium hydroxide in methanol, 3 g of nitrile of anilino-α-3,4,5-trimethoxybenzylacrylic, m.p. 128-130 ° C. Example VI. 10 g of f5-hydroxy-α-3,4,5-trimethoxy-phenylethylmethylsulfone, 5.1 g of [3-anilinopropionic acid nitrile, 20 ml of hexamethylphosphoric acid amide and 1 g of sodium methoxide were reacted at 60 ° C. for 30 minutes. After further treatment, 6 g of β-anilino-α-3,4,5-trimethoxybenzylacrylic acid nitrile, mp 127-129 ° C, were obtained. Proceeding as described in Example 5, but using 25 ml of N, N-dimethylacetamide instead of dimethylsulfoxide, after work-up, 2.5 g of nitrile of (3-aniline-α-3,4,5-trimethoxybenzylacrylic acid, temperature mp 125 ° -128 ° C. EXAMPLE 8 5.4 g of sodium methoxide was dissolved in 50 ml of hot dimethyl sulfoxide, cooled to room temperature, 18 g of 3,4,5-trimethoxybenzaldehyde were added and stirred at room temperature. for 2 hours Then 100 ml of water was added and the solution was extracted with chloroform, the chloroform extract was rinsed with water, dried over anhydrous sodium sulphate and evaporated to dryness. The residual yellow oil was crystallized upon addition of ethyl acetate. The resulting crystals were filtered off and washed with penta. nem, to obtain 14.8 g of O-hydroxy-P -3,4,5-trimethoxyphenylethylmethyl sulfoxide, which, after recrystallization from ethyl acetate, melted at 160 ° -162 ° C., 4 g of the obtained sulfoxide, 3 g p-anilino acid nitrile of opionic acid, 25 ml of dimethyl sulfoxide and 0.5 g of sodium methoxide were reacted at 90-95 ° C for 1 hour, then the mixture was poured into ice water, the precipitate was filtered off and recrystallized from contaminated ethanol to give 2 g of acid nitrile ( J-anilino-α-3,4,5-trimethoxybenzylacrylic, mp 125-127 ° C. Example IX. Proceeding as described in Example 8, but using a solution of 2 g of potassium hydroxide in ml of methanol instead of sodium methoxide, 2 g of O-ahilin-α-3,4,5-trimethoxybenzylacrylic acid nitrile, mp 125-128, was obtained. ° C. Example X. Following the procedure of Example VIII, but using 2 g of sodium methoxide and hexamethylphosphoric amide instead of dimethyl sulfoxide, 2 g of O-anilino-α-3,4,5-trimethoxybenzyl acrylate nitrile were obtained. mp 125-129 ° C. 4g Example XI. Proceeding as described in Example VIII, but using 15 ml of 13.6% potassium tert-butoxide solution in tert-butanol instead of sodium methoxide, 1 g of? -Anilino-a-3,4,5-trimethoxybenzylacryl acid nitrile was obtained. - 50 g with a melting point of 128-130 ° C. Example XII. Proceeding as in Example 9, but using 25 ml of hexomethylphosphonic acid amide instead of dimethylsulfoxide, 1 g of p-anilino-α -3,4,5-trimethoxybenzylacrylic acid nitrile, mp 123-126 ° C, was obtained. Example XIII. 3.0 g of morpholine-propionic acid nitrile, ~ 2.9 g and β-hydroxy- β3,4,5-trimethoxyphenylmethylsulfone, 0.3 g of sodium methoxide and 6 ml of hexamethylphosphoric acid amide were reacted. at 60-65 ° C for 40 minutes, and then poured into 50 ml of ice water. The resulting crude product was separated by decant-92 440 8 and recrystallized from 10 ml of ethanol to obtain 2 g of β-morpholine-α-3,4,5-trimethoxybenzylacrylic acid nitrile. Example XIV. Following the procedure described in Example 12, but using benzyltrimethylammonium hydroxide instead of sodium methoxide, the nitrile of β-morpholine-tri-methoxybenzylacrylic acid was obtained in 50% of theoretical yield. PL