NO823079L - PROCEDURE FOR THE MANUFACTURING OF URANDY Dioxide POWDER - Google Patents
PROCEDURE FOR THE MANUFACTURING OF URANDY Dioxide POWDERInfo
- Publication number
- NO823079L NO823079L NO823079A NO823079A NO823079L NO 823079 L NO823079 L NO 823079L NO 823079 A NO823079 A NO 823079A NO 823079 A NO823079 A NO 823079A NO 823079 L NO823079 L NO 823079L
- Authority
- NO
- Norway
- Prior art keywords
- dioxide powder
- carried out
- uranium dioxide
- compound
- heating
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 claims description 28
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 claims description 27
- 150000001875 compounds Chemical class 0.000 claims description 18
- ZAASRHQPRFFWCS-UHFFFAOYSA-P diazanium;oxygen(2-);uranium Chemical compound [NH4+].[NH4+].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[U].[U] ZAASRHQPRFFWCS-UHFFFAOYSA-P 0.000 claims description 18
- 230000006698 induction Effects 0.000 claims description 18
- 239000000446 fuel Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- VEMKTZHHVJILDY-PMACEKPBSA-N (5-benzylfuran-3-yl)methyl (1r,3s)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate Chemical compound CC1(C)[C@@H](C=C(C)C)[C@H]1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-PMACEKPBSA-N 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 10
- 239000007858 starting material Substances 0.000 claims description 10
- DSERHVOICOPXEJ-UHFFFAOYSA-L uranyl carbonate Chemical compound [U+2].[O-]C([O-])=O DSERHVOICOPXEJ-UHFFFAOYSA-L 0.000 claims description 10
- 229940077390 uranyl nitrate hexahydrate Drugs 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000000354 decomposition reaction Methods 0.000 description 10
- 230000009467 reduction Effects 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000005855 radiation Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- JCMLRUNDSXARRW-UHFFFAOYSA-N trioxouranium Chemical compound O=[U](=O)=O JCMLRUNDSXARRW-UHFFFAOYSA-N 0.000 description 2
- 150000003671 uranium compounds Chemical class 0.000 description 2
- 229910000439 uranium oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical class [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- KCKICANVXIVOLK-UHFFFAOYSA-L dioxouranium(2+);difluoride Chemical compound [F-].[F-].O=[U+2]=O KCKICANVXIVOLK-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- -1 nioboxide Chemical class 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G43/00—Compounds of uranium
- C01G43/01—Oxides; Hydroxides
- C01G43/025—Uranium dioxide
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
- G21C3/623—Oxide fuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Disintegrating Or Milling (AREA)
Description
Foreliggende oppfinnelse angår en forbedret fremgangsmåte for fremstilling av et urandioksydpulver som kan sintres og som kan brukes ved fremstilling av brennstoff for kjernekraftreaktorer, og mer spesielt angår oppfinnelsen fremstilling av et urandioksydpulver som kan sintres ved hjelp av mikrobølgestråling i en mikrobølgeinduksjonsovn. The present invention relates to an improved method for the production of a uranium dioxide powder which can be sintered and which can be used in the production of fuel for nuclear power reactors, and more particularly the invention relates to the production of a uranium dioxide powder which can be sintered by means of microwave radiation in a microwave induction furnace.
Urandioksyd er det brennstoff som mest vanlig an-vendes i de kjernekraftreaktorer som finnes idag. Vanligvis blir urandioksydpulveret presset og sintret til pellets som så føres inn i og som lukkes inn i avlange hulermetallrør, som ofte kalles for brennstoffstaver. Det er en rekke slike brennstoffstaver som etablerer en akkumulering av et spalt-bart materiale i tilstrekkelig konsentrasjon til at man opp-rettholder en vedvarende spaltingsreaksjon inne i kjernen av kjernekraftreaktoren. Uranium oxide is the fuel most commonly used in the nuclear power reactors that exist today. Usually, the uranium dioxide powder is pressed and sintered into pellets which are then fed into and closed into elongated hollow metal tubes, which are often called fuel rods. There are a number of such fuel rods which establish an accumulation of a fissionable material in sufficient concentration to maintain a sustained fission reaction inside the core of the nuclear power reactor.
Det er blitt utviklet en rekke forskjellige metoder for fremstilling av et urandioksydpulver som lar seg sintre, og som vanligvis er utgangsforbindelsen i en fremgangsmåte hvor man ønsker å fremstille et pellets av selve kjernekraft-brennstoffet. Den mest vanlige fremgangsmåten innbefatter dekomponering og reduksjon av ammoniumdiuranat eller det man ofte kaller ADU-metoden. ADU fremstilles ved en utfelling fra en oppløsning av uranylfluorid ved at man tilsetter ammo-niakk, og det ADU som dannes på denne måten har en meget fin partikkelstørrelse, og denne partikkelstørrelsen holder seg når man får fremstilt urandioksydpulver etter varmetørking, dekomponering og reduksjon i en elektrisk motstandsovn, en tørker hvor man overfører strålingsvarme, i en vanlig ovn eller en kombinasjon av slike. A number of different methods have been developed for the production of a uranium dioxide powder that can be sintered, and which is usually the starting compound in a process where it is desired to produce a pellet of the nuclear power fuel itself. The most common method involves the decomposition and reduction of ammonium diuranate or what is often called the ADU method. ADU is produced by precipitation from a solution of uranyl fluoride by adding ammonia, and the ADU that is formed in this way has a very fine particle size, and this particle size is maintained when uranium dioxide powder is produced after heat drying, decomposition and reduction in a electric resistance oven, a dryer where radiant heat is transferred, in a conventional oven or a combination of these.
En annen vanlig fremgangsmåte for fremstilling av urandioksydpulver er ammoniumuranylkarbonat eller AUC-metoden. Nevnte AUC fremstilles ved en utfelling fra en oppløsning av uranylfluoryl ved at man samtidig tilsetter NH^og CC^. Det utfelte AUC skilles fra moderluten ved filtrering og vasking, og urandioksydpulveret fremstilles ved varmedekomponering av nevnte AUC og en etterfølgende reduksjon av det resulterende U^Og til UC>2i en reduserende atmosfære. Varmedekomponer ingen av nevnte AUC og reduksjonen av oksydet til urandioksydpulver i hydrogen eller en annen reduserende gass, blir vanligvis utført i en elektrisk motstandsovn eller i to slike enheter, f.eks. i såkalte hvirvelsjiktovner. Another common method for producing uranium dioxide powder is the ammonium uranyl carbonate or AUC method. Said AUC is produced by precipitation from a solution of uranylfluoryl by simultaneously adding NH^ and CC^. The precipitated AUC is separated from the mother liquor by filtration and washing, and the uranium dioxide powder is prepared by heat decomposition of said AUC and a subsequent reduction of the resulting U^Og to UC>2 in a reducing atmosphere. Heat decompose none of the above AUC and the reduction of the oxide to uranium dioxide powder in hydrogen or another reducing gas is usually carried out in an electric resistance furnace or in two such units, e.g. in so-called fluidized bed furnaces.
En tredje fremgangsmåte for fremstilling av urandioksydpulver er uranylnitratheksahydrat-metoden eller UNH-metoden. I denne fremgangsmåten starter man ut med uranylnitratheksahydrat U02(NH^)2•^H2°' hvoretter man oppvarmer og dekomponerer forbindelsen i en elektrisk motstandsovn, slik at man får fremstilt UO^, oksyder av nitrogen og vanndamp. Nevnte UO^ oppvarmes så i en elektrisk motstandsovn i en hydrogenreduserende atmosfære, hvorved man får fremstilt urandioksydpulver og vanndamp. A third method for producing uranium dioxide powder is the uranyl nitrate hexahydrate method or the UNH method. In this method, one starts with uranyl nitrate hexahydrate U02(NH^)2•^H2°', after which the compound is heated and decomposed in an electric resistance furnace, so that UO^, oxides of nitrogen and water vapor are produced. Said UO^ is then heated in an electric resistance furnace in a hydrogen-reducing atmosphere, whereby uranium dioxide powder and water vapor are produced.
De tidligere kjente fremgangsmåter for fremstilling av urandioksydpulver har alle anvendt standard elektriske motstandsovner eller forbrenningsoppvarmede anordninger under dekomponering og reduksjon, dvs. en dekomponering til UC>2 eller U^Og fulgt av en reduksjon til urandioksydpulver. Alternativt har de uranholdige forbindelser blitt bearbeidet ved at man primært har anvendt vanlige, roterende ovner siler ovner hvor man har overført strålingsvarme. Det er en hensikt ved foreliggende oppfinnelse å erstatte vanlig anvendte elektriske motstandsovner, tørkere hvor man overfø-rer strålingsvarme eller vanlige ovner hvor man bruker brennstoff, med mikrobølgeinduksjonsovner. The previously known methods for producing uranium dioxide powder have all used standard electric resistance furnaces or combustion-heated devices during decomposition and reduction, i.e. a decomposition to UC>2 or U^O followed by a reduction to uranium dioxide powder. Alternatively, the uranium-containing compounds have been processed by primarily using ordinary, rotating furnaces, sieve furnaces where radiant heat has been transferred. It is a purpose of the present invention to replace commonly used electric resistance ovens, dryers where radiation heat is transferred or ordinary ovens where fuel is used, with microwave induction ovens.
Hittil har mikrobølgeinduksjon vært brukt som en oppvarmingsmekanisme så og si utelukkende ved at vannmolekyler underkastes bestråling ved hjelp av mirkobølger, eller sagt på en annen måte, bruken av mikrobølger for oppvarming av materialer har vært sentrert på de effekter mikrobølger har på vannmolekyler. Mikrobølgene frembringer meget raske for-andringer i vannmolekylets polarisering, hvorved det utvikles varme. Foreliggende oppfinnelsen beskriver at man også kan bestråle uranylnitratheksahydrat, ammoniumdiuranat og ammoniumuranylkarbonat med mikrobølger og derved få utviklet varme. Den typer elektriske motstandsovner, ovner hvor man overfører strålingsvarme og ovner hvor man anvender brenn stoff slik disse er beskrevet ovenfor, kan således erstattes med mikrobølgeinduksjonsovner for fremstilling av urandioksydpulver via ADU, AUC og UNH pulverfremstillingsprosesser. Hitherto, microwave induction has been used as a heating mechanism almost exclusively by subjecting water molecules to irradiation using microwaves, or put another way, the use of microwaves for heating materials has been centered on the effects microwaves have on water molecules. The microwaves produce very rapid changes in the polarization of the water molecule, whereby heat is generated. The present invention describes that you can also irradiate uranyl nitrate hexahydrate, ammonium diuranate and ammonium uranyl carbonate with microwaves and thereby generate heat. The types of electric resistance furnaces, furnaces where radiation heat is transferred and furnaces where fuel is used as described above can thus be replaced with microwave induction furnaces for the production of uranium dioxide powder via ADU, AUC and UNH powder production processes.
Foreliggende oppfinnelse unngår mange av de ulemper man hadde ved tidligere kjente oppvarmingsanordninger ved at man senker oppvarmingstiden for materialet, man har et større variasjonsområde med hensyn til bearbeidingstempera-turer, kortere bearbeidingstid, lavere innhold av fluorid-urenheter, man bedrer behandlingen av de gelatinøse ADU eller AUC filterkakene, man konserverer energi ved at var-men utvikles utelukkende inne i selve det materialet som skal oppvarmes, og oppfinnelsen lar seg lett anvende på avsidesliggende steder som ofte er nødvendig for bearbeiding av kjernekraftbrennstoff, og man får tilveiebragt et kjera-misk aktivt urandioksydpulverprodukt som lar seg sintre. The present invention avoids many of the disadvantages of previously known heating devices by reducing the heating time for the material, having a greater range of variation with regard to processing temperatures, shorter processing time, lower content of fluoride impurities, improving the processing of the gelatinous ADU or the AUC filter cakes, energy is conserved by the fact that heat is developed exclusively within the material to be heated, and the invention can easily be used in remote locations that are often necessary for processing nuclear power fuel, and a ceramic active is provided sinterable uranium dioxide powder product.
Sammendrag av oppfinnelsen.Summary of the invention.
Foreliggende oppfinnelse angår en forbedret fremgangsmåte for fremstilling av et urandioksydpulver som lar seg sintre, og som skal brukes ved fremstillingen av kjerne-kraf tbrennstof f idet man bruker en mi-krobølgestråling i en mikrobølgeinduksjonsovn. Typiske utgangsforbindelser velges fra gruppen bestående av uranylnitrat, heksahydrat, ammoniumdiuranat og ammoniumuranylkarbonat. Den valgte utgangsforbindelsen oppvarmes så i en mikrobølgeinduksjonsovn i et tilstrekkelig langt tidsrom til at forbindelsen dekomponerer. Den dekomponerte forbindelsen blir så oppvarmet i en mikro-bølgeinduks jonovn i en reduserende atmosfære i tilstrekkelig lang til til at man reduserer den dekomponerte forbindelsen til et urandioksydpulver som deretter avkjøles i en reduserende atmosfære. Etter avkjøling vil pulveret kunne brukes for fremstilling av kjernekraftbrennstoff. The present invention relates to an improved method for the production of a sinterable uranium dioxide powder, which is to be used in the production of nuclear power fuel using microwave radiation in a microwave induction furnace. Typical starting compounds are selected from the group consisting of uranyl nitrate, hexahydrate, ammonium diuranate and ammonium uranyl carbonate. The selected starting compound is then heated in a microwave induction oven for a sufficiently long period of time for the compound to decompose. The decomposed compound is then heated in a microwave induction ion oven in a reducing atmosphere for sufficient time to reduce the decomposed compound to a uranium dioxide powder which is then cooled in a reducing atmosphere. After cooling, the powder can be used for the production of nuclear power fuel.
De egenskaper som karakteriserer oppfinnelsen er spesielt fremhevet i de etterfølgende krav og i den etter-følgende detaljerte beskrivelse. Det refereres her til den etterfølgende beskrivelse som angir en typisk utførelse av oppfinnelsen. The properties that characterize the invention are particularly highlighted in the following claims and in the following detailed description. Reference is made here to the following description which indicates a typical embodiment of the invention.
Detaljert beskrivelse. av den foretrukne utførelse.Detailed description. of the preferred embodiment.
Et urandioksydpulver som lar"seg sintre og som skal brukes ved fremstillingen av kjernekraftbrennstoff fremstilles ved at man først velger ut et kommersielt tilgjengelig utgangsmateriale fra gruppen av forbindelser som innbefatter uranylnitratheksahydrat, ammoniumdiuranat og ammoniumuranylkarbonat. Den utvalgte forbindelsen blir deretter oppvarmet i en mikrobølgeinduksjonsovn i et tilstrekkelig langt tidsrom til at materialet dekomponerer, og dette materialet bør ha en sammensetning i et uranoksydstøkiometrisk område fra UO^til U-jOg. Det foretrukne dekomponeringssluttproduktet A sinterable uranium dioxide powder to be used in the production of nuclear fuel is prepared by first selecting a commercially available starting material from the group of compounds including uranyl nitrate hexahydrate, ammonium diuranate, and ammonium uranyl carbonate. The selected compound is then heated in a microwave induction furnace at a sufficient long time for the material to decompose, and this material should have a composition in a uranium oxide stoichiometric range from UO^ to U-jOg. The preferred decomposition end product
er U^ Oq, og dekomponeringen kan utføres enten i en oksyderende atmosfære bestående av luft, 0^eller lignende, eller i en inert atmosfære. Dekomponeringen utføres ved en temperatur fra 4 00 til 6 00°C når man bruker uranylnitratheksahydrat som utgangsforbindelse. Dekomponeringen finner sted i om-rådet fra 350 til 450°C når man enten bruker ammoniumdiuranat eller ammoniumuranylkarbonat som utgangsforbindelse. is U^ Oq, and the decomposition can be carried out either in an oxidizing atmosphere consisting of air, O^ or the like, or in an inert atmosphere. The decomposition is carried out at a temperature of 400 to 600°C when using uranyl nitrate hexahydrate as starting compound. The decomposition takes place in the range from 350 to 450°C when either ammonium diuranate or ammonium uranyl carbonate is used as starting compound.
Den dekomponerte forbindelsen oppvarmes så i en mikrobølge-induksjonsovn i en reduserende atmosfære som i alt vesentlig består av en blanding av hydrogen og nitrogen eller lignende., i et tilstrekkelig langt tidsrom til at man reduserer den dekomponerte forbindelsen til en urandioksydpulver. Reduksjonen utføres ved temperaturer fra 45 0 til 550°C uten hensyn til hvilket utgangsmateriale;. man anvendte. Urandioksydpulveret blir deretter avkjølt i en reduserende atmosfære til omtrent romtemperatur. Etter at pulveret er avkjølt, The decomposed compound is then heated in a microwave induction oven in a reducing atmosphere which essentially consists of a mixture of hydrogen and nitrogen or the like, for a sufficiently long period of time to reduce the decomposed compound to a uranium dioxide powder. The reduction is carried out at temperatures from 45 0 to 550°C, regardless of the starting material. was used. The uranium dioxide powder is then cooled in a reducing atmosphere to about room temperature. After the powder has cooled,
så kan det brukes for fremstilling av kjernekraftbrennstoff. then it can be used for the production of nuclear power fuel.
Uranylnitratheksahydrat, ammoniumdiuranat og ammoniumuranylkarbonat ble alle utsatt for mikrobølgebestrål-ing i en mikrobølgeinduksjonsovn ved ca. 2450 MHz. Dette er samme frekvens som man bruker i en standard mikrobølgeovn av den type man installerer i kjøkkener. Nevnte forsøk ble ut-ført for å bestemme hvorvidt nevnte forbindelser lot seg oppvarme ved hjelp av mikrobølgebestråling. Det er underforstått at når man valgte en vanlig mikrobølgeovn så var det fordi denne er lett tilgjengelig, men man kan selvsagt også anvende andre mikrobølgeinduksjonsovner som anvender andre frekvenser. Videre kan en ovn eller en rekke ovner brukes for dekomponering og reduksjon. Alle de nevnte uranforbindelser lot seg lett oppvarme ved hjelp av mikrobølge-bestråling. Andre forbindelser så som nioboksyd, aluminium-oksyd, silisiumdioksyd og grafitt lot seg også til en viss grad oppvarme når' de ble eksponert overfor mikrobølgebestrål-ing, men oppvarmingen var langt langsommere enn det man fant for de ovennevnte uranforbindelser. Uranyl nitrate hexahydrate, ammonium diuranate and ammonium uranyl carbonate were all exposed to microwave irradiation in a microwave induction oven at approx. 2450 MHz. This is the same frequency as is used in a standard microwave oven of the type installed in kitchens. Said experiment was carried out to determine whether said compounds allowed themselves to be heated by means of microwave irradiation. It is understood that when you chose a normal microwave it was because it is easily available, but you can of course also use other microwave induction ovens that use other frequencies. Furthermore, an oven or a series of ovens can be used for decomposition and reduction. All the mentioned uranium compounds were easily heated with the help of microwave irradiation. Other compounds such as nioboxide, aluminum oxide, silicon dioxide and graphite also allowed themselves to be heated to a certain extent when exposed to microwave radiation, but the heating was much slower than what was found for the above-mentioned uranium compounds.
Når krystaller av uranylnitratheksahydrat ble utsatt for mikrobølgebestråling i en mikrobølgeinduksjonsovn i en oksyderende atmosfære, så fikk man først dannet en væske idet det hydratiserte vannet ble frigjort, hvoretter forbindelsen dekomponerte i et område som lå fra 400 til 6 0 0°C, hvoretter man fikk en progressiv tørking idet man frikk frigjort nitrøse oksyder og vanndamp, og man fikk dannet urantrioksyd (UO^). Dette oksyd ble så oppvarmet til en temperatur fra 450 til 500 C i en mikrobølgeinduk-sjonsovne i en reduserende atmosfære, hvorved vanndamp ble frigjort og nevnte UO^ble redusert til et urandioksydpulver som så ble avkjølt i en reduserende atmosfære til ca", romtemperatur . When crystals of uranyl nitrate hexahydrate were exposed to microwave irradiation in a microwave induction oven in an oxidizing atmosphere, a liquid was first formed as the hydrated water was released, after which the compound decomposed in a range from 400 to 600°C, after which it was obtained a progressive drying in which liberated nitrous oxides and water vapor were removed, and uranium trioxide (UO^) was formed. This oxide was then heated to a temperature of 450 to 500 C in a microwave induction furnace in a reducing atmosphere, whereby water vapor was released and said UO was reduced to a uranium dioxide powder which was then cooled in a reducing atmosphere to approx. room temperature.
Ammoniumdiuranat som er tilgjengelig som en filter-kake ble utsatt for mikrobølgebestråling i en mikrobølgein-duksjonsovn i en oksyderende atmosfære, og man fikk først frigjort vann og en opptørking, hvoretter forbindelsen dekomponerte i et temperaturområde fra 350 til 450°C idet man fikk frigjort ammoniakkgass og vanndamp, og man fikk dannet U^Og. Dette oksyd ble så oppvarmet til en temperatur i om-rådet fra 450 til 550°C i en mikrobølgeinduksjonsovn i en reduserende atmosfære, hvorved vanndamp ble frigjort og U^Og ble redusert til urandioksydpulver som så ble avkjølt i en reduserende atmosfære til ca. romtemperatur. Ammonium diuranate, which is available as a filter cake, was subjected to microwave irradiation in a microwave induction furnace in an oxidizing atmosphere, and water was first liberated and a drying was obtained, after which the compound decomposed in a temperature range from 350 to 450°C, liberating ammonia gas and water vapor, and U^Og was formed. This oxide was then heated to a temperature in the range from 450 to 550°C in a microwave induction furnace in a reducing atmosphere, whereby water vapor was released and U^Og was reduced to uranium dioxide powder which was then cooled in a reducing atmosphere to approx. room temperature.
Når ammoniumuranylkarbonat ble utsatt for den samme behandling som beskrevet for nevnte ammoniumdiuranat, så dekomponerte forbindelsen på samme måte som nevnte ammoniumdiuranat idet man fikk frigjort ammniakkgass og vanndamp, When ammonium uranyl carbonate was subjected to the same treatment as described for said ammonium diuranate, the compound decomposed in the same way as said ammonium diuranate, releasing ammonia gas and water vapor,
og siden frigjort karbondioksydgass og man fikk dannet U^Og. and then released carbon dioxide gas and U^Og was formed.
Reduksjon av U^Og til urandioksydpulver fulgt av avkjøling skjedde på samme måte som når man reduserte og avkjølte ammoniumdiuranat. Reduction of U^Og to uranium dioxide powder followed by cooling occurred in the same way as when reducing and cooling ammonium diuranate.
Når uranylnitratheksahydrat, ammoniumdiuranat og ammoniumuranylkarbonat ble dekomponert og redusert i en mikro-bølgeinduksjonsovn så skjer dette i løpet av minutter snarere enn timer slik det skjer i vanlige elektriske motstandsovner. Videre kan man ved hjelp av mikrobølgebestråling bearbeide skinnende eller gelatinøse filterkaker, mens et nærvær av slike kaker i tidligere kjente fremgangsmåter øket bearbeid-ingstiden vesentlig og senkes kvaliteten på sluttproduktet. Uranylnitratheksahydrat, ammoniumdiuranat og ammoniumuranylkarbonat som bearbeides i et mikrobølgefelt gir et slutt-produkt av et urandioksydpulver som lar seg sintre og som er meget godt egnet for fremstilling av kjernekraftbrennstoff. When uranyl nitrate hexahydrate, ammonium diuranate and ammonium uranyl carbonate were decomposed and reduced in a microwave induction furnace, this occurred within minutes rather than hours as occurs in conventional electric resistance furnaces. Furthermore, shiny or gelatinous filter cakes can be processed with the help of microwave irradiation, whereas the presence of such cakes in previously known methods significantly increases the processing time and lowers the quality of the final product. Uranyl nitrate hexahydrate, ammonium diuranate and ammonium uranyl carbonate which are processed in a microwave field gives an end product of a uranium dioxide powder which can be sintered and which is very well suited for the production of nuclear power fuel.
Selv om det her bare er beskrevet en spesifik og foretrukket utførelse av oppfinnelsen, så er det selvsagt underforstått at man lett kan utføre modifikasjoner og varia-sjoner uten at man derved forlater oppfinnelsens intensjon. Although only a specific and preferred embodiment of the invention has been described here, it is of course understood that modifications and variations can easily be carried out without thereby abandoning the intention of the invention.
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30126781A | 1981-09-11 | 1981-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO823079L true NO823079L (en) | 1983-03-14 |
Family
ID=23162649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO823079A NO823079L (en) | 1981-09-11 | 1982-09-10 | PROCEDURE FOR THE MANUFACTURING OF URANDY Dioxide POWDER |
Country Status (18)
Country | Link |
---|---|
JP (1) | JPS5874526A (en) |
KR (1) | KR880002699B1 (en) |
AT (1) | AT385267B (en) |
AU (1) | AU8813382A (en) |
BE (1) | BE894371A (en) |
BR (1) | BR8205375A (en) |
CA (1) | CA1197069A (en) |
CH (1) | CH654820A5 (en) |
DE (1) | DE3232867A1 (en) |
DK (1) | DK406882A (en) |
ES (1) | ES515439A0 (en) |
FR (1) | FR2512801B1 (en) |
GB (1) | GB2105697B (en) |
IL (1) | IL66706A (en) |
IT (2) | IT1192507B (en) |
NL (1) | NL8203357A (en) |
NO (1) | NO823079L (en) |
SE (1) | SE8205138L (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228337B1 (en) * | 1998-12-02 | 2001-05-08 | Cameco Corporation | Method for reducing uranium trioxide |
US7824640B1 (en) | 2006-07-25 | 2010-11-02 | Westinghouse Electric Co. Llc | Two step dry UO2 production process utilizing a positive sealing valve means between steps |
EP1985587A1 (en) * | 2007-04-27 | 2008-10-29 | Westinghouse Electric Company LLC | Two step dry UO2 production process |
CN113023782B (en) * | 2021-03-10 | 2023-05-05 | 哈尔滨工程大学 | Sodium diuranate (Na) 2 U 2 O 7 ) Direct preparation of UO 2 Is a method of (2) |
CN116253363B (en) * | 2022-11-25 | 2024-10-11 | 中国核动力研究设计院 | Uranium dioxide powder and preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3579311A (en) * | 1968-04-25 | 1971-05-18 | Gen Electric | Process and apparatus for producing uo2 powder |
FR2370695A1 (en) * | 1976-11-16 | 1978-06-09 | Comurhex | Uranium oxide prodn. by thermal decomposition of uranyl nitrate - with catalytic reduction of the nitrogen oxide(s) produced to provide heat for the process |
DE2724710A1 (en) * | 1977-06-01 | 1978-12-07 | Reaktor Brennelement Union | Uranium di:oxide powder prodn. - by reducing ammonium uranyl carbonate with ammonia in steam, giving low fluoride content |
JPS54121442A (en) * | 1978-03-13 | 1979-09-20 | Power Reactor & Nuclear Fuel Dev Corp | Microwave heating device for radioactive material |
JPS55104926A (en) * | 1979-01-29 | 1980-08-11 | Toshiba Corp | Microwave heat-denitrating apparatus |
-
1982
- 1982-08-27 NL NL8203357A patent/NL8203357A/en not_active Application Discontinuation
- 1982-09-02 ES ES515439A patent/ES515439A0/en active Granted
- 1982-09-02 IL IL66706A patent/IL66706A/en unknown
- 1982-09-03 DE DE19823232867 patent/DE3232867A1/en not_active Withdrawn
- 1982-09-03 GB GB08225109A patent/GB2105697B/en not_active Expired
- 1982-09-06 JP JP57154070A patent/JPS5874526A/en active Pending
- 1982-09-06 CH CH5292/82A patent/CH654820A5/en not_active IP Right Cessation
- 1982-09-08 AU AU88133/82A patent/AU8813382A/en not_active Abandoned
- 1982-09-08 AT AT0335682A patent/AT385267B/en not_active IP Right Cessation
- 1982-09-09 SE SE8205138A patent/SE8205138L/en not_active Application Discontinuation
- 1982-09-10 IT IT09510/82A patent/IT1192507B/en active
- 1982-09-10 CA CA000411251A patent/CA1197069A/en not_active Expired
- 1982-09-10 NO NO823079A patent/NO823079L/en unknown
- 1982-09-10 FR FR828215362A patent/FR2512801B1/en not_active Expired
- 1982-09-10 IT IT1982A09510A patent/IT8209510A1/en unknown
- 1982-09-10 DK DK406882A patent/DK406882A/en not_active Application Discontinuation
- 1982-09-10 BE BE0/208992A patent/BE894371A/en not_active IP Right Cessation
- 1982-09-10 KR KR8204119A patent/KR880002699B1/en active
- 1982-09-13 BR BR8205375A patent/BR8205375A/en unknown
Also Published As
Publication number | Publication date |
---|---|
IT8209510A1 (en) | 1984-03-10 |
IT1192507B (en) | 1988-04-20 |
CA1197069A (en) | 1985-11-26 |
KR840001452A (en) | 1984-05-07 |
AU8813382A (en) | 1983-03-17 |
DK406882A (en) | 1983-03-12 |
IL66706A0 (en) | 1982-12-31 |
IT8209510A0 (en) | 1982-09-10 |
SE8205138D0 (en) | 1982-09-09 |
FR2512801B1 (en) | 1989-02-24 |
ES8403347A1 (en) | 1984-04-01 |
FR2512801A1 (en) | 1983-03-18 |
KR880002699B1 (en) | 1988-12-26 |
ATA335682A (en) | 1987-08-15 |
GB2105697A (en) | 1983-03-30 |
DE3232867A1 (en) | 1983-12-15 |
IL66706A (en) | 1986-01-31 |
AT385267B (en) | 1988-03-10 |
BE894371A (en) | 1983-01-03 |
GB2105697B (en) | 1985-09-11 |
BR8205375A (en) | 1983-08-23 |
ES515439A0 (en) | 1984-04-01 |
SE8205138L (en) | 1983-03-12 |
JPS5874526A (en) | 1983-05-06 |
NL8203357A (en) | 1983-04-05 |
CH654820A5 (en) | 1986-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS629534B2 (en) | ||
NO823079L (en) | PROCEDURE FOR THE MANUFACTURING OF URANDY Dioxide POWDER | |
CN106829886B (en) | The low temperature synthetic method of uranium mononitride powder | |
US1088909A (en) | Metallurgical method. | |
US2905528A (en) | Method for preparation of uo2 particles | |
CA1192734A (en) | Nuclear fuel preparation and scrap recycle | |
WO2000032517A1 (en) | Method for preparing uranium dioxide powder | |
Ramrez et al. | Protons and Deuterons in Magnesium‐Doped Sapphire Crystals | |
JPS624329B2 (en) | ||
US3046090A (en) | Production of uranium monocarbide | |
US3963828A (en) | Manufacture of uranium dioxide powder | |
Ramírez et al. | Electric-field-enhanced diffusion of deuterons and protons in α-Al 2 O 3 scrystals | |
US4502987A (en) | Method of controlling crystallite size in nuclear-reactor fuels | |
US2868620A (en) | Method of making plutonium dioxide | |
US3135697A (en) | Method of hydriding | |
US2761756A (en) | Process for production of uranium hexafluoride | |
US3937784A (en) | Method for removing fluoride ions from UO2 powders | |
KR840002354B1 (en) | Uranium Recovery from Wastewater in AUC Manufacturing Process | |
US3879520A (en) | Method for dissolving ceramic beryllia | |
US3330889A (en) | Preparation of heat sources for radioisotope heated thermoelectric generators | |
Yajima et al. | The Behavior of Fission Products Captured in Graphite Powder by Nuclear Recoil. V. Effect of Fission Fragment Damage on the Diffusion of the Fission Product Xenon | |
US2810626A (en) | Process for producing uranium hexafluoride | |
Tagawa et al. | Studies on the uranium dicarbide phase | |
US3345127A (en) | Process for recovering boron values from scrap materials | |
CN113072096B (en) | Preparation method of thorium-based molten salt reactor oxygen-free zirconium tetrafluoride applied to nuclear fission energy |