JPS62257004A - Blast furnace hearth wall erosion detection method - Google Patents
Blast furnace hearth wall erosion detection methodInfo
- Publication number
- JPS62257004A JPS62257004A JP10042886A JP10042886A JPS62257004A JP S62257004 A JPS62257004 A JP S62257004A JP 10042886 A JP10042886 A JP 10042886A JP 10042886 A JP10042886 A JP 10042886A JP S62257004 A JPS62257004 A JP S62257004A
- Authority
- JP
- Japan
- Prior art keywords
- point
- erosion
- hearth wall
- temperature
- thermometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Blast Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高炉炉床壁の円周方向或は高さ方向の侵食状
況を検知する方法の改良に関し、特に安価に正確に検知
できる方法を提供するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an improvement in a method for detecting the erosion condition of a blast furnace hearth wall in the circumferential direction or height direction, and in particular, a method that can accurately detect it at low cost. It provides:
従来、高炉炉床壁の円周方向或は高さ方向の侵食状況の
把握は、高炉炉床壁の円周方向或は高さ方向の複数箇所
の炉床壁浸食ライン位置の検知によって実施されている
。Conventionally, the status of erosion in the circumferential direction or height direction of the blast furnace hearth wall has been understood by detecting the positions of hearth wall erosion lines at multiple locations in the circumferential direction or height direction of the blast furnace hearth wall. ing.
そして侵食ライン位置の検知は、従来、特開昭51−2
9951号公報に示されるように、鉄皮からの深さを異
にした二点の炉床壁耐火煉瓦温度を計測し、定常1次元
伝熱解析することによって行なわれている。The detection of the erosion line position has conventionally been carried out in Japanese Patent Application Laid-Open No. 51-2
As shown in Japanese Patent No. 9951, this is done by measuring the temperature of the hearth wall refractory bricks at two points at different depths from the steel shell and performing a steady one-dimensional heat transfer analysis.
これを図面によって具体的に説明する。This will be explained in detail with reference to the drawings.
第1図は高炉炉床壁1の縦断面図で、2は大気、3は鉄
皮、4はキャスタブル層、5はステーブ、6は冷却水の
通るステープパイプ、7はスタンプ層、8はカーボン煉
瓦、9は侵食線、10は溶銑、11.12は温度計を示
す。温度計11は鉄皮から高炉中心方向深さaの、また
温度計12は深さbのカーボン煉瓦8の温度を計測し得
るごとく埋設している。尚鉄皮3〜力−ボン煉瓦8間に
は温度計を設けるために、iUす温孔を穿設するが、第
1図では図示を省略している。Fig. 1 is a vertical cross-sectional view of the blast furnace hearth wall 1, where 2 is the atmosphere, 3 is the iron skin, 4 is the castable layer, 5 is the stave, 6 is the staple pipe through which cooling water passes, 7 is the stamp layer, and 8 is carbon. 9 shows the erosion line, 10 shows the hot metal, and 11.12 shows the thermometer. The thermometer 11 is buried at a depth a from the shell toward the center of the blast furnace, and the thermometer 12 is buried at a depth b so that the temperature of the carbon brick 8 can be measured. A hot hole is drilled between the iron skin 3 and the iron-bond brick 8 in order to install a thermometer, but it is not shown in FIG.
今温度計11と12の計測温度をTI、T2、温度計1
1〜12間の距離をり、温度計11の計測点と浸食ライ
ン9との距離をX、侵食ライン9の温度(1150℃)
をTp、カーボン煉瓦8の熱伝導率をλとすれば、温度
計の計測点の熱貫流量Qとなり、侵食ライン9の位置X
は、第(11式より定まる第(2)式から演算検知する
ことができる。Now the measured temperature of thermometers 11 and 12 is TI, T2, thermometer 1
1 to 12, the distance between the measurement point of the thermometer 11 and the erosion line 9 is X, and the temperature of the erosion line 9 (1150°C)
If Tp is the thermal conductivity of the carbon brick 8, and λ is the thermal conductivity of the carbon brick 8, then the amount of heat transmission at the measurement point of the thermometer is Q, and the position of the erosion line 9 is X.
can be calculated and detected from equation (2) determined from equation (11).
X=L・ (Tp T + ) / (T 2−T
I )・・・(2)この様にカーボン煉瓦8内に設けた
2つの温度計から侵食ライン位置を検知する方法を2点
法と呼び、このように設けた温度計を2点温度計と呼ぶ
。X=L・(Tp T + )/(T 2-T
I)...(2) The method of detecting the erosion line position from two thermometers installed inside the carbon brick 8 in this way is called the two-point method, and the thermometer installed in this way is called a two-point thermometer. call.
前記侵食ラインの検知方法として、従来、2点法の他に
、第2図又は第3図に示すステーブ冷却式又は散水冷却
式炉床壁において、鉄皮から高炉中心方向深さaの1点
(a点)のカーボン煉瓦8の温度を計測し得るごとく温
度計13を設け、この温度計の計測温度T3と、ステー
ブ又は鉄皮温度管理のために設けられている水温針で計
測されるステーブ冷却水温度TWに基づいて行なう方法
がある。Conventionally, as a method for detecting the erosion line, in addition to the two-point method, one point is detected at a depth a from the shell toward the center of the blast furnace on the stave-cooled or water-cooled hearth wall shown in FIG. 2 or 3. A thermometer 13 is provided so as to be able to measure the temperature of the carbon brick 8 at point (a), and the measured temperature T3 of this thermometer and the stave temperature measured by the water temperature needle provided for controlling the stave or iron skin temperature. There is a method based on the cooling water temperature TW.
これは温度計13の計11点(a点)と侵食ライン9の
距離をX、カーボン煉瓦の熱伝導率をλとし、温度計1
3の計測点(a点)から冷却水までの伝熱係数をり、侵
食ライン9の温度をTpとすれば、熱■流量Qは、
λ
Q” (Tp T3)=h(T3 TW)
−(3)となり、侵食ライン9の位置Xは、
X=λ (T p T 3 ) / h (T :1
−TV) −(41で演算検知するものである。This means that the distance between the 11 points (point a) of the thermometer 13 and the erosion line 9 is X, the thermal conductivity of the carbon brick is λ, and the thermometer 1
If the heat transfer coefficient from measurement point 3 (point a) to the cooling water is calculated and the temperature of erosion line 9 is Tp, then the heat flow rate Q is: λ Q" (Tp T3) = h (T3 TW)
-(3), and the position X of the erosion line 9 is: X=λ (T p T 3 ) / h (T : 1
-TV) -(41 is used for calculation detection.
上記伝熱係数りは、従来、次の様に決定し、定数として
設定している。第2図のステーブ冷却式炉床壁では、計
測点a点とステーブ冷却水までのカーボン煉瓦8、スタ
ンプ層7、ステーブ5の熱伝導率λ、λ7.λ5及び距
離lθ、j!t、j!aに基づいて決定している。上記
熱伝導率λ、λ7゜ス5は、オフラインの物性値で決定
している。Conventionally, the heat transfer coefficient is determined as follows and set as a constant. In the stave-cooled hearth wall of FIG. 2, the thermal conductivity of the carbon brick 8, the stamp layer 7, and the stave 5 between the measurement point a and the stave cooling water is λ, λ7. λ5 and distance lθ,j! T,j! It is determined based on a. The thermal conductivity λ and λ7°5 are determined by off-line physical property values.
又第3図の散水冷却式炉床壁では計測点a点と鉄皮冷却
水までのカーボン煉瓦8、スタンプ層7、鉄皮3の熱伝
導率λ、λ7.λ3及び伝熱距離ls。In addition, in the sprinkler-cooled hearth wall of Fig. 3, the thermal conductivities of the carbon brick 8, the stamp layer 7, and the steel shell 3 between the measurement point a and the steel shell cooling water are λ, λ7. λ3 and heat transfer distance ls.
17.13に基づいて決定している。上記熱伝導率λ、
λ7.λ3は、オフラインの物性値で決定している。17.13. The above thermal conductivity λ,
λ7. λ3 is determined based on off-line physical property values.
以上の様にステーブ又は鉄皮温度管理のために設けられ
ている水温針等を有効利用して、カーボン煉瓦内に設け
た1つの温度計(以下1点温度計という)から侵食ライ
ン位置を検知する方法を、以降、1点法と呼ぶ。As mentioned above, the position of the erosion line is detected from one thermometer (hereinafter referred to as one-point thermometer) installed inside the carbon brick by effectively utilizing the water temperature needle etc. installed for stave or iron skin temperature control. This method is hereinafter referred to as the one-point method.
この1点法を用いる高炉炉床璧の円周方向或は高さ方向
の侵食状況の検知法(以下侵食プロフィル検知法という
)は、前記2点法を用いる侵食プロフィル検知法に比べ
てIII温孔、埋設する温度計の必要数が大幅に減少し
て、装置施工費、プロフィル検知装置費が大幅に安くな
るメリットがある。This method of detecting erosion in the circumferential direction or height direction of the blast furnace hearth wall using this one-point method (hereinafter referred to as the "erosion profile detection method") is superior to the erosion profile detection method using the two-point method described above. This has the advantage that the number of holes and thermometers required to be buried is greatly reduced, and equipment construction costs and profile detection equipment costs are significantly reduced.
しかしながら、上記1点法による侵食プロフィル検知法
は、2点法によるプロフィル検知法に比べ、後述する理
由から侵食ライン位置検知精度が悪く、特に炉代末期等
のカーボン煉瓦の侵食が進行した状況においては、炉底
保護のための適切な対策を実施することができない。However, the erosion profile detection method using the one-point method described above has lower accuracy in detecting the erosion line position than the two-point method for detecting the erosion line position for reasons explained later, especially in situations where carbon brick erosion has progressed, such as at the end of the furnace age. cannot take appropriate measures to protect the bottom of the hearth.
1点法が2点法に比べて侵食ライン位置検知精度が悪い
理由は、次の通りである。The reason why the one-point method has lower erosion line position detection accuracy than the two-point method is as follows.
即ち、1点法では、測温点からステーブ冷却までの伝熱
抵抗、例えば煉瓦8とスタンプ層7の接触面、スタンプ
層7とステーブ5の接触面、スタンプ層7と鉄皮3の接
触面等に生成する空気層の伝熱抵抗、ステーブパイプ6
内面又は鉄皮3散水冷却面へのスケールの付着量等が確
定できないので、これらの不確定因子が、決定さた第(
4)式の伝熱係数h(定数)に反映されていない。That is, in the one-point method, the heat transfer resistance from the temperature measurement point to the stave cooling, for example, the contact surface between the brick 8 and the stamp layer 7, the contact surface between the stamp layer 7 and the stave 5, and the contact surface between the stamp layer 7 and the iron skin 3. Heat transfer resistance of air layer generated in stave pipe 6
Since the amount of scale attached to the inner surface or the water cooling surface of the steel shell 3 cannot be determined, these uncertain factors are
4) It is not reflected in the heat transfer coefficient h (constant) in equation.
更に、スタンプ層7については、施工時の嵩比重(実際
に施工してみないとわからない)や経年的な熱膨張−収
縮による劣化等の影響で熱伝導率は大きく変化すると共
に、空気層やスケール厚みは経年的に変化するにもかか
わらず、従来の1点法では第(a式における伝熱係数り
を固定定数として与えている。Furthermore, regarding the stamp layer 7, the thermal conductivity changes greatly due to the effects of bulk specific gravity at the time of construction (which cannot be known until the actual construction is performed) and deterioration due to thermal expansion and contraction over time. Although the scale thickness changes over time, in the conventional one-point method, the heat transfer coefficient in equation (a) is given as a fixed constant.
尚、カーボン煉瓦の熱伝導率は確定できその経年変化も
ほとんどない。Incidentally, the thermal conductivity of carbon bricks is fixed, and there is almost no change in its thermal conductivity over time.
本発明は、上記1点法による侵食プロフィル検知法にお
ける問題点を解決するために、定期的に行なう侵食プロ
フィル検知に際して、高炉炉床壁の円周方向又は高さ方
向の複数の侵食ライン検知箇所の内の一部に設置した2
点温度計により、その箇所のa点から冷却水までの不確
定及び又は経年変化因子群等を含む、a点から冷却水ま
での伝熱係数を演算確定すると共に、上記不確定及び又
は経年変化因子群は高炉円周方向又は高さ方向でほぼ同
様な挙動を示す特性を有効活用して上記演算確定した上
記伝熱係数を用いて、他の1点法(計測点がa点の1点
温度計)による侵食ライン検知箇所の侵食ラインを正確
に演算検知するものである。In order to solve the problems in the erosion profile detection method using the one-point method, the present invention provides a plurality of erosion line detection points in the circumferential direction or height direction of the blast furnace hearth wall when periodically performing erosion profile detection. 2 installed in a part of
Using a point thermometer, calculate and determine the heat transfer coefficient from point a to the cooling water, including uncertainties and/or aging change factors, etc. The factor group effectively utilizes the characteristics that exhibit almost the same behavior in the circumferential direction or the height direction of the blast furnace, and uses the heat transfer coefficient determined by the above calculation to perform another one-point method (the measurement point is one point a). This method accurately calculates and detects the erosion line at the point where the erosion line is detected using a thermometer.
本発明の要旨は次の通りである。The gist of the invention is as follows.
高炉炉床壁の円周方向或は高さ方向の複数箇所の炉床璧
煉瓦内に、煉瓦厚み方向の特定点(a点)の温度を計測
する温度計を設けて、各箇所の温度計の計測温度と炉床
型の冷却水温度に基づいて各箇所の炉床型侵食ライン位
置を演算し、高炉炉床壁の円周方向或は高さ方向の侵食
状況を検知する方法において、上記高炉炉床壁の円周方
向或は高さ方向の複数箇所のうちの一部の箇所の炉床型
煉瓦内に、上記温度計の計測点(a点)よりも炉内側の
煉瓦厚み方向の特定点(b点)の温度を計測する温度計
を設けて、その箇所のa点及びb点の計測温度と冷却水
温度に基づいてa点から冷却水までの伝熱係数を演算し
、算出した伝熱係数を用いて、その他の箇所の侵食ライ
ン位置を各箇所のa点の計測温度と冷却水温度に基づい
て演算することを特徴とする高炉炉床壁侵食状況検知方
法。Thermometers for measuring the temperature at specific points (point a) in the thickness direction of the bricks are installed in the hearth wall bricks at multiple locations in the circumferential direction or height direction of the blast furnace hearth wall, and the thermometers at each location are installed. In the method of detecting the erosion condition in the circumferential direction or height direction of the blast furnace hearth wall by calculating the hearth mold erosion line position at each location based on the measured temperature and the hearth mold cooling water temperature, Inside the hearth-type bricks at some of the plurality of locations in the circumferential direction or height direction of the blast furnace hearth wall, there is a temperature difference in the thickness direction of the bricks on the inside of the furnace, which is farther from the measurement point of the thermometer (point a). A thermometer is installed to measure the temperature at a specific point (point B), and the heat transfer coefficient from point A to the cooling water is calculated based on the measured temperatures at points A and B at that point and the cooling water temperature. A method for detecting erosion conditions of a blast furnace hearth wall, characterized in that the erosion line positions at other locations are calculated based on the measured temperature at point a and the cooling water temperature at each location using the heat transfer coefficient.
以下本発明を第4図に示す実施例に基づき詳細に説明す
る。The present invention will be explained in detail below based on the embodiment shown in FIG.
第4図は、ステーブ冷却型の高炉炉床壁lの縦断面図で
、14は炉床壁侵食状況検知装置で、15は2点温度計
11.12の測定点(a点)から冷却水までの伝熱係数
を演算する演算部、16は侵食ライ?演算部で、17は
CRT等の侵食状況表示部である。Fig. 4 is a longitudinal cross-sectional view of the hearth wall l of a stave-cooled blast furnace, where 14 is a hearth wall erosion state detection device, and 15 is a cooling water from a measurement point (point a) of a two-point thermometer 11.12. The calculation section 16 calculates the heat transfer coefficient up to the erosion lie? In the calculation section, 17 is an erosion condition display section such as a CRT.
伝熱係数演算部15は、炉床壁浸食状況を検知するに際
して、高炉円周方向或は高さ方向の複数の侵食ライン9
検知箇所の内の一部の検知箇所のカーボン煉瓦8内に設
置した2点温度計11.12の計測値T+、T2を、第
(11式に与えて熱貫流量Qを演算し、演算された熱貫
流量Q、′&度計11の計測値T1及び水温計(図示せ
ず)のステーブ冷却水温度Twを第(5)式に与えて2
点温度計の測定点(a点)から冷却水までの伝熱係数り
を演算する。When detecting the hearth wall erosion condition, the heat transfer coefficient calculation unit 15 detects a plurality of erosion lines 9 in the circumferential direction or the height direction of the blast furnace.
The measured values T+ and T2 of the two-point thermometer 11.12 installed in the carbon brick 8 at some of the detection points are given to the equation (11) to calculate the heat transfer amount Q. By giving the measured value T1 of the temperature gauge 11 and the stave cooling water temperature Tw of the water thermometer (not shown) to equation (5), 2
Calculate the heat transfer coefficient from the measurement point of the point thermometer (point a) to the cooling water.
h =Q/ (T + Tw)
・・・・・・(5)侵食ライン演算部16は、
上記伝熱係数りを用いて、その他の1点温度計13を設
けた侵食ライン検知箇所における侵食ラインXを演算す
る。詳しくは上記伝熱係数り、1点温度計13の計測値
Tl、ステーブ冷却水温度T W %侵食ライン温度’
rp、例えば鉄−炭素系の共融温度約1150℃を第(
6)式に与えて侵食ラインXを演算する。h = Q/ (T + Tw)
(5) The erosion line calculation unit 16 is
Using the above heat transfer coefficient, the erosion line X at the erosion line detection location where the other one-point thermometer 13 is provided is calculated. In detail, the above heat transfer coefficient, the measured value Tl of the one-point thermometer 13, the stave cooling water temperature T W % erosion line temperature'
rp, for example, the eutectic temperature of iron-carbon system is about 1150°C (
6) Calculate the erosion line X by inputting it into the equation.
X=λ (T p−T :+ ) / h (T 3−
TV)・・・(6)尚、2点温度計理設箇所の侵食ライ
ンは、2点法で第(2)式に基づき演算するか或は1点
法でT3=TIとして第(6)式に基づき演算する。侵
食状況表示部は、上記演算された侵食ライン位置群を、
パターン表示する。以上の上記侵食状況の検知は定期的
に、例えば24時間毎に実施する。X=λ (T p-T :+) / h (T 3-
(6) The erosion line at the two-point thermometer design point can be calculated based on equation (2) using the two-point method, or calculated using equation (6) using the one-point method as T3=TI. Calculate based on formula. The erosion condition display section displays the calculated erosion line position group as follows.
Display the pattern. The above-described detection of the erosion state is performed periodically, for example, every 24 hours.
以上の様に本発明は、高炉炉床壁の円周方向又は高さ方
向の複数箇所の侵食ライン位置を、1点法により、定期
的に検知して、侵食プロフィルを定期的に検知するに際
して、上記複数の侵食ライン位置の検知箇所の内の一部
に設置した2点温度計11.12により、温度別11の
測定点(a点)から冷却水までの伝熱係数りを求める。As described above, the present invention periodically detects the erosion line positions at multiple locations in the circumferential direction or height direction of the blast furnace hearth wall using the one-point method, and periodically detects the erosion profile. Using the two-point thermometers 11 and 12 installed at some of the detection points of the plurality of erosion line positions, the heat transfer coefficient from the 11 measurement points (point a) for each temperature to the cooling water is determined.
この伝熱係数りは、1点法における不確定及び又は経年
変化因子が高炉炉床壁の円周方向又は高さ方向で同様な
挙動を示すのでその他の1点法による侵食ライン位置の
検知箇所の1点温度計13の測定点(a点)から冷却水
までの伝熱係数であると見做すことができる。このよう
な不確定及び又は経年変化因子群を含めて確定した伝熱
係数りを用いて、その他の1点法による侵食ライン位置
検知箇所の侵食ライン位置を演算検知するものであるか
ら、高精度で侵食ライン位置を検知できる。Since the uncertainty and/or aging factors in the one-point method show similar behavior in the circumferential direction or height direction of the blast furnace hearth wall, this heat transfer coefficient is different from the detection point of the erosion line position using the other one-point method. It can be regarded as the heat transfer coefficient from the measurement point (point a) of the one-point thermometer 13 to the cooling water. The heat transfer coefficient determined by including such uncertain and/or aging factors is used to calculate and detect the erosion line position at the erosion line position detection point using the other one-point method, so it is highly accurate. The location of the erosion line can be detected.
従って高精度で侵食状況(侵食プロフィル)を検知でき
る。Therefore, the erosion situation (erosion profile) can be detected with high accuracy.
このように高精度で侵食状況を検知できるから、特に炉
代末期等のカーボン煉瓦の侵食が進行した状況において
も、炉底保護対策が適切かつ迅速に行なうことが可能に
なる0例えば侵食部位の冷却強化、或τよその直上の羽
口盲化等の対策を適確に行なうことができる。Since the erosion situation can be detected with high precision in this way, it is possible to take appropriate and prompt measures to protect the hearth bottom, especially in situations where carbon brick erosion has progressed, such as at the end of the furnace life. Measures such as strengthening cooling or blinding the tuyere directly above τ can be taken appropriately.
第5図及び第6図に示す内容債約3000m、炉床径約
12rnの高炉のステーブ冷却式炉床壁1の円周方向、
27箇所の侵食ライン検知箇所の内、4箇所に2点温度
計11.12を設け、その他の23箇所に1点温度81
13を設け、日毎に円周方向、浸食プロフィルを検知す
るに際して2点温度計11.12を設けた4箇所につい
では各箇所毎に、1点温度計11の計測点aからステー
ブ冷却水までの伝熱係数hnを第(1)及び(5)式に
基づき演算し、4箇所毎に演算した伝熱係数h+、h2
.h3゜h4の平均値りを求め、この平均伝熱係数りを
用いて、残りの1点温度計13を設けた23箇所につい
ては、上記平均伝熱係数りを用いて、前記第(6)式に
基づき、各箇所の侵食ライン位置Xを演算して、侵食ラ
イン位置を第7図に示す如くパターン表示するようにし
た。The circumferential direction of the stave-cooled hearth wall 1 of a blast furnace with a content of about 3000 m and a hearth diameter of about 12 rn shown in FIGS. 5 and 6,
Of the 27 erosion line detection locations, 2-point thermometers were installed at 4 locations, and 1-point temperature gauges were set at 81 at the other 23 locations.
13 was installed, and two-point thermometers 11.12 were installed to detect the erosion profile in the circumferential direction on a daily basis.For each of the four locations where two-point thermometers 11 and 12 were installed, The heat transfer coefficient hn is calculated based on equations (1) and (5), and the heat transfer coefficients h+, h2 are calculated for each of the four locations.
.. Calculate the average value of h3゜h4, use this average heat transfer coefficient, and use the above average heat transfer coefficient for the remaining 23 locations where one-point thermometers 13 are installed. Based on the equation, the erosion line position X at each location was calculated, and the erosion line positions were displayed in a pattern as shown in FIG.
上記第5.6図に示す2点温度計11.12を設けた4
箇所について、従来の2点法、従来の1点、本発明法に
よって侵食ライン位置を検出した。4 equipped with a two-point thermometer 11.12 as shown in Figure 5.6 above.
For each location, the erosion line position was detected using the conventional two-point method, the conventional one-point method, and the method of the present invention.
詳しくは従来の1点法では、スタンプ層の熱伝導率とし
てオフラインで測定した値を用い、又空気層やスケール
厚みは実測不可能なため考慮せずに定めた伝熱係数りを
使用した。Specifically, in the conventional one-point method, a value measured off-line was used as the thermal conductivity of the stamp layer, and a determined heat transfer coefficient was used without taking into consideration the air layer and scale thickness, which cannot be measured.
一方本発明法は、まず4箇所の各箇所の温度計11の計
より点(a点)かう冷却水までの伝熱係数を求め、4箇
所の上記伝熱係数の平均値を求め、この平均伝熱係数を
用い、各箇所の温度計11の計測値、冷却水温度、侵食
ライン温度を用いて第(6)式に基づき侵食ライン位置
を検知した。On the other hand, in the method of the present invention, first, the heat transfer coefficient to the cooling water at a point (point a) is determined from the sum of the thermometers 11 at each of the four locations, and the average value of the heat transfer coefficients at the four locations is determined. Using the heat transfer coefficient, the measurement value of the thermometer 11 at each location, the cooling water temperature, and the erosion line temperature, the erosion line position was detected based on equation (6).
第1表は、上記従来の1点法及び上記本発明法によって
検知した侵食ライン位置の、従来の2点法によって検知
した侵食ライン位置との平均偏差及び最大偏差を示した
ものである。Table 1 shows the average deviation and maximum deviation of the erosion line position detected by the conventional one-point method and the method of the present invention from the erosion line position detected by the conventional two-point method.
第 1 表
第1表より、本発明法は従来の1点法に比べて浸食ライ
ン位置を高精度で検知可能であり、円周方向の侵食プロ
フィルを精度よく検知できることが明らかである。Table 1 From Table 1, it is clear that the method of the present invention can detect the erosion line position with higher accuracy than the conventional one-point method, and can detect the erosion profile in the circumferential direction with high accuracy.
尚、以上の説明はステーブ冷却式炉床壁の侵食状況検知
法について述べたものであるが、本発明法は散水冷却式
炉床壁の侵食状況の検知においても適用できるものであ
る。Although the above description has been made regarding the method for detecting the state of erosion on the wall of a stave-cooled hearth, the method of the present invention can also be applied to the detection of the state of erosion on the wall of a water-cooled hearth.
以上、詳述した様に、本発明法によれば、低装置費で高
精度で炉床壁の円周方向又は高さ方向の浸食状況を検知
でき、炉底保護のための適切な対策を実施することがで
き、これにより局部(昼食が防止できるなど炉寿命延長
に大きな利益を上げることができる。As detailed above, according to the method of the present invention, it is possible to detect the erosion situation of the hearth wall in the circumferential direction or height direction with high accuracy at low equipment cost, and to take appropriate measures to protect the hearth bottom. This can lead to significant benefits in extending the life of the furnace, such as preventing local breakouts.
第1〜3図は従来法の説明図、第4図は本発明法の説明
図、第!l!、6.7図は本発明法の実施例及び効果の
説明図である。
1・・・炉床壁、 2・・・大気、 3・・・鉄皮、4
・・・キャスタブル層、 5・・・ステーブ、 6・
・・ステープパイプ、 7・・・スタンプ層、 8・
・・カーボン煉瓦、 9・・・侵食ライン、 10
・・・溶銑、11・・・温度計、 12・・・温度計、
13・・・温度計、14・・・侵食状況検知装置、
15・・・伝熱係数演算部、 16・・・侵食ライン
位置演算部、 17・・・侵食状況表示部。
出 願 人 新日本fi!!鐵株式会社代理人弁理士
青 柳 稔
第5図Figures 1 to 3 are explanatory diagrams of the conventional method, and Figure 4 is an explanatory diagram of the method of the present invention. l! , 6.7 are explanatory diagrams of examples and effects of the method of the present invention. 1... Hearth wall, 2... Atmosphere, 3... Iron shell, 4
... castable layer, 5... stave, 6.
...Stapipe, 7.Stamp layer, 8.
...Carbon brick, 9...Erosion line, 10
...Hot metal, 11...Thermometer, 12...Thermometer,
13... Thermometer, 14... Erosion situation detection device,
15...Heat transfer coefficient calculation unit, 16...Erosion line position calculation unit, 17...Erosion status display unit. Applicant New Japan fi! ! Tetsu Co., Ltd. Representative Patent Attorney Minoru Aoyagi Figure 5
Claims (1)
煉瓦内に、煉瓦厚み方向の特定点(a点)の温度を計測
する温度計を設けて、各箇所の温度計の計測温度と炉床
壁の冷却水温度に基づいて各箇所の炉床壁侵食ライン位
置を演算し、高炉炉床壁の円周方向或は高さ方向の侵食
状況を検知する方法において、 上記高炉炉床壁の円周方向或は高さ方向の複数箇所のう
ちの一部の箇所の炉床壁煉瓦内に、上記温度計の計測点
(a点)よりも炉内側の煉瓦厚み方向の特定点(b点)
の温度を計測する温度計を設けて、その箇所のa点及び
b点の計測温度と冷却水温度に基づいてa点から冷却水
までの伝熱係数を演算し、算出した伝熱係数を用いて、
その他の箇所の侵食ライン位置を各箇所のa点の計測温
度と冷却水温度に基づいて演算することを特徴とする高
炉炉床壁侵食状況検知方法。[Scope of Claims] Thermometers are provided in the hearth wall bricks at multiple locations in the circumferential direction or height direction of the blast furnace hearth wall to measure the temperature at a specific point (point a) in the brick thickness direction. , calculate the hearth wall erosion line position at each point based on the temperature measured by the thermometer at each point and the cooling water temperature on the hearth wall, and calculate the erosion status of the blast furnace hearth wall in the circumferential direction or height direction. In the detection method, there is a temperature in the hearth wall bricks at some of the plurality of locations in the circumferential direction or the height direction of the blast furnace hearth wall, which is higher than the measurement point (point a) of the thermometer. Specific point in the thickness direction of the inner brick (point b)
A thermometer is installed to measure the temperature of point A and B, and the heat transfer coefficient from point A to the cooling water is calculated based on the measured temperatures at points A and B and the cooling water temperature, and the calculated heat transfer coefficient is used. hand,
A method for detecting erosion status of a blast furnace hearth wall, characterized in that the positions of erosion lines at other locations are calculated based on the measured temperature at point a and the cooling water temperature at each location.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10042886A JPS62257004A (en) | 1986-04-30 | 1986-04-30 | Blast furnace hearth wall erosion detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10042886A JPS62257004A (en) | 1986-04-30 | 1986-04-30 | Blast furnace hearth wall erosion detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62257004A true JPS62257004A (en) | 1987-11-09 |
Family
ID=14273685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10042886A Pending JPS62257004A (en) | 1986-04-30 | 1986-04-30 | Blast furnace hearth wall erosion detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62257004A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106767611A (en) * | 2016-12-09 | 2017-05-31 | 辽宁科技大学 | A kind of assay method of COREX melting gasification furnaces Tuyere Raceway length |
CN110453023A (en) * | 2019-09-18 | 2019-11-15 | 石横特钢集团有限公司 | A kind of blast furnace crucibe corrodes Prevention analysis method as foot |
CN110527769A (en) * | 2018-07-18 | 2019-12-03 | 广东韶钢松山股份有限公司 | A kind of residual thick judgment method of blast furnace crucibe carbon brick |
-
1986
- 1986-04-30 JP JP10042886A patent/JPS62257004A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106767611A (en) * | 2016-12-09 | 2017-05-31 | 辽宁科技大学 | A kind of assay method of COREX melting gasification furnaces Tuyere Raceway length |
CN110527769A (en) * | 2018-07-18 | 2019-12-03 | 广东韶钢松山股份有限公司 | A kind of residual thick judgment method of blast furnace crucibe carbon brick |
CN110527769B (en) * | 2018-07-18 | 2021-04-30 | 广东韶钢松山股份有限公司 | Method for judging residual thickness of carbon brick in blast furnace hearth |
CN110453023A (en) * | 2019-09-18 | 2019-11-15 | 石横特钢集团有限公司 | A kind of blast furnace crucibe corrodes Prevention analysis method as foot |
CN110453023B (en) * | 2019-09-18 | 2021-06-29 | 石横特钢集团有限公司 | Blast furnace hearth elephant foot erosion prevention and analysis method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5961214A (en) | Determining protective layer thickness of blast furnaces | |
RU2678549C2 (en) | Method and device for measuring levels of cast-iron and slag in blast furnace | |
CA1156760A (en) | Method of monitoring the wear of refractory walls of a blast furnace and temperature probe used for the method | |
CN111705174B (en) | Method for detecting blast furnace wall junction thickness | |
JPS62257004A (en) | Blast furnace hearth wall erosion detection method | |
KR102531803B1 (en) | Method for monitoring wear of refractory linings of blast furnaces | |
JP4119620B2 (en) | In-furnace situation estimation method for blast furnace | |
JP4081248B2 (en) | Control method of the lower part of the blast furnace | |
JP2867918B2 (en) | Method for estimating effective thickness of slag coating in smelting vessel | |
RU2044058C1 (en) | Method for control of erosion of blast-furnace well | |
JPS62238308A (en) | Temperature measuring method for bottom part of blast furnace | |
JP4276563B2 (en) | Blast furnace bottom condition diagnosis method | |
JPH0978113A (en) | Blast furnace bottom structure design method | |
JPS6354588A (en) | Method of determining state of damage of high-heating furnace fireproofing wall | |
JP4276565B2 (en) | Blast furnace lower cooling control method and system | |
RU2003021C1 (en) | Method for detecting width of heat unit lining | |
MXPA00002945A (en) | Method for monitoring the wear and extending the life of blast furnace refractory lining | |
JPS6126612B2 (en) | ||
JPS6361885A (en) | Method of determining state of damage of high-temperature furnace refractory wall | |
JPH0375494A (en) | Temperature sensor for monitoring refractory | |
SU1086018A1 (en) | Method for controlling formation of crust on chilled elements of gas removal duct of steel smelting unit | |
JPS61254840A (en) | Detection of erosion of blast furnace wall | |
Bhagat | Optimization of refractory lining used in blast furnace | |
JPS60141813A (en) | Method for controlling refractory wall of refining furnace for molten steel | |
JPS6137327B2 (en) |