[go: up one dir, main page]

NO124817B - - Google Patents

Download PDF

Info

Publication number
NO124817B
NO124817B NO3681/70A NO368170A NO124817B NO 124817 B NO124817 B NO 124817B NO 3681/70 A NO3681/70 A NO 3681/70A NO 368170 A NO368170 A NO 368170A NO 124817 B NO124817 B NO 124817B
Authority
NO
Norway
Prior art keywords
solution
ethyl
tetrahydroanthraquinone
hydrogen peroxide
hydration
Prior art date
Application number
NO3681/70A
Other languages
Norwegian (no)
Inventor
K Liedberg
Original Assignee
Atlas Copco Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Copco Ab filed Critical Atlas Copco Ab
Publication of NO124817B publication Critical patent/NO124817B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • B05B5/1683Arrangements for supplying liquids or other fluent material specially adapted for particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte til fremstilling av hydrogenperoksyd. Process for the production of hydrogen peroxide.

Foreliggende oppfinnelse angår en The present invention relates to a

fremgangsmåte til fremstilling av hydrogenperoksyd. Det er kjent at hydrogenperoksyd kan fremstilles ved kontinuerlig hydrering av 2-etyl-antrakinon som er opp-løst i et passende organisk oppløsnings-middel. Typiske fremstillingsmetoder beskrives f .eks. i U.S. patentskrifter 2.158.525, 2.215.883 og 2.657.980. method for the production of hydrogen peroxide. It is known that hydrogen peroxide can be produced by continuous hydration of 2-ethyl anthraquinone which is dissolved in a suitable organic solvent. Typical production methods are described, e.g. in the U.S. patent documents 2,158,525, 2,215,883 and 2,657,980.

Ved den praktiske anvendelse av disse In the practical application of these

fremgangsmåter hydreres kinonet kataly-tisk i et organisk oppløsningsmiddel, i alminnelighet i nærvær av en metallisk hy-dreringskatalysator som palladium, Raney-nikkel eller lignende, hvorved der dannes den tilsvarende kinol. Efter at katalysatoren er fjernet, underkastes denne kinol påvirkning av luft eller oxygen, hvorved kinonet regenereres og hydrogenperoksyd dannes. Hydrogenperoksyd ekstraheres fra methods, the quinone is catalytically hydrogenated in an organic solvent, generally in the presence of a metallic hydrogenation catalyst such as palladium, Raney nickel or the like, whereby the corresponding quinol is formed. After the catalyst has been removed, this quinol is subjected to the influence of air or oxygen, whereby the quinone is regenerated and hydrogen peroxide is formed. Hydrogen peroxide is extracted from

den organiske oppløsning ved hjelp av vann og det organiske oppløsningsmiddel tilbakeføres til kretsløpet for å anvendes pånytt til hydrering, oksydasjon og ekstraksjon. the organic solution by means of water and the organic solvent is returned to the circuit to be used again for hydration, oxidation and extraction.

Mens denne reaksjon foregår, kan bi-reaksjoner finne sted. Således har ved de kjente fremgangsmåter den oftest iakt-tatte og mest alminnelige bireaksjon vært forekomst av det tilsvarende 2-etyltetra-hydroantrakinon ved at hydrogen blir bundet til antrakinonkjernen. Dette tetrahydroderivat kan anvendes til å danne hydrogenperoksyd, skjønt dets oksydasjonshastighet er noe mindre. While this reaction is taking place, side reactions can take place. Thus, in the known methods, the most frequently observed and most common side reaction has been the occurrence of the corresponding 2-ethyltetrahydroanthraquinone by hydrogen being bonded to the anthraquinone nucleus. This tetrahydro derivative can be used to form hydrogen peroxide, although its oxidation rate is somewhat less.

En ytterligere og mer ødeleggende bireaksjon som gjerne opptrer er dannelsen av ytterligere hydreringsderivater av A further and more destructive side reaction that often occurs is the formation of further hydration derivatives of

ukjent type. Da disse materialer er pro- unknown type. As these materials are pro-

dukter med høyt kokepunkt som når det skilles ut fra de øvrige produkter, viser seg å være viskost, sirupaktig stoff av ukjent sammensetning, vil det i det følgende bli betegnet som «ukjente forbindelser». Disse ukjente forbindelser reagerer ikke slik at hydrogenperoksyd derved produseres. Skjønt dannelsen av de ukjente forbindelser foregår langsomt sammenlignet med omdannelsen av kinonet til hydrokinon, forbruker den ikke desto mindre 2-etyl-antrakinon. ducts with a high boiling point which, when separated from the other products, turn out to be a viscous, syrupy substance of unknown composition, will hereafter be referred to as "unknown compounds". These unknown compounds do not react so that hydrogen peroxide is thereby produced. Although the formation of the unknown compounds proceeds slowly compared to the conversion of the quinone to hydroquinone, it nevertheless consumes 2-ethyl-anthraquinone.

På grunn av tetrahydroantrakinonets lave oksydasjonshastighet har det hittil vært ønskelig å unngå dannelsen av tetra-hydroderivatet. Således tar man ved den praktiske utførelse av en fremgangsmåte som anvender 2-tertiær-butylantrakinon på den måte som er beskrevet i U.S. pa-tentskrift 2.673.140 spesielle forholdsreg-ler for å forhindre akkumulasjon av det tilsvarende tetrahydroderivat. Imidlertid løser denne fremgangsmåte ikke det prob-lem å forhindre dannelsen av de ukjente forbindelser. Due to the low oxidation rate of tetrahydroanthraquinone, it has hitherto been desirable to avoid the formation of the tetrahydroderivative. Thus, in the practical execution of a method which uses 2-tertiary-butylanthraquinone in the manner described in U.S. patent 2,673,140 special precautions to prevent accumulation of the corresponding tetrahydro derivative. However, this method does not solve the problem of preventing the formation of the unknown compounds.

Foreliggende oppfinnelse beror på den iakttagelse at dannelsen av de ukjente forbindelser kan reduseres betydelig på en-kel måte. Ved fremgangsmåten ifølge oppfinnelsen går man frem på den måte at ovennevnte hydrering utføres ved å hy-drere en oppløsning av 2-etyl-tetrahydroantrakinon og 2-etylantrakinon i hvilken vektforholdet tetrahydroantrakinon til antrakinon holdes ved i det minste 0,8. Forholdet tetrahydroderivat til det produkt som ikke inneholder noen kjernehydrering kan lett bestemmes ved analyse av opp-løsningen ved måling av tetrahydroderiva-tet inklusive samtlige tetrahydrokinoler eller kinoner, og de antrakinoner i hvilke ingen kjernehydrering forekommer, inklusive tilsvarende kinoler og kinhydroner. The present invention is based on the observation that the formation of the unknown compounds can be significantly reduced in a simple way. In the method according to the invention, one proceeds in such a way that the above-mentioned hydration is carried out by hydrating a solution of 2-ethyl-tetrahydroanthraquinone and 2-ethylanthraquinone in which the weight ratio of tetrahydroanthraquinone to anthraquinone is kept at at least 0.8. The ratio of tetrahydro derivative to the product which does not contain any nuclear hydrogenation can be easily determined by analysis of the solution by measuring the tetrahydro derivative including all tetrahydroquinols or quinones, and the anthraquinones in which no nuclear hydrogenation occurs, including corresponding quinols and quinhydrones.

Dannelsen av de ukjente forbindelser motvirkes ved kontroll av hydreringsgraden i oppløsningen ved overføring av kinonet til hydrokinon slik at dets hydrering avbrytes før mere enn 55 pst. av hele den mengde hydrogen som teoretisk kreves for å overføre kinonbestanddelene til hydro-kinonbestanddeler er tilført. The formation of the unknown compounds is counteracted by controlling the degree of hydration in the solution by transferring the quinone to hydroquinone so that its hydration is interrupted before more than 55 per cent of the entire amount of hydrogen theoretically required to transfer the quinone components to hydroquinone components has been added.

Tendensen til å danne ukjente forbindelser direkte fra 2-etyl-antrakinon synes å være større og hurtigere enn tendensen til å danne slike ukjente forbindelser fra 2-etyl-tetrahydrokinon forutsatt at hydreringsgraden begrenses således som angitt i det foregående. Hvis på den annen side hydreringsgraden tillates å stige vesentlig over 55 pst. av den teoretisk mulige, dannes ukjente forbindelser med uønsket hastighet og oppløsningen taper sluttelig sin evne til å danne hydrogenperoksyd. The tendency to form unknown compounds directly from 2-ethyl-anthraquinone appears to be greater and faster than the tendency to form such unknown compounds from 2-ethyl-tetrahydroquinone provided that the degree of hydration is limited as stated above. If, on the other hand, the degree of hydration is allowed to rise significantly above 55 percent of the theoretically possible, unknown compounds are formed at an undesirable rate and the solution finally loses its ability to form hydrogen peroxide.

For å utføre fremgangsmåten ifølge foreliggende oppfinnelse er det nødvendig å anvende oppløsningsmiddel med meget god oppløsningseffekt på tetrahydroantra-kinonet. I motsatt fall har tetrahydroan-trakinonet tilbøyelighet til å utfelles, i hvilket tilfelle hydrogenperoksydfremstil-lingen vanskeliggjøres betydelig. In order to carry out the method according to the present invention, it is necessary to use a solvent with a very good dissolving effect on the tetrahydroanthraquinone. Otherwise, the tetrahydroanthraquinone has a tendency to precipitate, in which case the production of hydrogen peroxide is made considerably more difficult.

Særlig verdifulle oppløsningsmidler for dette formål er de flytende estere av cykloheksanol og alkylsubstituert cykloheksanol med énbasiske syrer, f. eks. eddiksyre, propionsyre, smørsyre eller lignende énbasiske, mettede, alifatiske syrer hvilke i alminnelighet inneholder opp til 5 kullstoffatomer. Et av de beste oppløsnings-midler av denne type er metylcykloheksylacetat. Den alkylgruppe som er bundet til cykloheksanolradikalet inneholder normalt ikke mere enn omtrent 6 kullstoffatomer. Disse oppløsningsmidler kan anvendes med eller uten andre oppløsningsmidler, f. eks. benzen, dietylbenzen, trietylbenzen eller lignende oppløsningsmidler bestående av aromatiske kullvannstoffer. Particularly valuable solvents for this purpose are the liquid esters of cyclohexanol and alkyl-substituted cyclohexanol with monobasic acids, e.g. acetic acid, propionic acid, butyric acid or similar monobasic, saturated, aliphatic acids which generally contain up to 5 carbon atoms. One of the best solvents of this type is methyl cyclohexyl acetate. The alkyl group which is bound to the cyclohexanol radical normally contains no more than approximately 6 carbon atoms. These solvents can be used with or without other solvents, e.g. benzene, diethylbenzene, triethylbenzene or similar solvents consisting of aromatic hydrocarbons.

Andre type oppløsningsmidler som kan anvendes i fremgangsmåten ifølge oppfinnelsen er de ketoner som har formelen Other types of solvents that can be used in the method according to the invention are the ketones that have the formula

O O

II II

R-C-R,, i hvilken formel R og R, hver for seg er kullvannstoffradikaler med mellom 1 og 8 kullstoffatomer og i hvilken hele forbindelsen har mellom 7 og 15 kullstoffatomer. Disse ketoner omfatter diisobutylketon, di-n-propylketon, diamylketon, diheksylketon, etylheksylketon, etylamyl-keton og lignende stoffer. R-C-R,, in which formula R and R, are each carbon hydrogen radicals having between 1 and 8 carbon atoms and in which the entire compound has between 7 and 15 carbon atoms. These ketones include diisobutyl ketone, di-n-propyl ketone, diamyl ketone, dihexyl ketone, ethylhexyl ketone, ethyl amyl ketone and similar substances.

Hydreringen utføres normalt ved tem-peraturer mellom 10 og 52° C, men kan også utføres ved meget høyere temperatu-rer. Mengden av 2-etyl-tetrahydroantraki- . non i oppløsningen skal normalt holdes så høy som mulig for å sikre fremstillingen av en så konsentrert hydrogenperoksydopp-løsning som mulig. Derfor holdes mengden av 2-etyl-tetrahydroantrakinon i oppløs-ningen normalt mellom 40 og 100 pst. ved hydreringstemperaturen. Hydreringen ut-føres i nærvær av en katalysator i over-ensstemmelse med kjente fremgangsmåter. The hydrogenation is normally carried out at temperatures between 10 and 52° C, but can also be carried out at much higher temperatures. The amount of 2-ethyl-tetrahydroanthraci- . non in the solution should normally be kept as high as possible to ensure the production of as concentrated a hydrogen peroxide solution as possible. Therefore, the amount of 2-ethyl-tetrahydroanthraquinone in the solution is normally kept between 40 and 100 percent at the hydration temperature. The hydrogenation is carried out in the presence of a catalyst in accordance with known methods.

I det følgende beskrives som eksemp-ler noen utførelsesformer for fremgangsmåten ifølge oppfinnelsen. In the following, some embodiments of the method according to the invention are described as examples.

Eksempel 1: Example 1:

Ved fremstilling av hydrogenperoksyd anvendes en oppløsning som til å begynne med inneholder 2-etyl-antrakinon og opp-løsningsmiddel bestående av 62,7 volumdeler metylcykloheksylacetat og 20,5 volumdeler trietylbenzen. Denne oppløsning anvendes i noen tid for å fremstille hydrogenperoksyd. Da fremgangsmåten ifølge oppfinnelsen ble anvendt, hadde denne oppløsning følgende sammensetning: 2-etyl-antrakinon 26,0 g pr. 1 oppløs- ning, In the production of hydrogen peroxide, a solution is used which initially contains 2-ethyl anthraquinone and a solvent consisting of 62.7 parts by volume of methylcyclohexyl acetate and 20.5 parts by volume of triethylbenzene. This solution is used for some time to produce hydrogen peroxide. When the method according to the invention was used, this solution had the following composition: 2-ethyl anthraquinone 26.0 g per 1 dissolve nothing,

2-etyl-tetrahydroantrakinon 27,4 g pr. 2-ethyl-tetrahydroanthraquinone 27.4 g per

1 oppløsning. 1 resolution.

Omkring 380 dm<3> av denne oppløsning ble ledet inn i et hydreringskammer av en sirkulasjon av ytterligere oppløsning ble påbegynt med en hastighet av 19 dm<3> pr. minutt ved tilførsel til og bortledning fra reaksjonskammeret i hvilket en temperatur på 40,5° C ble opprettholdt. Oppløsnin-gen ble tatt ut av reaksjonskammeret gjennom et filter i hvilket katalysatoren ble oppsamlet for å skilles ut, mens opp-løsningen selv med en hastighet av omkring 19 dm<3> pr. minutt ble ledet til et ok-sydasjonskammer inneholdende 950 dm<3 >oppløsning. Med samme hastighet ble oppløsning ledet fra oksydasjonskammeret About 380 dm<3> of this solution was led into a hydration chamber by which a circulation of further solution was started at a rate of 19 dm<3> per minute. minute during supply to and discharge from the reaction chamber in which a temperature of 40.5° C was maintained. The solution was taken out of the reaction chamber through a filter in which the catalyst was collected to be separated, while the solution itself at a rate of about 19 dm<3> per minute was directed to an ok-sydation chamber containing 950 dm<3 >solution. At the same rate, solution was led from the oxidation chamber

og avsatt på bunnen av en kontinuerlig ar-beidende ekstraksjonskolonne til hvis øvre and deposited on the bottom of a continuously operating extraction column to whose upper

del vann ble tilført kontinuerlig. Den organiske oppløsning som rant ned fra ko-lonnens øvre del ble bragt til å strømme gjennom et metertykt sjikt av aktivt aluminiumoksyd i hvilket de enkelte partik-ler hadde en størrelse tilsvarende en mas-kestørrelse på mellom 8 og 14 mesh. Opp- part of the water was supplied continuously. The organic solution that ran down from the upper part of the column was made to flow through a metre-thick layer of active aluminum oxide in which the individual particles had a size corresponding to a mesh size of between 8 and 14 mesh. Up-

iøsningen førtes siden tilbake til hydreringskammeret. the ladle was then returned to the hydration chamber.

Etter at sirkuleringen var påbegynt, ble hydreringskammeret renset med nitro-gen. Man suspenderte derpå 2,27 kg av en katalysator bestående av metallisk palladium på en bærer av aluminiumoksyd i den oppløsning som befant seg i hydreringskammeret og luft ble ledet inn i blandingen med en hastighet av ca. 350 dm<:1 >pr. minutt ved et trykk på 760 mm og en temperatur på 21° C. Den innblåste luft frembragte herved en kraftig omrøring av blandingen og en fin suspendering av katalysatoren. Som følge av dette fant der sted en hurtig hydrering av kinonoppløs-ningen, hvorved konsentrasjonen av aktiv katalysator innstiltes slik at omkring 44 pst. av kinonet ble overført til kinol, hvilket hadde til følge at gjennomsnittskinol-innholdet i oppløsningen uttrykt i dets ek-vivalente mengde hydrogenperoksyd utgjorde 3,6 g H202 pr. liter. After circulation had begun, the hydration chamber was purged with nitrogen. 2.27 kg of a catalyst consisting of metallic palladium on an alumina support was then suspended in the solution contained in the hydration chamber and air was introduced into the mixture at a rate of approx. 350 dm<:1 >pr. minute at a pressure of 760 mm and a temperature of 21° C. The blown air thereby produced a vigorous stirring of the mixture and a fine suspension of the catalyst. As a result, a rapid hydration of the quinone solution took place, whereby the concentration of active catalyst was set so that around 44 per cent of the quinone was transferred to quinol, which resulted in the average quinol content in the solution expressed in its equivalent amount of hydrogen peroxide amounted to 3.6 g H202 per litres.

Den hydrerte oppløsning ble i oksydasjonskammeret br agt til reaksjon med luft ved en temperatur stigende til ca. 48° C, og den oksyderte oppløsning ble ekstra-hert ved hjelp av vann i et forhold av ca. 1 volumdel vann pr. 50 volumdeler oppløs-ningsmiddel ved en temperatur av ca. 30° C, hvorved man fikk en vandig oppløsning inneholdende ca. 15 vekt-pst. hydrogenperoksyd. Den organiske oppløsning ble ført tilbake til sirkulasjonsprosessen. The hydrated solution was reacted with air in the oxidation chamber at a temperature rising to approx. 48° C, and the oxidized solution was extracted using water in a ratio of approx. 1 volume part of water per 50 parts by volume solvent at a temperature of approx. 30° C, whereby an aqueous solution containing approx. 15 weight percent. hydrogen peroxide. The organic solution was returned to the circulation process.

Denne prosess ble fortsatt kontinuerlig i 15 døgn. Herved inneholdt oppløsnin-gen 25,3 g etyl-antrakinon pr. liter og 29,9 g tetrahydroantrakinon pr. liter. Mengden av kinon som ble overført til ukjente forbindelser (inklusive antrakinon og tetrahydroantrakinon) var 0,635 kg pr. 1.016 tonn fremstillet hydrogenperoksyd. This process continued continuously for 15 days. Hereby, the solution contained 25.3 g of ethyl anthraquinone per liter and 29.9 g of tetrahydroanthraquinone per litres. The amount of quinone that was transferred to unknown compounds (including anthraquinone and tetrahydroanthraquinone) was 0.635 kg per 1,016 tonnes of hydrogen peroxide produced.

Ved lignende forsøk ble hydreringen utført med en oppløsning med lignende sammensetning i omtrent samme tidsrom, men slik at gjennomsnittlig 72 pst. av ki-nonen ble overført til kinol ved passerin-gen gjennom hydreringskammeret. Etter 14 døgn ble mengden av kinon som var overført til ukjente forbindelser funnet å utgjøre 13,6 kg pr. 1.016 tonn fremstillet hydrogenperoksyd. In a similar experiment, the hydration was carried out with a solution of similar composition for approximately the same period of time, but so that an average of 72 per cent of the quinone was transferred to quinol on passing through the hydration chamber. After 14 days, the amount of quinone that had been transferred to unknown compounds was found to amount to 13.6 kg per 1,016 tonnes of hydrogen peroxide produced.

Eksempel 2: Fremstillingen ble gjentatt i det ve-sentlige på samme måte som i eksempel 1, hvorved en palladiumkatalysator ble anvendt og gjennomsnittlig 54,9 pst. av hy-drokinonet ble overført til kinol i løpet av 25 døgn, hvorved en overføring av kinon til ukjente forbindelser utgjorde 1,77 kg. pr. 1.016 tonn fremstillet hydrogenperoksyd. Example 2: The preparation was repeated in essentially the same way as in example 1, whereby a palladium catalyst was used and an average of 54.9 percent of the hydroquinone was transferred to quinol within 25 days, whereby a transfer of quinone to unknown compounds amounted to 1.77 kg. per 1,016 tonnes of hydrogen peroxide produced.

Ved et annet forsøk fikk man ved over-føring av gjennomsnittlig 58 pst. kinon til kinol i løpet av bare 11 døgn en omdan-nelse av 8,85 kg kinon til ukjente forbindelser pr. 1.016 tonn fremstillet hydrogenperoksyd. In another experiment, by transferring an average of 58 per cent of quinone to quinol in just 11 days, a conversion of 8.85 kg of quinone into unknown compounds was obtained per 1,016 tonnes of hydrogen peroxide produced.

Bestemmelsen av intensiteten av an-trakinonets overføring til kinol utføres i alminnelighet ved kontroll av mengden av katalysator i hydreringskammeret eller dens aktivitet. Hvis man finner omsetningen for høy, kan mengden av katalysator minskes. Hvis derimot omsetningen blir for lav, kan ytterligere katalysator eller ny katalysator tilsettes. I alminnelighet skal intensiteten av kinonets overføring til kinol holdes ved omkring 20 pst. ved oppløsnin-gens passering gjennom hydreringskammeret. Ukjente faste stoffer ifølge dette krav kan bestemmes ved følgende analyse ved hvilken en oppløsning anvendes som inneholder de aktive stoffer helt i form av kinoner: A. Hele mengden av faste bestanddeler bestemmes som følger: 1. En prøve av oppløsningen fylles i en på forhånd veiet porselensskål, hvorpå skålen med prøven veies. 2. Prøven dekkes med 5 mm destillert The determination of the intensity of the anthraquinone's transfer to quinol is generally carried out by checking the amount of catalyst in the hydration chamber or its activity. If the turnover is found to be too high, the amount of catalyst can be reduced. If, on the other hand, the turnover becomes too low, additional catalyst or new catalyst can be added. In general, the intensity of the quinone's transfer to quinol must be kept at around 20 percent when the solution passes through the hydration chamber. Unknown solids according to this requirement can be determined by the following analysis in which a solution is used that contains the active substances entirely in the form of quinones: A. The entire amount of solid components is determined as follows: 1. A sample of the solution is filled into a pre-weighed porcelain bowl, on which the bowl with the sample is weighed. 2. The sample is covered with 5 mm distilled

vann. water.

3. Skålen settes på en asbestduk og plaseres over en varmekilde slik at vannet langsomt fordunster inntil bare litt av vannet er igjen. 4. Skålen med innholdet oppvarmes i en ovn ved 105—110° C i en time. Den tas derpå ut av ovnen og veies på nytt. 3. The bowl is placed on an asbestos sheet and placed over a heat source so that the water slowly evaporates until only a little of the water remains. 4. The bowl with the contents is heated in an oven at 105-110° C for one hour. It is then taken out of the oven and weighed again.

B. Kinonmengden bestemmes på i og for seg kjent måte ved hjelp av en eller annen passende metode for polarografisk analyse. C. Forskjellen mellom den totale mengde av festebestanddeler og den totale mengde av kinoner pr. milliliter oppløsning utgjør mengden av ukjente faste forbindelser pr. milliliter oppløsning. B. The amount of quinone is determined in a manner known per se by means of some suitable method of polarographic analysis. C. The difference between the total amount of fixing ingredients and the total amount of quinones per milliliters of solution constitute the amount of unknown solid compounds per milliliters of solution.

Claims (4)

1. Fremgangsmåte til fremstilling av hydrogenperoksyd ved hydrering av et kinon, oksydasjon av det herved erholdte produkt og ekstraksjon av det ved oksyda-sjonen dannede hydrogenperoksyd, karakterisert ved at man hydrerer en oppløsning av 2-etyl-tetrahydroantrakinon og 2-etyl-antrakinon, i hvilken forholdet tetrahydroantrakinon til antrakinon holdes over1. Process for the production of hydrogen peroxide by hydration of a quinone, oxidation of the product thus obtained and extraction of the hydrogen peroxide formed by the oxidation, characterized in that a solution of 2-ethyl-tetrahydroanthraquinone and 2-ethyl-anthraquinone is hydrated, in which the ratio of tetrahydroanthraquinone to anthraquinone is maintained 0,8, og ved at man regulerer hydrerings-intensiteten slik at der tilføres mindre enn 55 pst. av det hydrogen som teoretisk kreves til å overføre kinonbestanddelene i oppløsningen til de tilsvarende hydroki-nonbestaddeler.0.8, and by regulating the hydration intensity so that less than 55 per cent of the hydrogen that is theoretically required to transfer the quinone components in the solution to the corresponding hydroquinone components is supplied. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at 2-etyl-tetrahydroantrakinon oppløses i en væskeformig ester av en alkohol av den gruppe som består av cykloheksanol og alkylcykloheksanol, og en enbasisk, alifatisk mettet karboksyl-syre. 2. Process according to claim 1, characterized in that 2-ethyl-tetrahydroanthraquinone is dissolved in a liquid ester of an alcohol of the group consisting of cyclohexanol and alkylcyclohexanol, and a monobasic, aliphatic saturated carboxylic acid. 3. Fremgangsmåte ifølge påstand 2, karakterisert ved at 2-etyl-tetrahydroantrakinon oppløses i metylcykloheksylacetat. 3. Method according to claim 2, characterized in that 2-ethyl-tetrahydroanthraquinone is dissolved in methylcyclohexyl acetate. 4. Fremgangsmåte ifølge påstand 1, karakterisert ved at 2-etyl-tetrahydroantrakinon oppløses i diisobutylketon.4. Process according to claim 1, characterized in that 2-ethyl-tetrahydroanthraquinone is dissolved in diisobutyl ketone.
NO3681/70A 1969-10-06 1970-09-29 NO124817B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE13699/69A SE332772B (en) 1969-10-06 1969-10-06

Publications (1)

Publication Number Publication Date
NO124817B true NO124817B (en) 1972-06-12

Family

ID=20297845

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3681/70A NO124817B (en) 1969-10-06 1970-09-29

Country Status (9)

Country Link
US (1) US3674209A (en)
CA (1) CA919134A (en)
DE (1) DE2048043C3 (en)
FR (1) FR2062820A5 (en)
GB (1) GB1278138A (en)
NL (1) NL164763C (en)
NO (1) NO124817B (en)
SE (1) SE332772B (en)
ZA (1) ZA706575B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1003796A (en) * 1973-06-09 1977-01-18 Max Kabushiki Kaisha Pollinator
US4000856A (en) * 1975-09-02 1977-01-04 Graco Inc. Fog/spray system and apparatus
US3995700A (en) * 1975-10-14 1976-12-07 Gardner-Denver Company Hydraulic rock drill system
GB2175267B (en) * 1985-05-01 1988-11-16 Kevin Wildon Apparatus for discharging particulate material
JPH1157539A (en) * 1997-08-21 1999-03-02 Ransburg Ind Kk Powder coating hand gun and coating system incorporated with the same
CN111822174A (en) * 2020-07-28 2020-10-27 山东方大工程有限责任公司 Intelligent spray gun
US20220161206A1 (en) * 2020-11-23 2022-05-26 Robert Paul Camille Leonardi Hempcrete spraying device
US20220400637A1 (en) * 2021-03-08 2022-12-22 Monsanto Technology Llc Systems and methods for liquid-mediated delivery of pollen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1550037A (en) * 1922-06-27 1925-08-18 Mcgarvey James Method and means for feeding stock in transport
US1755329A (en) * 1927-03-14 1930-04-22 Lawrence E Mccormack Pneumatic gun for applying mortar
US3096225A (en) * 1959-05-25 1963-07-02 Marvin E Carr Apparatus and method for depositing continuous stranded material
US3385522A (en) * 1966-05-20 1968-05-28 Vilbiss Co Cleaning device for liquid pressure regulating apparatus

Also Published As

Publication number Publication date
US3674209A (en) 1972-07-04
SE332772B (en) 1971-02-15
ZA706575B (en) 1971-05-27
DE2048043B2 (en) 1979-08-02
GB1278138A (en) 1972-06-14
NL164763C (en) 1981-02-16
NL7014654A (en) 1971-04-08
NL164763B (en) 1980-09-15
DE2048043C3 (en) 1980-04-10
FR2062820A5 (en) 1971-06-25
CA919134A (en) 1973-01-16
DE2048043A1 (en) 1971-04-29

Similar Documents

Publication Publication Date Title
NO124817B (en)
Kuge et al. Complexes of starchy materials with organic compounds: Part II. Complex formation in aqueous solution and fractionation of starch by L-menthone
US3755552A (en) Process for producing hydrogen peroxide
US2491926A (en) Catalytic hydrogenation of hydroperoxides
DE2341468C3 (en) Process for the production of anthraquinones or alkyl-substituted naphthoquinones !!
GB583863A (en) Production of isophorone and homo-isophorones
RU2066308C1 (en) Process for preparing solution containing alkyl tetrahydroantrahydroquinone
Myers et al. Comparative rates of oxidation of isomeric linolenic acids and their esters
NO116368B (en)
US3031491A (en) Purification of esters of dicarboxylic acids
US2476450A (en) Process for preparing a dry rosin size
US2576753A (en) Method of producing vanillin
Weiss et al. Preliminary study on the formation of malic acid
GB1076085A (en) Process for continuously carrying out hydrogenation reactions in liquid phase
DE1768858A1 (en) Process for the production of cyclohexene or methylcyclohexene
CH363649A (en) Process for the production of carboxylic acids
US2286995A (en) Purification of acetic acid
Allen The “Dead-Space” Correction in Gas Reaction Rate Measurements
US2783251A (en) Recovery of naphthoquinone from crude product containing phthalic anhydride and naphthalene
US2334126A (en) Refining of sugar and sugar sirups
GB864676A (en) Process for manufacturing hydrogen peroxide
US2856274A (en) Method for preparing anhydrous sodium borohydride
NO821160L (en) CYCLIC PROCESS FOR THE PREPARATION OF HYDROGEN PEROXYD
Coleman et al. Disaccharides in “Hydrol”
Craig Dilatometric investigations of fatty acid methyl esters