NO138571B - PROCEDURE FOR MANUFACTURING AN ELECTRODE CONSISTING OF A TITANIAN CARRIER WITH PB02 COATING - Google Patents
PROCEDURE FOR MANUFACTURING AN ELECTRODE CONSISTING OF A TITANIAN CARRIER WITH PB02 COATING Download PDFInfo
- Publication number
- NO138571B NO138571B NO740463A NO740463A NO138571B NO 138571 B NO138571 B NO 138571B NO 740463 A NO740463 A NO 740463A NO 740463 A NO740463 A NO 740463A NO 138571 B NO138571 B NO 138571B
- Authority
- NO
- Norway
- Prior art keywords
- coating
- lead
- carrier
- electrolyte
- titanium
- Prior art date
Links
- 239000011248 coating agent Substances 0.000 title claims description 15
- 238000000576 coating method Methods 0.000 title claims description 15
- 238000000034 method Methods 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- YADSGOSSYOOKMP-UHFFFAOYSA-N lead dioxide Inorganic materials O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 claims description 28
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 20
- 239000003792 electrolyte Substances 0.000 claims description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 238000009835 boiling Methods 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 235000006408 oxalic acid Nutrition 0.000 claims description 6
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000000080 wetting agent Substances 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 125000003368 amide group Chemical group 0.000 claims description 2
- BBJSDUUHGVDNKL-UHFFFAOYSA-J oxalate;titanium(4+) Chemical class [Ti+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O BBJSDUUHGVDNKL-UHFFFAOYSA-J 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 10
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- BLOIXGFLXPCOGW-UHFFFAOYSA-N [Ti].[Sn] Chemical compound [Ti].[Sn] BLOIXGFLXPCOGW-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
- H01M4/16—Processes of manufacture
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/10—Other heavy metals
- C23G1/106—Other heavy metals refractory metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/054—Electrodes comprising electrocatalysts supported on a carrier
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/06—Electrolytic coating other than with metals with inorganic materials by anodic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/68—Selection of materials for use in lead-acid accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Catalysts (AREA)
Description
Foreliggende oppfinnelse angår en fremgangsmåte for fremstilling av en elektrode bestående av en titan-bærer med et Pb02~belegg, som er elektrolytisk påført etter rengjøring av bæreren f.eks. The present invention relates to a method for producing an electrode consisting of a titanium carrier with a Pb02 coating, which is electrolytically applied after cleaning the carrier, e.g.
med oksal-syre. Den ferdige elektrode kan anvendes for.elektro-lyseformål og/eller som massebærer i blyakkumulatorer.. with oxalic acid. The finished electrode can be used for electrolysis purposes and/or as a mass carrier in lead accumulators.
Det er kjent at anvendelse av blydioksyd-elektroder for industrielle formål kan støte på vanskeligheter. Massive elektroder er på grunn av sin ringe mekaniske fasthet lite, brukbare. Fremstilling av elektroder bestående av bærer pluss Pb02-belegg hindres ofte av det forhold at vedkommende bærer-materialer korroderer eller passiviseres. På den annen.side hefter blydioksyd-skiktet ofte ikke tilstrekkelig fast til underlaget. I den senere tid har det vært kjent å anvende titan som bærer for sådanne elektroder, hvorved det imidlertid likevel vil være nødvendig med omfattende foranstaltninger for å frembringe brukbare overtrekksbelegg. It is known that the use of lead dioxide electrodes for industrial purposes can encounter difficulties. Due to their poor mechanical strength, massive electrodes are not usable. The production of electrodes consisting of carrier plus Pb02 coating is often hindered by the fact that the respective carrier materials corrode or become passivated. On the other hand, the lead dioxide layer often does not adhere sufficiently firmly to the substrate. In recent times, it has been known to use titanium as a carrier for such electrodes, whereby, however, extensive measures will still be necessary to produce usable overcoatings.
I forbindelse med den innledende rengjøring er det videre kjent å' beise titanbæreren ved koking med en oksalsyreløsning med tilsatte titanoksalatokomplekser, hvoretter PbC^-belegget påføres anodisk fra en elektrolytt som inneholder bly (II)-ioner. In connection with the initial cleaning, it is further known to pickle the titanium carrier by boiling with an oxalic acid solution with added titanium oxalato complexes, after which the PbC^ coating is applied anodically from an electrolyte containing lead (II) ions.
På denne bakgrunn av kjent teknikk er det et formål for foreliggende oppfinnelse å angi en enkel fremgangsmåte - f or fremstil-'; . ling av elektroder bestående av titanbærer og PbO^-belegg, og ... som muliggjør påføring av et belegg som er meget.holdbart og til- " On this background of known technology, it is an object of the present invention to indicate a simple method - for production; . ling of electrodes consisting of a titanium carrier and PbO^ coating, and ... which enables the application of a coating which is very durable and
fredstiller alle praktiske behov. excludes all practical needs.
Dette oppnås i henhold til oppfinnelsen ved at det anvendes elektrolytt som innehooder et'bly(II)-salt av amido-, imido-, nitrido-, eller fluoro-derivat av svovel- eller fosforsyre, This is achieved according to the invention by using an electrolyte containing a lead (II) salt of amido-, imido-, nitrido- or fluoro-derivatives of sulfuric or phosphoric acid,
eller består av et løselig bly (II)-salt og en av nevnte syrer, or consists of a soluble lead (II) salt and one of the aforementioned acids,
og det oppnådde PbC^-belegg etterbehandles ved kokning i en vandig alkalisk, fortrinnsvis svakt alkalisk løsning. and the obtained PbC^ coating is post-treated by boiling in an aqueous alkaline, preferably weakly alkaline, solution.
I henhold til en foretrukket utførelse av oppfinnelsens fremgangsmåte anvendes en elektrolytt som også er tilsatt et fuktemiddel. According to a preferred embodiment of the method of the invention, an electrolyte is used which also has a wetting agent added.
Etter påføring av det ovenfor beskrevede Pb02-belegg, stiller det seg alltid fordelaktig å anbringe et ytterligere PbC^-skikt, som påføres fra en elektrolytt som utelukkende inneholder blynitrat. After applying the PbO 2 coating described above, it is always advantageous to apply a further PbC 2 layer, which is applied from an electrolyte containing exclusively lead nitrate.
Dette ytterligere Pb02~belegg gjør tjeneste som et hårdere over-flateskikt. This additional Pb02 coating serves as a harder surface layer.
Pb02-skiktets struktur kan påvirkes ved gjentatte korte avbrudd i den anodiske påføring. Dette kan oppnås ved strømutkobling eller ved fjerning av titan-bæreren fra elektrolytten. The structure of the Pb02 layer can be affected by repeated short interruptions in the anodic application. This can be achieved by switching off the current or by removing the titanium carrier from the electrolyte.
Ved en titan-bærer oppbygd som porøst skjelett-legeme ligger det også innenfor oppfinnelsens ramme ved den annen skiktpåføring å fylle skjelett-legemets porer med blyoksyd ved anodisk polarisasjon i en alkalisk plumbidløsning. In the case of a titanium carrier constructed as a porous skeletal body, it is also within the scope of the invention to fill the pores of the skeletal body with lead oxide by anodic polarization in an alkaline plumbid solution during the second layer application.
Oppfinnelsen baserer seg på den erkjennelse at ved fremstilling The invention is based on the realization that when manufacturing
av en egnet elektrode er valget av elektrolytt av mindre betydning enn forbehandlingen av bærer-materialet, de foreliggende betingelser ved påføringen av den anvendte etterbe-handling. Også ytre kontaktdannelse på blydioksyd-elektroden har vist seg å være gunstig, da det f.ekSo ved punktsveisede kontakter mellom titanblikk og strømavleder kan oppstå høy mot-stand på grunn av eventuelt dannede mellomliggende oksyd- eller nitrid-skikt. Oppfinnelsens fremgangsmåte skal nå beskrives mer detaljert. of a suitable electrode, the choice of electrolyte is of less importance than the pre-treatment of the carrier material, the conditions present when applying the post-treatment used. External contact formation on the lead dioxide electrode has also proven to be beneficial, as, for example, with spot-welded contacts between titanium tin and current conductor, high resistance can occur due to possibly formed intermediate oxide or nitride layers. The method of the invention will now be described in more detail.
Titanbærere (blikk, strekkmetall, nett) kokes for rengjøring Titanium carriers (tin, expanded metal, mesh) are boiled for cleaning
og fjerning av hindrende oksydskikt, f.eks. en time i 15% oksal-syre. Deretter etterbehandles bærerne ca. 2 timer i en kokende beiseløsning• som ved siden av oksalsyre også inneholder titanoksalatokomplekser. I denne løsning oppløses ikke lenger titan under hydrogenutvikling. Ved denne koking av elektroden i beise-løsning fordrives imidlertid absorbert hydrogen, samtidig som et tynt oksalatskikt påføres elektroden. Hvis en således forbehandlet elektrode kobles anodisk, nedbrytes oksalatkomplekset under C02~utvikling, hvorved det dannes en overflate som er særlig egnet for blydioksydpåføring. På en således frembragt elektrode lar det seg lett utskille meget homogen og fast-heftende blydioksyd fra en elektrolytt som inneholder et bly(II)-salt av amido-; imido-, nitrido- eller fluoro-derivat av svovel- eller fosforsyre eller består av et løselig bly(II)-salt og en av nevnte syrer. and removal of obstructing oxide layers, e.g. one hour in 15% oxalic acid. The carriers are then post-processed approx. 2 hours in a boiling pickling solution• which, in addition to oxalic acid, also contains titanium oxalate complexes. In this solution, titanium no longer dissolves during hydrogen evolution. During this boiling of the electrode in pickling solution, however, absorbed hydrogen is expelled, while a thin layer of oxalate is applied to the electrode. If an electrode pre-treated in this way is connected anodically, the oxalate complex breaks down during C02 ~ evolution, whereby a surface is formed which is particularly suitable for lead dioxide application. On an electrode produced in this way, very homogeneous and firmly adhering lead dioxide can easily be separated from an electrolyte containing a lead(II) salt of amido-; imido-, nitrido- or fluoro derivative of sulfuric or phosphoric acid or consists of a soluble lead(II) salt and one of the aforementioned acids.
Den angitte ringe tilsats av fuktemiddel kan herunder ytterligere forbedre blydioksydskiktets egenskaper. I tillegg til dette er det fastslått at (analogt med BRD patentskrift nr. 1.942.860) også høyere elektrolytt-temperaturer, f.eks. over 7 0°C, og lavere strømtettheter, f .eks. under 4 0 itiA/cm 2, virker gunstig for en homogen påføring. For å gjøre overflaten hårdere på-føres i tillegg nevnte tynne ytre Pb02~skikt fra en elektrolytt som bare inneholder rent blynitrat. Utover dette er det funnet at etterbehandlingen av elektrodene er.av stor viktighet. The specified slight addition of wetting agent can further improve the properties of the lead dioxide layer. In addition to this, it has been established that (analogous to BRD patent document no. 1,942,860) also higher electrolyte temperatures, e.g. above 70°C, and lower current densities, e.g. below 40 itiA/cm 2 , appears favorable for a homogeneous application. In order to make the surface harder, the above-mentioned thin outer Pb02 layer is additionally applied from an electrolyte that only contains pure lead nitrate. In addition to this, it has been found that the finishing of the electrodes is of great importance.
Ved koking i flere timer i svakt alkalisk løsning (pH 8) By boiling for several hours in a slightly alkaline solution (pH 8)
ble det oppnådd en ytterligere tydelig forbedring av elektrodene, da det derved ble dannet en særskilt egnet, fullstendig krystallisert og således tett overflate (påvist ved elektron-mikroskopiske raster-billedopptak). Tilsvarende forbedringer kunne også oppnås når elektrodene etter noen tids anodisk be-lastning forbigående ble fjernet fra elektrolytten. Det samme kan også oppnås ved kort utkobling av strømmen. En således fremstilt elektrode ble påført konktakt for anodisk polar-isering og kunne uten påvisbar forandring anvendes i flere hundre timer under teknisk relevante betingelser. a further clear improvement of the electrodes was achieved, as a particularly suitable, completely crystallized and thus dense surface was thereby formed (proved by electron microscopic raster image recordings). Corresponding improvements could also be achieved when the electrodes were temporarily removed from the electrolyte after some time of anodic loading. The same can also be achieved by briefly switching off the power. An electrode produced in this way was applied to contact for anodic polarization and could be used without detectable change for several hundred hours under technically relevant conditions.
Den viktigste fordel ved en elektrode fremstilt ved oppfinnelsens fremgangsmåte består i at det på grunn av de forskjellige angitte behandlinger av elektroden oppnås et særskilt tett blydioksyd-belegg, hvilket gir seg til kjenne ved særlig, lang levetid for elektroden. The most important advantage of an electrode produced by the method of the invention consists in the fact that, due to the various indicated treatments of the electrode, a particularly dense lead dioxide coating is achieved, which is manifested in a particularly long service life for the electrode.
UTFØRELSESEKSEMPEL EXECUTION EXAMPLE
Et titanblikk ble forbehandlet ved koking i vandig 15% oksal-syre og den beskrevne beiseløsning. Etter spyling med destillert vann belegges blikket anodisk med et skikt av blydioksyd fra en elektrolytt, som inneholder 6 6g blynitrat pr. liter og 0,7 5 g fuktemiddel pr. liter. Strømtettheten beløper seg i typiske tilfeller til 20 mA pr. cm 2og badets temperatur til 65°C, men kan også ligge høyere. Under de samme arbeids-betingelser utskilles også et ytterligere blydioksydskikt fra en ren blynitratløsning på elektroden. Etter en påførings-periode avpasset etter den ønskede skikt-tykkelse, avspyles elektroden på nytt og etterbehandles for tetting av overflaten i en svak alkalisk (pH ^ =i> 8) , kokende løsning i 2 timer. Etter dette oppviser elektroden en høy homogenitet og fasthet. A titanium sheet was pretreated by boiling in aqueous 15% oxalic acid and the described pickling solution. After rinsing with distilled water, the tin is anodically coated with a layer of lead dioxide from an electrolyte, which contains 66g of lead nitrate per liter and 0.7 5 g of wetting agent per litres. The current density amounts in typical cases to 20 mA per cm 2 and the bath's temperature to 65°C, but can also be higher. Under the same working conditions, a further lead dioxide layer is also separated from a pure lead nitrate solution on the electrode. After an application period adapted to the desired layer thickness, the electrode is rinsed off again and post-treated to seal the surface in a slightly alkaline (pH =i> 8), boiling solution for 2 hours. After this, the electrode exhibits a high homogeneity and firmness.
a) En sådan elektrode ble forsynt med ytre tilkoblingskontakt og anvendt som anode ved en strømtetthet på 40 mA/cm 2 og 2,45 V a) Such an electrode was provided with an external connection contact and used as an anode at a current density of 40 mA/cm 2 and 2.45 V
cellespenning ved romtemperatur i 20% vandig I^SO^-løsning. Den effektive levetid ligger under disse betingelser for små prøveelektroder på minst 1000 timer. cell voltage at room temperature in 20% aqueous I^SO^ solution. The effective lifetime under these conditions for small test electrodes is at least 1000 hours.
2 2
b) Ved 100 mA/cm og 2,75 V samt romtemperatur og samme elektrolytt som ved a) ble det i begynnelsen observert en b) At 100 mA/cm and 2.75 V as well as room temperature and the same electrolyte as in a), initially a
liten utskillelse av PbC^/.nien deretter konstant C^-utvikling i 6 00 timer og mer. little excretion of PbC^/.nien then constant C^ evolution for 6 00 hours and more.
c) Ved elektrolyse av konsentrerte, vandige løsninger ved ca. 90°C og 500 mA/cm^ og 3,9 V opptrer det ingen forandring av c) By electrolysis of concentrated, aqueous solutions at approx. 90°C and 500 mA/cm^ and 3.9 V, no change occurs
elektrolysespenningen ved lengre tids strømgjennomgang. En nedbrytning av elektroden, som f.eks. gir seg til kjenne ved påviste blyioner i elektrolytten, kan ikke observeres selv etter lengre tids bruk. the electrolysis voltage in the event of a longer current flow. A breakdown of the electrode, such as manifests itself through detected lead ions in the electrolyte, cannot be observed even after prolonged use.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19732306957 DE2306957C3 (en) | 1973-02-13 | Process for the production of electrodes for electrolytic purposes, in particular for lead accumulators |
Publications (3)
Publication Number | Publication Date |
---|---|
NO740463L NO740463L (en) | 1974-08-14 |
NO138571B true NO138571B (en) | 1978-06-19 |
NO138571C NO138571C (en) | 1978-09-27 |
Family
ID=5871732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO740463A NO138571C (en) | 1973-02-13 | 1974-02-12 | PROCEDURE FOR MANUFACTURING AN ELECTRODE CONSISTING OF A TITANIAN CARRIER WITH PB02 COATING |
Country Status (14)
Country | Link |
---|---|
JP (1) | JPS5647268B2 (en) |
AT (1) | AT331323B (en) |
BE (1) | BE810206A (en) |
CA (1) | CA997418A (en) |
CH (1) | CH585279A5 (en) |
DD (1) | DD109321A5 (en) |
FR (1) | FR2217816B1 (en) |
GB (1) | GB1433844A (en) |
IT (1) | IT1004941B (en) |
NL (1) | NL168998C (en) |
NO (1) | NO138571C (en) |
SE (1) | SE389692B (en) |
SU (1) | SU584817A3 (en) |
YU (1) | YU18274A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2722840A1 (en) * | 1977-05-20 | 1978-11-23 | Rheinische Westfaelisches Elek | METHOD OF MANUFACTURING ELECTRODES FOR ELECTROLYTIC PURPOSES |
CN111634982B (en) * | 2020-06-27 | 2023-06-30 | 北京中核天友环境科技股份有限公司 | Preparation method of anode material for efficient phenol wastewater degradation |
CN111893535B (en) * | 2020-08-04 | 2022-10-11 | 盐城工学院 | A kind of preparation method of porous titanium-based lead dioxide electrocatalytic membrane electrode |
-
1974
- 1974-01-21 AT AT46774*#A patent/AT331323B/en not_active IP Right Cessation
- 1974-01-23 GB GB303874A patent/GB1433844A/en not_active Expired
- 1974-01-25 YU YU00182/74A patent/YU18274A/en unknown
- 1974-01-28 BE BE2053383A patent/BE810206A/en unknown
- 1974-01-30 FR FR7403019A patent/FR2217816B1/fr not_active Expired
- 1974-01-31 CH CH131474A patent/CH585279A5/xx not_active IP Right Cessation
- 1974-02-08 NL NLAANVRAGE7401720,A patent/NL168998C/en not_active IP Right Cessation
- 1974-02-08 DD DD176474A patent/DD109321A5/xx unknown
- 1974-02-08 JP JP1557074A patent/JPS5647268B2/ja not_active Expired
- 1974-02-11 SU SU7401994886A patent/SU584817A3/en active
- 1974-02-12 NO NO740463A patent/NO138571C/en unknown
- 1974-02-12 SE SE7401859A patent/SE389692B/en unknown
- 1974-02-12 CA CA192,271A patent/CA997418A/en not_active Expired
- 1974-02-13 IT IT67408/74A patent/IT1004941B/en active
Also Published As
Publication number | Publication date |
---|---|
NO138571C (en) | 1978-09-27 |
ATA46774A (en) | 1975-11-15 |
JPS5647268B2 (en) | 1981-11-09 |
FR2217816A1 (en) | 1974-09-06 |
BE810206A (en) | 1974-05-16 |
DE2306957B2 (en) | 1975-10-23 |
IT1004941B (en) | 1976-07-20 |
DE2306957A1 (en) | 1974-08-29 |
CH585279A5 (en) | 1977-02-28 |
GB1433844A (en) | 1976-04-28 |
JPS49113736A (en) | 1974-10-30 |
SE389692B (en) | 1976-11-15 |
NL168998C (en) | 1982-05-17 |
NO740463L (en) | 1974-08-14 |
AT331323B (en) | 1976-08-10 |
SU584817A3 (en) | 1977-12-15 |
NL7401720A (en) | 1974-08-15 |
DD109321A5 (en) | 1974-11-05 |
CA997418A (en) | 1976-09-21 |
NL168998B (en) | 1981-12-16 |
YU18274A (en) | 1982-02-25 |
FR2217816B1 (en) | 1977-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4184926A (en) | Anti-corrosive coating on magnesium and its alloys | |
US2231373A (en) | Coating of articles of aluminum or aluminum alloys | |
US2079516A (en) | Aluminum electrode and method of preparing | |
CN110129858B (en) | A kind of ionic liquid-assisted magnesium-lithium alloy anodic oxidation film-forming method | |
NO138571B (en) | PROCEDURE FOR MANUFACTURING AN ELECTRODE CONSISTING OF A TITANIAN CARRIER WITH PB02 COATING | |
US3935082A (en) | Process for making lead electrode | |
US2095519A (en) | Method for producing galvanic coatings on aluminum or aluminum alloys | |
CN114921829A (en) | Anodic oxidation film forming method for aluminum alloy | |
KR100523591B1 (en) | Electrode and its manufacturing method using rare earth element | |
JPS59185799A (en) | Electrolytic coloring process for anode oxide coating | |
RU2409705C1 (en) | Method making electrode for electrochemical processes | |
CN110117809B (en) | Preparation method of oxide film | |
US2753299A (en) | Electroplating with antimony | |
JP2000355795A (en) | Surface treatment of aluminum and aluminum alloy | |
JP4992229B2 (en) | Method for producing oxygen generating electrode | |
JPS6253598B2 (en) | ||
US2934478A (en) | Process of electroplating metals with aluminum | |
John et al. | Studies on anodizing of aluminium in alkaline electrolyte using alternating current | |
KR102524705B1 (en) | Method of producing surface-treated steel sheet and surface-treated steel sheet | |
US3829367A (en) | Electrolytic polishing of metals | |
JP7291858B2 (en) | Electrolytic processor for preparing plastic parts to be metallized and method for etching plastic parts | |
GB1565040A (en) | Method for preparing active anodes for electrochemical processes particularly for manufacture of hydrogen | |
US3087870A (en) | Process for plating adherent lead dioxide | |
JPH1154381A (en) | Manufacture of electrode foil for aluminum electrolytic capacitor | |
SU125991A1 (en) | Method of tungsten metal products |