KR940009666B1 - Temperature revision method of thermo-couple - Google Patents
Temperature revision method of thermo-couple Download PDFInfo
- Publication number
- KR940009666B1 KR940009666B1 KR1019920026478A KR920026478A KR940009666B1 KR 940009666 B1 KR940009666 B1 KR 940009666B1 KR 1019920026478 A KR1019920026478 A KR 1019920026478A KR 920026478 A KR920026478 A KR 920026478A KR 940009666 B1 KR940009666 B1 KR 940009666B1
- Authority
- KR
- South Korea
- Prior art keywords
- thermocouple
- temperature
- short
- thermocouples
- shorted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Blast Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
내용 없음.No content.
Description
제 1 도는 일반적인 열전대의 배치상태를 나타내는 노저부의 단면도1 is a cross-sectional view of a bottom portion showing a general thermocouple arrangement
제 2 도는 일반적인 열전대의 배치상태를 나타내는 동심원2 is a concentric circle showing a general thermocouple arrangement
제 3 도는 본 발명에 따른 노저 열전대의 온도보정흐름도3 is a temperature correction flow chart of the bottom thermocouple according to the present invention
제 4a,b,c 및 d 도는 본 발명에 따른 각 경우의 노저저부 열전대의 보정온도그래프4a, b, c and d are graphs of correction temperature graphs of the bottom-bottom thermocouple in each case according to the present invention;
제 5a,b,c 및 d 도는 제 4a,b,c 및 d 도의 보정된 온도와 실측온도의 비교도이다.5a, b, c and d are comparisons between the measured temperature and the measured temperature of the 4a, b, c and d degrees.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1, 3 : 열전대 2 : 내화벽돌1, 3: thermocouple 2: firebrick
본 발명은 고로 노저부에 매설된 열전대의 측정온도를 이용하여 노저연와의 잔존두께 및 옹고층의 두께를 추정하는 방법에 관한 것으로, 특히 노저부에 매설된 열전대의 단락시 단락된 열전대의 온도를 보정하여 노저연와의 잔존두께 및 응고층의 두께를 추정하는 방법에 관한 것이다.The present invention relates to a method for estimating the remaining thickness with the bottom edge and the thickness of the reinforced layer using the measured temperature of the thermocouple embedded in the bottom of the blast furnace, in particular the temperature of the thermocouple short-circuited in the short circuit of the thermocouple embedded in the bottom The present invention relates to a method for estimating the remaining thickness with the bottom edge and the thickness of the solidified layer.
일반적으로 내화벽돌용 탄화연와로 구성되는 고로 노저부에는 고로조업에서 생산되는 용선과 부산물인 슬래그(slag)가 고온상태로 존재하고 있으므로 초기고로 건설시에는 연와가 충분한 두께로 축조되어 있지만 고로가 가동되면서 연와는 용선에 의해 침식되어 연와의 잔존 두께가 얇아진다. 그리고 응고층은 고로 내부의 열변등에 의해서 잔존연와위에 형성된다. 따라서, 실제 고로조업에서는 잔존연와의 두께 및 응고층의 두께를 예측 또는 실측하여 항상 관리할 필요가 있다.In general, in the blast furnace bottom part, which is composed of carbide batters for refractory bricks, the molten iron produced in the blast furnace industry and slag, a by-product, exist at a high temperature. As a result, the lead is eroded by the molten iron and the remaining thickness of the lead becomes thin. And the solidification layer is formed on the remaining edge due to heat fluctuations inside the blast furnace. Therefore, in actual blast furnace operations, it is necessary to always predict and measure the thickness of the residual lead and the thickness of the solidification layer.
한편, 노저벽부의 열전대(thermocouple)(1)는 제 1 도에 도시한 바와 같이 원주방향으로 균일하게 배치되어 있고 내화벽돌(2)에 100-200mm 삽입되어 있으며 노저저부의 열전대(3)는 높이방향으로 3단의 위치에 원주방향 및 반경방향별로 삽입되어 있다. 이와같이 배치된 열전대(1), (3)의 온도를 기준으로 노저연와 및 노저부의 열적인 상태가 관리되고 있다. 그러나 열전대가 단락될 경우, 노저벽부에 설치된 열전대(1)는 보수가 가능하지만 노저저부에 설치된 열전대(3)는 교체가 불가능하게 된다.On the other hand, the thermocouple 1 of the bottom wall part is uniformly arranged in the circumferential direction as shown in FIG. 1 and inserted 100-200 mm into the refractory brick 2, and the thermocouple 3 of the bottom bottom part has a height. It is inserted for each of the circumferential direction and the radial direction at the position of three stages in the direction. The thermal states of the bottom edge and the bottom portion are managed based on the temperatures of the thermocouples 1 and 3 arranged in this way. However, when the thermocouple is short-circuited, the thermocouple 1 installed in the bottom wall can be repaired, but the thermocouple 3 installed in the bottom of the bottom can not be replaced.
종래 고로 노저부의 잔존연와 두께 및 응고층 두께를 추정하는 방법으로는 일본 공개특허 공보 소 56-163207에 개시된 일차원적인 방법이 있다. 이 방법은 기본적으로 노저에 매설되어 있는 열전대(thermocouple)의 온도정부를 이용하기 때문에 열전대의 단락등으로 인하여 열전대 정보의 이상이 발생하면 더 이상 사용할 수 없는 문제점을 갖는다.Conventionally, there is a one-dimensional method disclosed in Japanese Laid-Open Patent Publication No. 56-163207 as a method for estimating the remaining edge and thickness of the blast furnace bottom and the solidification layer thickness. Since this method basically uses a thermocouple temperature unit embedded in the furnace, when an abnormality of thermocouple information occurs due to a short circuit of the thermocouple, it cannot be used anymore.
2차원적 열전도해석을 통하여 고로 노저부의 연와 잔존 두께 및 응고층 두께를 추정하는 방법과 함께 열전대가 단락되었을 경우에 주위 열전대의 온도로서 보정해주는 방법이 제안되었다. 이 방법은 열전대가 단락된 경우가 3가지 유형으로 나누어, 단락되기 직전의 온도를 단락된 지점의 온도로 사용하거나, 인접한 두 열전대 온도값을 단락된 지점에서의 온도로 사용하거나, 인접한 두 열전대 온도값을 이용하여 평균값을 단락된 지점의 온도로 사용하는 방법을 제시하였다. 그러나, 이 고안된 방법중 앞의 두 방법은 비현실적인 방법이며, 또한 마지막 방법은 단락된 열전대와 이웃 두 열전대와의 거리에는 관계없이 두 열전대 온도값을 합하여 반으로 나눈 값을 단락된 열전대의 온도로 설정하는 문제점이 있었다.In addition to estimating the duct and residual thickness of the blast furnace bottom and the solidification layer thickness through two-dimensional thermal conductivity analysis, a method of correcting the temperature as an ambient thermocouple when the thermocouple is short-circuited has been proposed. This method is divided into three types of thermocouple short circuits, using the temperature immediately before the short circuit as the temperature at the shorted point, using two adjacent thermocouple temperature values as the temperature at the shorted point, or two adjacent thermocouple temperatures. Using the values, a method of using the average value as the temperature of the shorted point is presented. However, the first two of these methods are impractical, and the last method is to set the temperature of the shorted thermocouples by summing the two thermocouple temperature values in half regardless of the distance between the shorted thermocouples and two neighboring thermocouples. There was a problem.
본 발명은 상기한 문제점을 해결하기 위하여 열전대간의 상관관계를 도출하고, 이를 기초로 단락된 열전대의 온도를 보정하여, 열전대의 단락시에도 정확한 잔존 연와 두께 및 응고층의 두께를 추정하므로써 안정된 노저 관리에 활용할 수 있는 고로 노저부의 열전대 온도보정방법을 제공하는데 그 목적이 있다.In order to solve the above problems, the present invention derives the correlation between thermocouples and corrects the temperature of the shorted thermocouples on the basis of the above, thereby stably managing the nodule by estimating the exact remaining lead and thickness and the thickness of the solidification layer even when the thermocouples are shorted. The purpose of the present invention is to provide a thermocouple temperature compensation method for the furnace bottom.
본 발명은 상기한 목적을 달성하기 위하여 고로 노저부에 설치된 열전대의 단락시 단락된 열전대의 온도를 보정하는 방법에 있어서, 고로 노저부에 설치되어 위치가 입력된 다수개 열전대의 측정온도 정보로부터 열전대의 단락여부를 판단하는 단계와, 상기 다수개 열전대중 제1열전대가 단락되었다고 확인되면 단락된 제1열전대로부터의 거리가 최소인 비단락 인접 열전대를 산정하는 단계와, 상기 비단락 인접 열전대와 단락된 제1열전대의 단락직전의 온도정보로부터 제1열전대와 비단락 인접 열전대의 온도상관관계를 1차식으로 도출하는 단계와, 상기 상관식에 의해 단락된 제1열전대의 온도를 보정하는 단게를 포함하는 것을 특징으로 한다.The present invention provides a method for correcting the temperature of a thermocouple shorted at the time of a short circuit of the thermocouple installed in the blast furnace furnace in order to achieve the above object, the thermocouple from the measured temperature information of a plurality of thermocouples installed in the furnace blast furnace Determining whether the first thermocouple is short-circuited among the plurality of thermocouples, and calculating a non-short-circuit adjacent thermocouple having a minimum distance from the shorted first thermocouple, and determining the short-circuit adjacent thermocouple and the short circuit. Firstly deriving a temperature correlation between the first thermocouple and the non-short-circuit adjacent thermocouple from temperature information immediately before the short circuit of the first thermocouple, and correcting a temperature of the first thermocouple shorted by the correlation. Characterized in that.
이하, 본 발명은 도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.
제 3 도를 참조하면, 먼저, 다수개 열전대의 단락여부를 판단하고 상기 다수개 열전대중 임의의 열전대가 단락 되었다고 하면 모든 열전대의 위치를 나타내는 x축, y축, z축의 좌표값을 각각 입력한다. 반대로 사전에 모든 열전대를 먼저 입력한 후, 다수개 열전대의 단락여부를 판단할 수 있다. 그리고 단락된 열전대와 다른 모든 열전대와의 거리를 각각 산정하고 거리를 최소인 열전대를 인접한 열전대로 선정하고 이 선정된 열전대가 단락인가를 확인하고, 만약 이 열전대가 단락되었으면, 다음으로 가까운 열전대를 찾아 인접한 열전대로 선정하고 그 열전대의 단락여부를 확인하는 과정을 반복한다. 이러한 과정을 거쳐 단락되지 않은 주위의 열전대중 단락된 열전대와 단락되지 않은 가장 가까운 열전대를 찾아 그 열전대를 인접한 열전대로 선정한다. 이렇게 인접한 열전대가 선정되면, 단락된 열전대와 단락되지 않은 인접한 열전대와의 상관관계를 해석하고 그 상관식을 구한다. 이 상관식으로부터 인접한 열전대의 온도를 기준으로 단락된 열전대의 온도를 추정해낸다. 이렇게 추정된 단락된 열전대의 온도는 잔존 연와 및 응고층의 두께를 추정하는데 사용된다.Referring to FIG. 3, first, it is determined whether a plurality of thermocouples are short-circuited, and if any of the thermocouples are short-circuited, the coordinate values of the x-axis, the y-axis, and the z-axis indicating the positions of all the thermocouples are input, respectively. . On the contrary, after inputting all the thermocouples in advance, it is possible to determine whether a plurality of thermocouples are short-circuited. Evaluate the distance between the shorted thermocouple and all other thermocouples, select the thermocouple with the minimum distance as the adjacent thermocouple, check if the selected thermocouple is short-circuit, and if this thermocouple is short-circuited, find the next close thermocouple. Select the adjacent thermocouple and repeat the process to check whether the thermocouple is shorted. Through this process, the shorted thermocouple and the closest uncoupled thermocouple among the unshorted thermocouples are found and the thermocouple is selected as an adjacent thermocouple. When adjacent thermocouples are selected, the correlation between shorted thermocouples and adjacent non-shorted thermocouples is analyzed and their correlations are obtained. From this correlation, the temperature of the shorted thermocouples is estimated based on the temperatures of adjacent thermocouples. The estimated shorted thermocouple temperature is then used to estimate the thickness of the remaining duct and solidification layer.
이를 좀더 상세히 언급하기 위해 종래의 방법과 비교하여 보면 다음과 같다. 여기서 설명을 위해 예시된 수치는 실제 조업중인 하나의 고로 노저에 설치되는 열전대의 온도값을 이용하였으며 단락시점과 단락위치는 임의로 선정하였다.In order to refer to this in more detail compared to the conventional method is as follows. The numerical values used for explanation here are based on the temperature value of the thermocouple installed in the furnace blast furnace in operation, and the short-circuit time and the short-circuit position were arbitrarily selected.
먼저, 제 2 도에 도시한 동일간격의 동심원상에는 열전대(A), (B), (C), (D)가 각각 배치되어 있다. 여기서 노저저부의 열전대(B)가 단락되었을 경우 열전대(B)의 온도는 다음과 같이 보정된다.First, thermocouples (A), (B), (C) and (D) are arranged on concentric circles of the same interval shown in FIG. Here, when the thermocouple B of the bottom part is short-circuited, the temperature of the thermocouple B is corrected as follows.
첫째, 연전대(A), (C)가 단락되지 않았다고 확인될때 (경우 1)를 가정하면, 열전대(A)가 단락된 열전대(B)의 단락되지 않은 최인접의 열전대임을 알 수 있다. 따라서 장기간에 걸쳐 실측된 열전대(A), (B)의 온도 상관관계를 설펴보면 식(1)과 같이 나타난다.First, assuming (case 1) that the thermocouples (A) and (C) are not shorted, it can be seen that the thermocouple (A) is the closest uncoupled thermocouple of the shorted thermocouple (B). Therefore, the temperature correlation between the measured thermocouples (A) and (B) over a long period of time appears as shown in equation (1).
T(B)=1.44T(A)-152.0 ……………………………………………………(1)T (B) = 1.44T (A) -152.0... … … … … … … … … … … … … … … … … … … … (One)
단, T(A) 및 T(B)는 각각 열전대(A) 및 열전대(B)의 온도(℃)이다.However, T (A) and T (B) are the temperature (° C) of the thermocouple A and the thermocouple B, respectively.
제 4a 도에 도시한 바와같이, 열전대(A), (B), (C)의 온도가 조업일수에 따라 각각 기록되고 있는 상태에서 조업일수가 예를들어 70일째 될때 열전대(B)가 단락되면 열전대(B)가 단락되는 시점이후에는 열전대(B)의 실측온도가 기록되지 않는 대신에 열전대(B)의 보정된 온도가 기록된다. 즉, 열전대(B)의 단락시점 이후에는 열전대(B)의 온도가 식(1)에 의해 보정되어 점선으로 나타나는 반면에 종래의 방법에 의하면, 열전대(A), (C)의 평균온도값으로 보정되어 일점쇄선으로 나타난다.As shown in FIG. 4A, when the temperature of thermocouples (A), (B), and (C) is recorded according to the number of operating days, respectively, the thermocouple (B) is short-circuited when the operating days are 70 days, for example. After the time point at which the thermocouple B is short-circuited, the measured temperature of the thermocouple B is not recorded, but the corrected temperature of the thermocouple B is recorded. That is, after the short-circuit of the thermocouple (B), the temperature of the thermocouple (B) is corrected by the equation (1), and appears as a dotted line, while according to the conventional method, the average temperature value of the thermocouples (A), (C) It is corrected and appears as a dashed line.
둘째, 열전대(A), (C)중 어느하나의 열전대가 단락되었을 경우 열전대(B)의 온도는 다음과 같이 보정된다. 우선, 열전대(A)가 단락되었다고 확인될때(경우 2)를 가정하면, 열전대(C)가 단락된 열전대(B)의 단락되지 않은 최인접의 열전대임을 알 수 있다. 따라서 장기간에 걸쳐 실측된 열전대(B), (C)의 온도 상관관계를 살펴보면 식(2)과 같이 나타난다.Second, when any one of the thermocouples (A) and (C) is short-circuited, the temperature of the thermocouple (B) is corrected as follows. First, assuming that the thermocouple A is confirmed to be shorted (case 2), it can be seen that the thermocouple C is the closest uncoupled thermocouple of the shorted thermocouple B. Therefore, looking at the temperature correlation between the measured thermocouples (B), (C) over a long period of time appears as shown in equation (2).
T(B)=1.741 T(C)+57.1………………………………………………(2)T (B) = 1.741 T (C) +57.1... … … … … … … … … … … … … … … … … … (2)
단, T(B) 및 T(C)는 각각 열전대(B) 및 열전대(C)의 온도(℃)이다.However, T (B) and T (C) are the temperature (° C) of the thermocouple B and the thermocouple C, respectively.
제 4b 도에 도시한 바와같이, 열전대(A), (B), (C)의 온도가 조업일수에 따라 각각 기록되고 있는 상태에서 조업일수가 예를들어 70일째 될때 열전대(B)가 단락되면 열전대(B)가 단락되는 시점이후에는 열전대(B)의 실측온도가 기록되지 않는 대신에 열전대(B)의 보정된 온도가 기록된다.As shown in FIG. 4B, when the temperature of thermocouples (A), (B), and (C) is recorded according to the number of operating days, respectively, the thermocouple (B) is short-circuited when the operating days become 70 days, for example. After the time point at which the thermocouple B is short-circuited, the measured temperature of the thermocouple B is not recorded, but the corrected temperature of the thermocouple B is recorded.
즉, 열전대(B)의 단락시점 이후에는 열전대(B)의 온도가 식(2)에 의해 보정되어 점선으로 나타나는 반면에 종래의 방법에 의하면 열전대(C)의 실측온도가 열전대(B)의 온도로 보정되어 일점쇄선으로 나타난다.That is, after the short-circuit of the thermocouple (B), the temperature of the thermocouple (B) is corrected by the equation (2) and appears as a dotted line, while according to the conventional method, the measured temperature of the thermocouple (C) is the temperature of the thermocouple (B) It is corrected to appear as a dashed line.
한편, 열전대(C)가 단락되었다고 확인될때(경우 3)를 가정하면, 제 4c 도에 도시한 바와같이, 열전대(A), (B), (C)의 온도가 조업일수에 따라 각각 되고 있는 상태에서 조업일수가 예를들어 70일째될때 열전대(B)가 단락되면, 열전대(B)가 단락되는 시점 이후에는 열전대(B)의 실측온도가 기록되지 않는 대신에 열전대(B)의 보정된 온도가 기록된다.On the other hand, assuming that the thermocouple C is short-circuited (case 3), as shown in FIG. 4C, the temperatures of the thermocouples A, B, and C are respectively varied depending on the number of working days. If the thermocouple (B) is short-circuited, for example, on the 70th day of operation, the measured temperature of the thermocouple (B) is not recorded after the time point at which the thermocouple (B) is short-circuited, but the corrected temperature of the thermocouple (B). Is recorded.
즉, 열전대(B)의 단락시점 이후에는 열전대(B)의 보정온도가 식(1)에 의해 보정된 점선으로 나타나는 반면에, 종래의 방법에 의하면 열전대(A)의 실측온도가 열전대(B)의 온도로 보정되어 일점쇄선으로 나타난다. 셋째, 열전대(A), (C)가 모두 단락되었을 때(경우 4) 열전대(B)의 온도는 다음과 같이 보정된다. 여기서, 열전대(D)가 단락되지 않은 인접한 열전대임을 알 수 있다. 따라서, 장기간에 걸쳐 실측된 열전대(B), (D)의 온도상관관계를 살펴보면, 식(3)과 같이 나타난다.That is, after the short-circuit of the thermocouple B, the correction temperature of the thermocouple B is represented by a dotted line corrected by the equation (1), while according to the conventional method, the measured temperature of the thermocouple A is the thermocouple B. It is corrected to the temperature of and appears as a dashed line. Third, when both the thermocouples A and C are shorted (case 4), the temperature of the thermocouple B is corrected as follows. Here, it can be seen that the thermocouple D is an adjacent thermocouple that is not shorted. Therefore, looking at the temperature correlation between the thermocouples (B), (D) measured over a long period of time, it appears as shown in equation (3).
T(B)=1.483 T(D)-75.9 …………………………………………(3)T (B) = 1.483 T (D) -75.9... … … … … … … … … … … … … … … … (3)
단, T(B) 및 T(D)는 각각 열전대(B) 및 열전대(D)로 온도(℃)이다.However, T (B) and T (D) are temperatures (° C.) in the thermocouple B and the thermocouple D, respectively.
제 4d 도에 도시한 바와같이, 열전대(A), (B), (C)의 온도가 조업일수에 따라 각각 기록되고 있는 상태에서 조업일수가 예를들어 70일째 될때 열전대(B)가 단락되면 열전대(B)가 단락되는 시점이후에는 열전대(B)의 실측온도가 기록되지 않는 대신에 열전대(B)의 보정된 온도가 기록된다.As shown in FIG. 4D, when the temperature of thermocouples (A), (B), and (C) is recorded according to the number of operating days, respectively, the thermocouple (B) is short-circuited when the operating days become 70 days, for example. After the time point at which the thermocouple B is short-circuited, the measured temperature of the thermocouple B is not recorded, but the corrected temperature of the thermocouple B is recorded.
즉, 열전대(B)의 단락시점 이후에는 열전대(B)의 보정온도가 식(3)에 의해 보정되어 점선으로 나타나는 반면에 종래의 방법에 의하면 열전대(B)의 단락시점 직전의 실측온도가 열전대(B)의 온도로 보정되어 일점쇄선으로 나타난다.That is, after the short-circuit of the thermocouple B, the correction temperature of the thermocouple B is corrected by equation (3) and appears as a dotted line, whereas according to the conventional method, the measured temperature just before the short-circuit of the thermocouple B is a thermocouple. It is corrected to the temperature of (B) and appears as a dashed line.
한편, 상기의 경우 1, 경우 2, 경우 3 및 경우 4에 대해 보정된 열전대(B)의 온도와 실측된 열전대(B)의 온도를 제 5a,b,c 및 d 도에서 비교하여 보면, 본 발명에 따른 열전대(B)의 보정온도는 열전대(B)의 실측온도에 대해 기울기가 1인 직선상에 거의 집중되어 있는 반면에 종종래 방법에 의한 열전대(B)의 보정온도는 열전대(B)의 실측온도에 대해 기울기가 1인 직선상에 거의 집중되지 않음을 알 수 있다.On the other hand, when comparing the temperature of the thermocouple B corrected for the case 1, case 2, case 3 and case 4 and the measured temperature of the thermocouple B in FIGS. 5a, b, c and d, The correction temperature of the thermocouple (B) according to the invention is almost concentrated on a straight line with a slope of 1 with respect to the measured temperature of the thermocouple (B), while the correction temperature of the thermocouple (B) by the conventional method is thermocouple (B). It can be seen that the concentration is hardly concentrated on a straight line with a slope of 1 with respect to the measured temperature of.
따라서 본 발명은 노저저부 및 노저벽부에 설치된 열전대가 단락되었을 경우 단락된 열전대의 온도를 단락되지 않은 열전대와의 온도 상관식으로 보다 정확하게 보정할 수 있는 잔존연와의 두께 및 응고층의 두께를 정확하게 추정할 수 있는 효과가 있게 된다.Therefore, in the present invention, when the thermocouples installed in the bottom of the bottom and the bottom wall are shorted, the thickness of the remaining edge and the thickness of the solidification layer can be accurately corrected by the temperature correlation with the uncoupled thermocouple. There is an effect that can be estimated.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019920026478A KR940009666B1 (en) | 1992-12-30 | 1992-12-30 | Temperature revision method of thermo-couple |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019920026478A KR940009666B1 (en) | 1992-12-30 | 1992-12-30 | Temperature revision method of thermo-couple |
Publications (2)
Publication Number | Publication Date |
---|---|
KR940014817A KR940014817A (en) | 1994-07-19 |
KR940009666B1 true KR940009666B1 (en) | 1994-10-15 |
Family
ID=19347600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019920026478A Expired - Fee Related KR940009666B1 (en) | 1992-12-30 | 1992-12-30 | Temperature revision method of thermo-couple |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR940009666B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7343118B2 (en) | 2004-12-02 | 2008-03-11 | Samsung Electronics Co., Ltd. | Door shock absorber and image forming apparatus employing the same |
-
1992
- 1992-12-30 KR KR1019920026478A patent/KR940009666B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7343118B2 (en) | 2004-12-02 | 2008-03-11 | Samsung Electronics Co., Ltd. | Door shock absorber and image forming apparatus employing the same |
Also Published As
Publication number | Publication date |
---|---|
KR940014817A (en) | 1994-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940009666B1 (en) | Temperature revision method of thermo-couple | |
CN111705174A (en) | Method for detecting blast furnace wall junction thickness | |
CN114184033A (en) | A method for detecting the falling position, thickness and size of refractory material in rotary kiln | |
CN110781566B (en) | Hearth iron solidification layer calculation method, hearth iron solidification layer calculation system, storage medium and electronic terminal | |
CN112649098A (en) | Coal gasifier water-cooled wall deposition slagging on-line monitoring device | |
JP4119620B2 (en) | In-furnace situation estimation method for blast furnace | |
KR102531803B1 (en) | Method for monitoring wear of refractory linings of blast furnaces | |
JP4752021B2 (en) | Reduced blast operation method of blast furnace | |
JP7067413B2 (en) | How to inspect refractories in atmospheric furnaces and how to manufacture reduced iron | |
CN116817603A (en) | Monitoring and inversion method of molten pool temperature in high-temperature smelting furnace based on thermal conduction inverse problem | |
KR950012400B1 (en) | Corrosion checking method of tapping hole refractory | |
JP4276563B2 (en) | Blast furnace bottom condition diagnosis method | |
JP4096537B2 (en) | Coke shrinkage measurement method | |
JPS6137328B2 (en) | ||
JPS60204813A (en) | Blast furnace operating method | |
SU287361A1 (en) | ||
JP4276565B2 (en) | Blast furnace lower cooling control method and system | |
JPS6137327B2 (en) | ||
JP2718305B2 (en) | Estimation method of erosion line at blast furnace bottom | |
KR101185330B1 (en) | Method of detecting distribution of gas stream in blast furnace | |
JPS63140036A (en) | Method for identifying overall heat absorptivity of continuous heating furnace | |
KR100332909B1 (en) | Method for calculating radiation heat from staves of furnace body in corex melting furnace | |
JP2017026448A (en) | Furnace temperature estimation method and furnace temperature estimation apparatus | |
JPS62257004A (en) | Blast furnace hearth wall erosion detection method | |
JPH0730370B2 (en) | Blast furnace bottom management method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
G160 | Decision to publish patent application | ||
PG1605 | Publication of application before grant of patent |
St.27 status event code: A-2-2-Q10-Q13-nap-PG1605 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
FPAY | Annual fee payment |
Payment date: 19990929 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20001016 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20001016 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |