[go: up one dir, main page]

NO139835B - DEVICE FOR LOCKING A REVERSE WINDOW WINDOW FRAME IN A SPECIFIC LOCKING POSITION - Google Patents

DEVICE FOR LOCKING A REVERSE WINDOW WINDOW FRAME IN A SPECIFIC LOCKING POSITION Download PDF

Info

Publication number
NO139835B
NO139835B NO772372A NO772372A NO139835B NO 139835 B NO139835 B NO 139835B NO 772372 A NO772372 A NO 772372A NO 772372 A NO772372 A NO 772372A NO 139835 B NO139835 B NO 139835B
Authority
NO
Norway
Prior art keywords
polymer
acid
polymerization
produced
weight
Prior art date
Application number
NO772372A
Other languages
Norwegian (no)
Other versions
NO139835C (en
NO772372L (en
Inventor
Leif Austnes
Original Assignee
Leif Austnes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leif Austnes filed Critical Leif Austnes
Priority to NO772372A priority Critical patent/NO139835C/en
Publication of NO772372L publication Critical patent/NO772372L/en
Publication of NO139835B publication Critical patent/NO139835B/en
Publication of NO139835C publication Critical patent/NO139835C/en

Links

Landscapes

  • Window Of Vehicle (AREA)

Description

Polymerisasjon av akrylnitril. Polymerization of acrylonitrile.

Oppfinnelsen vedrører en ny fremgangsmåte for fremstilling av polymere eller kopolymere av akrylnitril. The invention relates to a new method for producing polymers or copolymers of acrylonitrile.

Polymere av akrylonitril og kopolymere av akrylonitril med andre monoetylenske umettede forbindelser er kjent. Disse polymere og kopolymere er funnet å ha en vid anvendelse i fremstilling av mange verdi-fulle handelsprodukter som f. eks. syntetiske kautsjuker og mere spesielt kunst-fibre. Polymers of acrylonitrile and copolymers of acrylonitrile with other monoethylenically unsaturated compounds are known. These polymers and copolymers have been found to have a wide application in the production of many valuable commercial products such as e.g. synthetic rubbers and more especially artificial fibres.

Vanskeligheter er oppstått ved poly-merisasjonen eller kopolymerisasjonen av akrylonitril, og betraktelig arbeide er ned-lagt i å utvikle en praktisk, økonomisk fremgangsmåte for fremstilling av disse meget nyttige polymere og kopolymere. Det foreligger et antall rapporter som vedrører polymerisasjonskatalysatorene i et vandig polymerisasj onsmedium, og spesielt en re-doks type katalysator som består av oksyderende og reduserende stoffer. De oksyderende stoffer innbefatter oksygenavgi-vende peroksyder, som har evne til selv å starte polymerisasj onen som persulfat og perborat slik det er beskrevet i U.S. patent nr. 2.436.926 eller stoffer som er istand til selv å starte polymerisasj onen som klora-ter, kaliumpermanganat eller sekundære metallsalter. De reduserende stoffer er oksyderbare sulfoksyforbindelser og andre. Generelt sagt er redokstypen av polymerisasj onskatalysatorer ikke bare en kombina-sjon av et hvilket som helst oksyderende og reduserende stoff, men enestående blanding av to stofftyper. Difficulties have arisen in the polymerization or copolymerization of acrylonitrile, and considerable work has gone into developing a practical, economical method for producing these very useful polymers and copolymers. There are a number of reports relating to the polymerization catalysts in an aqueous polymerization medium, and in particular a redox type of catalyst consisting of oxidizing and reducing substances. The oxidizing substances include oxygen-releasing peroxides, which have the ability to initiate the polymerization themselves as persulphate and perborate as described in U.S. Pat. patent no. 2,436,926 or substances which are able to initiate the polymerization themselves such as chlorates, potassium permanganate or secondary metal salts. The reducing substances are oxidizable sulfoxy compounds and others. Generally speaking, the redox type of polymerization catalysts is not just a combination of any oxidizing and reducing substance, but unique mixture of two substance types.

Anvendeligheten av en polymerisasj onskatalysator avhenger av fysikalske og kjemiske egenskaper av den fremstilte polymere såvel som evne til å starte polymerisasj on. Det menes å være ønskelig for katalysatoren at polymere som har overlegne fysikalske egenskaper, og er forenlig for ønskede artikler, dannes hurtig med godt utbytte. The applicability of a polymerization catalyst depends on the physical and chemical properties of the produced polymer as well as the ability to initiate polymerization. It is believed to be desirable for the catalyst that polymers which have superior physical properties, and are compatible with desired articles, are formed quickly with good yield.

Det kan anvendes en katalysator som kan akselerere polymerisasj onen med en praktisk hastighet, temperatur, letthet for kontroll av reaksjonssystemet med bruk av en praktisk katalysatormengde sett fra et økonomisk synspunkt uten uønskede side-reaksjoner (f. eks. dannelse av gul polymer) under polymerisasj onen. A catalyst can be used which can accelerate the polymerisation at a practical speed, temperature, ease of control of the reaction system using a practical amount of catalyst from an economic point of view without undesirable side reactions (e.g. formation of yellow polymer) during polymerisation the one.

Det er en hensikt med foreliggende oppfinnelse å tilveiebringe en polymerisasjon eller kopolymerisasjonsprosess av akrylonitril i nærvær av en ny katalysator. It is an aim of the present invention to provide a polymerization or copolymerization process of acrylonitrile in the presence of a new catalyst.

Ifølge oppfinnelsen består den nye katalysator av hydroksylaminsulfonater og som anvendes sammen med kjente uorganiske forbindelser som har tetravalent svovelatom. Den foreliggende katalysator har høy polymerisasj onsinitieringsevne og kan danne polymere eller kopolymere som har en ønsket polymerisasj onsgrad med lett kontroll av driften og være utgangsmaterialer for akryliske syntetiske fibre som er for-trinnelige både med hensyn til hvitfarge og varmestabilitet av hvitfargen. According to the invention, the new catalyst consists of hydroxylamine sulphonates and which are used together with known inorganic compounds which have a tetravalent sulfur atom. The present catalyst has high polymerization initiation ability and can form polymers or copolymers that have a desired degree of polymerization with easy control of operation and be starting materials for acrylic synthetic fibers that are preferable both with regard to white color and heat stability of the white color.

Hydroksylaminsulfonsyren er hydroksylaminmonosulfonsyre med formelen The hydroxylamine sulfonic acid is hydroxylamine monosulfonic acid with the formula

og hydroksylamin-disulfonsyre med formelen men sistnevnte syre hydrolyserer hurtig med en vandig oppløsning med pH 1,5—4 i monosulfonsyren, og begge syrer er ekvi-valente i foreliggende oppfinnelse. Amin-sulfonsyren med formelen initierer ikke polymerisasj onen etter at den er blandet med tetravalente svovelhol-dige uorganiske forbindelser. Salter av slike syrer er natriumsalter, kaliumsalter, am-moniumsalter og andre, og de to førstnevnte foretrekkes på grunn av god oppløselighet. Uorganiske forbindelser som har tetravalent svovelatom er svoveldioksyd, and hydroxylamine disulfonic acid with the formula but the latter acid hydrolyzes rapidly with an aqueous solution of pH 1.5-4 in the monosulfonic acid, and both acids are equivalent in the present invention. The amine sulfonic acid of the formula does not initiate polymerization after it is mixed with tetravalent sulfur-containing inorganic compounds. Salts of such acids are sodium salts, potassium salts, ammonium salts and others, the former two being preferred because of good solubility. Inorganic compounds that have a tetravalent sulfur atom are sulfur dioxide,

betyr monovalente metaller. means monovalent metals.

Tiosulfat som er en av vanlig oksyderbare sulfoksyforbindelser antas å ha struk-turformelen Thiosulfate, which is one of the commonly oxidizable sulfoxy compounds, is believed to have the structural formula

på grunn av dets oppførsel, og den ligger utenom rammen av uorganiske forbindelser som har tetravalent svovelatom, og det er ikke funnet noen aktivitet for å initiere polymerisasjon etter at den er blandet med hydroksylamin sulfonatet. Organiske forbindelser som inneholder svovelatom som f. eks. dietylsulfit eller toluensulfinsyre vi-ser ingen økonomisk anvendelig initierings-aktivitet. because of its behavior, and it is outside the scope of inorganic compounds having tetravalent sulfur atom, and no activity has been found to initiate polymerization after it is mixed with the hydroxylamine sulfonate. Organic compounds containing sulfur atoms such as diethylsulfite or toluenesulfinic acid show no economically useful initiating activity.

Som nevnt ovenfor er den foreliggende katalysator sammensatt av salter av hydroksylaminmonosulfonsyre eller hydroksylamin-disulfonsyre og uorganiske forbindelser som inneholder tetravalent svovelatom. Den førstnevnte forbindelse kan benyttes i en mengde på 0,1—5,0 vekts-pst. av den totale monomermengde og hydroksylaminsulfonsyren kan være en hydroksylaminmonosulfonsyre eller det tilsvarende mol hydroksylamindisulfonsyre. Sistnevnte forbindelse av uorganiske stoffer som inneholder tetravalent svovelatom kan benyttes i området fra 1—10 vekts-pst. av den totale monomermengde. Forholdet mellom den førstnevnte komponent til sistnevnte kan varieres innen området fra 5:1 til 1 : 30 vektsdeler. Generelt sagt kan polymerisasj onskatalysatorens mengde varieres avhengig av den polymeres fysikalske egenskaper, polymerisasj onshastighet og andre økonomiske faktorer. Polymerisasj onen kan utføres over 10° C, fortrinnsvis ved 40—75° C. Polymerisasj onen kan neppe utføres i en økonomisk grad under 10° C, fordi de-komposisjonsgraden av polymerisasj onska-talysatoren blir for unødvendig stor til å danne en ønsket polymer ved for meget høye temperatur. As mentioned above, the present catalyst is composed of salts of hydroxylamine monosulfonic acid or hydroxylamine disulfonic acid and inorganic compounds containing a tetravalent sulfur atom. The first-mentioned compound can be used in an amount of 0.1-5.0% by weight. of the total amount of monomer and the hydroxylamine sulfonic acid can be a hydroxylamine monosulfonic acid or the corresponding mole of hydroxylamine disulfonic acid. The latter compound of inorganic substances containing a tetravalent sulfur atom can be used in the range from 1-10% by weight. of the total amount of monomer. The ratio of the former component to the latter can be varied within the range from 5:1 to 1:30 parts by weight. Generally speaking, the amount of polymerization catalyst can be varied depending on the polymer's physical properties, polymerization rate and other economic factors. The polymerization can be carried out above 10° C, preferably at 40-75° C. The polymerization can hardly be carried out economically below 10° C, because the degree of decomposition of the polymerization catalyst becomes too unnecessarily large to form a desired polymer at too high a temperature.

Det kreves for foreliggende katalysator at polymerisasj onen utføres ved pH 1,5— 4,0, ellers reduseres polymerisasj onsiniti-eringsevnen av katalysatoren ifølge oppfinnelsen og går til slutt tapt. For å opp-rettholde en slik pH kan det benyttes uorganiske eller organiske syrer som svovelsyre, salpetersyre, hydroklorsyre, oksalsyre og lignende. It is required for the present catalyst that the polymerization is carried out at pH 1.5-4.0, otherwise the polymerization initiation ability of the catalyst according to the invention is reduced and eventually lost. In order to maintain such a pH, inorganic or organic acids such as sulfuric acid, nitric acid, hydrochloric acid, oxalic acid and the like can be used.

Foreliggende polymerisasjon utføres i et vandig oppløsningsmedium, og det monomere stoff og vann skal fylles i en reaktor i en grad på 1 : 2 til 1 : 15 vektsdeler. Hvis forholdet vann til monomer blir lavere, fjernes vanskelig polymerisasj ons-varme, og den fremstilte polymergrøt blir mere viskos. Men den polymere kan frem-stilles i godt utbytte, produksjonskapasi-teten pr. volumenhet av reaksjonskar øker, og ytterligere mindre polymerisasj onskata-lysator pr. vektenhet monomer er nødven- The present polymerization is carried out in an aqueous dissolution medium, and the monomer substance and water must be filled in a reactor in a ratio of 1:2 to 1:15 parts by weight. If the ratio of water to monomer becomes lower, difficult polymerization heat is removed, and the produced polymer slurry becomes more viscous. But the polymer can be produced in good yield, the production capacity per volume unit of reaction vessel increases, and further less polymerization catalyst per unit weight of monomer is neces-

XUDXUD

dig. Den dannede polymer har utmerkede fysikalske og kjemiske egenskaper når mengden av vann er lavere, men det er fordelaktig å bestemme forholdet idet det tas hensyn til det som er nevnt ovenfor. you. The polymer formed has excellent physical and chemical properties when the amount of water is lower, but it is advantageous to determine the ratio taking into account what has been mentioned above.

Polymeriseringen utføres fortrinnsvis i fravær av oksygen, og derfor bør luft i en reaktor erstattes med en inert gass som f. eks. nitrogen før polymerisasj onen star-ter. Oksygenet reduserer polymerisasj ons-graden, og innvirker på fysikalske og kjemiske egenskaper av det fremstilte polymer. The polymerization is preferably carried out in the absence of oxygen, and therefore air in a reactor should be replaced with an inert gas such as e.g. nitrogen before the polymerization starts. The oxygen reduces the degree of polymerisation and affects the physical and chemical properties of the produced polymer.

Tungmetaller som jern, kobber o. 1. som vanligvis omfattes i polymerisasj ons-systemet innvirker litt på polymerisasj ons-reaksjonen, såvel som på de fysikalske egenskaper av den endelige polymer. Dette er en av fordelene ved foreliggende pro-sess. Når vanlig katalysator ble benyttet som ammoniumpersulfat, natriumbisulfit eller ammoniumpersulfattioglykolsyre, sees det av følgende tabell at den reduserte viskositet av den fremstilte polymer influ-erer sterkt i nærværet av tungmetaller. Heavy metals such as iron, copper etc., which are usually included in the polymerization system, have a slight effect on the polymerization reaction, as well as on the physical properties of the final polymer. This is one of the advantages of the present process. When a common catalyst was used such as ammonium persulphate, sodium bisulphite or ammonium persulphate thioglycolic acid, it can be seen from the following table that the reduced viscosity of the produced polymer is strongly influenced by the presence of heavy metals.

Av tallene ovenfor fremgår det at det kan benyttes en reaktor fremstilt av rust-fritt stål såvel som en glassforet reaktor. Disperseringsstoffer og/eller emulgerings-stoffer kan være tilstede i polymerisasj ons-systemet. From the figures above, it appears that a reactor made of stainless steel as well as a glass-lined reactor can be used. Dispersants and/or emulsifiers may be present in the polymerization system.

Foreliggende oppfinnelse anvendes på fremstilling av akrylonitrilpolymer og kopolymere av blandinger av monoetylen-umettede forbindelser som inneholder minst 85 vektsprosent akrylonitril og opp til 15 vektsprosent av en kopolymeriserbar forbindelse. Ifølge oppfinnelsen er monoetylenske umettede forbindelser som er ko-polymeriserbare med akrylonitril f. eks. følgende: styren og alkylsubstitusj onsf or - bindelse herav f. eks. p-metylstyren, p-etylstyren, 2,4-dietylstyren etc, vinylestre og spesielt vinylestre av mettede alifatiske monokarbonsyrer f. eks. vinylacetat, vinyl-propinat, vinylbutyrat, etc, vinyl og vinyl-idenhalogenider, f. eks. vinylklorid, vinyl-fluorid, vinylbromid, vinylidenklorid, vinyl-idenfluorid, vinylidenbromid, etc, alkoho-ler av allyl-typen f. eks. allylalkohol, me-talylalkohol, etallylalkohol, etc, akrylsyre og dets alkylsubstitusj onsf orbindelse, f. eks. akrylsyre, metakrylsyre, etakrylsyre, |3,|3-dimetylakrylsyre etc, og alkylestre av slike syrer, f. eks. metyl-akrylat, etylakrylat, propylakrylat, laurylakrylat, metylmeta-krylat, etylmetakrylat, butylmetakrylat, laurylmetakrylat, etc. og aminoalkylestre av slike syrer f. eks. (3-dietylaminoetylmeta-krylat, p-dimetylaminoetylmetakrylat, y-dimetylaminopropylakrylat, etc, og sulfo-alkylestre av slike syrer, f. eks. 3-sulfopro-pylmetakrylat, 2-sulfoetylmetakrylat, 2-sulfoetylakrylat, etc. og amider av slike syrer, f. eks. akrylamid, metakrylamid, eta-krylamid, etc, monoalkylsubstitusj onsfor-bindelser av akrylnitril, f. eks. metakryl-nitril, (3,|3-dimetylakrylnitril, etc, vinylforbindelser inneholdende sulfonsure grupper, f. eks. vinylsulfonsyre, allylsulfonsyre, me-tallylsulfonsyre, p-styrensulfonsyre, w-styrensulfonsyre etc, vinylforbindelser som inneholder basisk nitrogenatom, f. eks. 2-metyl-5-vinylpyridin, 5-etyl-2-vinylpyri-din, 4,6-dimetyl-2-vinylpyridin etc, umettede polykarbonsyrer og deres alkylestre f. eks. itakonsyre, y-hutyren-a, y-dikarbon-syre, dimetylitakonat, dietylmaleat, dibutyl-itakonat, etc. To eller flere kopolymeriser-bare monomere kan benyttes hvis ønsket. The present invention is applied to the production of acrylonitrile polymer and copolymers of mixtures of monoethylene-unsaturated compounds containing at least 85% by weight of acrylonitrile and up to 15% by weight of a copolymerizable compound. According to the invention, monoethylenic unsaturated compounds which are copolymerizable with acrylonitrile, e.g. the following: styrene and alkyl substitution for - connection of these, e.g. p-methylstyrene, p-ethylstyrene, 2,4-diethylstyrene, etc., vinyl esters and especially vinyl esters of saturated aliphatic monocarboxylic acids, e.g. vinyl acetate, vinyl propinate, vinyl butyrate, etc., vinyl and vinylidene halides, e.g. vinyl chloride, vinyl fluoride, vinyl bromide, vinylidene chloride, vinylidene fluoride, vinylidene bromide, etc., alcohols of the allyl type, e.g. allyl alcohol, metalyl alcohol, etallyl alcohol, etc., acrylic acid and its alkyl substitution compound, e.g. acrylic acid, methacrylic acid, ethacrylic acid, |3,|3-dimethylacrylic acid, etc., and alkyl esters of such acids, e.g. methyl acrylate, ethyl acrylate, propyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, lauryl methacrylate, etc. and aminoalkyl esters of such acids, e.g. (3-diethylaminoethyl methacrylate, p-dimethylaminoethyl methacrylate, γ-dimethylaminopropyl acrylate, etc., and sulfo-alkyl esters of such acids, e.g. 3-sulfopropyl methacrylate, 2-sulfoethyl methacrylate, 2-sulfoethyl acrylate, etc. and amides of such acids , e.g. acrylamide, methacrylamide, ethacrylamide, etc., monoalkyl substitution compounds of acrylonitrile, e.g. methacrylonitrile, (3,|3-dimethylacrylonitrile, etc., vinyl compounds containing sulfonic acid groups, e.g. vinylsulfonic acid , allylsulfonic acid, metalylsulfonic acid, p-styrenesulfonic acid, w-styrenesulfonic acid, etc., vinyl compounds containing a basic nitrogen atom, e.g. 2-methyl-5-vinylpyridine, 5-ethyl-2-vinylpyridine, 4,6-dimethyl- 2-vinylpyridine etc., unsaturated polycarboxylic acids and their alkyl esters, e.g. itaconic acid, γ-hutyrene-α, γ-dicarboxylic acid, dimethyl itaconate, diethyl maleate, dibutyl itaconate, etc. Two or more copolymerizable monomers can be used if desired.

Den fremstilte polymer eller kopolymer ved fremgangsmåten ifølge oppfinnelsen er meget anvendelig for akrylsyntetiske fibre som har utmerkede fysikalske egenskaper. Den polymere eller kopolymere kan også benyttes for film eller andre artikler. The polymer or copolymer produced by the method according to the invention is very useful for acrylic synthetic fibers which have excellent physical properties. The polymer or copolymer can also be used for film or other articles.

Foreliggende oppfinnelse skal nærmere forklares ved hjelp av noen eksempler. Re-aksjonsdeltagernes deler er alltid angitt i vektsdeler hvis intet annet spesielt er angitt. The present invention will be explained in more detail with the help of some examples. The reaction participants' parts are always given in parts by weight if nothing else is specifically stated.

Eksempel 1. Example 1.

En blanding av de ovennevnte stoffer ble fylt i en glassforet lukket reaktor utstyrt med en mekanisk omrører og en kappe, og deretter ble nirogen ført igjen-nom for å drive bort luft. Temperaturen ble opprettholdt ved 60° C under omrøring i 4 timer for å danne en polymergrøt med pH 2,8. Grøten ble fjernet fra reaktoren og dehydratisert umiddelbart deretter. Grøten ble vasket godt med vann og igjen dehydratisert ved en sentrifugal-hydroekstraktor og tørket ved 50° C for å danne hvit polymer. Utbytte: 85 pst. Den polymeres reduserte viskositet var 1,40 ved 35° C i 0,2 g/100 cm* dimetylformamid. Den polymere ble opp-løst ved 0° C i salpetersyre (70 vekts-pst.) fri for salpetersyrling for å oppnå en 24 g/ 100 cm<3> oppløsning, og deretter ekstrudert med en hastighet på 4 m/min. i en vandig salpetersyre-oppløsning (30 vekts-pst). De ekstruderte fibre ble vasket med vann, trukket 7,5 ganger i varmt vann av 100° C og tørket ved 80° C for å danne fibre med følgende egenskaper: A mixture of the above substances was filled into a glass-lined closed reactor equipped with a mechanical stirrer and a jacket, and then nitrogen was passed through to drive off air. The temperature was maintained at 60°C with stirring for 4 hours to form a polymer slurry of pH 2.8. The porridge was removed from the reactor and dehydrated immediately afterwards. The slurry was washed well with water and again dehydrated by a centrifugal hydroextractor and dried at 50°C to form white polymer. Yield: 85 percent. The reduced viscosity of the polymer was 1.40 at 35° C. in 0.2 g/100 cm* dimethylformamide. The polymer was dissolved at 0°C in nitric acid (70% by weight) free of nitric acid to obtain a 24 g/100 cm<3> solution, and then extruded at a speed of 4 m/min. in an aqueous nitric acid solution (30% by weight). The extruded fibers were washed with water, drawn 7.5 times in hot water of 100°C and dried at 80°C to form fibers with the following properties:

Fibrene hadde en god hvithetsgrad og termisk stabilitet og var knapt farget etter fuktig varmebehandling i 10 min. ved 120° C. The fibers had a good degree of whiteness and thermal stability and were barely colored after moist heat treatment for 10 min. at 120°C.

Eksempel 2. Example 2.

De ovennevnte stoffer ble fylt kontinuerlig i en glassforet reaktor utstyrt med en kappe og en omrører. Temperaturen ble opprettholdt ved 55° C og innmatningen ble kontrollert således at gj enomsnittlig anvendt tidsperiode var 6,5 timer. Polymer oppslemning ble kontinuerlig sendt ut fra reaktoren og hadde en pH på 2,7. Den polymere oppslemning ble behandlet som angitt i eksempel 1 for å gi hvit polymer med 8 pst. utbytte. Den polymeres reduserte viskositet var 1,50, bestemt som angitt i eks-empe 1. Fibrene ble fremstillet av de polymere som i eks. 1, og hadde The above substances were fed continuously into a glass-lined reactor equipped with a jacket and a stirrer. The temperature was maintained at 55° C. and the feed was controlled so that the average time period used was 6.5 hours. Polymer slurry was continuously discharged from the reactor and had a pH of 2.7. The polymeric slurry was processed as indicated in Example 1 to give white polymer in 8% yield. The reduced viscosity of the polymer was 1.50, determined as indicated in example 1. The fibers were produced from the polymers as in ex. 1, and had

Finhet Tensilstyrke Elongasj on 2,70 d 2,57 g/d 25 pst. Den hadde også god hvithetsgrad og termisk stabilitet. Fineness Tensile strength Elongation 2.70 d 2.57 g/d 25 per cent It also had a good degree of whiteness and thermal stability.

Eksempel 3. Example 3.

En blanding av de ovennevnte stoffer ble polymerisert ved 65° C i 4 timer som angitt i eksempel 1. Den polymere grøt hadde en pH på 2,8 og det ble fremstilt en hvit polymer med redusert viskositet på 1,54 i 87 pst. utbytte. Hvis svovelsyre ble erstattet med natriumhydroksyd og reak-sjonen ble utført ved pH 4,5 ble reaksjons-blandingen brun og det fremkom ingen polymer ved 65° C i løpet av 10 t. A mixture of the above substances was polymerized at 65° C. for 4 hours as indicated in Example 1. The polymeric slurry had a pH of 2.8 and a white polymer with a reduced viscosity of 1.54 was produced in 87% yield . If sulfuric acid was replaced with sodium hydroxide and the reaction was carried out at pH 4.5, the reaction mixture turned brown and no polymer appeared at 65° C. within 10 h.

Eksempel 4. Example 4.

En blanding av de ovennevnte stoffer ble polymerisert ved 60° C i 4 t som angitt i eksempel 1, og det fremkom en polymer grøt på pH 2,5, hvorav det ble fremstilt en hvit polymer med redusert viskositet på 1,45 med 89 pst. utbytte. Når det ikke ble benyttet noe natriumhydroksylaminmono-sulfonat eller natriumbisulfit ble det oppnådd en polymer med mindre enn 5 pst. utbytte etter en polymerisasjon ved 60° C i 10 t. A mixture of the above-mentioned substances was polymerized at 60° C. for 4 h as indicated in example 1, and a polymer slurry of pH 2.5 was produced, from which a white polymer with a reduced viscosity of 1.45 with 89 pst was produced . dividend. When no sodium hydroxylamine mono-sulfonate or sodium bisulfite was used, a polymer was obtained with less than 5% yield after a polymerization at 60° C. for 10 h.

Eksempel 5. Example 5.

En blanding av de ovennevnte stoffer ble polymerisert ved 55° C i 4 t som angitt i eksempel 1, og det fremkom en polymer grøt med pH 2,4, hvorav det fremkom en hvit polymer med redusert viskositet på 1,71 i 85 pst. utbytte. A mixture of the above-mentioned substances was polymerized at 55° C. for 4 hours as indicated in example 1, and a polymer slurry with pH 2.4 was obtained, from which a white polymer with a reduced viscosity of 1.71 in 85 percent was obtained. dividend.

Eksempel 6. Example 6.

En blanding av de ovennevnte stoffer ble kontinuerlig fylt i en rustfri stålreak-tor utstyrt med en omrører og kappe. Temperaturen ble holdt ved 55° C og gjennomsnittlig oppholdstid for reagensene ble kontrollert til 4 t. Polymer grøt på pH 2,9 ble kontinuerlig tømt ut av reaktoren. Grøten ble behandlet som i eksempel 1, for å danne hvit polymer med redusert viskositet på 1,41 med 75 pst. utbytte. Den polymere ble opp-løst ved 0° C i salpetersyre på 70 vektspst. fri for svovelsyrling for å få en 25 g/100 cm3 oppløsning som ble ekstrudert ved 0° C i en vandig salpetersyreoppløsning (30 vekts-pst.) ved en hastighet på 5 m/min. De således dannede fibre ble vasket med vann, strukket 8 ganger i varmt vann ved 100° C og tørket ved 80° C for å få fibre med A mixture of the above substances was continuously fed into a stainless steel reactor equipped with a stirrer and jacket. The temperature was kept at 55° C. and the average residence time for the reagents was controlled to 4 h. Polymer slurry at pH 2.9 was continuously discharged from the reactor. The slurry was processed as in Example 1 to form white polymer with a reduced viscosity of 1.41 in 75% yield. The polymer was dissolved at 0° C. in 70% by weight nitric acid. free of sulfuric acid to obtain a 25 g/100 cm 3 solution which was extruded at 0° C. into an aqueous nitric acid solution (30 wt.%) at a speed of 5 m/min. The fibers thus formed were washed with water, stretched 8 times in hot water at 100°C and dried at 80°C to obtain fibers with

Fibrene ble dyppet i et vandig farge-bad som inneholdt 0,25 vektspst. Severon grønn B i en badgrad på 40, temperatur på 100° C i 1 t og absorberte 6,5 vektspst. av fargestoffet pr. fibervekt. Fibrene hadde høy hvithet og var knapt farget etter fuktig varmebehandling i 120° damp i 10 min. The fibers were dipped in an aqueous dye bath containing 0.25 wt. Severon green B in a bath degree of 40, temperature of 100° C for 1 h and absorbed 6.5 wt. of the dye per fiber weight. The fibers had a high whiteness and were barely colored after moist heat treatment in 120° steam for 10 min.

Eksempel 7. Example 7.

En blanding av de ovennevnte stoffer ble polymerisert ved 70° C i 4 t som angitt i eksempel 1, og det fremkom en polymer grøt med pH 2,6 hvorav det ble fremstilt hvit polymer med redusert viskositet på 1,35 i 87 pst. utbytte. A mixture of the above-mentioned substances was polymerized at 70° C. for 4 h as indicated in example 1, and a polymer slurry with pH 2.6 was produced from which white polymer with a reduced viscosity of 1.35 was produced in 87% yield .

Eksempel 8. Example 8.

En blanding av de ovennevnte stoffer ble polymerisert ved 60° C i 4 timer som angitt i eksempel 1, og det fremkom en polymer grøt med pH 2,4 hvorav det ble fremstilt hvit polymer med en redusert viskositet på 1,35 i 86 pst. utbytte. A mixture of the above-mentioned substances was polymerized at 60° C. for 4 hours as indicated in example 1, and a polymer slurry with pH 2.4 was produced from which white polymer with a reduced viscosity of 1.35 in 86 percent was produced. dividend.

Eksempel 9. Example 9.

En blanding av de ovennevnte stoffer ble polymerisert ved 60° C i 4 timer som angitt i eksempel 1, og det fremkom en polymer grøt med pH 2,5, hvorav det ble fremstilt hvit polymer med redusert viskositet på 1,63 i 70 pst. utbytte. A mixture of the above-mentioned substances was polymerized at 60° C. for 4 hours as indicated in example 1, and a polymer slurry with pH 2.5 was produced, from which white polymer with a reduced viscosity of 1.63 in 70 percent was produced. dividend.

Eksempel 10. Example 10.

En blanding av de ovennevnte stoffer ble polymerisert ved 50° C og gjennomsnittlig oppholdstid på 6,5 t som angitt i eksempel 2. Det fremkom en polymer grøt med pH 2,4, hvorav det ble fremstillet en hvit polymer med redusert viskositet på 1,65 i 80 pst. utbytte. A mixture of the above-mentioned substances was polymerized at 50° C and an average residence time of 6.5 h as stated in example 2. A polymer slurry with a pH of 2.4 was produced, from which a white polymer with a reduced viscosity of 1, 65 in 80 per cent dividend.

Eksempel 11. Example 11.

En blanding av de ovennevnte stoffer ble polymerisert ved 60° C i 4 t som angitt i eksempel 1, og det fremkom en polymer grøt på pH 2,6, hvorav det ble fremstilt hvit polymer med redusert viskositet 1,63 i 90 pst. utbytte. A mixture of the above-mentioned substances was polymerized at 60° C. for 4 h as indicated in example 1, and a polymer slurry of pH 2.6 was produced, from which white polymer with a reduced viscosity of 1.63 was produced in 90% yield .

Eksempel 12. Example 12.

En blanding av de ovennevnte stoffer ble polymerisert ved 60° C i 4 timer som angitt i eksempel 1, og det fremkom en polymer grøt på pH 2,7 hvorav det ble fremstilt en hvit polymer med redusert viskositet på 1,58 i 92 pst. utbytte. A mixture of the above-mentioned substances was polymerized at 60° C. for 4 hours as indicated in example 1, and a polymer slurry of pH 2.7 was produced from which a white polymer with a reduced viscosity of 1.58 in 92 percent was produced. dividend.

j Eksempel 13. j Example 13.

En blanding av de ovennevnte stoffer ble polymerisert ved 45° C og en gjennomsnittlig oppholdstid på 4 t som angitt i eksempel 2, og det ble oppnådd en polymer grøt med pH 2,7, hvorav det ble fremstilt en hvit polymer med redusert viskositet 1,41 i 81 pst. utbytte. Den polymere ble oppløst ved 0° C i salpetersyre 70 vektsprosent fri for salpetersyrling for å danne en 26 g/ 100 cm3 oppløsning og deretter ekstrudert ved 0° C i en vandig salpetersyreoppløsning (30 vektspst.) i en grad på 5 m/min. De således fremstilte fibre ble vasket med vann, strukket 7 ganger i et varmt bad på 100° C og tørket ved 80° C for å danne fibre med A mixture of the above-mentioned substances was polymerized at 45° C and an average residence time of 4 h as indicated in example 2, and a polymer slurry with pH 2.7 was obtained, from which a white polymer with reduced viscosity 1 was produced, 41 in 81 per cent dividend. The polymer was dissolved at 0°C in 70% by weight nitric acid free of nitric acid to form a 26g/100cc solution and then extruded at 0°C into an aqueous nitric acid solution (30% by weight) at a rate of 5m/min. The fibers thus prepared were washed with water, drawn 7 times in a hot bath at 100°C and dried at 80°C to form fibers with

Fibrene ble dyppet i et vandig farge-bad som inneholdt 0,25 vektsdeler severon grønn B i en badgrad på 40, en temperatur ved 100° C i 1 time og absorberte 45 vektsprosent av fargen pr. fibervekt. Fibrene hadde høy hvithetsgrad og var knapt farget etter fuktig varmebehandling med 120° damp i 10 min. The fibers were dipped in an aqueous dye bath containing 0.25 parts by weight of severon green B at a bath degree of 40, a temperature of 100° C. for 1 hour and absorbed 45 percent by weight of the dye per fiber weight. The fibers had a high degree of whiteness and were barely colored after moist heat treatment with 120° steam for 10 min.

Eksempel 14. Example 14.

svovelsyre vist i følgende tabell. sulfuric acid shown in the following table.

En blanding av de ovenfor stående stoffer ble polymerisert ved en temperatur på 55° C og gjennomsnittlig oppholdstid på 4 timer. Resultatene var følgende: Eksempel 15. i A mixture of the above substances was polymerized at a temperature of 55° C and an average residence time of 4 hours. The results were as follows: Example 15. i

En blanding av de ovennevnte stoffer )le polymerisert ved 60° C i 4 timer som mgitt i eksempel 1, og det fremkom en )olymer grøt med pH 2,6, hvorav det ble xemstilt hvit polymer med redusert visko-iitet på 0,95 med 95 pst. utbyte. A mixture of the above-mentioned substances was polymerized at 60° C. for 4 hours as in example 1, and a polymer slurry with a pH of 2.6 was produced, from which a white polymer with a reduced viscosity of 0.95 was produced. with 95 percent yield.

Eksempel 16. Example 16.

En blanding av de ovennevnte stoffer )le polymerisert ved 60° C i 4 timer som mgitt i eksempel 1, og det fremkom en A mixture of the above-mentioned substances was polymerized at 60° C. for 4 hours as given in example 1, and a

>olymer grøt med pH 2,8, hvorav det frem-itilles hvit polymer med redusert viskositet på 1,62 i 90 pst. utbytte. >olymer slurry with pH 2.8, from which white polymer with a reduced viscosity of 1.62 is produced in 90 percent yield.

Eksempel 17. Example 17.

En blanding av de ovennevnte stoffer ble polymerisert ved 55° C i 6 timer som A mixture of the above substances was polymerized at 55° C. for 6 hours as

angitt i eksempel 1, og det ble dannet en polymer grøt med pH 2,3, hvorav det ble fremstilt hvit polymer med redusert viskositet 1,44 i 80 pst. utbytte. stated in Example 1, and a polymer slurry with pH 2.3 was formed, from which white polymer with reduced viscosity 1.44 was produced in 80% yield.

Eksempel 18. Example 18.

En blanding av de ovennevnte stoffer ble polymerisert ved 60° C i 4 t og det fremkom en polymer grøt med pH 1,9, hvorav A mixture of the above-mentioned substances was polymerized at 60° C for 4 h and a polymer slurry with pH 1.9 emerged, of which

det ble fremstilt hvit polymer med redusert viskositet 2,35 i 85 pst. utbytte. white polymer with reduced viscosity 2.35 was produced in 85% yield.

Claims (1)

Fremgangsmåte for polymerisasjon av akrylnitril eller en blanding som inneholder minst 85 vektsprosent akrylnitril og inntil 15 vektsprosent av minst en kopolymeriserbar etylen-umettet monomer i et vandig medium med pH 1,5—4,0 i nærvær av en katalysator valgt blant uorganiske forbindelser som inneholder tetravalent svo-vel, som svoveldioksyd, bisulfit, metabisul-fit, sulfit, hyposulfit etc, karakterisert ved at det sammen med nevnte svo-velholdige katalysator anvendes salter av hydroksylaminmonosulfonsyre, eller hydroksylamindisulfonsyre.Process for the polymerization of acrylonitrile or a mixture containing at least 85% by weight of acrylonitrile and up to 15% by weight of at least one copolymerizable ethylene-unsaturated monomer in an aqueous medium with a pH of 1.5-4.0 in the presence of a catalyst selected from inorganic compounds containing tetravalent sulphur, such as sulfur dioxide, bisulphite, metabisulphite, sulphite, hyposulphite, etc., characterized in that salts of hydroxylamine monosulphonic acid or hydroxylamine disulphonic acid are used together with said sulphur-containing catalyst.
NO772372A 1977-07-05 1977-07-05 DEVICE FOR LOCKING A REVERSE WINDOW WINDOW FRAME IN A SPECIFIC LOCKING POSITION NO139835C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO772372A NO139835C (en) 1977-07-05 1977-07-05 DEVICE FOR LOCKING A REVERSE WINDOW WINDOW FRAME IN A SPECIFIC LOCKING POSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO772372A NO139835C (en) 1977-07-05 1977-07-05 DEVICE FOR LOCKING A REVERSE WINDOW WINDOW FRAME IN A SPECIFIC LOCKING POSITION

Publications (3)

Publication Number Publication Date
NO772372L NO772372L (en) 1979-01-08
NO139835B true NO139835B (en) 1979-02-05
NO139835C NO139835C (en) 1979-05-16

Family

ID=19883615

Family Applications (1)

Application Number Title Priority Date Filing Date
NO772372A NO139835C (en) 1977-07-05 1977-07-05 DEVICE FOR LOCKING A REVERSE WINDOW WINDOW FRAME IN A SPECIFIC LOCKING POSITION

Country Status (1)

Country Link
NO (1) NO139835C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000195A1 (en) * 1983-06-29 1985-01-17 V. Kann Rasmussen Industri A/S A window, especially for installation in an inclined roof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000195A1 (en) * 1983-06-29 1985-01-17 V. Kann Rasmussen Industri A/S A window, especially for installation in an inclined roof

Also Published As

Publication number Publication date
NO139835C (en) 1979-05-16
NO772372L (en) 1979-01-08

Similar Documents

Publication Publication Date Title
US3060157A (en) Acrylonitrile polymerization
US4451628A (en) Process for preparing low molecular weight water-soluble polymers by copolymerizing with water-soluble monomers a calculated quantity of methallylsulfonate monomer
SU1276261A3 (en) Method for producing fibre-forming copolymers of acrylonitrile
US2751374A (en) Polymerization of acrylonitrile
US3432482A (en) Process for the preparation of polymer
US3574177A (en) Production of acrylonitrile polymers
US3669919A (en) Polyacrylonitrile process
NO139835B (en) DEVICE FOR LOCKING A REVERSE WINDOW WINDOW FRAME IN A SPECIFIC LOCKING POSITION
US2843572A (en) Preparation of vinylidene chloride interpolymers of improved solubility
IE41515B1 (en) Process for the production of acrylonitrile-yinyl chloride copolymers with improved whiteness
US3141869A (en) Process for the production of acrylonitrile polymers
US3135722A (en) Process for the production of polymers from acrylonitrile
US3200100A (en) Process for the production of acrylonitrile polymers
US3396154A (en) Sodium borohydride as a polymerization inhibitor for a redox system
US3213069A (en) Process for the production of acrylonitrile polymers using a catalyst system of nitric acid and sulfur dioxide
US4118556A (en) Process for the production of acrylonitrile-vinyl-chloride copolymers with improved whiteness
US3697492A (en) Acrylonitrile polymerization
US3287304A (en) Acrylonitrile copolymers and compositions
US3164574A (en) Acrylonitrile vinylsulfonic acid copolymers
US2838470A (en) Copolymerization of acrylonitrile and another unsaturated monomer in the presence ofpreformed interpolymer
US4446291A (en) Process for the continuous production of acrylonitrile-vinyl chloride copolymers
US4013608A (en) Method of producing polymer solutions of polymers or copolymers of vinyl chloride series
US2879256A (en) Continuous process for preparing vinyl or vinylidene chloride graft polymers of improved solubility
US4080494A (en) Process for producing acrylonitrile polymer melt employing H2 O2 polymerization catalyst at a temperature of at least 80° C containing 3-80% water in the system
US4524193A (en) Modacrylic synthetic fiber having an excellent devitrification preventing property and a process for preparing the same