[go: up one dir, main page]

NO122715B - - Google Patents

Download PDF

Info

Publication number
NO122715B
NO122715B NO476768A NO476768A NO122715B NO 122715 B NO122715 B NO 122715B NO 476768 A NO476768 A NO 476768A NO 476768 A NO476768 A NO 476768A NO 122715 B NO122715 B NO 122715B
Authority
NO
Norway
Prior art keywords
copolymer
ethylene
composition according
vinyl
derived
Prior art date
Application number
NO476768A
Other languages
Norwegian (no)
Inventor
C Aaron
K Tessier
A Edwards
M Kingsland
Original Assignee
Exxon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB4325468A external-priority patent/GB1242535A/en
Application filed by Exxon Co filed Critical Exxon Co
Publication of NO122715B publication Critical patent/NO122715B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/165Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/20Organic compounds containing halogen
    • C10L1/206Organic compounds containing halogen macromolecular compounds
    • C10L1/207Organic compounds containing halogen macromolecular compounds containing halogen with or without hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2462Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds
    • C10L1/2468Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds obtained by reactions involving only carbon to carbon unsaturated bonds; derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2666Organic compounds containing phosphorus macromolecular compounds
    • C10L1/2675Organic compounds containing phosphorus macromolecular compounds obtained by reactions involving only carbon to carbon unsaturated bonds; derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/28Organic compounds containing silicon
    • C10L1/285Organic compounds containing silicon macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Brennstoffsammensetning inneholdende hellepunktsnedsettende middel. Fuel composition containing a pour point depressant.

Foreliggende oppfinnelse angår en brennstoffsammensetning The present invention relates to a fuel composition

inneholdende hellepunktsnedsettende middel. containing pour point depressant.

Skjont forskjellige hellepunktsnedsettende midler er kjente og har vært anvendt, så har de hittil bare vært tilfredsstillende i forbindelse med middeldestillatbrennstoffer. Det har vært vanskelig å finne et tilfredsstillende hellepunktnedsettende middel for skifer-oljer, råoljer, restholdige brennstoffer samt forskjellige typer des-tillater. Man har nå oppdaget at visse polymerer kan anvendes som virksomme hellepunktnedsettende midler i visse hydrokarboner, f.eks. restholdige brennstoffer eller råoljer. Although various pour point depressants are known and have been used, they have so far only been satisfactory in connection with middle distillate fuels. It has been difficult to find a satisfactory pour point depressant for shale oils, crude oils, residual fuels and various types of distillates. It has now been discovered that certain polymers can be used as effective pour point depressants in certain hydrocarbons, e.g. residual fuels or crude oils.

Hellepunktet for et brennstoff eller en råolje er av relativt stor praktisk betydning. De bor ligge under en minimumstemperatur ved hvilken råoljen eller brennstoffet lagres, transporteres og brukes fordi man derved unngår vanskeligheter når brennstoffet eller oljen anvendes i praksis. The pour point of a fuel or a crude oil is of relatively great practical importance. They must be below a minimum temperature at which the crude oil or fuel is stored, transported and used because this avoids difficulties when the fuel or oil is used in practice.

I britisk patent nr. 1 068 000 beskrives et brennstoff inneholdende en liten mengde av en kopolymer av etylen og propylen hvor etylenet utgjor 80 molprosent og fortrinnsvis 60 - 75 molprosent. Den ovre grense på 80 molprosent angis som kritisk antageligvis fordi patentet angår en spesiell anvendelse av brennstoffet. Man har nå oppdaget at det ikke bare er mulig å anvende hoyere molprosentmengder av etylen, men at det er fordelaktig å anvende slike hoyere mengder. British patent no. 1 068 000 describes a fuel containing a small amount of a copolymer of ethylene and propylene where the ethylene makes up 80 mole percent and preferably 60 - 75 mole percent. The upper limit of 80 mole percent is stated as critical presumably because the patent relates to a special application of the fuel. It has now been discovered that it is not only possible to use higher mole percentage amounts of ethylene, but that it is advantageous to use such higher amounts.

Ifolge foreliggende oppfinnelse er det således tilveiebragt According to the present invention, it is thus provided

en brennstoffsammensetning inneholdende hellepunktnedsettende middel og denne brennstoffsammensetning er kjennetegnet ved at den består av en storre vektmengde av et restholdig brennstoff, et flashdestillatbrennstoff, en skiferolje eller en råolje, samt en mindre vektdel av en oljeloselig kopolymer av etylen og ett eller flere substituerte etylener, hvor eventuelle tilstedeværende lineære sidekjeder i det substituerte etylen inneholder mindre enn l8 karbonatomer, hvor kopolymeren inneholder 82-99 molprosent etylen, forutsatt at kopolymeren har en midlere molekylvekt på over 800 og forutsatt at den ikke er en dipolymer med en midlere molekylvekt på over 3000 av etylen og en vinyl- eller hydrokarbylsubstituert vinylester av en karboksylsyre, a fuel composition containing a pour point depressant and this fuel composition is characterized by the fact that it consists of a larger amount by weight of a residual fuel, a flash distillate fuel, a shale oil or a crude oil, as well as a smaller weight part of an oil-soluble copolymer of ethylene and one or more substituted ethylenes, where any linear side chains present in the substituted ethylene contain less than 18 carbon atoms, the copolymer containing 82-99 mole percent ethylene, provided that the copolymer has an average molecular weight of more than 800 and provided that it is not a dipolymer with an average molecular weight of more than 3000 of ethylene and a vinyl or hydrocarbyl substituted vinyl ester of a carboxylic acid,

idet kopolymeren eventuelt også omfatter en tredje komonomer som er en umettet ester av en mettet karboksylsyre, forutsatt at eventuelle tilstedeværende lineære sidekjeder i denne tredje komonomer inneholder mindre enn l8 karbonatomer. the copolymer possibly also comprising a third comonomer which is an unsaturated ester of a saturated carboxylic acid, provided that any linear side chains present in this third comonomer contain less than 18 carbon atoms.

Et restholdig brennstoff er definert som et brennstoff inneholdende residuer fra en destillasjon av en råolje eller en skiferolje eller blandinger av disse. Vanligvis vil det restholdige brennstoff (i det etterfølgende kun betegnet som "brennstoffet") inneholde fra ca. 10 til ca. 100 %, f.eks. fra 35 til ca» 100 vektprosent residuum, fortrinnsvis kokende over 315°0 ved atmosfærisk trykk, og vil vanligvis ha kinematiske viskositeter varierende fra 10 til 3500 cS ved 37.7°C. Viskositeten for visse voksholdige brennstoffer kan imidlertid være vanskelig å måle noyaktig ved 37-7°C, og det er velkjent at viskositeten for slike brennstoffer måles ved hjelp av viskositeten ved en hoyere temperatur. Viskositeten ved 37«7°C fåes så ved en ekstrapola-sjon når man anvender et R.E.F.U.T.A.S, viskositets-temperaturskjerna. A residual fuel is defined as a fuel containing residues from a distillation of a crude oil or a shale oil or mixtures of these. Usually, the residual fuel (hereinafter only referred to as "the fuel") will contain from approx. 10 to approx. 100%, e.g. from 35 to about 100 weight percent residue, preferably boiling above 315°C at atmospheric pressure, and will usually have kinematic viscosities varying from 10 to 3500 cS at 37.7°C. However, the viscosity of certain waxy fuels can be difficult to measure accurately at 37-7°C, and it is well known that the viscosity of such fuels is measured using the viscosity at a higher temperature. The viscosity at 37°7°C is then obtained by extrapolation when using a R.E.F.U.T.A.S, viscosity-temperature kernel.

De ekstrapolerte kinematiske viskositeter vil da falle i det foronskede område ved 37.7°C R.E.F.U.T.A.S, temperatur/viskositetsskjema er ut-formet av CI. Kelly, M.S.C. TECH. , F.I.C., M. Inst., P.T., A.M.I.A.E. , Baird & Tatlock (London) Ltd. T)et er foretrukket at brennstoffenes kinematiske viskositeter bor ligge mellom 15 og 1500 cS ved 37-7°C. Meget godt egnet er dessuten brennstoffer hvor minst 30 %, fortrinnsvis minst 60 vektprosent av brennstoffet koker over ca. 260°C ved atmosfærisk trykk. The extrapolated kinematic viscosities will then fall in the pre-explored range at 37.7°C R.E.F.U.T.A.S, temperature/viscosity chart designed by CI. Kelly, M.S.C. TECH. , F.I.C., M. Inst., P.T., A.M.I.A.E. , Baird & Tatlock (London) Ltd. It is preferred that the kinematic viscosities of the fuels should lie between 15 and 1500 cS at 37-7°C. Fuels where at least 30%, preferably at least 60% by weight of the fuel boil over approx. 260°C at atmospheric pressure.

Foreliggende brennstoff kan folgelig anvendes i forbindelse med lette, middels og tunge brennstoffer samt bunkeroljer, hvis viskositeter vanligvis varierer fra 15 - 2000 cS ved 37•7°G, men hvor den maksimale viskositet vanligvis imidlertid vil være ca. 1500 cS ved 37.7°C. Eksempler på egnede brennstoffer er beskrevet i Pt 3 Industrial and Marine Fuels of BS2689: 1957. The present fuel can therefore be used in connection with light, medium and heavy fuels as well as bunker oils, whose viscosities usually vary from 15 - 2000 cS at 37•7°G, but where the maximum viscosity will usually however be approx. 1500 cS at 37.7°C. Examples of suitable fuels are described in Pt 3 Industrial and Marine Fuels of BS2689: 1957.

Egnede brennstoffer omfatter dessuten "flashdestillatbrenn-stoffer"' som er definert som destillatbrennstoffer fremstilt ved en flashdestillasjon ved redusert trykk av resten oppnådd ved en destillasjon av råoljer ved atmosfærisk trykk. Slike brennstoffer fremstilles ved at en råolje destilleres ved atmosfærisk trykk til en bunntempera-tur på ca. 175°C, hvorved man oppnår et atmosfærisk residuum som så Suitable fuels also include "flash distillate fuels" which are defined as distillate fuels produced by a flash distillation at reduced pressure of the residue obtained by a distillation of crude oils at atmospheric pressure. Such fuels are produced by distilling a crude oil at atmospheric pressure to a bottom temperature of approx. 175°C, thereby obtaining an atmospheric residue such as

ved hjelp av "flashing" under sterkt redusert trykk oppdeles i et "■flashet" destillat og et vakuumresiduum. Under en slik flashdestillasjon vil en foroppvarmet tilforsel kontinuerlig fores inn i et flash-kammer hvor en fordampning skjer under konstante likevektsbetingelser. Gassformede og flytende produkter fjernes kontinuerlig. Under denne flashing skjer i alt vesentlig ingen fraksjonering, og den anvendte temperatur er begrenset av en mulig krakking og karbonisering. Disse sidereaksjoner begynner vanligvis å skje hvis temperaturen stiger over ca. 205°C. Flashingen utfores ved sterkt redusert trykk for. å sikre et hoyt destillatutbytte fra et gitt atmosfærisk residuum. by means of "flashing" under greatly reduced pressure is divided into a "■flashed" distillate and a vacuum residue. During such a flash distillation, a preheated supply will be continuously fed into a flash chamber where evaporation takes place under constant equilibrium conditions. Gaseous and liquid products are continuously removed. During this flashing, essentially no fractionation takes place, and the temperature used is limited by possible cracking and carbonisation. These side reactions usually start to occur if the temperature rises above approx. 205°C. The flashing is carried out at greatly reduced pressure. to ensure a high distillate yield from a given atmospheric residue.

Man kan også anvende den råolje fra hvilken brennstoffet er fremstilt, eller en skiferolje eller blandinger av disse. Råoljen kan være en voksholdig råolje, og vanligvis vil hellepunktet for slike råoljer være hoyere enn -23.3°C. You can also use the crude oil from which the fuel is produced, or a shale oil or mixtures of these. The crude oil can be a waxy crude oil, and usually the pour point of such crude oils will be higher than -23.3°C.

Det substituerte etylen er fortrinnsvis en etylenisk umettet syre eller et salt av denne, et anhydrid, en ester av en umettet karboksylsyre, et amin, en hydroksyforbindelse, et nitril, et amid eller et imid, og hvis det i alle disse forbindelser er mettede sidekjeder, så må disse inneholde mindre enn l8 karbonatomer. De substituerte etylener bor fortrinnsvis inneholde fra 3-40 karbonatomer per molekyl. The substituted ethylene is preferably an ethylenic unsaturated acid or a salt thereof, an anhydride, an ester of an unsaturated carboxylic acid, an amine, a hydroxy compound, a nitrile, an amide or an imide, and if in all these compounds there are saturated side chains , then these must contain less than l8 carbon atoms. The substituted ethylenes should preferably contain from 3 to 40 carbon atoms per molecule.

Egnede etyleniske umettede monokarboksylsyrer omfatter således akrylsyre, metakrylsyre, vinyleddiksyre, angelinsyre, tiglin-syre, undecylsyre, oljesyre og elaidinsyre. Egnede etylenisk umettede dikarboksylsyrer omfatter maleinsyre, fumarsyre, meakonsyre, citrakonsyre, itakonsyre, trans- og cis-glutakonsyrer. Man kan videre anvende andre etyleniske umettede polysyrer, f.eks. cis- og trans-akonitin-syrer. Suitable ethylenic unsaturated monocarboxylic acids thus include acrylic acid, methacrylic acid, vinylacetic acid, angelic acid, tiglic acid, undecyl acid, oleic acid and elaidic acid. Suitable ethylenically unsaturated dicarboxylic acids include maleic acid, fumaric acid, meaconic acid, citraconic acid, itaconic acid, trans- and cis-glutaconic acids. You can also use other ethylenically unsaturated polyacids, e.g. cis- and trans-aconitinic acids.

Eksempler på egnede estere av umettede syrer, f.eks. av de som er nevnt ovenfor, er C-^ til C-^ alkylestere (fortrinnsvis rett-kjedede alkylestere) av ovennevnte syrer, og man kan anvende enten mono- eller di-estere av umettede dikarboksylsyrer. Man kan videre anvende estere med forgrenede sidekjeder, f.eks. oksoestere av etylenisk umettede estere, forutsatt at disse ikke inneholder lineære sidekjeder inneholdende mer enn 17 karbonatomer. Man kan således anvende metyl-, etyl-, butyl-, isopropyl-, n-butyl-, oktyl-, 2-etylheksyl-, decyl-, dodecyl-, heptadecylestere av akryl- eller metakrylsyrer eller mono- eller di-metyl-, etyl-, n-butyl-, heksyl- eller dodecylestere av fumarsyre, maleinsyre eller citrakonsyre. Examples of suitable esters of unsaturated acids, e.g. of those mentioned above, are C-3 to C-3 alkyl esters (preferably straight-chain alkyl esters) of the above-mentioned acids, and either mono- or diesters of unsaturated dicarboxylic acids can be used. You can also use esters with branched side chains, e.g. oxoesters of ethylenically unsaturated esters, provided that these do not contain linear side chains containing more than 17 carbon atoms. One can thus use methyl, ethyl, butyl, isopropyl, n-butyl, octyl, 2-ethylhexyl, decyl, dodecyl, heptadecyl esters of acrylic or methacrylic acids or mono- or dimethyl-, ethyl, n-butyl, hexyl or dodecyl esters of fumaric acid, maleic acid or citraconic acid.

Egnede etylenisk umettede amider omfatter de som tilsvarer ovennevnte syrer, dvs. både mono- og polyamider, mens egnede anhydrider og imider er de som tilsvarer ovennevnte syrer. Egnede salter kan være ammonium- eller metallsalter, f.eks. natrium- eller kaliumsalter av ovennevnte syrer. Man kan således anvende maleinsyreanhydrid, maleinimid, akrylamid, metakrylamid, citrakonamider, itakonamid, n-alkyl-maleinimider inneholdende opptil 17 karbonatomer i eventuelt tilstedeværende lineære sidekjeder. Suitable ethylenically unsaturated amides include those corresponding to the above-mentioned acids, i.e. both mono- and polyamides, while suitable anhydrides and imides are those corresponding to the above-mentioned acids. Suitable salts can be ammonium or metal salts, e.g. sodium or potassium salts of the above-mentioned acids. One can thus use maleic anhydride, maleimide, acrylamide, methacrylamide, citraconamides, itaconamide, n-alkyl maleimides containing up to 17 carbon atoms in any linear side chains present.

Eksempler på egnede etylenisk umettede hydroksyforbindelser omfatter monoalkoholer, polyoler og fenoliske forbindelser. Egnede alkoholer som således kan anvendes er allylalkohol, but-l-en-l-ol, heks-2-en-l-ol, hydroksyetyl-metakrylat, eicos-4-en-l-ol, 1-metyl-heks-2-en-l-ol, 7-etyleicos-2-en-l-ol, eller l-l-dimetyl-heks-2-en-l-ol, dioler omfatter f.eks. but-2-en-l, 4-diol. Eksempler på egnede fenoler omfatter fenoler med en umettede sidekjede, f.eks. para-allyl-fenol (chavicol). Examples of suitable ethylenically unsaturated hydroxy compounds include monoalcohols, polyols and phenolic compounds. Suitable alcohols that can thus be used are allyl alcohol, but-l-en-l-ol, hex-2-en-l-ol, hydroxyethyl methacrylate, eicos-4-en-l-ol, 1-methyl-hex-2 -en-l-ol, 7-ethyleicos-2-en-l-ol, or 1-1-dimethyl-hex-2-en-l-ol, diols include e.g. but-2-ene-1,4-diol. Examples of suitable phenols include phenols with an unsaturated side chain, e.g. para-allyl-phenol (chavicol).

Egnede etylenisk umettede aminer og nitriler omfatter allylamin, allylcyanid, l-amino-but-2-en, l-amino-heks-5-en, 1-amino-nona-decen-l8-en, l-amino-but-3-en, dimetylaminoetyl-metakrylat, dimetyl-aminometylakrylat, dietylaminometylmetakrylat, akrylonitril og met-akrylonitril. Suitable ethylenically unsaturated amines and nitriles include allylamine, allyl cyanide, 1-amino-but-2-ene, 1-amino-hex-5-ene, 1-amino-nona-decen-18-ene, 1-amino-but-3 -ene, dimethylaminoethyl methacrylate, dimethylaminomethyl acrylate, diethylaminomethyl methacrylate, acrylonitrile and meth-acrylonitrile.

Andre eksempler på egnede substituerte etylener omfatter alfa-olefiner, alkenylalkyletere, styren eller hydrokarbylsubstituert styren, alkenylhalogenider (f.eks. et vinyl- eller allylhalogenid), umettede aldehyder eller umettede ketoner. Eksempler på alfa-olefiner er prop-l-en, but-l-en, heks-l-en, dek-l-en og dodek-l-en, nonadek-1-en, mens eksempler på egnede alkenylalkyletere er vinylmetyleter, vinyletyleter, vinyl-n-oktyleter, vinyl-n-heptadecyleter, allylmetyl-eter, allyl-n-heksyleter og allyl-n-heptadecyleter. Other examples of suitable substituted ethylenes include alpha-olefins, alkenyl alkyl ethers, styrene or hydrocarbyl substituted styrene, alkenyl halides (eg a vinyl or allyl halide), unsaturated aldehydes or unsaturated ketones. Examples of alpha-olefins are prop-1-ene, but-1-ene, hex-1-ene, dec-1-ene and dodec-1-ene, nonadec-1-ene, while examples of suitable alkenyl alkyl ethers are vinyl methyl ether, vinyl ethyl ether, vinyl n-octyl ether, vinyl n-heptadecyl ether, allyl methyl ether, allyl n-hexyl ether and allyl n-heptadecyl ether.

Egnede hydrokarbylsubstituerte styrener omfatter alkyl- (f. eks. metyl eller etyl)substituerte styrener hvor substituentene er i benzenringen eller knyttet til alfa-karbonatomet i vinylgruppen inn-til benzenringen, f.eks. oc-metylstyren, a-etylstyren, p-metylstyren, p-etylstyren, og p-n-heptadecylstyren. Suitable hydrocarbyl substituted styrenes include alkyl (e.g. methyl or ethyl) substituted styrenes where the substituents are in the benzene ring or linked to the alpha carbon atom of the vinyl group into the benzene ring, e.g. o-methylstyrene, α-ethylstyrene, p-methylstyrene, p-ethylstyrene, and p-n-heptadecylstyrene.

Eksempler på vinyl- eller allylhalogenider er vinylklorid, vinylbromid eller allylklorid. Examples of vinyl or allyl halides are vinyl chloride, vinyl bromide or allyl chloride.

Egnede umettede aldehyder og ketoner omfatter akrolein, metylvinylketon, mesityloksyd, etylvinylketon, n-heptadecylvinylketon og cinnamaldehyd. Suitable unsaturated aldehydes and ketones include acrolein, methyl vinyl ketone, mesityl oxide, ethyl vinyl ketone, n-heptadecyl vinyl ketone and cinnamaldehyde.

Ytterligere eksempler på egnede substituerte etylener er umettede estere av mettede karboksylsyrer (forutsatt at eventuelle tilstedeværende lineære sidekjeder ikke inneholder mer enn 18 karbonatomer) . Disse omfatter vinyl- eller allylestere av C-^ til C-^g monokarboksylsyrer, f.eks. vinylacetat, allylacetat, allylpropionat, vinyl-butyrat, allylstearat og isopropenylacetat. Med hensyn til disse umettede estere av mettede karboksylsyrer, og hvis den midlere molekylvekt på kopolyme"ren er over ca. 3000, så må slike estere kopolymeres ikke bare med etylen, men også med en annen monomer som ikke er en vinyl- eller hydrokarbylsubstituert vinylester av en karboksylsyre, f.eks. noen av de tidligere nevnte monomerer, dvs. esteren er en tredje kopolymer. Further examples of suitable substituted ethylenes are unsaturated esters of saturated carboxylic acids (provided that any linear side chains present do not contain more than 18 carbon atoms). These include vinyl or allyl esters of C-1 to C-3 monocarboxylic acids, e.g. vinyl acetate, allyl acetate, allyl propionate, vinyl butyrate, allyl stearate and isopropenyl acetate. With respect to these unsaturated esters of saturated carboxylic acids, and if the average molecular weight of the copolymer is above about 3000, then such esters must be copolymerized not only with ethylene, but also with another monomer that is not a vinyl or hydrocarbyl substituted vinyl ester of a carboxylic acid, eg some of the previously mentioned monomers, i.e. the ester is a third copolymer.

Eksempler på andre substituerte etylener som kan brukes er folgende: vinylsubstituerte heterocykliske forbindelser, f.eks. N-vinyl-pyrrolidon, vinylpyridin, N-vinyl-karbazol, vinylderivater av silikoner og fosforforbindelser, f.eks. di-etoksyvinylsilan, di-etylvinylfosfonat, vinyl-isotiocyanat, hydrokarbylvinyl-sulfider, sulfok-syder og sulfoner eller vinylenkarbonat. Examples of other substituted ethylenes that can be used are the following: vinyl-substituted heterocyclic compounds, e.g. N-vinyl-pyrrolidone, vinylpyridine, N-vinyl-carbazole, vinyl derivatives of silicones and phosphorus compounds, e.g. diethoxyvinylsilane, diethylvinylphosphonate, vinyl isothiocyanate, hydrocarbylvinyl sulfides, sulfoxysides and sulfones or vinylene carbonate.

Etylen kan naturligvis kopolymeres med to eller flere av de ovennevnte monomere, f.eks. vinylacetat med akrylsyre, metakrylsyre, deres metallsaltamider eller' nitriler, et vinylhalogenid med vinylmetyleter eller akrylsyre, eller N-vinyl-pyrrolidon med metylvinylketon The ethylene can of course be copolymerized with two or more of the above-mentioned monomers, e.g. vinyl acetate with acrylic acid, methacrylic acid, their metal salt amides or nitriles, a vinyl halide with vinyl methyl ether or acrylic acid, or N-vinyl pyrrolidone with methyl vinyl ketone

eller vinylmetyleter. or vinyl methyl ether.

Den resulterende polymer bor inneholde fra 99 "til 82 molprosent, fortrinnsvis fra 97 til 86 molprosent etylen. Dette er i alt vesentlig ekvivalent med kopolymeren som inneholder 95 - 40 vektprosent etylen. The resulting polymer should contain from 99 to 82 mole percent, preferably from 97 to 86 mole percent ethylene. This is substantially equivalent to the copolymer containing 95 to 40 weight percent ethylene.

En fremgangsmåte for fremstilling av disse kopolymerer omfatter at nevnte monomere fores inn i en rorformet reaktor som på for-hånd er renset med nitrogen. En mindre mengde oksygen, vanligvis fra 0.005 til 0.05 vektprosent basert på vekten av det tilstedeværende etylen, fores også inn i reaktoren. Alternativt kan man istedenfor oksygen alene anvende en peroksydinitiator, f.eks. di-t-butylperoksyd eller en blanding av peroksyder og oksygen. Videre kan man anvende et løsningsmiddel i reaksjonen (f.eks. benzen, vann, heptan, cykloheksan, aceton, metanol eller t-butylalkohol). Trykket holdes på mellom 60 og 2700 atmosfærer, fortrinnsvis mellom 135 og 2000 atmosfærer: Temperaturen bor holdes på mellom 40° og 300°C, fortrinnsvis mellom 70° og 250°C. A method for producing these copolymers comprises feeding said monomers into a tube-shaped reactor which has been previously purged with nitrogen. A smaller amount of oxygen, usually from 0.005 to 0.05 weight percent based on the weight of the ethylene present, is also fed into the reactor. Alternatively, instead of oxygen alone, a peroxide initiator can be used, e.g. di-t-butyl peroxide or a mixture of peroxides and oxygen. Furthermore, a solvent can be used in the reaction (e.g. benzene, water, heptane, cyclohexane, acetone, methanol or t-butyl alcohol). The pressure is kept at between 60 and 2700 atmospheres, preferably between 135 and 2000 atmospheres: The temperature is kept at between 40° and 300°C, preferably between 70° and 250°C.

Nevnte kopolymerer kan også fremstilles ved porsjonsvise prosesser. Slike fremgangsmåter krever et løsningsmiddel for reak-tantene, og som sådant kan man f.eks. anvende toluen, heksan, benzen, aceton, cykloheksan, t-butylalkohol eller vann. Said copolymers can also be produced by batch-wise processes. Such methods require a solvent for the reactants, and as such one can e.g. use toluene, hexane, benzene, acetone, cyclohexane, t-butyl alcohol or water.

Reaksjonsinitiatoren kan være enhver peroksydforbindelse, f. eks. di-t-butylperoksyd, lauroylperoksyd eller azoforbindelse, f.eks. azobisisobutylonitril. Temperaturen på polymerisasjonsreaksjonen er avhengig av den spesielle peroksydinitiator som anvendes, og bor være tilstrekkelig til at man får en skikkelig dekomponering av initiatoren. En slik temperatur skulle vanligvis ligge et sted mellom 40° og 300°C. For di-tert-butylperoksyd er den mest egnede temperatur et sted mellom 130° og l60°C, mens man for lauroylperoksyd best egnet anvender en temperatur mellom 60° og 120°C, trykket bor være mellom 60 og 1000 atmosfærer, fortrinnsvis mellom 75 °g 667 atmosfærer. Autoklaven eller et lignende utstyr inneholdende losningsmidlet, initiatoren og det substituerte etylen renses med nitrogen og deretter med etylen for man tilsetter en tilstrekkelig mengde etylen til å gi det onskede trykk når man oppvarmer til den onskede reaksjonstemperatur. Under polymerisasjonen tilsettes ytterligere etylen for å holde trykket på det onskede nivå. Ytterligere mengder av initiatoren og/eller losningsmidlet og/eller det substituerte etylen kan videre tilsettes under reaksjonen. Etterat reaksjonen er ferdig, blir fritt løsnings-middel og uomsatte monomerer fjernet ved destillasjon eller en annen The reaction initiator can be any peroxide compound, e.g. di-t-butyl peroxide, lauroyl peroxide or azo compound, e.g. azobisisobutylonitrile. The temperature of the polymerization reaction depends on the particular peroxide initiator used, and should be sufficient to obtain a proper decomposition of the initiator. Such a temperature would normally lie somewhere between 40° and 300°C. For di-tert-butyl peroxide, the most suitable temperature is somewhere between 130° and 160°C, while for lauroyl peroxide a temperature between 60° and 120°C is most suitable, the pressure should be between 60 and 1000 atmospheres, preferably between 75 °g 667 atmospheres. The autoclave or similar equipment containing the solvent, the initiator and the substituted ethylene is purged with nitrogen and then with ethylene to add a sufficient amount of ethylene to provide the desired pressure when heated to the desired reaction temperature. During the polymerization, additional ethylene is added to keep the pressure at the desired level. Further amounts of the initiator and/or the solvent and/or the substituted ethylene can further be added during the reaction. After the reaction is finished, free solvent and unreacted monomers are removed by distillation or another

egnet fremgangsmåte, hvorved man får den onskede polymeren tilbake. suitable method, whereby the desired polymer is recovered.

De kopolymerer som kan anvendes i foreliggende oppfinnelse, har en midlere molekylvekt fra 1000 til 60 000, f.eks. over 3000 eller • over ca. 3500 slik dette måles ved dampfaseosometri (ved å anvende Mechrolab Vapour Phase osometer modell 301A) og/eller membranosometri (ved å anvende Mechrolab membranosometer modell 501). Den midlere molekylvekt på kopolymerer anvendt i foreliggende oppfinnelse, bor fortrinnsvis være mellom 1500 og 30 000, mer spesielt mellom 4000 og 20 000. Det er underforstått"at den midlere molekylvekt på disse kopolymerer vil være avhengig av det trykk, den temperatur og den ut-gangsforbindelse som anvendes under polymerisasjonen. The copolymers that can be used in the present invention have an average molecular weight of from 1,000 to 60,000, e.g. over 3,000 or • over approx. 3500 as measured by vapor phase osometry (using Mechrolab Vapor Phase osometer model 301A) and/or membrane osometry (using Mechrolab membranosometer model 501). The average molecular weight of copolymers used in the present invention should preferably be between 1,500 and 30,000, more particularly between 4,000 and 20,000. It is understood that the average molecular weight of these copolymers will depend on the pressure, the temperature and the - transition compound used during the polymerization.

Mengden av den anvendte kopolymer bor fortrinnsvis være mellom 0.0001 og 10 %, f.eks. mellom 0.0005 og 0.5 vektprosent basert på vekten av restbrennstoffet, skiferoljen, råoljen eller flashdestillatet. The amount of the copolymer used should preferably be between 0.0001 and 10%, e.g. between 0.0005 and 0.5 percent by weight based on the weight of the residual fuel, shale oil, crude oil or flash distillate.

Kopolymeren kan også fores ned borehull til råoljen for å hindre en dannelse av parafinavsetninger, eller for å opplose eksi-sterende avsetninger på sidene i borehullet. For dette formål kan kopolymeren enten tilfores kontinuerlig eller diskontinuerlig. Kopolymeren kan også tilsettes råoljer eller residua over bakken for å lette deres bevegelse gjennom rørledninger. Kopolymeren kan f.eks. tilsettes enhver nord-afrikansk råolje for derved å senke deres hellepunkt, slik at de lettere kan pumpes. The copolymer can also be fed down the borehole to the crude oil to prevent the formation of paraffin deposits, or to dissolve existing deposits on the sides of the borehole. For this purpose, the copolymer can either be fed continuously or discontinuously. The copolymer can also be added to crude oils or residues above ground to facilitate their movement through pipelines. The copolymer can e.g. is added to any North African crude oil to lower their pour point so that they can be pumped more easily.

De benyttede kopolymerer kan også anvendes i visse typer brennstoffer som f.eks. lette drivstoffoljer, hvor deres nærvær reduserer storrelsen av de vokspårtikler som utskilles. Lette brennstoffoljer har nettopp en viss tendens til å skape problemer på grunn av denne voksutskillelse. Voksen som er tilstede som en fast fase i slike brennstoffer ved normale lagringstemperaturer og etterhvert agglo-mereres partikler av en slik storrelse at de lett kan blokkere filt-eret i brennerne, noe som resulterer i tap av brennstoff til brenneren, samt at flammen kan slukke. Kopolymerer som anvendes i foreliggende oppfinnelse kan tilsettes brennstoffer og råoljer og kan derved redu-sere vokspartiklenes storrelse, slik at brennstoffene lettere kan fores gjennom filterne. The copolymers used can also be used in certain types of fuel such as e.g. light fuel oils, where their presence reduces the size of the wax particles that are secreted. Light fuel oils have a certain tendency to create problems due to this wax separation. The wax that is present as a solid phase in such fuels at normal storage temperatures and eventually agglomerates particles of such a size that they can easily block the filter in the burners, which results in a loss of fuel to the burner, and that the flame can go out . Copolymers used in the present invention can be added to fuels and crude oils and can thereby reduce the size of the wax particles, so that the fuels can be fed through the filters more easily.

Tilsetningen av ovennevnte kopolymerer i brennstoffer, råoljer etc. kan lettes ved at man forst fremstiller kopolymerkonsentrater i egnede hydrokarbonblandinger, eller i vannemulsjoner. Eksempler på egnede løsningsmidler er de som inneholder store mengder aromatiske hydrokarboner, f.eks. toluen, xylen, eller et kerosenekstrakt av den type som inneholder storre mengder aromatiske forbindelser, og som skilles ut fra en råfraksjon av kerosen ved flytende svoveldi-oksydekstraksjon. Andre egnede løsningsmidler er vokser av den type som oppnås uten rensing eller raffinering fra avvoksningsprosesser for smøreoljer. Disse typer voks vil vanligvis ha smeltepunkter mellom 20° og 62°C og oljeinnhold fra 5-50 vektprosent. The addition of the above-mentioned copolymers in fuels, crude oils etc. can be facilitated by first preparing copolymer concentrates in suitable hydrocarbon mixtures, or in water emulsions. Examples of suitable solvents are those containing large amounts of aromatic hydrocarbons, e.g. toluene, xylene, or a kerosene extract of the type that contains large amounts of aromatic compounds, and which is separated from a crude fraction of the kerosene by liquid sulfur dioxide extraction. Other suitable solvents are waxes of the type obtained without purification or refining from dewaxing processes for lubricating oils. These types of wax will usually have melting points between 20° and 62°C and oil content from 5-50% by weight.

De benyttede kopolymerer kan anvendes i drivstoffer, råoljer, brennstoffer etc. sammen med andre additiver av den type som vanligvis anvendes i brennstoffer, f. eks .. rustinhibitorer, deemulgerings-midler, korrosjonshemmende midler, antioksydasjonsmidler eller dis-pergeringsmidler, eller andre hellepunktnedsettende midler. The copolymers used can be used in fuels, crude oils, fuels etc. together with other additives of the type that are usually used in fuels, e.g. rust inhibitors, demulsifiers, corrosion inhibitors, antioxidants or dispersants, or other pour point depressants .

Eksempel 1 Example 1

Kopolymerer av etylen og substituerte etylener ble fremstilt på følgende måte: En 1 liters autoklav av rustfritt stål og utstyrt med en magnetisk rorer ble tilsatt benzen og deretter renset med nitrogen og deretter med etylen. Autoklaven ble så oppvarmet og satt under trykk ved hjelp av etylen. En mindre mengde av det anvendte substituerte etylen ble så fort inn i autoklaven ved hjelp av en målepumpe. Autoklaven ble så i 16pet av et visst tidsrom tilsatt en løsning av 12.5 vektprosent lauroylperoksyd i benzen. Samtidig ble en mindre mengde substituert etylen tilfort i lopet av samme tidsrom. Temperaturen og trykket i autoklaven ble holdt i alt vesentlig konstant under reaksjonen. Etterat peroksydtilsetningen var fullstendig, ble reak-sjonsblandingen avkjolt og trykket senket. Fritt løsningsmiddel og uomsatte monomere ble fjernet ved stripping, og derved å oppnå de , onskede kopolymerer i autoklaven. Copolymers of ethylene and substituted ethylenes were prepared as follows: A 1 liter stainless steel autoclave equipped with a magnetic stirrer was charged with benzene and then purged with nitrogen and then with ethylene. The autoclave was then heated and pressurized with ethylene. A small amount of the substituted ethylene used was then quickly introduced into the autoclave by means of a metering pump. A solution of 12.5% by weight lauroyl peroxide in benzene was then added to the autoclave for a certain period of time. At the same time, a smaller amount of substituted ethylene was added during the same period of time. The temperature and pressure in the autoclave were kept essentially constant during the reaction. After the peroxide addition was complete, the reaction mixture was cooled and the pressure was reduced. Free solvent and unreacted monomers were removed by stripping, thereby obtaining the desired copolymers in the autoclave.

Presise reaksjonsbetingelser for hver enkelt kopolymer er angitt i tabell I. Precise reaction conditions for each individual copolymer are indicated in Table I.

Enkelte av de fremstilte kopolymerer ble tilsatt i mengder tilsvarende en 0.1 vektprosent konsentrasjon til en lett brenselolje-holdig rest med et ovre hellepunkt på +10°C (bestemt ved Institute of Petroleum metode 15/67), en viskositet på 26.7 cS ved 50°C og 4.3.7 cS ved 37«7°0, et karboninnhold på 86.3 vektprosent og et hydrogeninnhold på 12.4 vektprosent samt en spesifikk vekt ved 15°C på 0.921. Some of the copolymers produced were added in amounts corresponding to a 0.1% by weight concentration to a light fuel oil-containing residue with an upper pour point of +10°C (determined by Institute of Petroleum method 15/67), a viscosity of 26.7 cS at 50° C and 4.3.7 cS at 37«7°0, a carbon content of 86.3 weight percent and a hydrogen content of 12.4 weight percent and a specific gravity at 15°C of 0.921.

Det ovre hellepunkt slik dette ble bestemt ved Institute of Petroleum metode 15/67 ble målt for hver blanding av kopolymeren og den lette brenselolje. The upper pour point as determined by Institute of Petroleum method 15/67 was measured for each mixture of the copolymer and the light fuel oil.

Resultatene er angitt i tabell I, og det fremgår at det ovre hellepunkt for blandingen av lett brenselolje og kopolymeren ble i hvert tilfelle redusert fra det ovre hellepunkt på +10°C for brenseloljen alene. The results are given in Table I, and it appears that the upper pour point for the mixture of light fuel oil and the copolymer was in each case reduced from the upper pour point of +10°C for the fuel oil alone.

Enkelte av de fremstilte kopolymerer ble tilsatt i mengder tilsvarende en 0.15 vektprosents konsentrasjon til et restbrennstoff fremstilt fra en nord-afrikansk råolje ved en destillasjon til en sluttdamptemperatur på 375°c« Dette brennstoff hadde et ovre hellepunkt på 37.7°C slik dette kunne bestemmes med Institute of Petroleum Method 15/67, en viskositet på 325.5 cS ved 50°C, et karboninnhold på 86.6 vektprosent samt et hydrogeninnhold på 12.8 vektprosent. Den kinematiske viskositet for dette brennstoff kunne ikke bestemmes ved 37«7°C. Det bestod i alt vesentlig av 100 % residua. Some of the copolymers produced were added in amounts corresponding to a 0.15 percent by weight concentration to a residual fuel produced from a North African crude oil by distillation to a final vapor temperature of 375°C. This fuel had an upper pour point of 37.7°C as determined by Institute of Petroleum Method 15/67, a viscosity of 325.5 cS at 50°C, a carbon content of 86.6 weight percent and a hydrogen content of 12.8 weight percent. The kinematic viscosity of this fuel could not be determined at 37-7°C. It essentially consisted of 100% residue.

Enkelte av de fremstilte kopolymerer ble tilsatt i mengder tilsvarende 0.05 vektprosents konsentrasjon til en nord-afrikansk råolje med et ovre hellepunkt på 0.5°C, en tetthet (°API) på 40.2 samt en kinematisk viskositet ved 37.7°C på 3.6 cS. Some of the copolymers produced were added in amounts corresponding to a concentration of 0.05% by weight to a North African crude oil with an upper pour point of 0.5°C, a density (°API) of 40.2 and a kinematic viscosity at 37.7°C of 3.6 cS.

Resultatene fra disse blandinger av restbrennstoff eller råolje med nevnte kopolymerer er angitt i tabell I, og det fremgår at det ovre hellepunkt for de enkelte blandinger ble i hvert tilfelle redusert fra de ovre hellepunkt på 43.3° og 0.5°C (slik dette kunne bestemmes ved Institute of Petroleum metode 15/67). The results from these mixtures of residual fuel or crude oil with said copolymers are shown in Table I, and it appears that the upper pour point for the individual mixtures was in each case reduced from the upper pour points of 43.3° and 0.5°C (as this could be determined by Institute of Petroleum method 15/67).

Eksempel 2 Example 2

Enkelte kommersielt tilgjengelige etylen/etylakrylat og etylen/isobutylakrylat-kopolymerer ble tilsatt i mengder tilsvarende en Certain commercially available ethylene/ethyl acrylate and ethylene/isobutyl acrylate copolymers were added in amounts corresponding to a

0.02 vektprosents konsentrasjon til en lett brennstoffolje av den type som er beskrevet i eksempel 1. De resultater som er angitt i tabell II nedenfor, viser at de ovre hellepunkt for blandinger av nevnte olje og kopolymer, er lavere enn den man finner i oljen alene. (+10°C). 0.02 weight percent concentration to a light fuel oil of the type described in example 1. The results given in Table II below show that the upper pour points for mixtures of said oil and copolymer are lower than that found in the oil alone. (+10°C).

Eksempel 3 Example 3

Forskjellige etylen/substituerte etylenkopolymerer ble fremstilt i en autoklav i alt vesentlig ved den fremgangsmåte som er beskrevet i eksempel 1, og de ble tilsatt lette drivstoffoljer samt restbrennstoffer av den type som er beskrevet i eksempel 1, samt til en råolje med et ovre hellepunkt på +24°C', en viskositet på 5«73 cS ved 50°C, samt en ekstrapolert viskositet ved 37«7°c på 7•5^ cS og som inneholdt 86.5 vektprosent karbon og 13.1 vektprosent hydrogen. Various ethylene/substituted ethylene copolymers were produced in an autoclave essentially by the method described in example 1, and they were added to light fuel oils and residual fuels of the type described in example 1, as well as to a crude oil with an upper pour point of +24°C', a viscosity of 5«73 cS at 50°C, as well as an extrapolated viscosity at 37«7°c of 7•5^ cS and which contained 86.5 weight percent carbon and 13.1 weight percent hydrogen.

Det ovre hellepunkt for restoljen samt råoljen for og etter tilsetning av kopolymeren ble målt ved Institute of Petroleum metode 15/67. Det ovre hellepunkt for den lette drivstoffoljen for og etter tilsetning av kopolymeren, ble bestemt ved en modifisert metode. I denne modifiserte fremgangsmåte ble en prove av oljen oppvarmet til 93°C, fjernet fra badet og avkjoFt til 48.8°C. Proven ble deretter plasert .i et kjolebad ved en temperatur på -34 C og avkjolt til - TJ . 7 C. Proven ble så fjernet fra badet, gjenoppvarmet til 93°C ved å anvende et bad på 95«5°^>°g etter å ha vært på denne temperatur i ca. 1/2 time ble den fjernet og luftavkjolt til 32.2°C. Proven ble så plasert i et bad hvis temperatur var -1.1°C, og stivnepunktet ble deretter målt ifolge Institute of Petroleum metode 15/67. Hellepunktet for den lette brenseloljen var ved denne fremgangsmåte +0.5°C. The upper pour point for the residual oil as well as the crude oil before and after addition of the copolymer was measured by Institute of Petroleum method 15/67. The upper pour point of the light fuel oil before and after addition of the copolymer was determined by a modified method. In this modified method, a sample of the oil was heated to 93°C, removed from the bath and cooled to 48.8°C. The sample was then placed in a dressing bath at a temperature of -34 C and cooled to - TJ. 7 C. The sample was then removed from the bath, reheated to 93°C using a 95°5°^>°g bath after being at this temperature for approx. 1/2 hour it was removed and air-cooled to 32.2°C. The sample was then placed in a bath whose temperature was -1.1°C, and the solidification point was then measured according to Institute of Petroleum method 15/67. The pour point for the light fuel oil in this method was +0.5°C.

Reaksjonsbetingelsene og de oppnådde hellepunkter er angitt i tabell III. The reaction conditions and the obtained pour points are given in Table III.

Eksempel 4 Example 4

Fremstilling av kopolymerer Preparation of copolymers

Fem forskjellige etylen/vinylacetat/metakrylsyrekopolymerer ble fremstilt, hver enkelt ved en porsjonsvis fremgangsmåte, ved å anvende forskjellige mengder vinylacetat og metakrylsyre. Five different ethylene/vinyl acetate/methacrylic acid copolymers were prepared, each by a batch process, using different amounts of vinyl acetate and methacrylic acid.

En 1 liters autoklav av rustfritt stål utstyrt med en magnet-rorer ble tilsatt 150 ml benzen og 15 ml av en blanding på 99-5 volumprosent vinylacetat og 0.5 volumprosent metakrylsyre. Autoklaven ble så renset med nitrogen og deretter med etylen, hvoretter autoklaven ble oppvarmet til 80°C og satt under trykk med etylen til et trykk på 200 atmosfærer. 15O ml av en blanding på 99«5 volumprosent vinylacetat og 0.5 volumprosent metakrylsyre ble tilsatt via en pumpe i lopet av 6 timer. Samtidig ble en losning av 8 g lauroylperoksyd i 92 ml benzen tilfort reaktoren i lopet av 6.5 timer. Temperaturen ble holdt på 80°C og trykket på 200 atmosfærer under reaksjonen. Etterat lauroyl-peroksydtilsetningen var fullstendig, ble reaksjonsmassen avkjolt og trykket senket. Fritt løsningsmiddel og uomsatte monomerer ble fjernet ved stripping, hvorved man fikk kopolymer 1. Kopolymerer 2, 3, 4 °g 5 ble fremstilt på samme måte ved å anvende de reaksjonsbetingelser og de tilsetninger som er angitt i tabell IV. A 1 liter stainless steel autoclave equipped with a magnetic stirrer was charged with 150 ml of benzene and 15 ml of a mixture of 99-5 volume percent vinyl acetate and 0.5 volume percent methacrylic acid. The autoclave was then purged with nitrogen and then with ethylene, after which the autoclave was heated to 80°C and pressurized with ethylene to a pressure of 200 atmospheres. 150 ml of a mixture of 99.5 volume percent vinyl acetate and 0.5 volume percent methacrylic acid was added via a pump over the course of 6 hours. At the same time, a solution of 8 g of lauroyl peroxide in 92 ml of benzene was added to the reactor over the course of 6.5 hours. The temperature was maintained at 80°C and the pressure at 200 atmospheres during the reaction. After the lauroyl peroxide addition was complete, the reaction mass was cooled and the pressure was reduced. Free solvent and unreacted monomers were removed by stripping, whereby copolymer 1 was obtained. Copolymers 2, 3, 4 °g 5 were prepared in the same way by using the reaction conditions and the additions indicated in Table IV.

Kopolymerer 1, 2, 3> 4 °g 5 hadde folgende egenskaper. Copolymers 1, 2, 3 > 4 °g 5 had the following properties.

Polymeregenskaper. Polymer properties.

25 vektprosents kopolymerkonsentrasjoner i toluen ble fremstilt ved å anvende ovennevnte kopolymere fra 1 til 5>°g disse konsentrater ble anvendt for å fremstille blandinger av kopolymere og lette brennstoffoljer og restbrennstoffer slik dette er beskrevet i eksempel 1. 25 percent by weight copolymer concentrations in toluene were prepared by using the above-mentioned copolymers from 1 to 5% g of these concentrates were used to prepare mixtures of copolymers and light fuel oils and residual fuels as described in example 1.

Med forskjellige konsentrasjoner av polymere 1, 2, 3, 4 og With different concentrations of polymers 1, 2, 3, 4 and

5 målte man hellepunktnedsettelsen (slik hellepunktet kunne bestemmes ved Institute of Petroleum Method 15/67), og sammenholdt dette med hellepunktet for de rene oljer. 5, the pour point reduction was measured (so that the pour point could be determined by Institute of Petroleum Method 15/67), and this was compared with the pour point of the pure oils.

Eksempel V Example V

I dette eksempel ble det anvendt fire kopolymere, og disse ble tilsatt i forskjellige konsentrasjoner til to forskjellige brennstoffer og en råolje. In this example, four copolymers were used, and these were added in different concentrations to two different fuels and a crude oil.

De fire kopolymere var vilkårlige etylen/vinylacetat/metakrylsyre-kopolymere med de egenskaper som er angitt i tabell VT. The four copolymers were random ethylene/vinyl acetate/methacrylic acid copolymers with the properties indicated in Table VT.

Bemerkninger tii tabell VI Remarks on table VI

(1) Molekylvekt bestemt i toluen ved 65°C ved å anvende et Mechrolab membranosometer modell 501. (2) Molekylvekt bestemt i toluen ved 37°C under anvendelse av et Mechrolab dampfaseosometer modell 301A. (1) Molecular weight determined in toluene at 65°C using a Mechrolab membranosometer model 501. (2) Molecular weight determined in toluene at 37°C using a Mechrolab vapor phase osometer model 301A.

Det ble fremstilt 25 vektprosents kopolymerkonsentrater i petroleumekstrakter, og disse konsentrater ble brukt for å fremstille blandinger av kopolymere og den lette brennstoffolje og restbrennstoffet som er beskrevet i eksempel 1 samt en råolje (tabell VII). 25 percent by weight copolymer concentrates in petroleum extracts were prepared, and these concentrates were used to prepare mixtures of copolymers and the light fuel oil and the residual fuel described in Example 1 as well as a crude oil (Table VII).

Råoljen var en nord-afrikansk råolje med et ovre hellepunkt på +0.5°C (slik dette kunne bestemmes ved Institute of Petroleum Method 15/67), en tetthet i °API på 4-0.2, samt en kinematisk viskositet ved 37.7°C på 3.6 cS. The crude oil was a North African crude oil with an upper pour point of +0.5°C (as determined by the Institute of Petroleum Method 15/67), a density in °API of 4-0.2, and a kinematic viscosity at 37.7°C of 3.6 cS.

Claims (25)

1. Brennstoffsammensetning inneholdende hellepunktnedsettende middel, karakterisert ved at den består av en storre vektmengde av et restholdig brennstoff, et flashdestillatbrennstoff, en skiferolje eller en råolje, samt en mindre vektdel av en oljelose-1. Fuel composition containing a pour-point depressant, characterized in that it consists of a larger amount by weight of a residual fuel, a flash distillate fuel, a shale oil or a crude oil, as well as a smaller weight part of an oil-free lig kopolymer av etylen og ett ellere flere substituerte etylener, hvor eventuelle tilstedeværende lineære sidekjeder i det substituerte etylen inneholder mindre enn 18 karbonatomer, hvor kopolymeren inneholder 82 - 99 molprosent etylen, forutsatt at kopolymeren har en midlere molekylvekt på over 800 og forutsatt at den ikke er en dipolymer med en midlere molekylvekt på over 3000 av etylen og en vinyl- eller hydrokarbylsubstituert vinylester av en karboksylsyre, idet kopolymeren eventuelt også omfatter en tredje komonomer som er en umettet ester av en mettet karboksylsyre, forutsatt at eventuelle tilstedeværende lineære sidekjeder i denne tredje komonomer inneholder mindre enn l8 karbonatomer. equal copolymer of ethylene and one or more substituted ethylenes, where any linear side chains in the substituted ethylene contain less than 18 carbon atoms, where the copolymer contains 82 - 99 mole percent ethylene, provided that the copolymer has an average molecular weight of more than 800 and provided that it does not is a dipolymer with an average molecular weight of over 3000 of ethylene and a vinyl- or hydrocarbyl-substituted vinyl ester of a carboxylic acid, the copolymer possibly also comprising a third comonomer which is an unsaturated ester of a saturated carboxylic acid, provided that any linear side chains present in this third comonomers contain less than l8 carbon atoms. 2. Sammensetning ifolge krav 1, karakterisert ved at den inneholder 35 - 100 vektprosent restolje. 2. Composition according to claim 1, characterized in that it contains 35 - 100 weight percent residual oil. 3. Sammensetning ifolge krav 1 eller 2, karakterisert ved at den har en kinematisk viskositet fra 10 - 3500 cS ved 37.7°C, fortrinnsvis mellom 15 og 1500 cS ved 37.7°C. 3. Composition according to claim 1 or 2, characterized in that it has a kinematic viscosity from 10 - 3500 cS at 37.7°C, preferably between 15 and 1500 cS at 37.7°C. 4. Sammensetning ifolge ethvert av de forannevnte krav, karakterisert ved at minst 60 vektprosent av brennsto ffet koker over 260°C ved atmosfærisk trykk. 4. Composition according to any of the aforementioned requirements, characterized in that at least 60 percent by weight of the fuel boils above 260°C at atmospheric pressure. 5. Sammensetning ifolge ethvert av de forannevnte krav, karakterisert ved at kopolymeren er avledet fra etylen og en etylenisk umettet mono- eller di-karboksylsyre, et anhydrid, et metallsalt, et amid eller et imid av disse, fortrinnsvis akryl- eller metakrylsyrer eller deres metallsalter eller amider. 5. Composition according to any of the aforementioned claims, characterized in that the copolymer is derived from ethylene and an ethylenically unsaturated mono- or di-carboxylic acid, an anhydride, a metal salt, an amide or an imide of these, preferably acrylic or methacrylic acids or their metal salts or amides. 6. Sammensetning ifolge ethvert av kravene 1 - 4>karakterisert ved at kopolymeren er avledet fra etylen og en C-^- til C-^y-ester av akryl- eller metakrylsyre, fortrinnsvis metyl-, etyl-, isopropyl- eller oktylestere av akryl- eller metakrylsyrer. 6. Composition according to any of claims 1 - 4> characterized in that the copolymer is derived from ethylene and a C-^- to C-^y ester of acrylic or methacrylic acid, preferably methyl, ethyl, isopropyl or octyl esters of acrylic or methacrylic acids. 7. Sammensetning ifolge ethvert av kravene 1-4, karakterisert ved at kopolymeren er avledet fra etylen og et a-olefin, styren eller et hydrokarbylsubstituert styren hvor alkyl-gruppen er knyttet til benzenringen eller til oc-karbonatomet i vinylgruppen nærmest benzenringen, fortrinnsvis et metyl- eller etylsubsti-tuert styren. 7. Composition according to any one of claims 1-4, characterized in that the copolymer is derived from ethylene and an α-olefin, styrene or a hydrocarbyl-substituted styrene where the alkyl group is linked to the benzene ring or to the oc-carbon atom in the vinyl group closest to the benzene ring, preferably a methyl- or ethyl-substituted styrene. 8. Sammensetning ifolge ethvert av kravene 1 - 4>karakterisert ved at kopolymeren er avledet fra etylen og et vinyl- eller allylhalogenid. 8. Composition according to any one of claims 1 - 4> characterized in that the copolymer is derived from ethylene and a vinyl or allyl halide. 9. Sammensetning ifolge ethvert av kravene 1-4, karakterisert ved at kopolymeren er avledet fra etylen og en alkenylalkyleter, fortrinnsvis vinylmetyleter eller vinyletyleter. 9. Composition according to any one of claims 1-4, characterized in that the copolymer is derived from ethylene and an alkenyl alkyl ether, preferably vinyl methyl ether or vinyl ethyl ether. 10. Sammensetning ifolge ethvert av kravene 1 - 4> karakterisert ved at kopolymeren er avledet fra etylen og C-^-til C-^y-alkylestere av enten fumarsyre, maleinsyre, citrakonsyre, ita-konsyre, akrylsyre eller metakrylsyre, fortrinnsvis heksyl- eller do-decylesterene av fumarsyre eller maleinsyre. 10. Composition according to any one of claims 1 - 4>, characterized in that the copolymer is derived from ethylene and C-^- to C-^y alkyl esters of either fumaric acid, maleic acid, citraconic acid, itaconic acid, acrylic acid or methacrylic acid, preferably hexyl- or the dodecyl esters of fumaric or maleic acid. 11. Sammensetning ifolge ethvert av kravene l-4>karakterisert ved at kopolymeren er avledet fra etylen og et umettet aldehyd, eller et umettet keton, fortrinnsvis fra akrolein eller metylvinylketon. 11. Composition according to any one of claims 1-4> characterized in that the copolymer is derived from ethylene and an unsaturated aldehyde, or an unsaturated ketone, preferably from acrolein or methyl vinyl ketone. 12. Sammensetning ifolge ethvert av kravene 1-4» k a r a k-terisert ved at kopolymeren er avledet fra etylen og enten N-vinyl-pyrrolidon, vinyl-pyridin, N-vinyl-karbazol, vinyl-isotiocyanat eller vinylen-karbonat. 12. Composition according to any of claims 1-4, characterized in that the copolymer is derived from ethylene and either N-vinyl-pyrrolidone, vinyl-pyridine, N-vinyl-carbazole, vinyl-isothiocyanate or vinylene-carbonate. 13. Sammensetning ifolge ethvert av kravene 1 - 4, karakterisert ved at kopolymerén er avledet fra etylen og vinylderivater av enten silikoner eller fosforforbindelser, fortrinnsvis di-etoksyvinylsilan eller di-etylvinylfosfonat. 13. Composition according to any one of claims 1 - 4, characterized in that the copolymer is derived from ethylene and vinyl derivatives of either silicones or phosphorus compounds, preferably diethoxyvinylsilane or diethylvinylphosphonate. 14. Sammensetning ifolge ethvert av kravene 1-4, karakterisert ved at kopolymeren er avledet fra etylen og en etylenisk umettet hydroksyforbindelse, fortrinnsvis allylalkohol. 14. Composition according to any one of claims 1-4, characterized in that the copolymer is derived from ethylene and an ethylenically unsaturated hydroxy compound, preferably allyl alcohol. 15. Sammensetning ifolge ethvert av kravene 1 - 4>karakterisert ved at kopolymeren er avledet fra etylen og et etylenisk umettet amin eller nitril, fortrinnsvis allylamin eller allylcyanid. 15. Composition according to any one of claims 1 - 4> characterized in that the copolymer is derived from ethylene and an ethylenically unsaturated amine or nitrile, preferably allylamine or allyl cyanide. 16. Sammensetning ifolge ethvert av kravene 1-4, karakterisert ved at kopolymeren er avledet fra (l) etylen, (2) enten akrylsyre eller metakrylsyre eller deres metallsalter, amider eller nitriler, og (3) vinylacetat. 16. Composition according to any one of claims 1-4, characterized in that the copolymer is derived from (1) ethylene, (2) either acrylic acid or methacrylic acid or their metal salts, amides or nitriles, and (3) vinyl acetate. 17. Sammensetning ifolge ethvert av kravene 1-4, karakterisert ved at kopolymeren er avledet fra (l) etylen, (2) et vinylhalogenid og (3) enten'vinylmetyleter eller akrylsyre. 17. Composition according to any one of claims 1-4, characterized in that the copolymer is derived from (1) ethylene, (2) a vinyl halide and (3) either vinyl methyl ether or acrylic acid. 18. Sammensetning ifolge ethvert av kravene 1-4, karakterisert ved at kopolymeren er avledet fra (l) etylen, ( 2) N-vinyl-pyrrolidon og (3) enten metylvinylketon eller vinylmetyleter. 18. Composition according to any of claims 1-4, characterized in that the copolymer is derived from (l) ethylene, (2) N-vinyl pyrrolidone and (3) either methyl vinyl ketone or vinyl methyl ether. 19. Sammensetning ifolge krav 1, karakterisert ved at den tredje komonomer enten er en vinyl- eller en allylester av en C^- til C-^g-monokarboksylsyre, fortrinnsvis vinylacetat. 19. Composition according to claim 1, characterized in that the third comonomer is either a vinyl or an allyl ester of a C 1 - to C 2 -monocarboxylic acid, preferably vinyl acetate. 20. Sammensetning ifolge ethvert av de forannevnte krav, karakterisert ved at kopolymeren har en midlere molekylvekt på mellom 1000 og 60 000 slik dette kan måles ved dampfaseosometri. 20. Composition according to any of the aforementioned claims, characterized in that the copolymer has an average molecular weight of between 1,000 and 60,000 as this can be measured by vapor phase osometry. 21. Sammensetning ifolge krav 20, karakterisert ved at kopolymeren har en midlere molekylvekt på over 3000, fortrinnsvis over 3500. 21. Composition according to claim 20, characterized in that the copolymer has an average molecular weight of over 3000, preferably over 3500. 22. Sammensetning ifolge krav 21, karakterisert ved at kopolymeren har en midlere molekylvekt på mellom 4000 og 20 000. 22. Composition according to claim 21, characterized in that the copolymer has an average molecular weight of between 4,000 and 20,000. 23. Sammensetning ifolge ethvert av de forannevnte krav, karakterisert ved at det substituerte etylen inneholder mellom 3 og 40 karbonatomer per molekyl. 23. Composition according to any of the aforementioned claims, characterized in that the substituted ethylene contains between 3 and 40 carbon atoms per molecule. 24. Sammensetning ifolge ethvert av de forannevnte krav, karakterisert ved at kopolymeren inneholder fra 86 til 97 molprosent etylen. 24. Composition according to any one of the aforementioned claims, characterized in that the copolymer contains from 86 to 97 mole percent ethylene. 25. Sammensetning ifolge ethvert av de forannevnte krav, karakterisert ved at mengdeforholdet av kopolymeren varierer fra 0.0001 og 10 vektprosent basert på vekten av det restholdige brennstoff, flashdestillatet, råoljen eller skiferoljen.25. Composition according to any one of the aforementioned claims, characterized in that the proportion of the copolymer varies from 0.0001 and 10 percent by weight based on the weight of the residual fuel, the flash distillate, the crude oil or the shale oil.
NO476768A 1967-11-30 1968-11-28 NO122715B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB5463167 1967-11-30
GB4325468A GB1242535A (en) 1967-11-30 1967-11-30 Fuel oil compositions

Publications (1)

Publication Number Publication Date
NO122715B true NO122715B (en) 1971-08-02

Family

ID=26265093

Family Applications (1)

Application Number Title Priority Date Filing Date
NO476768A NO122715B (en) 1967-11-30 1968-11-28

Country Status (8)

Country Link
BE (1) BE724569A (en)
CA (1) CA930166A (en)
DE (1) DE1811577A1 (en)
ES (1) ES360793A2 (en)
FR (1) FR96138E (en)
NL (1) NL6817021A (en)
NO (1) NO122715B (en)
SE (1) SE355597B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010006A (en) * 1969-05-09 1977-03-01 Exxon Research And Engineering Company Flow improvers
GB1382045A (en) * 1971-03-05 1975-01-29 Shell Int Research Waxy crude oil compositions
DE3112456A1 (en) * 1981-03-28 1982-10-07 Hoechst Ag, 6000 Frankfurt "METHOD FOR IMPROVING THE FLOWABILITY OF MINERAL OILS"
DE3921279A1 (en) * 1989-06-29 1991-01-03 Hoechst Ag METHOD FOR IMPROVING THE FLOWABILITY OF MINERAL OILS AND MINERAL OIL DISTILLATES

Also Published As

Publication number Publication date
BE724569A (en) 1969-05-28
ES360793A2 (en) 1970-10-16
NL6817021A (en) 1969-06-03
CA930166A (en) 1973-07-17
FR96138E (en) 1972-05-19
SE355597B (en) 1973-04-30
DE1811577A1 (en) 1970-01-02

Similar Documents

Publication Publication Date Title
US3841850A (en) Hydrocarbon oil containing ethylene copolymer pour depressant
US3660057A (en) Increasing low temperature flowability of middle distillate fuel
US3620696A (en) Fuel oil with improved flow properties
NO178769B (en) Terpolymerisates of ethylene, their preparation and use as additives for mineral oil distillates, and mineral oil distillates
US3776247A (en) Process for the preparation of a crude-oil composition with a depressed pour point
US5039432A (en) Copolymers of (meth) acrylic acid esters as flow improvers in oils
US3642459A (en) Copolymers of ethylene with unsaturated esters and oil compositions containing said copolymers
US6969746B2 (en) Process for the preparation of ethylene copolymers, and their use as additives to mineral oil and mineral oil distillates
CA1071867A (en) Polymer combinations useful in distillate hydrocarbon oils to improve cold flow properties
US3694176A (en) Polymers comprising ethylene and ethylenically unsaturated dicarboxylic acids or esters thereof,and oil compositions containing said polymers
NO310826B1 (en) Terpolymerisates of ethylene, their process for preparation, mixtures as well as mineral oil or mineral oil distillates of the same
US4663491A (en) Copolymers of n-alkyl acrylates and maleic anhydride and their use as crystallization inhibitors for paraffin-bearing crude oils
US3640691A (en) Enhancing low-temperature flow properties of fuel oil
JP2545585B2 (en) Polymer flow improver for middle distillates
US3638349A (en) Oil compositions containing copolymers of ethylene and vinyl esters of c{11 to c{11 monocarboxylic acid ethylenically unsaturated
US3454379A (en) Hydrocarbon oil composition having improved low temperature pumpability
NO145725B (en) MEDIUM OIL OIL CONDITIONS, WITH IMPROVED FILTERABILITY AND FLOW CONDITIONS.
US3554897A (en) Antifoulant additive of n-containing methacrylate copolymers
JP3499244B2 (en) Ethylene-based copolymers and their use as flow improvers in mineral oil middle distillates
NO122715B (en)
US6599335B1 (en) Copolymers based on ethylene and unsaturated carboxylic esters and their use as mineral oil additives
CA2020571A1 (en) Additives for diesel fuel
US3832150A (en) Fuel oil with improved low temperature flowability
US3812034A (en) Pour point depression
AU610700B2 (en) Copolymers of acrylic and/or methacrylic acid esters as flow improvers