[go: up one dir, main page]

NO300911B1 - Method of inactivating viruses in blood and blood products - Google Patents

Method of inactivating viruses in blood and blood products Download PDF

Info

Publication number
NO300911B1
NO300911B1 NO920834A NO920834A NO300911B1 NO 300911 B1 NO300911 B1 NO 300911B1 NO 920834 A NO920834 A NO 920834A NO 920834 A NO920834 A NO 920834A NO 300911 B1 NO300911 B1 NO 300911B1
Authority
NO
Norway
Prior art keywords
blood
dye
added
plasma
dyes
Prior art date
Application number
NO920834A
Other languages
Norwegian (no)
Other versions
NO920834D0 (en
NO920834L (en
Inventor
Harald Mohr
Bernd Lambrecht
Original Assignee
Blutspendedienst Dt Rote Kreuz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6389298&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO300911(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Blutspendedienst Dt Rote Kreuz filed Critical Blutspendedienst Dt Rote Kreuz
Publication of NO920834D0 publication Critical patent/NO920834D0/en
Publication of NO920834L publication Critical patent/NO920834L/en
Publication of NO300911B1 publication Critical patent/NO300911B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • A61M1/0218Multiple bag systems for separating or storing blood components with filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3681Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3681Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation
    • A61M1/3683Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation using photoactive agents
    • A61M1/3686Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation using photoactive agents by removing photoactive agents after irradiation

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • External Artificial Organs (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The invention relates to a process for the selective removal of photodynamic substances from blood and blood products, where the purification takes place on adsorbents. An arrangement which has proved particularly advantageous for this purpose is one in which the blood or the relevant blood fraction is passed over a separating column which contains the adsorbent.

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for inaktivering av virus i blod og blodprodukter idet oppløs-ningene, hhv. suspensjonene som skal bli behandlet, utsettes for fenotiazinfarvestoffer og blir tilslutt bestrålt med synlig lys i det maksimale området for absorpsjon til farvestoffene og deretter blir blodet, hhv. blodproduktene, ledet gjennom adsorpsjonsmiddel for fjerning av farvestoffene. The present invention relates to a method for inactivating viruses in blood and blood products in that the solutions, respectively the suspensions to be treated are exposed to phenothiazine dyes and are finally irradiated with visible light in the maximum area for absorption to the dyes and then the blood, respectively. the blood products, passed through adsorbent to remove the dyes.

Det er kjent at fotodynamiske forbindelser i forbindelse med synlig lys eller UV-lys kan virke inaktiverende på virus. Årsaken til dette er affiniteten som disse stoffene har for ytre virusstrukturer eller virale nukleinsyrer. Begge gjelder for fenotiazinfarvestoffer. De reagerer med membranstruktur-omhyllet vira og skader disse irreversibelt under innvirkning av lys, slik at viruset mister sin inf eksiøsitet (jfr. Snipes, W. et al., 1979, Photochem. and Photobiol. 29, 785-790). Videre reagerer de med viralt RNA eller DNA, spesielt med guaninrestene. Fotodynamiske forbindelser reagerer også med viral RNA eller DNA, spesielt med guaninrestene til disse nukleinsyrene. Etter dannelse av et farvestoff-nukleinsyre-kompleks blir disse påvirket av lysenergi, slik at nukleinsyrene blir denaturert og til slutt blir trådene brutt opp. Videre bevirker fenotiazinfarvestoffene til omdanning av molekylært oksygen i oksygenradikaler som er høyreaktive, og som på forskjellige måter kan være virulente (jfr. Hiatt, C.W., 1972, i: Concepts in Radiation Cell Biology, s. 57-89, Academic Press, New York; 0H Uigin et al., 1987, Nucl. Acid. Res. 15, 7411-7427). It is known that photodynamic compounds in connection with visible light or UV light can have an inactivating effect on viruses. The reason for this is the affinity that these substances have for external viral structures or viral nucleic acids. Both apply to phenothiazine dyes. They react with membrane structure-enveloped viruses and damage these irreversibly under the influence of light, so that the virus loses its infectivity (cf. Snipes, W. et al., 1979, Photochem. and Photobiol. 29, 785-790). Furthermore, they react with viral RNA or DNA, especially with the guanine residues. Photodynamic compounds also react with viral RNA or DNA, particularly with the guanine residues of these nucleic acids. After the formation of a dye-nucleic acid complex, these are affected by light energy, so that the nucleic acids are denatured and eventually the strands are broken up. Furthermore, the phenothiazine dyes cause the conversion of molecular oxygen into oxygen radicals which are highly reactive and which can be virulent in various ways (cf. Hiatt, C.W., 1972, in: Concepts in Radiation Cell Biology, pp. 57-89, Academic Press, New York ; OH Uigin et al., 1987, Nucl. Acid. Res. 15, 7411-7427).

I forhold til andre fotodynamiske farvestoffer for virusinaktivering, er fenotiazinfarvestoffer som metylenblå, nøytralrød og toluidinblå derfor av betydning, på grunn av at de allerede i forbindelse med synlig lys kan inaktivere en rekke vira, derunder også, under bestemte betingelser, slike som ikke inneholder lipidbelegg, som f.eks. Adenovirus. In relation to other photodynamic dyes for virus inactivation, phenothiazine dyes such as methylene blue, neutral red and toluidine blue are therefore of importance, due to the fact that already in connection with visible light they can inactivate a number of viruses, including, under certain conditions, those that do not contain lipid coatings , like for example. Adenovirus.

Her kan det nevnes at f.eks. metylenblå (MB) og toluidinblå Here it can be mentioned that e.g. methylene blue (MB) and toluidine blue

(TB) selv har terapeutisk anvendelse, bl.a. som antidot ved karbonmonoksidforgiftninger og ved langtidsterapi-psykotiske sykdommer. Her anvendes ubetydelige ved siden av virkende mengder av MB hhv. TB for anvendelse (1-2 mg/kg kroppsvekt), som er mye høyere enn de som er nødvendig for virusinaktivering. De lave toksisitetene til MB og TB blir også vist ved data fra dyreeksperimenter. (TB) itself has a therapeutic application, i.a. as an antidote for carbon monoxide poisoning and for long-term therapy-psychotic illnesses. Here negligible next to effective amounts of MB or TB for use (1-2 mg/kg body weight), which is much higher than those required for virus inactivation. The low toxicities of MB and TB are also shown by data from animal experiments.

Siden året 1955 har det vært antatt at farvestoffkonsentrasjoner, spesielt for toluidinblå, under 2,5 jiM bare virker utilstrekkelig virusinaktiverende (jfr. F. Heinmets et al., 1955, Joint Report with the Naval Medical Research Institute, Walter Reed Army Institute of Research, USA). Since 1955, it has been assumed that dye concentrations, especially for toluidine blue, below 2.5 µM are insufficiently virus inactivating (cf. F. Heinmets et al., 1955, Joint Report with the Naval Medical Research Institute, Walter Reed Army Institute of Research , USA).

I de fra før beskrevne undersøkelser for virusinaktivering med fenotiazinfarvestoffer ligger farvestoffkonsentrasjonene mellom 10 uM og 100 uM. (Chang and Weinstein, 1975, Photody-namic Inactivation of Herpes-virus Hominis by Methylene Blue In the previously described investigations for virus inactivation with phenothiazine dyes, the dye concentrations are between 10 uM and 100 uM. (Chang and Weinstein, 1975, Photodynamic Inactivation of Herpes-virus Hominis by Methylene Blue

(38524), Proceedings of the Society for Experimental Biology and Medicine, 148:291-293; Yen and Simon, 1978, Photosensiti-zation of Herpes Simplex Virus Type 1 with Neutral Red, J. gen. Virol., 41:273-281). Ved disse konsentrasjonene gjelder den ulempen at det ikke bare foregår virusinaktivering, men også inaktivering av plasmaproteiner som f.eks. koagulasjonsfaktorer. Dette er en av grunnen til at fenotiazinfarvestoffer lenge ikke har oppnådd en rolle ved virusinaktivering i blod og blodprodukter. (38524), Proceedings of the Society for Experimental Biology and Medicine, 148:291-293; Yen and Simon, 1978, Photosensitization of Herpes Simplex Virus Type 1 with Neutral Red, J. gen. Virol., 41:273-281). At these concentrations, the disadvantage is that not only does virus inactivation take place, but also inactivation of plasma proteins such as e.g. coagulation factors. This is one of the reasons why phenothiazine dyes have long failed to achieve a role in virus inactivation in blood and blood products.

Gjenstand for foreliggende oppfinnelse er en fremgangsmåte for virusinaktivering, hvor virus og forskjellige typer ved tilsetning av fenotiazin-farvestoffer uten funksjonell innvirkning av plasmaproteinene blir drept. Gjenstand for oppfinnelsen er videre å gjøre fremgangsmåten så enkel at blod, hhv. blodprodukter, umiddelbart blir behandlet i kjøpte blodposer og slik at de tilsatte farvestoffene kan bli fjernet igjen etter behandlingen. The object of the present invention is a method for virus inactivation, where viruses and different types are killed by the addition of phenothiazine dyes without functional impact on the plasma proteins. The object of the invention is further to make the method so simple that blood, or blood products, are immediately processed in purchased blood bags and so that the added dyes can be removed again after the treatment.

Foreliggende oppfinnelse vedrører følgelig en fremgangsmåte for inaktivering av vira i blod og blodprodukter der oppløsningen, hhv. suspensjonen som skal inaktiveres, blir tilsatt fenotiazinfarvestoffer og bestrålt med synlig lys i området ved absorpsjonsmaksimumet til farvestoffene, og deretter blir blodet hhv. blodproduktene eventuelt ledet over et adsorpsjonsmiddel for fjerning av farvestoffene, kjennetegnet ved at fenotiazinfarvestoffene tilsettes i en konsentrasjon på 0,1 til 2 jjM, og at bestrålingen foretas umiddelbart i gjennomsiktige beholdere som blodposer, som anvendes for bloduttagning og oppbevaring. The present invention therefore relates to a method for inactivating viruses in blood and blood products where the solution, or the suspension to be inactivated is added to phenothiazine dyes and irradiated with visible light in the area at the absorption maximum of the dyes, and then the blood or the blood products possibly passed over an adsorption agent to remove the dyes, characterized by the fact that the phenothiazine dyes are added in a concentration of 0.1 to 2 jjM, and that the irradiation is carried out immediately in transparent containers such as blood bags, which are used for blood collection and storage.

Bestrålingen foregår med dagslys med tilstrekkelig styrke eller med monokromatisk lys, fortrinnsvis en kaldlyskilde, som har en bølgelengde i området av absorpsjonsmaksimum til det gjeldende farvestoffet. Videre bør følgende betingelser ved virusinaktivering i blodplasma, hhv. i plasmaprotein-oppløsninger, anvendes. Arbeidstemperaturen bør ligge i området 0 til 37°C, fortrinnsvis i området 4 til 20°C. Inaktiveringsvarigheten utgjør spesielt 5 minutter til 5 timer, fortrinnsvis 10 minutter til 3 timer, og pH-verdien skal ligge mellom pH 5 og pH 9, fortrinnsvis mellom pH 6 og pH 8. The irradiation takes place with daylight of sufficient strength or with monochromatic light, preferably a cold light source, which has a wavelength in the region of the absorption maximum of the dye in question. Furthermore, the following conditions for virus inactivation in blood plasma, resp. in plasma protein solutions, are used. The working temperature should be in the range 0 to 37°C, preferably in the range 4 to 20°C. The inactivation duration is in particular 5 minutes to 5 hours, preferably 10 minutes to 3 hours, and the pH value should lie between pH 5 and pH 9, preferably between pH 6 and pH 8.

Den vesentlige fordelen ved fremgangsmåten ifølge oppfinnelsen ligger i at den er enkel. F. Heinmets et al. (som angitt ovenfor) beskriver en innviklet apparatur, hvor-igjennom f.eks. blodplasma må bli ledet. Her inntreffer problemer ved oppmerksomhet og også apasitetsproblemer. Det ble nå overraskende fastslått at man kan anvende vesentlig mindre mengder farvestoffer, og det er ikke nødvendig med arbeidskrevende teknisk innretning for fotoinaktivering. The essential advantage of the method according to the invention is that it is simple. F. Heinmet et al. (as stated above) describes an intricate apparatus, through which e.g. blood plasma must be led. Problems with attention and also apacity problems occur here. It was now surprisingly established that significantly smaller amounts of dyes can be used, and labor-intensive technical equipment for photoinactivation is not necessary.

Det var også uventet at et ikke-omhyllet virus som adeno, som ikke lar seg inaktivere under fysiologiske omstendigheter i plasma, lar seg gjennom et fryse/tine-trinn bli fotosensiti-vert og dermed inaktivert. Dermed kunne inaktiveringen, uavhengig av rekkefølgen av arbeidstrinnene fryse/tine og tilsetning av farvestoff, bli fastslått. Under frysing forståes en dypfrysingsbehandling med flytendegjort gass som kjølemiddel ved temperaturer på omtrent -20°C til omtrent 80 K. Som regel blir den dypfryst under -30°C. It was also unexpected that a non-enveloped virus such as adeno, which cannot be inactivated under physiological conditions in plasma, allows itself through a freeze/thaw step to become photosensitized and thus inactivated. In this way, the inactivation, regardless of the sequence of the work steps freeze/thaw and addition of dye, could be determined. By freezing is understood a deep-freezing treatment with liquefied gas as a refrigerant at temperatures of approximately -20°C to approximately 80 K. As a rule, it is deep-frozen below -30°C.

Man kan gjennomføre virusinaktiveringen umiddelbart i blod-hhv. plasmaposer, til tross for at disse bare er begrenset lysgjennomtrengende. Farvestoffet må bli tilført. Deretter blir posen med innhold belyst, og deretter kan produktet bli videre bearbeidet. Virus inactivation can be carried out immediately in blood or plasma sacs, despite the fact that these are only partially light penetrating. The dye must be added. The bag with contents is then illuminated, and then the product can be further processed.

Fremgangsmåten kan dermed bli gjennomført uten større tekniske problemer, og er integrerbar i blodbanker ved arbeidet med bearbeiding av enkelte blod-donorer. Den lille mengden tilsatt farvestoff kan forbli i den behandlede væsken eller blir fjernet med adsorpsjonsmiddel. The procedure can thus be carried out without major technical problems, and can be integrated into blood banks when processing individual blood donors. The small amount of added dye may remain in the treated liquid or be removed by adsorbent.

Som blod, hhv. blodprodukter, gjelder blant andre følgende: As blood, respectively blood products, among others the following applies:

- fullblod - thoroughbred

erytrozyttkonsentrat erythrocyte concentrate

trombozyttkonsentrat thrombocyte concentrate

plasma plasma

serum serum

kryopresipitat cryoprecipitate

konsentrat av koagulasjonsfaktorer concentrate of coagulation factors

inhibitorer inhibitors

fibronektin fibronectin

albumin. albumen.

For anvendelse i foreliggende fremgangsmåte ifølge oppfinnelsen, er fenotiaziner med følgende strukturformel egnet. For use in the present method according to the invention, phenothiazines with the following structural formula are suitable.

Eksempel 1 Example 1

Med metylenblå (MB) blir nedenfor avhengigheten ved fotoin-ativering av vesikulær Stomatitis-Virus (VVS) vist i humanplasma. With methylene blue (MB), the dependence on photoinactivation of vesicular stomatitis virus (VVS) in human plasma is shown below.

Ca. 5 x IO<7> plaque-dannende enheter (PFU) pr. ml VSV ble suspendert i humanplasma og reagert med forskjellige konsentrasjoner MB. Kontrollprøven ble ikke tilsatt farvestoff. Prøvevolumet utgjorde 0,5 ml. En kontrollprøve og en del av de MB-inneholdende prøven ble bestrålt i 4 timer ved romtemperatur med synlig lys; og de andre ble lagret like lenge i mørke. Som lyskilde tjener en diaprojektor som var erstattet med en 150 W halogenpære (Osram Xenophot). Avstanden mellom objektivet til diaprojektoren, altså lysutløpsåpningen og prøven, utgjorde ved dette og alle ytterligere forsøk 30 cm. (Med unntak av virusinaktivering i blodposer). About. 5 x IO<7> plaque-forming units (PFU) per ml VSV was suspended in human plasma and reacted with different concentrations of MB. No dye was added to the control sample. The sample volume was 0.5 ml. A control sample and part of the MB-containing sample were irradiated for 4 hours at room temperature with visible light; and the others were stored for the same length of time in the dark. A slide projector that had been replaced with a 150 W halogen bulb (Osram Xenophot) serves as the light source. The distance between the lens of the slide projector, i.e. the light outlet opening and the sample, was 30 cm in this and all further tests. (With the exception of virus inactivation in blood bags).

Etter endt bestråling ble virustitre bestemt i alle prøver ved hjelp av en plaque-analyse. Som indikatorceller ble BHK-celler anvendt. Forsøksresultatene er oppført i tabell 1. Tab. 1: Inaktivering av VSV i humanplasma med og uten bestråling. After the end of irradiation, virus titers were determined in all samples using a plaque analysis. BHK cells were used as indicator cells. The test results are listed in table 1. Tab. 1: Inactivation of VSV in human plasma with and without irradiation.

Bestrålingsvarighet: 4 timer. Irradiation duration: 4 hours.

Resultatene fra tab. 1 viser at fra en konsentrasjon av MB på 0,5 uM, ble det infeksiøse titeret til VSV redusert med mer enn 6 titerpotenser. Tydelig høyere konsentrasjoner av farvestoffet, fra omtrent 50 uM, fører uten bestråling til en signifikant reduksjon av VSV-titere. The results from tab. 1 shows that from a concentration of MB of 0.5 µM, the infectious titer of VSV was reduced by more than 6 titer powers. Significantly higher concentrations of the dye, from approximately 50 uM, lead without irradiation to a significant reduction of VSV titers.

Eksempel 2 Example 2

Ved hjelp av følgende forsøk ble virusinaktiveringen ved lave farvestoffkonsentrasjoner bestemt. By means of the following experiment, the virus inactivation at low dye concentrations was determined.

VSV ble i nærvær av plasma og forskjellige mengder metylenblå, i aliquoter på 500 ul volum overnatt i kjølerom, bestrålt fra en avstand på 30 cm med diaprojektoren. Prøven A VSV in the presence of plasma and different amounts of methylene blue, in aliquots of 500 µl volume overnight in a cold room, were irradiated from a distance of 30 cm with the slide projector. Sample A

- F ble bestrålt, prøve G ble ikke bestrålt. - F was irradiated, sample G was not irradiated.

Resultatene fra disse forsøkene er oppført i tab. 2. De viser at under ovennevnte betingelser ble tilsatt VSV inaktivert med mer enn 4 tierpotenser. Her var 0,5 jjM metylenblå nødvendig. The results of these experiments are listed in tab. 2. They show that under the above conditions added VSV was inactivated by more than 4 tier powers. Here, 0.5 jjM methylene blue was necessary.

Sannsynligvis er titere til VSV blitt redusert bare ved inkubasjon overnatt ved 4°C med 1-2 tierpotenser, og dette forklarer det relativt lave utgangstiteret. Dette ble derimot ikke tatt med i forsøket. Titers to VSV are likely to have been reduced only by overnight incubation at 4°C by 1-2 titers, and this explains the relatively low starting titer. However, this was not taken into account in the experiment.

Sammenligning av A (bestrålt) og G (mørk) viser at lys alene åpenbart ikke utøver en stor innflytelse på infeksiøsiteten til viruset. Comparison of A (irradiated) and G (dark) shows that light alone obviously does not exert a large influence on the infectivity of the virus.

Eksempel 3 Example 3

Fotoinaktiveringen av virus i nærvær av fenotiazinfarvestoffer er avhengig av varigheten av bestrålingen. For å undersøke hvilke bestrålingstider som er tilstrekkelige for fotoinaktivering av VSV, ble 10^ plaque-dannende enheter (PFU) pr. ml suspendert i plasma, og bestrålt som beskrevet i forskjellige tider ved 22°C. Tabell 3 viser de oppnådde resultatene. Det fremgår at under de angitte forsøksbe-tingelsene er en times bestråling tilstrekkelig for å redusere det infeksiøse VSV-titeret med mer enn 6 tierpotenser . The photoinactivation of viruses in the presence of phenothiazine dyes is dependent on the duration of the irradiation. To investigate which irradiation times are sufficient for photoinactivation of VSV, 10^ plaque-forming units (PFU) per ml suspended in plasma, and irradiated as described for different times at 22°C. Table 3 shows the results obtained. It appears that, under the stated experimental conditions, one hour of irradiation is sufficient to reduce the infectious VSV titer by more than 6 orders of magnitude.

Eksempel 4 Example 4

Et lignende forsøk ble gjennomført i steden for med MB i nærvær av 1 uM av et annet f enotiazinf arvestof f, TB. De i tabell 4 oppførte resultater viser at også ved hjelp av TB kan VSV bli virkningsfullt inaktivert. A similar experiment was carried out instead with MB in the presence of 1 µM of another phenothiazine precursor, TB. The results listed in Table 4 show that VSV can also be effectively inactivated with the help of TB.

Den inaktiverende virkningen av fenotiazinfarvestoffet ble vist også i Herpex-Simplex-virus (HSV) samt human immun-sviktvirus type 1 (HIV-1). The inactivating action of the phenothiazine dye was also shown in Herpex-Simplex virus (HSV) as well as human immunodeficiency virus type 1 (HIV-1).

Eksempel 5 Example 5

I nærvær av metylenblå (1 uM) blir HSV også inaktivert. Tab. In the presence of methylene blue (1 uM), HSV is also inactivated. Tab.

5 viser kinetikken til MB-forbmidlet fotoinaktivering av HSV. 5 shows the kinetics of MB-mediated photoinactivation of HSV.

Eksempel 6 Example 6

Et lignende forsøk ble gjennomført med AIDS-frembringer HIV-1. Virustitere utgjorde 6 x IO<2> PFXJ/ml. Som indikatorceller anvendes MT4-celler. Tabell 6 viser at HIV-1 er spesielt ømfintlig overfor fotoinaktivering; allerede i løpet av 10 min. ble virustitere redusert med mer enn 600 ganger. A similar experiment was conducted with the AIDS-causing HIV-1. Virus titers were 6 x IO<2> PFXJ/ml. MT4 cells are used as indicator cells. Table 6 shows that HIV-1 is particularly susceptible to photoinactivation; already within 10 min. virus titers were reduced by more than 600-fold.

Eksempel 7 Example 7

I forsøket på å inaktivere ikke-omhyllede vira under vanlige fysiologiske betingelser i nærvær av 80% plasma, kunne det ikke oppnås noe resultat. Adenovirus ble, som modell for et ikke-omhyllet virus, forinkubert i lengre tid (4°C, mørk) i nærvær av farvestoffet metylenblå (MB), 1 uM. Deretter fulgte en 30 minutters bestråling med halogenstråle (150 000 Lux). Infektiøsiteten til adenovirus var her uforandret. In the attempt to inactivate non-enveloped viruses under normal physiological conditions in the presence of 80% plasma, no result could be obtained. Adenovirus, as a model for a non-enveloped virus, was pre-incubated for a longer time (4°C, dark) in the presence of the dye methylene blue (MB), 1 µM. This was followed by a 30-minute irradiation with a halogen beam (150,000 Lux). The infectivity of adenovirus was unchanged here.

Titere ble bestemt som TCID50 (beregningsmetode "Tissue Culture Infectious Dosis" ifølge Spearman og Kaeber). Viruset ble titrert på FL-celler (definert cellelinje for virusti-trering). Titers were determined as TCID50 (calculation method "Tissue Culture Infectious Dose" according to Spearman and Kaeber). The virus was titrated on FL cells (defined cell line for virus titration).

Ved anvendelse av toluidinblå under samme eksperimentelle betingelser kunne det likeledes ikke fastslås noen reduksjon i virustitere. When using toluidine blue under the same experimental conditions, no reduction in virus titers could likewise be determined.

For å oppnå en inaktivering av adenovirus ble det innført et fryse/tørke-trinn (F/T) under dypfrysning ved -30°C i forsøksforløpet. Dermed spiller rekkefølgen av F/T og tilsetning av farvestoffet (1 uM MB) bare en underordnet rolle. Bestråling av prøvene foregår ved hjelp av halogen-stråler. Det ble målt 120 000 Lux. In order to achieve an inactivation of adenovirus, a freeze/dry (F/T) step during deep freezing at -30°C was introduced during the course of the experiment. Thus, the order of F/T and addition of the dye (1 uM MB) only plays a minor role. The samples are irradiated using halogen rays. 120,000 Lux was measured.

Tab. 8: Fotosensibilisering av adenovirus på grunnlag av et innført F/T-trinn. Tab. 8: Photosensitization of adenovirus on the basis of an introduced F/T step.

Gjennomføring av virustitreringen foregikk som beskrevet i tab. 7. Carrying out the virus titration took place as described in tab. 7.

Eksempel 8 Example 8

Det spesielle problemet ved anvendelse av høyere farvestoffkonsentrasjoner ligger i den umiddelbare virkningen av disse stoffene på plasmaproteinene. I et ytterligere forsøk ble deretter undersøkt forskjellige farvestoffkonsentrasjoner med henblikk på deres virkning overfor aktiviteten til koagula-sj onsfaktorene. The particular problem with the use of higher dye concentrations lies in the immediate action of these substances on the plasma proteins. In a further experiment, different dye concentrations were then examined with a view to their effect on the activity of the coagulation factors.

Humant plasma (2 ml aliquoter) ble omsatt med forskjellige mengder MB. Like deretter ble aktiviteten til koagulasjonsfaktorene V, VIII og IX målt. Som det fremgår fra tabell 7, ble de i alle tre tilfellene inhibert doseavhengig, de til faktorene VIII og V fra omtrnet 10 pM og til faktorene IX allerede fra 2,5 uM. Deretter virker ved høyere konsentrasjoner MB direkte på proteinene uten at lys må virke inn. Human plasma (2 ml aliquots) was reacted with different amounts of MB. Immediately afterwards, the activity of coagulation factors V, VIII and IX was measured. As can be seen from table 7, in all three cases they were inhibited dose-dependently, those of factors VIII and V from around 10 pM and of factors IX already from 2.5 µM. Then, at higher concentrations, MB acts directly on the proteins without the need for light to intervene.

Eksempel 9 Example 9

Det er ikke bare den tilsatte farvestoffkonsentrasjonen som har en innvirkning på aktiviteten til koagulasjonsfaktoren, men også bestrålingstiden. Denne tidsavhengigheten ble bestemt ved forskjellige metylenblå-konsentrasjoner. It is not only the added dye concentration that has an impact on the activity of the coagulation factor, but also the irradiation time. This time dependence was determined at different methylene blue concentrations.

Humant plasma (2 ml aliquoter) ble omsatt med forskjellige mengder MB og bestrålt i 1 til 4 timer (som beskrevet i eksempel 1). Kontrollprøvene ble ikke fotobehandlet. Som det fremgår av tabell 8, ble aktiviteten til de tre koagulasjonsfaktorene V, VIII og IX inhibert tids- og doseavhengig. Spesielt ved faktorene VIII og IX viser det seg at høyere MB-konsentrasjoner og lyseksponeringstiden fra 2 t bevirker en forhøyning av trombolytiske aktiviteter. Human plasma (2 ml aliquots) was reacted with various amounts of MB and irradiated for 1 to 4 hours (as described in Example 1). The control samples were not phototreated. As can be seen from Table 8, the activity of the three coagulation factors V, VIII and IX was inhibited in a time- and dose-dependent manner. Especially with factors VIII and IX, it turns out that higher MB concentrations and the light exposure time from 2 h cause an increase in thrombolytic activities.

Tab. 10: Innvirkning av lys og MB på aktiviteten til koagulasjonsfaktorer: Tids- og doseavhengighet. Tab. 10: Effect of light and MB on the activity of coagulation factors: Time and dose dependence.

Eksempel 10 Example 10

Ifølge en foretrukket utførelsesform av foreliggende oppfinnelse kan fotoinaktiveringen av vira forekomme umiddelbart i plasmaposer. Blod eller blodproduktene blir tilført farvestoff i nødvendige mengder, og posen kan deretter bli bestrålt med lys. På denne enkle måten er det mulig å behandle blodproduktene fra enkelte donorer. According to a preferred embodiment of the present invention, the photoinactivation of viruses can occur immediately in plasma bags. Blood or blood products are added with dye in the required quantities, and the bag can then be irradiated with light. In this simple way, it is possible to process the blood products from individual donors.

I et forsøk ble tre prøver av et humant friskplasma tint opp og omsatt i plasmaposer med hver 1,5 x 106 PFU VSV. Til to prøver ble MB i konsentrasjoner på 1 hhv. 10 uM tilført. Fra det MB-frie plasmaet ble det tatt ut en prøve og oppbevart som positiv kontroll i mørket ved 4°C. Deretter ble de tre posene festet mellom to fleksiglassplater for å muliggjøre en så godt som mulig lik sjikt-tykkelse på ca. 2,5 cm. De ble deretter bestrålt fra en avstand på ca. 90 cm ved hjelp av en diaprojektor. Etter 4 timer ble det for bestemmelse av virustitere tatt ut prøver, og disse ble målt ved hjelp av plaque-analyse på FL-celler. Resultatene i tab. 9 viser at In one experiment, three samples of fresh human plasma were thawed and transferred into plasma bags with 1.5 x 106 PFU VSV each. For two samples, MB was added in concentrations of 1 and 10 uM added. A sample was taken from the MB-free plasma and stored as a positive control in the dark at 4°C. The three bags were then fixed between two flexiglass plates to enable a layer thickness that was as good as possible equal to approx. 2.5 cm. They were then irradiated from a distance of approx. 90 cm using a slide projector. After 4 hours, samples were taken to determine virus titers, and these were measured using plaque analysis on FL cells. The results in tab. 9 shows that

1 >jm MB er tilstrekkelig for i plasmaposer gjennom fire timers bestråling, å redusere det infeksiøse titeret til VSV med mer enn tre tierpotenser. Også ved fravær av f arvestof-fet, førte bestrålingen til en reduksjon av virustitere, men bare med omtrent 50$. 1 >jm MB is sufficient to reduce the infectious titer of VSV by more than three orders of magnitude in plasma pouches during four hours of irradiation. Even in the absence of genetic material fat, the irradiation led to a reduction in virus titers, but only by approximately 50$.

De til virusaktivering tilsatte fenotiazinfarvestoffene kan forbli i de her anvendte konsentrasjonene på opptil 1 uM i blod eller blodproduktene uten at det skjer bireaksjoner. De lar seg også etterpå fjernes over dialyse, gelfiltrering eller adsorpsjon. The phenothiazine dyes added for virus activation can remain in the concentrations used here of up to 1 uM in blood or blood products without side reactions occurring. They can also be subsequently removed via dialysis, gel filtration or adsorption.

Av de nevnte metodene er spesielt det adsorberende av interesse, på grunn av at de er minst arbeidskrevende med hensyn på tid og teknikk, og de angjeldende plasmaprotein-oppløsningene blir ikke fortynnet. Of the aforementioned methods, the adsorbent is particularly of interest, because they are the least labor-intensive in terms of time and technique, and the relevant plasma protein solutions are not diluted.

Enkelte adsorberingsmidler er derimot åpenbart uegnede, som f.eks. de til Hiatt (Consepts in Radiation Cell Biology, s. 57-89, Academic Press, New York, 1972) nevnte ionebyttere, på grunn av at de ved siden av farvestoffet også binder plasmaproteinene meget sterkt, bl.a. koagulasjonsfaktorene. Certain adsorbents, on the other hand, are obviously unsuitable, such as e.g. those of Hiatt (Consepts in Radiation Cell Biology, pp. 57-89, Academic Press, New York, 1972) mentioned ion exchangers, due to the fact that, in addition to the dye, they also bind the plasma proteins very strongly, i.a. the coagulation factors.

Det kunne nå overraskende bli fastslått at MB og andre fenotiazinfarvestoffer blir bundet meget sterkt på forskjellige, kommersielt oppnåelige separasjonsgeler, derunder også slike som har enten ingen eller bare svak protein-binding. Slike absorberingsmidler er også egnede for den senere fjerningen av foto-oksideringsbilder. Av de utprøvde adsorpsjonsmidlene gjelder slike for adskillelse av MB og andre fenotiazinfarvestoffer. It could now surprisingly be established that MB and other phenothiazine dyes are bound very strongly on different commercially available separation gels, including those that have either no or only weak protein binding. Such absorbents are also suitable for the subsequent removal of photo-oxidation images. Of the adsorbents tested, these apply to the separation of MB and other phenothiazine dyes.

I de fleste tilfellene var det ved en tilsetningskonsentra-sjon på 10 pM MB nødvendig med 2 g av gjeldende adsorpsjonsmiddel for å ekstrahere farvestoffet fullstendig, i hatch, fra en plasmaproteinoppløsning. In most cases, at an addition concentration of 10 pM MB, 2 g of the applicable adsorbent was required to extract the dye completely, in hatch, from a plasma protein solution.

Som adsorpsjonstype har det vist seg å være spesielt egnet: 1. Silkageler, hhv. kieselgeler med porevidder, som er så små As an adsorption type, the following have proven to be particularly suitable: 1. Silk gels, respectively. silica gels with pore sizes, which are so small

(40 til ca. 100 A diameter), at plasmaproteiner ikke kan trenge inn i gelmatrisen, men derimot bare lavmolekylære farvestoffmolekyler som dermed, på grunn av ioniske, elek-trostatiske og hydrofobe vekselvirkninger, blir bundet. (40 to approx. 100 Å diameter), that plasma proteins cannot penetrate the gel matrix, but instead only low molecular weight dye molecules which, due to ionic, electrostatic and hydrophobic interactions, are thus bound.

Eksempler på kommersielt oppnåelige adsorbsjonsmidler av denne typen er Matrex silikagel (Amicon, Witten), Daltosil (Serva, Haidelbeg) og Kiesel-Gel (Merck,. Darmstadt). 2. Geler på grunnlag av polystyrol-divinylbenzen hhv. akrylester-polymerisat. De blir likeledes fremstilt med egnede porestørrelser. Examples of commercially available adsorbents of this type are Matrex silica gel (Amicon, Witten), Daltosil (Serva, Haidelbeg) and Kiesel-Gel (Merck, Darmstadt). 2. Gels based on polystyrene-divinylbenzene or acrylic ester polymer. They are also produced with suitable pore sizes.

Eksempler på kommersielt oppnåelige geler av denne typen, er Amberlite (bl.a. Rohm og Haas, Frankfurt) og Bio Beads (Bio Rad, Munchen). De tjener hovedsakelig til å fjerne fra vandige oppløsninger ikke-polare forbindelser, hhv. over-flateaktive stoffer, f.eks. detergenter. Enten er de ikke polare, eller de er svakt polare. Examples of commercially available gels of this type are Amberlite (among others Rohm and Haas, Frankfurt) and Bio Beads (Bio Rad, Munich). They mainly serve to remove from aqueous solutions non-polar compounds, resp. surfactants, e.g. detergents. Either they are not polar, or they are weakly polar.

Eksempel 11 Example 11

Friskt plasma ble omsatt med metylenblå (10 uM). 5 ml aliquoter ble omsatt med forskjellige mengder Saltosil (porevidde 75 A) hhv. Bio Beads SM 16 (porevidde 144 A) og blandet i 30 minutter. Deretter lar man gelen sedimentere. I plasma ble faktor VIII- hhv. faktor V-innholdet, ekstinksjo-nen ved 660 nm samt for enkelt prøver målt proteininnholdet. Det fremgår fra ekstinksjonsverdiene at det, bortsett fra farvestoffet, blir ekstrahert ytterligere forbindelser fra plasmaet. Det dreier seg ikke her om plasmaproteiner. Ekstinksjonsverdiene til plasmaet som ble behandlet med 100 til 250 mg adsorberingsmidler pr. 5 ml, dvs. med 2-5 vekt-# Fresh plasma was reacted with methylene blue (10 µM). 5 ml aliquots were reacted with different amounts of Saltosil (pore width 75 A) or Bio Beads SM 16 (pore width 144 A) and mixed for 30 minutes. The gel is then allowed to settle. In plasma, factor VIII- or the factor V content, the extinction at 660 nm and for individual samples the protein content was measured. It appears from the extinction values that, apart from the dye, additional compounds are extracted from the plasma. This is not about plasma proteins. The extinction values of the plasma treated with 100 to 250 mg of adsorbents per 5 ml, i.e. with 2-5 weight #

{% v/v), skiller seg nesten ikke fra de som ble ekstrahert med 10% v/v adsorberingsmidler. Det fremgår derfor at det ved en MB-konsentrasjon på 10 jjM i begge tilfellene er tilstrekkelig med 2-556 v/v adsorberingsmiddel, for ved batch-vis behandling å fjerne farvestoffet fra plasmaet. Tilsvarende mindre absorberingsmidler er nødvendig når tilsetnings-konsentrasjonen av farvestoffet er lavere. {% v/v), hardly differ from those extracted with 10% v/v adsorbents. It therefore appears that at an MB concentration of 10 µM in both cases, 2-556 v/v adsorbent is sufficient to remove the dye from the plasma in batch-wise treatment. Correspondingly less absorbents are required when the added concentration of the dye is lower.

Eksempel 12 Example 12

I et ytterligere forsøk ble det i steden for blodplasma tilsatt en 5 % human serumalbuminoppløsning ( 5% HSA). MB-konsentrasjonen var videre 10 uM. 5 ml aliquoter ble i batch ekstrahert, hver med 100 mg, dvs. 2% v/v av følgende adsorberingsmidler i forskjellige tidspunkter: Daltosil In a further experiment, a 5% human serum albumin solution (5% HSA) was added instead of blood plasma. The MB concentration was further 10 uM. 5 ml aliquots were batch extracted, each with 100 mg, i.e. 2% v/v of the following adsorbents at different times: Daltosil

(porevidde 75 A, Kieselgel (poregvidde 40 A) samt Bio Beads SM16 (porevidde 144 A). (pore size 75 A, Kieselgel (pore size 40 A) and Bio Beads SM16 (pore size 144 A).

Som Abb. 1 viser, går i alle tre tilfeller distinksjonen ved 660 nm tilbake i løpet av 20-30 minutter til en konstant verdi, dvs. denne tiden er tilstrekkelig for å fjerne foto-oksideringsmidler batch-vis opparbeiding fra plasmapro-teinoppløsningen. Som Abb. 1 også viser, er Bio Beads SM16 og kieselgel 40 i angitte tilfelle åpenbart et bedre adsorpsjonsmiddel enn Daltosil med 75 A porevidde. As Abb. 1 shows, in all three cases the distinction at 660 nm returns within 20-30 minutes to a constant value, i.e. this time is sufficient to remove photo-oxidizing agents batch-wise processing from the plasma protein solution. As Abb. 1 also shows, Bio Beads SM16 and kieselgel 40 in the specified case are obviously a better adsorbent than Daltosil with 75 A pore width.

Eksempel 13 Example 13

Søylekromatografisk fjerning av MB fra plasmaprotein-oppløsninger. Column chromatographic removal of MB from plasma protein solutions.

Fra dette forsøket må det bestemmes om den adsorberende fjerningen av foto-oksideringsmidler også kan foregå kromatografisk. Bakgrunnen for dette er idéen om at virusinaktiveringen gjennomføres ved hjelp av farvestoff i kombinasjon med lys i en beholder, eksempelvis i en blodpose, og deretter overfører plasmaproteinoppløsningen over en liten derimellom anpasset separasjonskolonne som inneholder adsorpsjonsmidlet i en andre "beholder, f. eks. en annen blodpose. Dersom enheten førstepose -adsorpsjonskolonne -andrepose var prefabrikert, råder man altså over et lukket system, og man kunne på enkel måte under liten kontamina-sjonsrisiko fremstille virus-inaktiverte plasmaproteinpreparater, også slike som stammer fra enkelte donorer. From this experiment, it must be determined whether the adsorptive removal of photo-oxidizing agents can also take place chromatographically. The background for this is the idea that the virus inactivation is carried out using a dye in combination with light in a container, for example in a blood bag, and then transfers the plasma protein solution over a small separation column adapted in between, which contains the adsorptive agent in a second "container, e.g. a If the unit first bag - adsorption column - second bag was prefabricated, then a closed system is available, and virus-inactivated plasma protein preparations, including those originating from individual donors, could be produced in a simple way with little risk of contamination.

Her ble 250 ml 5% albuminoppløsning med forskjellig hurtighet ført gjennom en separasjonskolonne som inneholdt 5 ml kieselgel (porevidde 40 A). 10 ml-fraksjoner ble fanget opp, og ekstinksjonsverdiene målt ved 660 nm. Here, 250 ml of 5% albumin solution was passed at different speeds through a separation column containing 5 ml of silica gel (pore size 40 Å). 10 ml fractions were collected and the extinction values measured at 660 nm.

Som det fremgår fra tabell 10, er det mulig å lede totalvolu-mer av albuminoppløsningen med gjennomstrømningshastigheter på 5 hhv. 7,5 ml/min. gjennom kolonnen, uten at det var mulig å påvise gjenværende MB i gjennomløpsfraksjonene. Tiden det tar for å fjerne farvestoffet fra 250 ml oppløsning, ligger på høyst 30 til 35 minutter. As can be seen from table 10, it is possible to pass total volumes of the albumin solution with flow rates of 5 or 7.5 ml/min. through the column, without it being possible to detect remaining MB in the flow-through fractions. The time it takes to remove the dye from 250 ml of solution is 30 to 35 minutes at most.

Resultatet av forsøket viser at den kromatografiske se-pareringen av foto-oksideringsmidlet ikke utgjør et problem, og for det andre blir det bevist at ovenfor beskrevne frem-stilling av virus-inaktiverte plasmaproteinpreparater fra enkeltdonorer er mulig. The result of the experiment shows that the chromatographic separation of the photo-oxidizing agent does not pose a problem, and secondly, it is proved that the above-described production of virus-inactivated plasma protein preparations from single donors is possible.

Claims (7)

1. Fremgangsmåte for inaktivering av vira i blod og blodprodukter der oppløsningen, hhv. suspensjonen som skal inaktiveres, blir tilsatt fenotiazinfarvestoffer og bestrålt med synlig lys i området ved absorpsjonsmaksimumet til farve-stof f ene, og deretter blir blodet hhv. blodproduktene eventuelt ledet over et adsorpsjonsmiddel for fjerning av farvestoffene, karakterisert ved at fenotiazinfarvestoffene tilsettes i en konsentrasjon på 0,1 til 2 uM, og at bestrålingen foretas umiddelbart i gjennomsiktige beholdere som blodposer, som anvendes for bloduttagning og oppbevaring.1. Procedure for inactivating viruses in blood and blood products where the solution, respectively the suspension to be inactivated is added to phenothiazine dyes and irradiated with visible light in the area at the absorption maximum of the dye f one, and then the blood or the blood products possibly passed over an adsorption agent to remove the dyes, characterized in that the phenothiazine dyes are added in a concentration of 0.1 to 2 uM, and that the irradiation is carried out immediately in transparent containers such as blood bags, which are used for blood collection and storage. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at fenotiazinfarvestoffene toluidinblå eller metylenblå anvendes.2. Method according to claim 1, characterized in that the phenothiazine dyes toluidine blue or methylene blue are used. 3. Fremgangsmåte ifølge ett av kravene 1 eller 2, karakterisert ved at oppløsningen hhv. suspensjonen som skal inaktiveres først blir dypfryst, og deretter videre opptint før bestrålingen.3. Method according to one of claims 1 or 2, characterized in that the solution or the suspension to be inactivated is first deep-frozen, and then further thawed before irradiation. 4. Fremgangsmåte ifølge krav 3, karakterisert ved at farvestoffet tilsettes før fryseforløpet.4. Method according to claim 3, characterized in that the dye is added before the freezing process. 5. Fremgangsmåte ifølge krav 3, karakterisert ved at farvestoffet tilsettes etter opptiningen og før bestrålingen.5. Method according to claim 3, characterized in that the dye is added after thawing and before irradiation. 6. Fremgangsmåte ifølge ett av kravene 1 til 5, karakterisert ved at denne gjennomføres over to egnede beholdere for bloduttak som blodpose med en derimellom koblet separasjonskolonne, som inneholder adsorpsjonsmidlet for fenotiazinfarvestoffet.6. Method according to one of claims 1 to 5, characterized in that this is carried out over two suitable containers for blood collection such as a blood bag with a separation column connected between them, which contains the adsorbent for the phenothiazine dye. 7. Fremgangsmåte ifølge krav 6, karakterisert ved at det som adsorpsjonsmiddel tilsettes kieselgel eller slike som er basert på polystyrol-divinylbenzen- eller akrylester-polymerisater.7. Method according to claim 6, characterized in that silica gel or those based on polystyrene-divinylbenzene or acrylic ester polymers are added as adsorbent.
NO920834A 1989-09-13 1992-03-03 Method of inactivating viruses in blood and blood products NO300911B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3930510A DE3930510A1 (en) 1989-09-13 1989-09-13 PROCESS FOR INACTIVATING VIRUSES IN BLOOD AND BLOOD PRODUCTS
PCT/DE1990/000691 WO1991003933A1 (en) 1989-09-13 1990-09-08 Process for inactivating viruses in blood and blood products

Publications (3)

Publication Number Publication Date
NO920834D0 NO920834D0 (en) 1992-03-03
NO920834L NO920834L (en) 1992-03-03
NO300911B1 true NO300911B1 (en) 1997-08-18

Family

ID=6389298

Family Applications (1)

Application Number Title Priority Date Filing Date
NO920834A NO300911B1 (en) 1989-09-13 1992-03-03 Method of inactivating viruses in blood and blood products

Country Status (14)

Country Link
EP (2) EP0593098A3 (en)
JP (1) JP2965695B2 (en)
AT (1) ATE161681T1 (en)
AU (1) AU635068B2 (en)
CA (1) CA2065842C (en)
CS (1) CS76692A3 (en)
DE (3) DE3930510A1 (en)
DK (1) DK0491757T4 (en)
ES (1) ES2113347T5 (en)
FI (1) FI99192C (en)
HU (1) HU215131B (en)
NO (1) NO300911B1 (en)
RU (1) RU2036235C1 (en)
WO (1) WO1991003933A1 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571666A (en) * 1988-10-28 1996-11-05 Oklahoma Medical Research Foundation Thiazine dyes used to inactivate HIV in biological fluids
US6348309B1 (en) * 1989-09-13 2002-02-19 Blutspendedienst Der Landesverbaende Des Deutschen Roten Kreuzes Niedersachsen, Oldenburg Und Bremen G.G.M.B.H. Process for inactivating viruses in blood and blood products
US6251644B1 (en) 1990-04-16 2001-06-26 Baxter International, Inc. Method for inactivating non-enveloped viral contaminants with a photosensitizer by increasing viral permeability to the photosensitizer
US6187572B1 (en) 1990-04-16 2001-02-13 Baxter International Inc. Method of inactivation of viral and bacterial blood contaminants
US5120649A (en) * 1990-05-15 1992-06-09 New York Blood Center, Inc. Photodynamic inactivation of viruses in blood cell-containing compositions
DE9102709U1 (en) * 1991-03-07 1991-05-23 Blutspendedienst der Landesverbände des Deutschen Roten Kreuzes Niedersachsen, Oldenburg und Bremen Gemeinnützige GmbH, 3257 Springe Blood bag arrangement
US6433343B1 (en) 1992-03-02 2002-08-13 Cerus Corporation Device and method for photoactivation
AU4107396A (en) 1992-03-02 1996-06-06 Cerus Corporation Synthetic media for blood components
US6207107B1 (en) * 1992-10-05 2001-03-27 Baxter International Inc. Steam sterilizable system for inactivating viral contaminants in body fluids
EP0707633A4 (en) * 1993-06-23 1996-08-14 New York Blood Center Inc SYSTEM FOR VIRAL INACTIVATION OF BLOOD
US5399719A (en) 1993-06-28 1995-03-21 Steritech, Inc. Compounds for the photodecontamination of pathogens in blood
US5625079A (en) 1993-06-28 1997-04-29 Cerus Corporation Synthesizing psoralen compounds useful as intermediates
US6420570B1 (en) 1993-06-28 2002-07-16 Cerus Corporation Psoralen compounds
US6319662B1 (en) * 1993-12-17 2001-11-20 Baxter International Inc. Method and apparatus for removing viral contaminants from a body fluid
US5639376A (en) * 1994-01-10 1997-06-17 Hemasure, Inc. Process for simultaneously removing leukocytes and methylene blue from plasma
JPH09508823A (en) * 1994-01-10 1997-09-09 ヒマシュア,インコーポレイテッド Devices and processes for the removal of leukocytes and virus inactivating agents from blood.
DE4444045C2 (en) * 1994-12-10 1997-04-17 Behringwerke Ag Method for inactivating viruses using acridine or acridine derivatives
US6544727B1 (en) 1995-06-07 2003-04-08 Cerus Corporation Methods and devices for the removal of psoralens from blood products
AT406778B (en) * 1996-04-09 2000-09-25 Immuno Ag METHOD FOR DISINEGRATING NUCLEIC ACIDS AND PRODUCING QUALITY-ASSURED BIOLOGICAL PRODUCTS
JP2000512762A (en) * 1996-06-17 2000-09-26 マーキュリー ダイアグノスティックス インコーポレイテッド Electrochemical test equipment and related methods
US5922278A (en) * 1996-11-19 1999-07-13 Baxter International Inc. Method and apparatus for inactivating contaminants in biological fluid
US6190609B1 (en) 1996-11-19 2001-02-20 Baxter International Inc. Methods and apparatus for inactivating contaminants in biological fluid
US20010018179A1 (en) 1998-01-06 2001-08-30 Derek J. Hei Batch devices for the reduction of compounds from biological compositions containing cells and methods of use
US20010009756A1 (en) 1998-01-06 2001-07-26 Derek Hei Flow devices for the reduction of compounds from biological compositions and methods of use
JP2003525848A (en) 1997-11-20 2003-09-02 セラス コーポレーション Novel psoralen for inactivating pathogens
US7611831B2 (en) 1998-01-06 2009-11-03 Cerus Corporation Adsorbing pathogen-inactivating compounds with porous particles immobilized in a matrix
US7049110B2 (en) 1998-07-21 2006-05-23 Gambro, Inc. Inactivation of West Nile virus and malaria using photosensitizers
US7498156B2 (en) 1998-07-21 2009-03-03 Caridianbct Biotechnologies, Llc Use of visible light at wavelengths of 500 to 550 nm to reduce the number of pathogens in blood and blood components
US6610436B1 (en) 1998-09-11 2003-08-26 Gore Enterprise Holdings Catalytic coatings and fuel cell electrodes and membrane electrode assemblies made therefrom
DE19904088A1 (en) * 1999-02-02 2000-09-07 Fressenius Hemocare Gmbh Tubing set for a cell separator for separating blood into its components and method for separating blood into its components
DE19914850A1 (en) * 1999-04-01 2000-10-05 Gerhard Saalmann Device for inactivating viruses, especially human immunodeficiency virus (HIV) from blood products, uses coloring agents and radiation
US7025877B1 (en) 1999-06-03 2006-04-11 Baxter International Inc. Processing set for processing and treating a biological fluid
US6565802B1 (en) 1999-06-03 2003-05-20 Baxter International Inc. Apparatus, systems and methods for processing and treating a biological fluid with light
US7445756B2 (en) 1999-06-03 2008-11-04 Fenwal, Inc. Fluid processing sets and organizers for the same
US7068361B2 (en) 1999-06-03 2006-06-27 Baxter International Apparatus, systems and methods for processing and treating a biological fluid with light
US7094378B1 (en) 2000-06-15 2006-08-22 Gambro, Inc. Method and apparatus for inactivation of biological contaminants using photosensitizers
US7220747B2 (en) 1999-07-20 2007-05-22 Gambro, Inc. Method for preventing damage to or rejuvenating a cellular blood component using mitochondrial enhancer
US6268120B1 (en) 1999-10-19 2001-07-31 Gambro, Inc. Isoalloxazine derivatives to neutralize biological contaminants
TW590780B (en) 2000-06-02 2004-06-11 Gambro Inc Additive solutions containing riboflavin
US7985588B2 (en) 2000-06-02 2011-07-26 Caridianbct Biotechnologies, Llc Induction of and maintenance of nucleic acid damage in pathogens using riboflavin and light
US7648699B2 (en) 2000-06-02 2010-01-19 Caridianbct Biotechnologies, Llc Preventing transfusion related complications in a recipient of a blood transfusion
US9044523B2 (en) 2000-06-15 2015-06-02 Terumo Bct, Inc. Reduction of contaminants in blood and blood products using photosensitizers and peak wavelengths of light
DE10031851B4 (en) * 2000-07-04 2005-10-13 Blutspendedienst der Landesverbände des Deutschen Roten Kreuzes Niedersachsen, Sachsen-Anhalt, Thüringen, Oldenburg und Bremen gGmbH Photodynamic treatment and UV-B irradiation of a platelet suspension
JP4704684B2 (en) * 2002-02-01 2011-06-15 カリディアンビーシーティ バイオテクノロジーズ,エルエルシー Reduction of contamination in blood and blood products using photosensitizers and peak wavelengths of light
EA032842B1 (en) * 2014-05-23 2019-07-31 Овик Леонардович МКРТЧЯН Method for inactivating, on medical instruments, viruses containing rna and dna, and apparatus for implementing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2827109C2 (en) * 1977-06-24 1986-10-30 Asahi Kasei Kogyo K.K., Osaka Method and device for the separation of organic compounds from plasma proteins of the blood
JPS5665071A (en) * 1979-11-01 1981-06-02 Asahi Chem Ind Co Ltd Photo-oxidation treating agent
US4748120A (en) * 1983-05-02 1988-05-31 Diamond Scientific Co. Photochemical decontamination treatment of whole blood or blood components
US4727027A (en) * 1983-05-02 1988-02-23 Diamond Scientific Co. Photochemical decontamination treatment of whole blood or blood components
JPS61275228A (en) * 1985-03-14 1986-12-05 バクスタ−、トラベノ−ル、ラボラトリ−ズ、インコ−ポレイテツド Photodynamic inactivity of virus in therapeutical protein composition
US4775625A (en) * 1986-11-21 1988-10-04 The Medical College Of Wisconsin, Inc. Inactivating enveloped viruses with a merocyanine dye
DE3717951C1 (en) * 1987-05-25 1988-11-24 Shanmugam Murugavel Use of silica gel to detoxify blood
US4878891A (en) * 1987-06-25 1989-11-07 Baylor Research Foundation Method for eradicating infectious biological contaminants in body tissues
DE3805459A1 (en) * 1988-02-22 1989-08-31 Biotest Pharma Gmbh METHOD FOR STERILIZING BLOOD, PLASMA, BLOOD AND PLASMA DERIVATIVES, CELL SUSPENSIONS OR THE LIKE
US5149718A (en) * 1989-01-19 1992-09-22 New York University Biological fluid purification system
CA2055463C (en) * 1989-05-11 1997-09-30 Raymond F. Schinazi Antiviral therapy using thiazine and xanthene dyes

Also Published As

Publication number Publication date
DE122008000026I1 (en) 2008-08-21
ES2113347T5 (en) 2002-09-16
EP0593098A3 (en) 1994-04-27
FI99192B (en) 1997-07-15
DK0491757T4 (en) 2002-04-22
AU6339190A (en) 1991-04-18
DE122008000026I2 (en) 2011-05-05
NO920834D0 (en) 1992-03-03
CS76692A3 (en) 1992-08-12
HU215131B (en) 1998-09-28
EP0491757A1 (en) 1992-07-01
ATE161681T1 (en) 1998-01-15
FI920981A0 (en) 1992-03-05
DK0491757T3 (en) 1998-09-07
EP0491757B1 (en) 1998-01-07
AU635068B2 (en) 1993-03-11
JPH05500366A (en) 1993-01-28
FI99192C (en) 1997-10-27
EP0491757B2 (en) 2002-01-09
RU2036235C1 (en) 1995-05-27
EP0593098A2 (en) 1994-04-20
ES2113347T3 (en) 1998-05-01
CA2065842A1 (en) 1991-03-14
HU9200627D0 (en) 1992-05-28
NO920834L (en) 1992-03-03
DE3930510A1 (en) 1991-03-21
DE59010793D1 (en) 1998-02-12
HUT60142A (en) 1992-08-28
JP2965695B2 (en) 1999-10-18
CA2065842C (en) 1999-12-21
WO1991003933A1 (en) 1991-04-04

Similar Documents

Publication Publication Date Title
NO300911B1 (en) Method of inactivating viruses in blood and blood products
AU698154B2 (en) System for viral inactivation of blood
Matthews et al. Photodynamic therapy of viral contaminants with potential for blood banking applications
Wagner et al. Red cell alterations associated with virucidal methylene blue phototreatment
EP0368902B1 (en) Method for eradicating infectious contaminants in tissues
Wagner Virus inactivation in blood components by photoactive phenothiazine dyes
US5545516A (en) Inactivation of extracellular enveloped viruses in blood and blood components by phenthiazin-5-ium dyes plus light
Seghatchian et al. Pathogen-reduction systems for blood components: the current position and future trends
EP0457196B1 (en) Photodynamic inactivation of viruses in cell-containing compositions
CA2154761A1 (en) Method and apparatus for treating a body fluid
CA2225470C (en) Method and apparatus for inactivating contaminants in blood products
Smetana et al. Photodynamic inactivation of herpes viruses with phthalocyanine derivatives
Allen et al. Sulfophthalocyanines for photodynamic inactivation of viruses in blood products: effect of structural modifications
Wagner et al. Differential sensitivities of viruses in red cell suspensions to methylene blue photosensitization
EP0124363A2 (en) Photochemical decontamination treatment of whole blood or blood components
JP2009500123A (en) Method for reducing pathogens in biological samples
US6348309B1 (en) Process for inactivating viruses in blood and blood products
MXPA01008170A (en) Methods of inactivating pathogens using broad-spectrum pulsed light.
RU2558432C2 (en) Method for pathogen inactivation
Acquaye et al. Isolation and quantitation of human erythrocyte deformability classes

Legal Events

Date Code Title Description
MK1K Patent expired