[go: up one dir, main page]

NO135490B - - Google Patents

Download PDF

Info

Publication number
NO135490B
NO135490B NO221672A NO221672A NO135490B NO 135490 B NO135490 B NO 135490B NO 221672 A NO221672 A NO 221672A NO 221672 A NO221672 A NO 221672A NO 135490 B NO135490 B NO 135490B
Authority
NO
Norway
Prior art keywords
reagent
dehydrogenase
specified
urine
enzyme
Prior art date
Application number
NO221672A
Other languages
Norwegian (no)
Other versions
NO135490C (en
Inventor
B A Skalhegg
Original Assignee
Nyegaard & Co As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nyegaard & Co As filed Critical Nyegaard & Co As
Publication of NO135490B publication Critical patent/NO135490B/no
Publication of NO135490C publication Critical patent/NO135490C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

Denne oppfinnelse angår et nytt prøvereagens for bestemmelse åv hydroksysteroider. This invention relates to a new test reagent for the determination of hydroxysteroids.

Bestemmelse av hydroksysteroider, f.eks. i kroppsvæsker, Determination of hydroxysteroids, e.g. in body fluids,

og særlig i menneskeurin, er viktig ved undersøkelse av steroid-metabolisme, særlig ved studier av adrenocortikal og gonadal funk-sjon og gallesyre. De vanlige bestemmelsesmetoder er forholdsvis tidsforbrukende og krever meget dyktige operatører for å oppnå på-litelige resultater, hvilket er en ulempe, særlig for leilighets- and especially in human urine, is important when examining steroid metabolism, especially when studying adrenocortical and gonadal function and bile acid. The usual determination methods are relatively time-consuming and require very skilled operators to achieve reliable results, which is a disadvantage, especially for apartment

vis bruk. Tidligere-oksydative metoder har vist seg å være ujevne, show use. Previous oxidative methods have proven to be uneven,

og selv om erfarne operatører kan ta hensyn til dette ved lange serier av beregninger, kan mer leilighetsvise bestemmelser gi di-vergerende resultater. and although experienced operators may take this into account in long series of calculations, more occasional determinations may give divergent results.

Foreliggende oppfinnelse er basert på anvendelse av en The present invention is based on the use of a

metode med enzymatisk oksydasjon av spesifikke hydroksysteroider under anvendelse av hydroksysteroid-dehydrogenaser i nærvær av re-duserbare koenzymer som har en veldefinert absorbsjonstopp i redusert form. Dette muliggjør bestemmelse av den molare ekstinksjons-koeffisient slik at man får en forholdsvis nøyaktig fastsettelse av den mengde hydroksysteroid som er oksydert. method of enzymatic oxidation of specific hydroxysteroids using hydroxysteroid dehydrogenases in the presence of reducible coenzymes which have a well-defined absorption peak in reduced form. This makes it possible to determine the molar extinction coefficient so that a relatively accurate determination of the amount of hydroxysteroid that has been oxidized is obtained.

Vi har funnet at av de mange mulige koenzymer som er be-skrevet i litteraturen, har nikotinamid-adenin-dinukleotid og tio-nikotinamid-adenin-dinukleotid (her omtalt som henholdsvis NAD og TNAD av praktiske grunner) vist seg å være særlig egnet. Begge We have found that of the many possible coenzymes described in the literature, nicotinamide adenine dinucleotide and thio-nicotinamide adenine dinucleotide (referred to here as NAD and TNAD respectively for practical reasons) have proven to be particularly suitable. Both

disse forbindelser viser imidlertid alvorlig ustabilitet selv i tørr tilstand, og særlig NAD gjennomgår spaltning for å danne en enzyminhibitor som må fjernes før bruk, f.eks. ved kromatografi. TNAD spaltes for-å gi svovelholdige produkter. Vi har funnet at denne vanskelighet kan overkommes på en enkel og hensiktsmessig måte ved lyofilisering av koenzymet sammen med selve enzymet. Mens NAD i tørr tilstand ved -4°C er funnet å spaltes i en utstrekning på ca. however, these compounds show serious instability even in the dry state, and NAD in particular undergoes cleavage to form an enzyme inhibitor that must be removed before use, e.g. by chromatography. TNAD is cleaved to give sulphur-containing products. We have found that this difficulty can be overcome in a simple and convenient way by lyophilizing the coenzyme together with the enzyme itself. While NAD in a dry state at -4°C has been found to be split to an extent of approx.

1% pr. måned for å danne den ovennevnte inhibitor, slik at etter 1% per month to form the above inhibitor, so that after

noen få måneders lagring kan ikke materialet anvendes uten brysomme separeringsprosesser, kan en lyofilisert blanding av hydroksysteroid-dehydrogenase og NAD holdes i flere år uten å vise noe betydelig tap av enzymaktivitet. Et slikt tap ville være å vente selv hvis en liten andel av tilstedeværende NAD ble spaltet for å danne en enzyminhibitor. TNAD er enda mer ustabil enn NAD, og tilsvarende har likevel lyofiliserte blandinger av dehydrogenase og TNAD vært lagret ved -4°C i over et år uten tap av aktivitet. a few months of storage the material cannot be used without laborious separation processes, a lyophilized mixture of hydroxysteroid dehydrogenase and NAD can be kept for several years without showing any significant loss of enzyme activity. Such a loss would be expected even if a small proportion of NAD present were cleaved to form an enzyme inhibitor. TNAD is even more unstable than NAD, and accordingly lyophilized mixtures of dehydrogenase and TNAD have been stored at -4°C for over a year without loss of activity.

Det er videre funnet at koenzymet utøver en viss stabiliserende virkning på enzymet, selv i vandig oppløsning , slik at den lyofiliserte blanding beholder sin enzymatiske aktivitet bedre enn selve enzymet. Enzymet trenger imidlertid ytterligere stabilisering for å motstå lyofilisasjon, og vi har funnet at polyhydroksyforbindelser er særlig effektive, f.eks. dekstraner og sukker, særlig sukrose. Tilstedeværelse av et slikt stabiliserende middel fremmer også stabilisering av enzymet under hydroksysteroid-målingen. It has also been found that the coenzyme exerts a certain stabilizing effect on the enzyme, even in aqueous solution, so that the lyophilized mixture retains its enzymatic activity better than the enzyme itself. However, the enzyme needs further stabilization to withstand lyophilization, and we have found that polyhydroxy compounds are particularly effective, e.g. dextrans and sugar, especially sucrose. The presence of such a stabilizing agent also promotes stabilization of the enzyme during the hydroxysteroid measurement.

Ettersom enzymene er følsomme overfor tungmetallioner, er et chelat-dannede middel, så som etylendiamin-tetraeddiksyre (EDTA) tilstede, og for å sikre at tiolgrupper i enzymet er i redusert tilstand, er en tiol tilstede, f.eks. merkaptoetanol, cystein, glutation eller særlig foretrukket ditiotreitol (Clelands reagens). As the enzymes are sensitive to heavy metal ions, a chelating agent such as ethylenediaminetetraacetic acid (EDTA) is present, and to ensure that thiol groups in the enzyme are in the reduced state, a thiol is present, e.g. mercaptoethanol, cysteine, glutathione or particularly preferred dithiothreitol (Cleland's reagent).

Ifølge oppfinnelsen tilveiebringes et enzymatisk reagens for bestemmelse av hydroksysteroider, og reagenset karakteriseres ved de i'hovedkravet angitte trekk. According to the invention, an enzymatic reagent is provided for the determination of hydroxysteroids, and the reagent is characterized by the features specified in the main claim.

Før den enzymatiske bestemmelse kan foretas, må steroidene Before the enzymatic determination can be made, the steroids must

i urin først underkastes hydrolyse for å frigjøre de oksyderbare hyd-roksylgriipper og deretter en ekstraksjon for å oppnå tilstrekkelig konsentrasjon og renhet til at en nøyaktig bestemmelse kan foretas. De tilstedeværende steroider er av varierende polaritetsgrad, og det er funnet at for å oppnå tilfredsstillende høye ekstraksjonsnivå»er for alle de relevante steroider, er det nødvendig å anvende polare ek-straks jonsmidler så vel som mindre polare oppløsningsmidler. Forskjellige farvede komponenter som er tilstede i urinprøven ekstraheres uhel-digvis også av polare oppløsningsmidler og påvirker i meget uheldig grad den absorbsjonsmåling som anvendes for bestemmelsen. Ved bestemmelse av gallesyrer i tolvfingertarm-sekreter er likeledes farvede substanser tilstede i begynnelsen og er vanskelige å fjerne fullstendig. urine is first subjected to hydrolysis to release the oxidizable hydroxyl groups and then to an extraction to achieve sufficient concentration and purity for an accurate determination to be made. The steroids present are of varying degrees of polarity, and it has been found that in order to achieve satisfactorily high extraction levels for all the relevant steroids, it is necessary to use polar extractants as well as less polar solvents. Various colored components that are present in the urine sample are unfortunately also extracted by polar solvents and have a very unfavorable effect on the absorbance measurement used for the determination. When determining bile acids in duodenal secretions, colored substances are also present at the beginning and are difficult to remove completely.

Vi har funnet at TNAD er langt bedre enn NAD som koenzym fordi det har et absorbsjonsmaksimum som er forholdsvis langt fra de viktigste absorbsjonstopper for de polare, farvede forbindelser i urinekstra-ktene. Ved anvendelse av TNAD er det mulig å øke i meget stor grad følsomheten av den enzymatiske bestemmelse av hydroksysteroider, i en slik utstrekning at den representerer et nøyaktiv alternativ til tidligere metoder som krever mer utdannede og erfarne operatører. TNAD har i redusert tilstand (TNADH) et absorbsjonsmaksimum ved ca. 400 nm, mens de polare, farvede substanser i urinen som har en tendens til å påvirke bestemmelsen, har absorbsjonstopper ved 300 og 500-600 nm med et trant "trau" ved 400 nm. Dette betyr at bestemmelsen kan utføres i nærvær av de nevnte farvede substanser, og at polare oppløsnings-midler derfor kan anvendes til å ekstrahere de mer polare hydroksysteroider fra urinen. NAD har en absorbsjonstopp ved 340 nm, som faller sammen med en vesentlig skulder i absorbsjonsspekteret for de farvede substanser. TNAD har i sin reduserte form også en særlig høy absorbsjon ved 400 nm (molar ekstinksjonkoeffisient 12 x 10"^ mol ^ " liter " cm sammenlignet med ca. 6 x 10^ mol " liter • cm for NAD) , og man kan få en lineær reaksjon med høy følsomhet. Ettersom dette maksimum er i det synlige område, kan vanlige kolorimetere anvendes i stedet for de langt dyrere spektrofotometere. Videre er TNAD funnet å gi en meget gunstig likevekt ved oksydasjonen, mens NAD normalt krever tilstedeværelse av et keton-bindende middel så som hydrazin (f.eks. 0,1 mol hydrazinhydrat) for at oksydasjonen skal bli fullstendig. We have found that TNAD is far better than NAD as a coenzyme because it has an absorption maximum that is relatively far from the most important absorption peaks for the polar, colored compounds in the urine extracts. By using TNAD, it is possible to greatly increase the sensitivity of the enzymatic determination of hydroxysteroids, to such an extent that it represents a precise alternative to previous methods that require more trained and experienced operators. TNAD in its reduced state (TNADH) has an absorption maximum at approx. 400 nm, while the polar, colored substances in the urine that tend to affect the determination have absorption peaks at 300 and 500-600 nm with a sharp "trough" at 400 nm. This means that the determination can be carried out in the presence of the aforementioned colored substances, and that polar solvents can therefore be used to extract the more polar hydroxysteroids from the urine. NAD has an absorption peak at 340 nm, which coincides with a significant shoulder in the absorption spectrum of the colored substances. In its reduced form, TNAD also has a particularly high absorption at 400 nm (molar extinction coefficient 12 x 10"^ mol ^ " liter " cm compared to approx. 6 x 10^ mol " liter • cm for NAD), and one can get a linear response with high sensitivity. As this maximum is in the visible range, ordinary colorimeters can be used instead of the much more expensive spectrophotometers. Furthermore, TNAD has been found to provide a very favorable equilibrium in the oxidation, while NAD normally requires the presence of a ketone-binding agent such as hydrazine (e.g. 0.1 mol hydrazine hydrate) for the oxidation to be complete.

Vårt nye lyofiliserte enzym-koenzymreagens gir utmerkede resultater ved bestemmelse av 3a- og 20£-hydroksysteroider under anvendelse av 3a- og 200-hydroksysteroid-dehydrogenaser. Andre hydroksysteroider som kan bestemmes, omfatter 30-hydroksy-, 17&-hydroksy-steroider, under anvendelse av de dehydrogenaser som er kjent for at de oksyderer disse steroider. Our new lyophilized enzyme-coenzyme reagent gives excellent results in the determination of 3a- and 20£-hydroxysteroids using 3a- and 200-hydroxysteroid dehydrogenases. Other hydroxysteroids that can be determined include 30-hydroxy, 17β-hydroxysteroids, using the dehydrogenases known to oxidize these steroids.

Konsentrasjonene av de forskjellige komponenter i oppløsni-ngen for lyofilisering er hensiktsmessig de som foretrekkes for den ferdige, rekonstituerte prøvereagens-oppløsning. The concentrations of the various components in the solution for lyophilization are suitably those preferred for the finished, reconstituted sample reagent solution.

Forholdet mellom enzym og koenzym er hensiktsmessig slik at steroidene under prøven oksyderes fullstendig i løpet av ikke mer enn ca. 1 time ved ca. 25°C. Det passende antall enzymenheter kan finnes i litteraturen eller på grunnlag av forutgående forsøk. Konsentrasjonen av koenzym i det oppløste reagens er hensiktsmessig 0,05 til 0,15 ymol/ml , fortrinnsvis ca. 0,10 mol/ml. Når det gjelder TNAD, vil dette gi maksimal optisk tetthet ved 400 nm vå ca. 1,2 oa svarer til en konsentrasjon på 200 mg steroid pr. liter når 1/10 av ekstrakten fra urinprøve oksyderes. The ratio between enzyme and coenzyme is appropriate so that the steroids during the test are completely oxidized within no more than approx. 1 hour at approx. 25°C. The appropriate number of enzyme units can be found in the literature or on the basis of previous experiments. The concentration of coenzyme in the dissolved reagent is suitably 0.05 to 0.15 ymol/ml, preferably approx. 0.10 mol/ml. In the case of TNAD, this will give maximum optical density at 400 nm and approx. 1.2 oa corresponds to a concentration of 200 mg steroid per liter when 1/10 of the extract from the urine sample is oxidized.

En buffer er fortrinnsvis tilstede i det lyofiliserte reagens. Selv om pH-verdien ikke er kritisk og kan variere fra 6 til 10, foretrekkes en pH på 9-10, hensiktsmessig ca. 9,5. Enzympreparatet vil normalt være nøytralt for å sikre stabilitet og kan inneholde en passende buffer for å oppnå en slik pH-verdi. Det vil således bli tilsatt tilstrekkelig buffer til å heve pH-verdien i den oppløste form til det ønskede alkaliske nivå. Dette kan hensiktsmessig oppnås ved anvendelse av en tris (2-amino-2-hydroksy-metyl-1,3-propandiol)/saltsyre-buffer, selv om glycin/natriumhydro-ksyd og pyrofosfat-buffere har gitt like gode resultater. Molari-teteh av bufferen i den ferdige prøvereagensoppløsning er fortrinnsvis 0,1 til 0,4 M. A buffer is preferably present in the lyophilized reagent. Although the pH value is not critical and can vary from 6 to 10, a pH of 9-10 is preferred, suitably approx. 9.5. The enzyme preparation will normally be neutral to ensure stability and may contain a suitable buffer to achieve such a pH value. Sufficient buffer will thus be added to raise the pH value in the dissolved form to the desired alkaline level. This can conveniently be achieved by using a tris (2-amino-2-hydroxymethyl-1,3-propanediol)/hydrochloric acid buffer, although glycine/sodium hydroxide and pyrophosphate buffers have given equally good results. The molarity of the buffer in the finished test reagent solution is preferably 0.1 to 0.4 M.

Konsentrasjonen av tiol, f.eks. ditiotreitol i prøverea-gensoppløsningen er fortrinnsvis 2 til 7 x 10 -3M, mens konsentrasjonen av chelatdannende middel fortrinnsvis er 0,5 til 1,5 x 10 ^M. Konsentrasjonen av den stabiliserende polyhydroksyforbindelse i den ferdige prøvereagensoppløsning er fortrinnsvis 0,4 til 1,0M. The concentration of thiol, e.g. dithiothreitol in the test reagent solution is preferably 2 to 7 x 10 -3 M, while the concentration of chelating agent is preferably 0.5 to 1.5 x 10 -3 M. The concentration of the stabilizing polyhydroxy compound in the finished sample reagent solution is preferably 0.4 to 1.0M.

Enzympreparatet er fortrinnsvis forholdsvis urenset, ettersom de rensede dehydrogenaser er mindre stabile ennden-urensede tilstand, men bør være fri for andre enzymer som kan påvirke målingen. The enzyme preparation is preferably relatively impure, as the purified dehydrogenases are less stable than in the impure state, but should be free of other enzymes that can affect the measurement.

3a-hydroksysteroiddehydrogenase fra P.testosteroni (ATCC 3a-hydroxysteroid dehydrogenase from P.testosteroni (ATCC

11996) eller mutanter derav isolert ved metoden ifølge Talalay (Marcus P.I. og Talalay P. J.B.C. 218, 661 (1956); Talalay P. og Mauris P.I., 218, 675 (1956) inneholder således f.eks. noe østra-diol-173-dehydrogenase, men dette har ingen innvirkning av betyd-ning ettersom de relevante østrogener ikke er tilstede i urin i vesentlige mengder. Preparatet er imidlertid uten innhold av 3(3-og 20p-dehydrogenase og alkohol-dehydrogenase. Enzymblandingen inneholder 3a-hydroksysteroid-dehydrogenaser som kan oksydere et 3a-hydroksysteroid av C^g, C^-, °9 C24-seriene, som er de viktigste 3a-hydroksysteroider i biologiske væsker. 11996) or mutants thereof isolated by the method according to Talalay (Marcus P.I. and Talalay P. J.B.C. 218, 661 (1956); Talalay P. and Mauris P.I., 218, 675 (1956) thus contain, for example, some estradiol-173-dehydrogenase , but this has no significant impact as the relevant estrogens are not present in urine in significant quantities. However, the preparation is free of 3(3- and 20p-dehydrogenase and alcohol dehydrogenase. The enzyme mixture contains 3a-hydroxysteroid dehydrogenases which can oxidize a 3a-hydroxysteroid of the C^g, C^-, °9 C24 series, which are the most important 3a-hydroxysteroids in biological fluids.

3(3- og 17&-hydroksysteroid-dehydrogenaser kan fremstilles 3(3- and 17&-hydroxysteroid dehydrogenases can be produced

ved metoden ifølge Talalay (se ovenfor). by the method according to Talalay (see above).

203-hydroksysteroid-dehydrogenase kan isoleres fra S.hydro-genans dyrket og ekstrahert ved metoden ifølge Hubner (Hubner, H.J. og Sahrholz F.D. Biochem.Z. 33, 95, (160)). 203-Hydroxysteroid dehydrogenase can be isolated from S.hydro-genans cultivated and extracted by the method of Hubner (Hubner, H.J. and Sahrholz F.D. Biochem.Z. 33, 95, (160)).

Østradiol-17|3-dehydrogenase kan erholdes fra menneske-morkake ved metoden ifølge Jarabak og medarbeidere (Jarabak J., Seeds E., og Talalay P., Biochemistry 5, month 4, 1269 (1966)). Estradiol-17|3-dehydrogenase can be obtained from human placenta by the method of Jarabak et al (Jarabak J., Seeds E., and Talalay P., Biochemistry 5, month 4, 1269 (1966)).

For å fremstille det lyofiliserte prøvereagens, blandes de forskjellige komponenter i vandig oppløsning i tilnærmet de ovenfor angitte konsentrasjoner ettersom hva som foretrekkes for den ende-lige oppløsning som skal anvendes for bestemmelsen. Når det gjelder 3a-hydroksysteroid-dehydrogenase, bør den ferdige prøvereagens-opp-løsning inneholde 500 til 1000 mU pr. ml enzym. 1 mU 3a-hydroksysteroid-dehydrogenase av den mengde enzym som vil oksydere 1 my mol tetrahydrokortisol i løpet av 1 minutt ved pH 9,5 og 25°C. Den nøy-aktige vekt av enzympreparatet som tilsettes, vil selvsagt være av-hengig av dets spesifikke aktivitet. To prepare the lyophilized test reagent, the various components are mixed in aqueous solution in approximately the concentrations indicated above, depending on what is preferred for the final solution to be used for the determination. In the case of 3α-hydroxysteroid dehydrogenase, the finished sample reagent solution should contain 500 to 1000 mU per ml of enzyme. 1 mU of 3a-hydroxysteroid dehydrogenase of the amount of enzyme that will oxidize 1 my mol of tetrahydrocortisol within 1 minute at pH 9.5 and 25°C. The exact weight of the enzyme preparation that is added will of course depend on its specific activity.

Når det gjelder 20B-hydroksysteroid-dehydrogenase, bør den -ferdige prøvereagensoppløsning inneholde 500-1000 mU/ml enzym. En mU 20B-hydroksysteroid-dehydrogenase er den mengde enzym som vil -oksydere 1 mp mol 5B-pregnan-3a, 20P~diol i løpet av 1 minutt ved pH 9,5 og 25°C. In the case of 20B-hydroxysteroid dehydrogenase, the finished test reagent solution should contain 500-1000 mU/ml of enzyme. One mU of 20B-hydroxysteroid dehydrogenase is the amount of enzyme that will oxidize 1 mp mol of 5B-pregnan-3a, 20P~diol within 1 minute at pH 9.5 and 25°C.

Når de lyofiliserte preparater i henhold til oppfinnelsen inneholder 3a-hydroksysteroid- eller 20B-hydroksysteroid-dehydrogenase, anvendes således generelt for hver 1000 mU dehydrogenase fortrinnsvis 0,05 til 0,30 x 10 ^ mol nikotiriamid- eller tionikotinamid-adenin-dinukleotid og hensiktsmessig også 0,2 til 1,4 x 10 ^ mol tiol, hensiktsmessig 0,5 til 3,0 x 10 mol chelatdannende middel og 0,4 til 2,0 x 10 3 mol polyhydroksyforbindelse. When the lyophilized preparations according to the invention contain 3a-hydroxysteroid or 20B-hydroxysteroid dehydrogenase, therefore generally for each 1000 mU of dehydrogenase preferably 0.05 to 0.30 x 10 ^ mol of nicotiramide or thionicotinamide adenine dinucleotide is used and appropriately also 0.2 to 1.4 x 10 3 mol thiol, suitably 0.5 to 3.0 x 10 mol chelating agent and 0.4 to 2.0 x 10 3 mol polyhydroxy compound.

Oppløsningen lyofiliseres fortrinnsvis i flasker som er egnet for et nøyaktig antall prøvemengder av reagens når det lyofiliserte materiale oppløses på ny i destillert vann, f.eks. 9 ml (som vil være egnet for to beregnninger og en kontroll på 2,9 ml hver), eller 33 ml (som vil være egnet for 10 bestemmelser og en kontroll The solution is preferably lyophilized in bottles suitable for an exact number of sample amounts of reagent when the lyophilized material is redissolved in distilled water, e.g. 9 ml (which will be suitable for two calculations and a control of 2.9 ml each), or 33 ml (which will be suitable for 10 determinations and a control

-på 2,9 ml hver). Ved den foretrukne form for bestemmelsen settes -of 2.9 ml each). By the preferred form of the provision is set

0,1 ml av urihekstraktoppløsningen ±il 2,9 ml prøvereagensoppløsning. 0.1 ml of the urine extract solution to 2.9 ml of sample reagent solution.

For å unngå spaltning av koenzymet, er flaskene fortrinnsvis av lyssikkert materiale, f..eks. mørkt glass, og holdes evakuert eller fylles med nitrogen etter lyofilisering. Vi har funnet at på denne måte kan enzympreparatet lagres i tre måneder ved 37°C, i et år ved 25°C, og i flere år ved 4°C eller -20°C. To avoid splitting the coenzyme, the bottles are preferably made of light-resistant material, e.g. dark glass, and kept evacuated or filled with nitrogen after lyophilization. We have found that in this way the enzyme preparation can be stored for three months at 37°C, for a year at 25°C, and for several years at 4°C or -20°C.

Ved den mest foretrukne form for bestemmelse under anvendelse av prøvereagenset oppvarmes en oppmålt urinprøve på et vannbad med saltsyre for å frembringe hydrolyse. Formaldehyd er hensiktsmessig tilstede, ettersom dette hemmer dannelse av farvede produkter under hydrolysen. Etter avkjøling ekstraheres urinen med et ikke-polart opp-løsningsmiddel, fortrinnsvis dietyleter, og ekstrakten overføres til et annet kar. Urinen ekstraheres deretter med et mer polaxt oppløs-ningsmiddel, fortrinnsvis etylacetat, og denne ekstrakt blandes med førstnevnte. De to oppløsningsmidler bør selvsagt være bland-bare. In the most preferred form of determination using the test reagent, a measured urine sample is heated in a water bath with hydrochloric acid to produce hydrolysis. Formaldehyde is suitably present, as this inhibits the formation of colored products during the hydrolysis. After cooling, the urine is extracted with a non-polar solvent, preferably diethyl ether, and the extract is transferred to another vessel. The urine is then extracted with a more polar solvent, preferably ethyl acetate, and this extract is mixed with the former. The two solvents should of course be miscible.

Ekstraktene inndampes deretter til tørrhet, fortrinnsvis ved noe forhøyet temperatur, f.eks. 40 - 50°C, i en gasstrøm, f.eks. nitrogen eller luft, og residuet oppløses i et vannblandbart oppløs-ningsmiddel som er pålitelig med enzymreagens-oppløsningen, hensiktsmessig en alkanol, så som metanol. En viss oppkonsentrering oppnås på denne måte, og steroidinnholdet i 5 ml urin kan oppløses i 1 ml metanol. Det er vanligvis hensiktsmessig å anvende en prøvemengde på 1/10 av urinekstraktoppløsningen, f.eks. 0,1 ml når steroidene oppløses i" 1 ml etanol. Det skal legges merke til at ved oppløsning av ekstraktresiduet i metanol er det vesentlig av væsken kommer i god kontakt med veggene i karet. Det vil imidlertid uunngåelig skje noe tap av steroid selv om hvert trinn utføres omhyggelig, og disse tap varierer med steroidene som skal bestemmes, men er forholdsvis konstante og kan tås hensyn til i praksis. Steroidgjenvinningen er av størrelsesorden 70 - 100%, hvilket er langt høyere enn når det ikke anvendes noe polart ekstraksjonsmiddel. Generelt varierer gjenvinning av C-^g-steroider mellom 90 og 100%, og gjenvinningen av C2^-steroid er vanligvis noe lavere, f.eks. ca. 70% for tetrahydrokortison og 85% for tetrahydrokortisol. The extracts are then evaporated to dryness, preferably at a somewhat elevated temperature, e.g. 40 - 50°C, in a gas stream, e.g. nitrogen or air, and the residue is dissolved in a water-miscible solvent which is compatible with the enzyme reagent solution, suitably an alkanol such as methanol. A certain concentration is achieved in this way, and the steroid content in 5 ml of urine can be dissolved in 1 ml of methanol. It is usually convenient to use a sample amount of 1/10 of the urine extract solution, e.g. 0.1 ml when the steroids are dissolved in 1 ml ethanol. It should be noted that when dissolving the extract residue in methanol, much of the liquid comes into good contact with the walls of the vessel. However, some loss of steroid will inevitably occur even each step is carried out carefully, and these losses vary with the steroids to be determined, but are relatively constant and can be taken into account in practice. The steroid recovery is of the order of 70 - 100%, which is far higher than when no polar extractant is used. General recovery of C-^g steroids varies between 90 and 100%, and the recovery of C2^-steroid is usually somewhat lower, eg about 70% for tetrahydrocortisone and 85% for tetrahydrocortisol.

Bestemmelsen av steroidene i urinekstrakten utføres fortrinnsvis ved inkubering av den oppmålte blanding av ekstrakten og prøvereagenset, fortrinnsvis 0,1 ml ekstraktoppløsning i 2,9 ml reagens, i 60 minutter ved 25°C. Reagenset har fortrinnsvis en pH på ca. 9,5. I tillegg til den virkelige prøveoppløsning er det hen-siktsmessig å inkubere samtidig en kontrollprøve inneholdende prøve-reagenset med den samme mengde ren oppløsningsmiddelekstrakt-oppløs-ning. Videre bør farvekontroller også inkuberes, idet enzymreagens-et erstattes med vann i de to ovenstående oppløsninger. The determination of the steroids in the urine extract is preferably carried out by incubating the measured mixture of the extract and the test reagent, preferably 0.1 ml extract solution in 2.9 ml reagent, for 60 minutes at 25°C. The reagent preferably has a pH of approx. 9.5. In addition to the real sample solution, it is expedient to simultaneously incubate a control sample containing the test reagent with the same amount of pure solvent extract solution. Furthermore, color controls should also be incubated, with the enzyme reagent being replaced with water in the two solutions above.

Således kan f.eks. de følgende oppløsninger inkuberes i 60 minutter ved 25°C: Thus, e.g. the following solutions are incubated for 60 minutes at 25°C:

I. 2,9 ml enzymoppløsning + 0,1 ml ekstrakt (prøve) I. 2.9 ml enzyme solution + 0.1 ml extract (sample)

II. 2,9 ml enzymoppløsning + 0,1 ml metanol II. 2.9 ml enzyme solution + 0.1 ml methanol

Avlesninger tas ved 4 00 nm (E^) Readings are taken at 4 00 nm (E^)

III. 2,9 ml destillert vann + 0,1 ml ekstrakt (prøve) III. 2.9 ml distilled water + 0.1 ml extract (sample)

IV. 2,9 ml destillert vann + 0,1 ml metanol IV. 2.9 ml distilled water + 0.1 ml methanol

Avlesninger foretas ved 400 nm (E2) Readings are taken at 400 nm (E2)

Vanligvis forandrer ikke E_ seg under inkuberingsperioden. Generally, E_ does not change during the incubation period.

Vekten av utskilt steroid ymol/24 t = 0,5 D. AE hvor D er diuresén (ml/24 t) og AE=E1-E2-The weight of secreted steroid ymol/24 h = 0.5 D. AE where D is the diuresis (ml/24 h) and AE=E1-E2-

For å beregne vekten av den totale mengde av ekstraherte steroider, antas den gjennomsnittlige molekylvekt å være ca. 333, ettersom molekylvektene for steroidet i urinen varierer fra 290 til 365. Formelen blir da: To calculate the weight of the total amount of extracted steroids, the average molecular weight is assumed to be approx. 333, as the molecular weights of the steroid in the urine vary from 290 to 365. The formula then becomes:

mg steroid utskilt pr. 24. timer = 167 D. AE mg steroid secreted per 24. hours = 167 D. AE

De følgende eksempler skal tjene som en ytterligere illu-strasjon av oppfinnelsen:-Eksempel 1 The following examples shall serve as a further illustration of the invention: - Example 1

A. Fremstilling av prøvereagens A. Preparation of sample reagent

3a-hydroksysteroid-dehydrogenase fremstilte ved metoden ifølge Tallalay (JBC 218, 661 (1961)) i 0,03 M fosfatbuffer, 4370 ml, ble blandet med 700 g sukrose (sluttkonsentrasjon 0,425M). 3α-Hydroxysteroid dehydrogenase prepared by the method of Tallalay (JBC 218, 661 (1961)) in 0.03 M phosphate buffer, 4370 ml, was mixed with 700 g of sucrose (final concentration 0.425 M).

Den totale enzymmengde var 12 • 10^ mU. 1,1 g TBAD ble oppløst i 437 ml destillert vann ved +4°C og deretter helt i enzymoppløsningen fulgt av 3933 ml tris/HCl-buffer (0,4 M og pH = 9,5, inneholdende 2,5 mg/ml ditiotreitol). Deretter ble 5,32 g EDTA tilsatt, og opp-løsningen ble omrørt inntil den tilsatte EDTA var fullstendig opp-løst. The total amount of enzyme was 12 x 10^ mU. 1.1 g of TBAD was dissolved in 437 ml of distilled water at +4°C and then poured into the enzyme solution followed by 3933 ml of tris/HCl buffer (0.4 M and pH = 9.5, containing 2.5 mg/ml dithiothreitol). Then 5.32 g of EDTA was added, and the solution was stirred until the added EDTA was completely dissolved.

Umiddelbart deretter ble den totale oppløsning (8740 ml) oppdelt i 437 20 ml porsjoner under anvendelse av 50 ml flasker og frosset. Deretter ble den tørret ved lyofilisering. Immediately thereafter, the total solution (8740 mL) was divided into 437 20 mL portions using 50 mL bottles and frozen. It was then dried by lyophilization.

B. Bestemmelse av 3a- hydroksysteroider i urin B. Determination of 3a-hydroxysteroids in urine

Til flere 5 ml prøver av urin ble satt metanoloppløsninger av androsteron, etiokolanon, tetrahydrokortison og tetrahydrokortisol for å gi ytterligere 100 yg steroid pr. prøve. Prøvene ble deretter ekstrahert som følger: 5" ml prøver av urin ble pipettert inn i 30 ml glassrør for-synt med korker, og 2 yl 35% HCHO og 0,15 ml konsentrert HC1 ble tilsatt. Formalinen reduserer dannelsen av farvede forbindelser under hydrolysen. To several 5 ml samples of urine were added methanolic solutions of androsterone, etiocolanon, tetrahydrocortisone and tetrahydrocortisol to give an additional 100 µg of steroid per try. The samples were then extracted as follows: 5" ml samples of urine were pipetted into 30 ml glass tubes fitted with stoppers, and 2 µl of 35% HCHO and 0.15 ml of concentrated HCl were added. The formalin reduces the formation of colored compounds during the hydrolysis .

Rørene ble anbragt i et kokende vannbad i 30 minutter og ble deretter avkjølt i vann fra springen. The tubes were placed in a boiling water bath for 30 minutes and then cooled in tap water.

Ekstraksjoner ble foretatt som følger: Extractions were made as follows:

1. 10 ml eter ble tilsatt, og rørene ble ristet i 10 minutter. 1. 10 ml of ether was added and the tubes were shaken for 10 minutes.

Eteren ble suget av inn i et annet rør. The ether was sucked off into another tube.

2. 10 ml etylacetat ble tilsatt, of-r røret ble ristet i 10 minutter. 2. 10 ml of ethyl acetate was added, and the tube was shaken for 10 minutes.

Etylacetatet ble suget av inn i det samme rør som ble anvendt for eteren, slik at ekstraktene ble blandet. The ethyl acetate was sucked off into the same tube that was used for the ether, so that the extracts were mixed.

Ekstrakten ble deretter inndampet til tørrhet ved 4 5°C i en gasstrøm, f. eks. nitrogen. Residuet ble oppløst i 1 ml metanol-, med gnidning av alkohol på glassveggene for å oppløse det tilstedeværende steroidmateriale. Prøvemengder på 0,1 ml av metanolekstra-kten ble anvendt for prøvning. The extract was then evaporated to dryness at 45°C in a gas stream, e.g. nitrogen. The residue was dissolved in 1 ml of methanol, rubbing alcohol on the glass walls to dissolve the steroid material present. Sample amounts of 0.1 ml of the methanol extract were used for testing.

Oppløsninger I til IV som angitt ovenfor, ble deretter in-kubert ved 2 5°C i 60 min. De følgende resultater ble oppnådd: Solutions I to IV as indicated above were then incubated at 25°C for 60 min. The following results were obtained:

1. Bare urin-oppløsningsmiddel 1. Only urine solvent

2. Urin med 100 yg androsteron 2. Urine with 100 yg androsterone

Forskjellen AE' - AE =0,133 svarer til 96,42 yg androsteron og derfor til en gjennvinning på 96,5%. The difference AE' - AE =0.133 corresponds to 96.42 µg of androsterone and therefore to a recovery of 96.5%.

3. Bare urinoppløsningsmiddel 3. Only urine solvent

E1 = 0,100 E2 = 0,025 AE = 0,075 E1 = 0.100 E2 = 0.025 AE = 0.075

4. Urin med 100 yg etiokolanolon 4. Urine with 100 yg etiocolanolone

Forskjellen AE<1> - AE = 0,123 svarende til 89,2 yg etiokolanolon 5'. Bare urinoppløsningsmiddel The difference AE<1> - AE = 0.123 corresponding to 89.2 ug etiocolanolone 5'. Urine solvent only

6. Urin med 100 yg tetrahydrokortisol 6. Urine with 100 yg tetrahydrocortisol

E| = 0,218 EJ, = 0,020 AE"' = 0,198 E| = 0.218 EJ, = 0.020 AE"' = 0.198

Forskjellen AE' - AE = 0 , 098 svarer til 92., 6 yg tetrahydrokortisol og derfor en gjenvinning på 92,6%. The difference AE' - AE = 0.098 corresponds to 92.6 µg of tetrahydrocortisol and therefore a recovery of 92.6%.

7. Bare urinoppløsning 7. Only urine solution

"8. tlf in tilsatt 10O yg tetrahydf okortison "8. tlf in added 10O yg tetrahydf ocortisone

Forskjellen AE' - AE = 0,082 svarer til 77,49 yg tetrahydrokortison og derfor en gjenvinning på 77,5%. The difference AE' - AE = 0.082 corresponds to 77.49 µg of tetrahydrocortisone and therefore a recovery of 77.5%.

Det-er viktig å legge merke til de meget lave blankkontroll-verdier (vanligvis mellom 0,015 og 0,035)-. Slike verdier kan også oppnås ved anvendelse av andre koenzymer når ekstraksjonene foretas bare med eter, men dette vil føre til betraktelig lavere gjenvin-ningsverdier, for tetrahydrokortisol og tetrahydrokortison /som er forholdsvis polare steroider) er gjenvinningene således av stør-relsesorden 40 - 50% og enda lavere. Hvis etylacetat anvendes for ekstraksjonene, får man bedre gjenvinninger, men blankkontroll-verdiene øker sterkt på grunn av farvede forurensninger som absor-berer den anvendte bølgelengde, slik at følsomheten av systemet senkes betraktelig. It is important to note the very low blank control values (usually between 0.015 and 0.035). Such values can also be achieved by using other coenzymes when the extractions are carried out only with ether, but this will lead to considerably lower recovery values, for tetrahydrocortisol and tetrahydrocortisone (which are relatively polar steroids) the recoveries are thus of the order of magnitude 40 - 50% and even lower. If ethyl acetate is used for the extractions, better recoveries are obtained, but the blank control values increase greatly due to colored impurities that absorb the wavelength used, so that the sensitivity of the system is lowered considerably.

Eksempel 2 Example 2

Et lyofilisert prøvereagens ble fremstilt som i eksempel IA, hvor 1,10 g TNAD ble erstattet med 1,06 g NAD. A lyophilized test reagent was prepared as in Example IA, where 1.10 g of TNAD was replaced by 1.06 g of NAD.

På samme måte som i eksempel IB ble følgende resultater oppnådd: In the same way as in example IB, the following results were obtained:

1. Bare urinoppløsningsmiddel 1. Only urine solvent

2. Urin med 100 yg androsteron 2. Urine with 100 yg androsterone

Forskjellen AE' - AE = 0,067 svarer til 93,71 yg androsteron og derfor til en gjenvinning på 93,7%. The difference AE' - AE = 0.067 corresponds to 93.71 µg of androsterone and therefore to a recovery of 93.7%.

3. Bare urinoppløsningsmiddel 3. Only urine solvent

4. Urin med 100 yg etiokolanolon 4. Urine with 100 yg etiocolanolone

Forskjellen AE' - AE = 0,070 svarer til 97,9 yg etiokolanolon og derfor til en gjenvinning på 97,9%. The difference AE' - AE = 0.070 corresponds to 97.9 µg etiocolanolone and therefore to a recovery of 97.9%.

5. Bare urinoppløsningsmiddel 5. Only urine solvent

6. Urin med 100 yg tetrahydrokortisol 6. Urine with 100 yg tetrahydrocortisol

Forskjellen AE<1> - AE = 0,043 svarer til 75,7 yg tetrahydrokortisol og derfor til en gjenvinning på 75,7%. The difference AE<1> - AE = 0.043 corresponds to 75.7 µg of tetrahydrocortisol and therefore to a recovery of 75.7%.

7. Bare urinoppløsningsmiddel 7. Only urine solvent

8. Urin med 100 yg tetrahydrokortison 8. Urine with 100 yg tetrahydrocortisone

Forskjellen AE' - AE = 0,040 svarer til 70,2 yg tetrahydrokortison og derfor til en gjenvinning på 70,2%. The difference AE' - AE = 0.040 corresponds to 70.2 µg of tetrahydrocortisone and therefore to a recovery of 70.2%.

. Eksempel 3 . Example 3

203-hydroksysteroid-dehydrogenase (fremstilt ved metoden 203-Hydroxysteroid dehydrogenase (prepared by the method

ifølge Hubner (Biochem 2. 33, 95, (1960)) i 0,03 M fosfatbuffer, according to Hubner (Biochem 2. 33, 95, (1960)) in 0.03 M phosphate buffer,

4370 ml, ble blandet med 700 g sukrose (sluttkonsentrasjon 0,425M). 4370 ml, was mixed with 700 g of sucrose (final concentration 0.425M).

Den totale enzymmengde var 12 • IO6 mU. 1,1 g TNAD ble oppløst i The total amount of enzyme was 12 • 106 mU. 1.1 g of TNAD was dissolved in

437 ml destillert vann ved +4°C og deretter helt i enzymoppløsningen fulgt av 3933 ml tris/HCl buffer (0,4 M og pH=9,5, inneholdende 2,5 437 ml of distilled water at +4°C and then poured into the enzyme solution followed by 3933 ml of tris/HCl buffer (0.4 M and pH=9.5, containing 2.5

mg/ml ditiotreitol). Deretter ble 5,32 g EDTA tilsatt, og oppløs- mg/ml dithiothreitol). Then 5.32 g of EDTA was added, and dissolve

ningen ble omrørt inntil den tilsatte EDTA var fullstendig oppløst. The mixture was stirred until the added EDTA was completely dissolved.

Umiddelbart deretter ble den totale oppløsning (8740 ml) Immediately thereafter, the total solution (8740 mL) was

oppdelt i 437 20 ml porsjoner under anvendelse av 50 ml flasker og frosset. Deretter ble den tørret ved lyofilisering. divided into 437 20 ml portions using 50 ml bottles and frozen. It was then dried by lyophilization.

Claims (12)

1. Enzymatisk reagens for bestemmelse av hydroksysteroider, karakterisert ved at det omfatter en lyofilisert blanding av en hydroksysteroid-dehydrogenase og et koenzym valgt fra nikotinamid-adenin-dinukleotid og tionikotinamid-adenin-dinukleo-1. Enzymatic reagent for the determination of hydroxysteroids, characterized in that it comprises a lyophilized mixture of a hydroxysteroid dehydrogenase and a coenzyme selected from nicotinamide adenine dinucleotide and thionicotinamide adenine dinucleo- tid, en polyhydroksyforbindelse som en lyofiliseringsstabilisator, og et chelat-dannende middel og en tiol. time, a polyhydroxy compound as a lyophilization stabilizer, and a chelating agent and a thiol. 2. Reagens som angitt i krav 1,karakterisert ved at' polyhydroksyf orbindelsen er et dekstran eller eri sukkerart. 2. Reagent as specified in claim 1, characterized in that the polyhydroxy compound is a dextran or eri sugar. 3. Reagens som angitt i krav 1,karakterisert ved a"t tiolen er merkaptoetanol, eystein, glutation eller ditiotreitol. 3. Reagent as specified in claim 1, characterized in that the thiol is mercaptoethanol, cysteine, glutathione or dithiothreitol. 4. Reagens som angitt i et av kravene 1 til 3,karakterisert ved at dehydrogenasen er en 3a- hydroksysteroid-dehydrogenase. 4. Reagent as stated in one of claims 1 to 3, characterized in that the dehydrogenase is a 3a-hydroxysteroid dehydrogenase. 5. -Reagens som angitt i krav 4,karakterisert, ve-d at enzymet er erholdt fra P. testosteroni ATCC 11996. 5. - Reagent as specified in claim 4, characterized, in that the enzyme is obtained from P. testosteroni ATCC 11996. 6. Reagens som angitt i et av kravene 1 til 3, karakterisert ved at dehydrogénasen er en 20S-hydroksysteroid-dehydrogenase. 6. Reagent as stated in one of claims 1 to 3, characterized in that the dehydrogenase is a 20S-hydroxysteroid dehydrogenase. 7. Reagens som angitt i et av kravene 1 til 6, karakterisert ved at det inneholder en buffer. 7. Reagent as specified in one of claims 1 to 6, characterized in that it contains a buffer. 8. Reagens som angitt i et av kravene 1 til 7, karakterisert ved at den lyofiliserte blanding pr. tusen mU 3<x-hydroksysteroid-dehydrogenase inneholder 0,05 til 0,30 x 10 — 6 mol nikotinamid- eller tionikotinamid-adenin-dinukleotid. 8. Reagent as specified in one of claims 1 to 7, characterized in that the lyophilized mixture per one thousand mU of 3<x-hydroxysteroid dehydrogenase contains 0.05 to 0.30 x 10 — 6 moles of nicotinamide or thionicotinamide adenine dinucleotide. 9. Reagens som angitt i et av kravene 1 til 5 og 8, karakterisert ved at det pr. 1000 mU 3a-hydroksysteroid-dehydrogenase inneholder 0,2 til 1,4 x 10~<5> mol tiol. 9. Reagent as stated in one of claims 1 to 5 and 8, characterized in that it per 1000 mU of 3α-hydroxysteroid dehydrogenase contains 0.2 to 1.4 x 10~<5> moles of thiol. 10. Reagens som angitt i et av kravene 1 til 5, 8 og 9, karakterisert ved at det pr 1000 mU 3a-hydroksysteroid-dehydrogenase inneholder 0,5 til 3,0 x 10 ^ mol chelat-dannende middel. 10. Reagent as specified in one of claims 1 to 5, 8 and 9, characterized in that it contains 0.5 to 3.0 x 10 ^ mol of chelating agent per 1000 mU of 3a-hydroxysteroid dehydrogenase. 11. Reagens som angitt i et av kravene 1 til 3 og 6, karakterisert ved at det pr. 1000 mU dehydrogenase inneholder 0,05 til 0,30 x 10 mol nikotinamid- eller tionikotin-amid-adenin-dinukleotid. 11. Reagent as specified in one of claims 1 to 3 and 6, characterized in that per 1000 mU of dehydrogenase contains 0.05 to 0.30 x 10 mol of nicotinamide or thionicotinamide adenine dinucleotide. 12. Reagens som angitt i et av kravene 1 til 3, 6 og 11, karakterisert ved at det pr. 1000 mU dehydrogenase inneholder 0,2 til 1,4 x 10~<5> mol tiol og 0,5 til 3,0 x 10~<6> mol chelatdannende middel og 0,4 til 2,0 x 10 -3 mol polyhydroksyforbindelse.12. Reagent as specified in one of claims 1 to 3, 6 and 11, characterized in that it per 1000 mU dehydrogenase contains 0.2 to 1.4 x 10~<5> mol thiol and 0.5 to 3.0 x 10~<6> mol chelating agent and 0.4 to 2.0 x 10 -3 mol polyhydroxy compound .
NO221672A 1971-06-22 1972-06-21 NO135490C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2928671A GB1397406A (en) 1971-06-22 1971-06-22 Enzymic reagent

Publications (2)

Publication Number Publication Date
NO135490B true NO135490B (en) 1977-01-03
NO135490C NO135490C (en) 1977-04-13

Family

ID=10289127

Family Applications (1)

Application Number Title Priority Date Filing Date
NO221672A NO135490C (en) 1971-06-22 1972-06-21

Country Status (8)

Country Link
JP (1) JPS5414958B1 (en)
BE (1) BE785179A (en)
CH (1) CH573442A5 (en)
DE (1) DE2230320A1 (en)
FR (1) FR2143177B1 (en)
GB (1) GB1397406A (en)
NL (1) NL7208515A (en)
NO (1) NO135490C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2649749A1 (en) * 1976-10-29 1978-05-11 Boehringer Mannheim Gmbh METHOD AND REAGENT FOR THE DETERMINATION OF TOTAL CHOLESTEROL OR BONDED CHOLESTEROL
FR2419519A1 (en) * 1978-03-09 1979-10-05 Inst Nat Sante Rech Med IMPROVEMENTS TO THE METHODS FOR MEASURING EESTROGENS AND READY TO USE ASSEMBLY FOR THE PERFORMANCE OF THE SAID DOSES
DK158981A (en) * 1980-04-09 1981-10-10 Nyegaard & Co As REAGENT AND DIAGNOSTIC REAGENT KIT FOR ASSESSMENT OF HYDROXYSTEROIDS IN SERUM
FR2547926B1 (en) * 1983-06-27 1986-05-23 Biomerieux Sa ASSAY PROCESS FOR ESTROGENS AND ANDROGENS BY AMPLIFICATION AND BIOLUMINESCENCE
JPS6131097A (en) * 1984-07-23 1986-02-13 Toyo Jozo Co Ltd Novel enzymic method for measurement with high sensitivity
JPH0687777B2 (en) * 1986-07-08 1994-11-09 第一化学薬品株式会社 3α-hydroxysteroid oxidase composition and method for quantifying 3α-hydroxysteroid using the same
JP2534044B2 (en) * 1986-11-11 1996-09-11 第一化学薬品株式会社 Method for quantifying 3-oxo-5β-steroid and reagent for quantifying the same
US6380380B1 (en) * 1999-01-04 2002-04-30 Specialty Assays, Inc. Use of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucliotide phosphate (NADP) analogs to measure enzyme activities metabolites and substrates

Also Published As

Publication number Publication date
BE785179A (en) 1972-12-21
GB1397406A (en) 1975-06-11
NL7208515A (en) 1972-12-28
JPS5414958B1 (en) 1979-06-11
FR2143177A1 (en) 1973-02-02
NO135490C (en) 1977-04-13
DE2230320A1 (en) 1973-01-11
CH573442A5 (en) 1976-03-15
FR2143177B1 (en) 1973-07-13

Similar Documents

Publication Publication Date Title
Black et al. Determination of bilirubin UDP-glucuronyl transferase activity in needle-biopsy specimens of human liver
Bergmeyer et al. UV-assay with pyruvate and NADH
Keilin et al. Specificity of glucose oxidase (notatin)
Allain et al. Enzymatic determination of total serum cholesterol
Bell et al. A colorimetric method for determination of isocitric dehydrogenase
Hohorst L-(+)-lactate: determination with lactic dehydrogenase and DPN
Baldwin et al. Enzymatic changes associated with the initiation and maintenance of lactation in the rat
Slein D-Glucose: Determination with hexokinase and glucose-6-phosphate dehydrogenase
Weibel et al. Rapid sampling of yeast cells and automated assays of adenylate, citrate, pyruvate and glucose-6-phosphate pools
Dholakia et al. The association of NADPH with the guanine nucleotide exchange factor from rabbit reticulocytes: a role of pyridine dinucleotides in eukaryotic polypeptide chain initiation.
Fairbridge et al. The direct colorimetric estimation of reducing sugars and other reducing substances with tetrazolium salts
NO135490B (en)
IE45675B1 (en) Agent for the removal of turbidities in sera
Matlib et al. Measurement of matrix enzyme activity in isolated mitochondria made permeable with toluene
US4181575A (en) Composition and method for the determination of cholesterol
Moore [50] The preparation of deuterated ribosomal materials for neutron scattering
Brolin et al. Photokinetic assay of NADH and NADPH in microdissected tissue samples
Mütìng et al. Quantitative colorimetric determination of free phenols in serum and urine of healthy adults using modified diazo-reactions
Levy et al. The metabolism of coumarin by a microorganism. II. The reduction of o-coumaric acid to melilotic acid
Høyer et al. Histochemistry of 3 β-hydroxysteroid dehydrogenase in rat ovary: I. A methodological study
EP0037742B1 (en) Method for the estimation of hydroxysteroids and reagent system therefor
Borack et al. Drosophila β-L-hydroxy acid dehydrogenase: purification and properties
Rafferty et al. Crystallization of the NADH-specific enoyl acyl carrier protein reductase from Brassica napus
JPH09220088A (en) Novel hexokinase
Decker Acetyl coenzyme A