[go: up one dir, main page]

NO135721B - - Google Patents

Download PDF

Info

Publication number
NO135721B
NO135721B NO733986A NO398673A NO135721B NO 135721 B NO135721 B NO 135721B NO 733986 A NO733986 A NO 733986A NO 398673 A NO398673 A NO 398673A NO 135721 B NO135721 B NO 135721B
Authority
NO
Norway
Prior art keywords
pipes
chamber
screw
flow
tank
Prior art date
Application number
NO733986A
Other languages
Norwegian (no)
Other versions
NO135721C (en
Inventor
M Kozeki
Original Assignee
Mitsui Shipbuilding Eng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Shipbuilding Eng filed Critical Mitsui Shipbuilding Eng
Publication of NO135721B publication Critical patent/NO135721B/no
Publication of NO135721C publication Critical patent/NO135721C/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/26Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent helically, i.e. coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/162Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour in combination with a nuclear installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/62Component parts or details of steam boilers specially adapted for steam boilers of forced-flow type
    • F22B37/70Arrangements for distributing water into water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Foreliggende oppfinnelse angår en dampkjele av gjennomstrømnings-typen og med skrueformede rør. The present invention relates to a steam boiler of the flow-through type and with helical tubes.

Det vanskeligste problem i forbindelse med en dampkjele av denne meget anvendte type er at det lett oppstår ustabil strømning av det fluid som skal oppvarmes. For å løse dette problem er det tidligere anvendt trange motstandsåpninger i innløpsseksjonen for avbalansering av strømningstakten. Denne fremgangsmåte er imidlertid forbundet med det problem at strømningsmekanismen ved sådanne åpninger er meget komplisert, og erfaringer har vist at når partsiellbelastningen stiger noe, vil det fremdeles kunne oppstå ustabile strømningsmønstre. The most difficult problem in connection with a steam boiler of this widely used type is that unstable flow of the fluid to be heated easily occurs. To solve this problem, narrow resistance openings in the inlet section have previously been used to balance the flow rate. However, this method is associated with the problem that the flow mechanism at such openings is very complicated, and experience has shown that when the partial load rises somewhat, unstable flow patterns can still occur.

På denne bakgrunn er det et formål for foreliggende oppfinnelse å fremskaffe en dampkjele av gjennomstrømningstypen, og hvori det fluid som skal oppvarmes har stabil strømning over et vidt belastningsområde. On this background, it is an object of the present invention to provide a steam boiler of the through-flow type, and in which the fluid to be heated has a stable flow over a wide load range.

Dette er i henhold til oppfinnelsen oppnådd ved dampkjele i overensstemmelse med foreliggende oppfinnelse, hvilken,dampkjele omfatter en tank med innløps- og utløpsmunnstykke for et varmefluid, et nedløpskammer og et skruerørkammer anordnet koaksialt inne i tanken; flere vanntilførselsrør, flere nedløpsrør anordnet i nedløpskammeret og tilsluttet vanntilførselsrørene, samt flere skrueformede rør i skruerørkammeret og tilsluttet utløpsrør samt nedløpsrørene, og hvor det særegne består i at hvert nedløpsrør har mindre diameter enn de skrueformede rør. According to the invention, this is achieved by a steam boiler in accordance with the present invention, which, steam boiler comprises a tank with an inlet and outlet nozzle for a heating fluid, a downflow chamber and a screw tube chamber arranged coaxially inside the tank; several water supply pipes, several downspouts arranged in the downspout chamber and connected to the water supply pipes, as well as several screw-shaped pipes in the screw pipe chamber and connected to the outlet pipe as well as the downspouts, and where the distinctive feature is that each downspout has a smaller diameter than the screw-shaped pipes.

Kjelen i henhold til oppfinnelsen vil nå bli nærmere beskrevet The boiler according to the invention will now be described in more detail

under henvisning til de vedføyde tegninger. with reference to the attached drawings.

Fig. 1 viser et aksialsnitt gjennom en gjennomstrømningskjele med skrueformede rør og konstruert i henhold til oppfinnelsen, Fig. 1 shows an axial section through a flow-through boiler with helical tubes and constructed according to the invention,

Fig. 2 viser et tverrsnitt langs linjen II-II i fig. 1. Fig. 2 shows a cross-section along the line II-II in fig. 1.

Fig. 3 er en oversiktsskisse som viser gjennomstrømningsforbindelsen for en rørledning for det fluid som skal oppvarmes. Fig. 3 is an overview sketch showing the through-flow connection for a pipeline for the fluid to be heated.

I fig. 1 og 2 angir henvisningstallet 1 en sylindrisk tank som oventil er forsynt med et innløpsmunnstykke 2 for varmefluidet samt nedentil et utløpsmunnstykke 3. In fig. 1 and 2, the reference number 1 denotes a cylindrical tank which is provided with an inlet nozzle 2 for the heating fluid at the top and an outlet nozzle 3 at the bottom.

Innvendig i tanken 1 er det anordnet konsentriske, sylindriske skillevegger 11, 12, 13 i den nedre del av tanken, hvorved det dannes et nedløpskammer 10, et skruerørkammer 9 og et midtområde 4. Inside the tank 1, concentric, cylindrical partitions 11, 12, 13 are arranged in the lower part of the tank, whereby a downflow chamber 10, a screw tube chamber 9 and a central area 4 are formed.

En tynn skjerm 20 er anordnet mellom den øvre ende av skilleveggen II og innsiden av tanken 1. Flere vanntilførselsrør 8 er tilsluttet et innløpshode 5 anordnet i den øvre del av tanken 1. Disse tilførselsrør 8 er tilsluttet nedløpsrørene 16, som er anordnet langs tankens omkrets i kammeret 10, idet hvert nedløpsrør ved sin nedre ende er tilsluttet forbindelsesrør 17. Anordnet i kammeret 9 foreligger et antall skrueformede rør 14, som hver ved sin nedre ende er tilsluttet et tilordnet forbindelsesrør 17 gjennom et overgangsstykke 15. Hvert skrueformet rør 14 er ved sin øvre ende tilsluttet en tilordnet damp-utløpskrets 7, hvorved rørene samlet er ført gjennom et utløpshode 6 anordnet i den øvre del av tanken 1. Vanntilførselsrørene 8, nedløpsrørene 16 og tilslutningsrørene 17 har alle mindre diameter enn de skrueformede rør 14 og damp-utløpsrørene 7, således at det oppstår et trykktap i førstnevnte del av kretsen. I foreliggende utførelse er et deksel 18 montert over midtområdet 4 for å forhindre kortslutning av strømningskretsen for varmefluidet. Dette midtområdet 4 kan utnyttes for forskjellige formål. A thin screen 20 is arranged between the upper end of the partition II and the inside of the tank 1. Several water supply pipes 8 are connected to an inlet head 5 arranged in the upper part of the tank 1. These supply pipes 8 are connected to the downspouts 16, which are arranged along the circumference of the tank in the chamber 10, each downspout pipe being connected at its lower end to a connecting pipe 17. Arranged in the chamber 9 are a number of helical pipes 14, each of which is connected at its lower end to an assigned connecting pipe 17 through a transition piece 15. Each helical pipe 14 is at its upper end connected to an assigned steam outlet circuit 7, whereby the pipes are collectively led through an outlet head 6 arranged in the upper part of the tank 1. The water supply pipes 8, the downspouts 16 and the connection pipes 17 all have a smaller diameter than the screw-shaped pipes 14 and the steam outlet pipes 7, so that a pressure loss occurs in the first-mentioned part of the circuit. In the present embodiment, a cover 18 is mounted over the central area 4 to prevent short-circuiting of the flow circuit for the heating fluid. This middle area 4 can be utilized for various purposes.

Under drift innføres varmefluid i tanken 1 gjennom innløps-munnstykket 2, hvorved en del av dette fluid vil strømme gjennom nediøpskammeret 10 og resten gjennom skruerørskammeret 9, og etter å ha avgitt den vesentlige del av sin varme til det fluid som skal oppvarmes, vil varmefluidet strømme ut gjennom utløpsmunnstykket 3. During operation, heating fluid is introduced into the tank 1 through the inlet nozzle 2, whereby a part of this fluid will flow through the downhole chamber 10 and the rest through the screw tube chamber 9, and after giving off most of its heat to the fluid to be heated, the heating fluid will flow out through the outlet nozzle 3.

Det fluid som skal oppvarmes innføres gjennom tilførselsrørene 8 The fluid to be heated is introduced through the supply pipes 8

og strømmer ned gjennom nedløpsrørene 16, forbindelsesrørene 17, and flows down through the downpipes 16, the connecting pipes 17,

de skrueformede rør 14 samt damputløpsrørene 7 og avgis til slutt fra utgangshodet 6. I nedløpsrørene 16 finner forvarming av vannet sted, mens koking og overhetning frembringes i de skrueformede rør 14. Nedløpsrørene 16, forbindelsesrørene 17 og vanntilførsels-rørene 8 er utformet med mindre diameter enn de tilsluttede skrueformede rør 14, og strømningsmotstanden på vanntilførselssiden, som tidligere er blitt øket ved motstandsåpninger i konvensjonelle dampkjeler, økes i foreliggende tilfelle i henhold til oppfinnelsen ved hjelp av nevnte rør med liten diameter, samtidig som varmefluid også bringes til å strømme gjennom nedløpskammeret 10 for også å oppnå varmeoverføring til denne del av kretsen. Herved er det mulig å anvende disse kretsdeler som forvarmningsseksjoner ved kraftig belastning, samt også å oppnå koking i disse seksjoner ved liten belastning. the helical pipes 14 and the steam outlet pipes 7 and are finally released from the outlet head 6. In the downpipes 16 preheating of the water takes place, while boiling and superheating is produced in the helical pipes 14. The downpipes 16, the connecting pipes 17 and the water supply pipes 8 are designed with a smaller diameter than the connected screw-shaped pipes 14, and the flow resistance on the water supply side, which has previously been increased by resistance openings in conventional steam boilers, is increased in the present case according to the invention by means of said small diameter pipe, at the same time that heat fluid is also made to flow through the downflow chamber 10 to also achieve heat transfer to this part of the circuit. Hereby, it is possible to use these circuit parts as preheating sections at heavy load, as well as to achieve boiling in these sections at low load.

Tendensen til økning av den ustabile strømning på grunn av forlengelse av de overhetede skrueformede rør 14, vil således bli motvirket. The tendency to increase the unstable flow due to extension of the superheated helical tubes 14 will thus be counteracted.

Ved anordningen i henhold til foreliggende oppfinnelse oppnås With the device according to the present invention is achieved

en enklere strømningsmekanisme enn ved konvensjonelle kjeler, og fluidstrømningen kan også stabiliseres over et større belastningsområde. Da nedløpsrørene med liten diameter videre utnyttes for forvarmning av det tilførte vann, kan omfanget av kjelelegemet reduseres. a simpler flow mechanism than with conventional boilers, and the fluid flow can also be stabilized over a larger load range. As the downpipes with a small diameter are further utilized for preheating the supplied water, the extent of the boiler body can be reduced.

Claims (1)

Dampkjele av gjennomstrømningstype og som omfatter en tank med innløps- og utløpsmunnstykke (5,6) for et varmefluid, et nedløps-kammer (10) og et skruerørkammer (9) anordnet koaksialt inne i tanken; flere vanntilførselsrør (8), flere nedløpsrør (16) anordnet i nedløpskammeret og tilsluttet vanntilførselsrørene, samt flere skrueformede rør (14) i skruerørkammeret og tilsluttet utløpsrørSteam boiler of flow-through type and comprising a tank with inlet and outlet nozzle (5,6) for a heating fluid, a downflow chamber (10) and a screw tube chamber (9) arranged coaxially inside the tank; several water supply pipes (8), several downspouts (16) arranged in the downspout chamber and connected to the water supply pipes, as well as several screw-shaped pipes (14) in the screw pipe chamber and connected to the outlet pipe (7) samt nedløpsrørene, karakterisert ved at hvert nedløpsrør har mindre diameter enn de skrueformede rør.(7) as well as the downpipes, characterized in that each downpipe has a smaller diameter than the screw-shaped pipes.
NO733986A 1972-10-16 1973-10-15 NO135721C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1972119795U JPS5723761Y2 (en) 1972-10-16 1972-10-16

Publications (2)

Publication Number Publication Date
NO135721B true NO135721B (en) 1977-02-07
NO135721C NO135721C (en) 1977-05-16

Family

ID=14770399

Family Applications (1)

Application Number Title Priority Date Filing Date
NO733986A NO135721C (en) 1972-10-16 1973-10-15

Country Status (13)

Country Link
US (1) US3859964A (en)
JP (1) JPS5723761Y2 (en)
AU (1) AU448771B2 (en)
BE (1) BE806120A (en)
CA (1) CA988378A (en)
DE (1) DE2351628A1 (en)
DK (1) DK132351C (en)
FR (1) FR2203490A5 (en)
GB (1) GB1439413A (en)
IT (1) IT995883B (en)
NL (1) NL7314152A (en)
NO (1) NO135721C (en)
SE (1) SE389386B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2412841C2 (en) * 1974-03-18 1982-11-11 Metallgesellschaft Ag, 6000 Frankfurt Reactor for splitting hydrocarbons on an indirectly heated catalyst
FR2565322B1 (en) * 1984-05-29 1986-08-01 Commissariat Energie Atomique DEVICE FOR INJECTING A LIQUID INTO A TUBE AND STEAM GENERATOR COMPRISING THIS DEVICE
DE102010041754A1 (en) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Apparatus and method for generating superheated steam by means of solar energy based on the forced flow concept with helical water / steam guide and use of the superheated steam
US9230697B2 (en) * 2012-04-20 2016-01-05 Nuscale Power, Llc Steam generator for a nuclear reactor
US9997262B2 (en) 2013-12-26 2018-06-12 Nuscale Power, Llc Integral reactor pressure vessel tube sheet
CN105214347B (en) * 2015-10-07 2017-08-01 大连碧蓝节能环保科技有限公司 A kind of vaporation-type gas-liquid separation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3112735A (en) * 1959-03-30 1963-12-03 Babcock & Wilcox Co Liquid metal heated vapor generator
US3254633A (en) * 1963-02-28 1966-06-07 Babcock & Wilcox Co Vapor generating and superheating unit
US3395676A (en) * 1966-07-05 1968-08-06 Babcock & Wilcox Co Vapor generator
US3742915A (en) * 1971-11-03 1973-07-03 Atomic Power Dev Ass Inc Heat exchangers
JPS5142029B2 (en) * 1972-05-24 1976-11-13

Also Published As

Publication number Publication date
BE806120A (en) 1974-02-15
AU6127173A (en) 1974-05-30
SE389386B (en) 1976-11-01
JPS4972802U (en) 1974-06-25
NO135721C (en) 1977-05-16
JPS5723761Y2 (en) 1982-05-24
DK132351B (en) 1975-11-24
NL7314152A (en) 1974-04-18
CA988378A (en) 1976-05-04
AU448771B2 (en) 1974-05-30
US3859964A (en) 1975-01-14
DK132351C (en) 1976-04-26
GB1439413A (en) 1976-06-16
FR2203490A5 (en) 1974-05-10
DE2351628A1 (en) 1974-05-02
IT995883B (en) 1975-11-20

Similar Documents

Publication Publication Date Title
NO135721B (en)
NO851210L (en) HEATING DEVICE
NO119479B (en)
US1657202A (en) Water heater and steam generator
ES334268A1 (en) Steam generator organization
US1957741A (en) Apparatus for heating water
NO122553B (en)
US824808A (en) Water-heater.
NO127439B (en)
US92622A (en) Improvement in steam water-heaters
US1061359A (en) Hot-water system.
US2132732A (en) Steam boiler
US640879A (en) Water-tube boiler.
US1260757A (en) Water-heater.
US648337A (en) Combined water still and heater.
US1266455A (en) Water-heating system.
US766889A (en) Water-heater.
US1729567A (en) Low-pressure boiler
US1929532A (en) Adjustable boiler superheater
US1912197A (en) Steam boiler
USRE21061E (en) Water heater
US1389262A (en) Steam-boiler
US2049455A (en) Fluid heat exchange apparatus
US641597A (en) Water heater and condenser.
GB423095A (en) Steam superheater constructions