KR20240158178A - Lithium niobate waveguide modulator device and method for manufacturing same - Google Patents
Lithium niobate waveguide modulator device and method for manufacturing same Download PDFInfo
- Publication number
- KR20240158178A KR20240158178A KR1020240121895A KR20240121895A KR20240158178A KR 20240158178 A KR20240158178 A KR 20240158178A KR 1020240121895 A KR1020240121895 A KR 1020240121895A KR 20240121895 A KR20240121895 A KR 20240121895A KR 20240158178 A KR20240158178 A KR 20240158178A
- Authority
- KR
- South Korea
- Prior art keywords
- lithium niobate
- waveguide
- waveguide modulator
- domain structure
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 230000005684 electric field Effects 0.000 claims abstract description 11
- 230000010287 polarization Effects 0.000 claims abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- 239000007888 film coating Substances 0.000 claims description 5
- 238000009501 film coating Methods 0.000 claims description 5
- 238000000206 photolithography Methods 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000010884 ion-beam technique Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 claims description 2
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000005699 Stark effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/035—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/136—Integrated optical circuits characterised by the manufacturing method by etching
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/0305—Constructional arrangements
- G02F1/0316—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/0327—Operation of the cell; Circuit arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12038—Glass (SiO2 based materials)
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/1204—Lithium niobate (LiNbO3)
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/20—LiNbO3, LiTaO3
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
본 발명은 니오브산리튬 도파관 변조기 및 이의 제조 방법을 개시한다. 상기 니오브산리튬 도파관 변조기는 기판 및 기판 상의 리브 도파관을 포함한다. 상기 리브 도파관 중 적어도 일부는 니오브산리튬 네거티브 도메인 구조이고, 상기 니오브산리튬 네거티브 도메인 구조의 양측에는 전극이 설치된다. 상기 니오브산리튬 도파관 변조기의 제조 방법은, 표면에 필름이 코팅된 기판 및 필름 니오브산리튬을 결합한 다음, 결합된 필름 니오브산리튬을 리브 도파관으로 가공한 후, 실온 전계 분극 공정을 통해 네거티브 도메인 구조를 제작하고, 마지막으로 리브 도파관 양측에 전극을 제조하는 단계를 포함한다. 본 발명은 처음으로 니오브산리튬의 도메인 역전 특성을 이용하여 전기광학 변조를 수행하고 니오브산리튬 도파관 변조기를 제조하였으며, 이는 제조 방법이 간단하고 구현이 용이하며 응용 가능성이 넓다.The present invention discloses a lithium niobate waveguide modulator and a method for manufacturing the same. The lithium niobate waveguide modulator includes a substrate and a rib waveguide on the substrate. At least a portion of the rib waveguide has a lithium niobate negative domain structure, and electrodes are installed on both sides of the lithium niobate negative domain structure. The method for manufacturing the lithium niobate waveguide modulator includes the steps of combining a substrate having a film coated on its surface and a film lithium niobate, then processing the combined film lithium niobate into a rib waveguide, then fabricating a negative domain structure through a room temperature electric field polarization process, and finally fabricating electrodes on both sides of the rib waveguide. The present invention performs electro-optic modulation by utilizing the domain inversion characteristics of lithium niobate for the first time and manufactures a lithium niobate waveguide modulator, which has a simple manufacturing method, easy implementation, and wide application potential.
Description
본 발명은 도파관 변조기 및 이의 제조 방법에 관한 것으로, 특히 니오브산리튬 도파관 변조기 및 이의 제조 방법에 관한 것이다.The present invention relates to a waveguide modulator and a method for manufacturing the same, and more particularly, to a lithium niobate waveguide modulator and a method for manufacturing the same.
광변조기는 고속, 근거리 광통신을 위한 핵심 소자이자 가장 중요한 집적광 소자 중 하나이다. 광변조기는 변조 원리에 따라 전기광학, 열광학, 음향광학, 전광학 등으로 나눌 수 있다. 이들의 기본 이론으로는 다양한 형태의 전기광학효과, 음향광학효과, 자기광학효과, Franz-Keldysh 효과, 양자우물 Stark 효과, 캐리어 분산 효과 등이 있다. 그 중 전기광학 변조기는 전압이나 전기장의 변화를 통해 출력광의 굴절률, 흡수율, 진폭 또는 위상을 궁극적으로 제어하는 소자이며, 이는 손실, 전력 소비, 속도, 통합 등의 측면에서 다른 유형의 변조기보다 우수하다. 광통신 전반의 빛의 방출, 송신, 수신 과정에서 빛의 세기를 조절하기 위해 광변조기가 사용되는데, 그 역할은 매우 중요하다.Optical modulators are key components for high-speed, short-distance optical communications and are one of the most important integrated optical components. Optical modulators can be divided into electro-optical, thermo-optical, acousto-optical, and all-optical types according to their modulation principles. Their basic theories include various forms of electro-optical effects, acousto-optical effects, magneto-optical effects, Franz-Keldysh effects, quantum well Stark effects, and carrier dispersion effects. Among them, electro-optical modulators are components that ultimately control the refractive index, absorption, amplitude, or phase of output light by changing voltage or electric fields, and they are superior to other types of modulators in terms of loss, power consumption, speed, and integration. Optical modulators are used to control the intensity of light in the entire process of emitting, transmitting, and receiving light in optical communications, and their role is very important.
전기광학 변조기(EOM)는 니오브산리튬(LiNbO3), 갈륨비소(GaAs) 및 탄탈산리튬(LiTaO3)과 같은 특정 전기광학 결정의 전기광학 효과를 활용하여 제작된다. 전기광학 변조는 광도파로의 굴절률이 외부 전기장의 변화에 비례하는 효과인 선형 전기광학 효과(펄크 효과)를 기반으로 한다. 전기광학 효과에 의해 위상 변조기에서 광도파로의 굴절률이 선형적으로 변화하면, 상기 도파관을 통과하는 광파의 위상 변이가 발생하여 위상 변조가 이루어진다. 단순 위상 변조는 빛의 세기를 변조할 수 없지만, 2개의 위상 변조기와 2개의 Y-branch 도파관으로 구성된 마하젠더(Mach-Zehnder) 간섭계형 변조기는 빛의 세기를 변조할 수 있다. 전기광학 변조를 위해 니오브산리튬의 도메인 역전 특성을 활용한 도파관 변조기를 어떻게 설계하는가는 해결해야 할 시급한 기술적 과제이다.Electro-optic modulators (EOMs) are fabricated by exploiting the electro-optic effect of certain electro-optic crystals, such as lithium niobate (LiNbO 3 ), gallium arsenide (GaAs), and lithium tantalate (LiTaO 3 ). Electro-optic modulation is based on the linear electro-optic effect (Pulck effect), which is an effect in which the refractive index of an optical waveguide is proportional to the change in an external electric field. When the refractive index of an optical waveguide in a phase modulator changes linearly due to the electro-optic effect, a phase shift occurs in the optical wave passing through the waveguide, resulting in phase modulation. Simple phase modulation cannot modulate the intensity of light, but a Mach-Zehnder interferometer-type modulator consisting of two phase modulators and two Y-branch waveguides can modulate the intensity of light. How to design a waveguide modulator that exploits the domain inversion properties of lithium niobate for electro-optic modulation is an urgent technical challenge that needs to be solved.
본 발명의 목적은 니오브산리튬의 도메인 역전 특성을 이용하여 전계 변조를 수행하고 도파관을 생성하는 니오브산리튬 도파관 변조기를 제공하는 데에 있다. 본 발명의 목적은 상기 니오브산리튬 도파관 변조기의 제조 방법을 제공하는 데에 있다.An object of the present invention is to provide a lithium niobate waveguide modulator which performs electric field modulation and generates a waveguide by utilizing the domain inversion characteristics of lithium niobate. An object of the present invention is to provide a method for manufacturing the lithium niobate waveguide modulator.
본 발명에 따른 니오브산리튬 도파관 변조기는 기판 및 기판 상의 리브 도파관을 포함하며, 상기 리브 도파관 중 적어도 일부는 니오브산리튬 네거티브 도메인 구조이고, 상기 니오브산리튬 네거티브 도메인 구조의 양측에 전극이 설치된다.A lithium niobate waveguide modulator according to the present invention comprises a substrate and a rib waveguide on the substrate, at least some of the rib waveguides having a lithium niobate negative domain structure, and electrodes are provided on both sides of the lithium niobate negative domain structure.
더 나아가, 상기 기판의 재료는 니오브산리튬, 사파이어, 탄화규소 또는 이산화규소이고, 상기 기판의 상표면은 필름으로 코팅되고, 필름 코팅 재료는 이산화규소, 산화알루미늄, 산화티타늄, 불화마그네슘 또는 불화칼슘이다. 상기 리브 도파관의 재료는 동일 성분 니오브산리튬, 화학량론적 니오브산리튬 또는 마그네슘 도핑 니오브산리튬이다. 상기 전극은 금속 전극이고, 전극 재료는 금, 은, 구리 또는 알루미늄이다.Furthermore, the material of the substrate is lithium niobate, sapphire, silicon carbide or silicon dioxide, the upper surface of the substrate is coated with a film, and the film coating material is silicon dioxide, aluminum oxide, titanium oxide, magnesium fluoride or calcium fluoride. The material of the rib waveguide is lithium niobate of the same component, stoichiometric lithium niobate or magnesium-doped lithium niobate. The electrode is a metal electrode, and the electrode material is gold, silver, copper or aluminum.
더 나아가, 상기 전극은 니오브산리튬 네거티브 도메인 구조를 완전히 덮는다.Furthermore, the electrode completely covers the lithium niobate negative domain structure.
더 나아가, 상기 니오브산리튬 네거티브 도메인 구조 양측의 전극은 각각 양전압 및 음전압과 통한다. 전극에 전압이 없으면 네거티브 도메인의 굴절률이 도파관의 굴절률과 동일하며, 네거티브 도메인은 어떠한 작용도 하지 않는다. 전극에 전압을 인가하면 전기광학 효과에 따라 네거티브 도메인 부분의 굴절률이 증가하고, 네거티브 도메인 부분이 렌즈와 유사한 효과를 형성하여 빛을 수렴한다. 복수의 네거티브 도메인에 캐스케이드를 수행하면, 상기 수렴 효과가 강화된다. 수렴 효과가 일정 수준에 도달하면, 도파관에서 전송되는 빛이 도파관 전송 조건을 충족하지 못하고 도파관에서 전송되는 빛의 강도가 작아져 강도 변조 효과가 발생한다.Furthermore, the electrodes on both sides of the lithium niobate negative domain structure are connected to a positive voltage and a negative voltage, respectively. When there is no voltage on the electrode, the refractive index of the negative domain is the same as the refractive index of the waveguide, and the negative domain does not perform any action. When a voltage is applied to the electrode, the refractive index of the negative domain portion increases according to the electro-optical effect, and the negative domain portion forms an effect similar to a lens to converge light. When a plurality of negative domains are cascaded, the convergence effect is strengthened. When the convergence effect reaches a certain level, the light transmitted from the waveguide does not satisfy the waveguide transmission condition, and the intensity of the light transmitted from the waveguide decreases, resulting in an intensity modulation effect.
더 나아가, 상기 네거티브 도메인 구조의 패턴은 원형, 호형 또는 프리즘형이고, 바람직하게는 상기 네거티브 도메인 구조의 도메인 벽은 일정한 정도의 곡률을 가지며, 패턴은 원형 또는 호형이다.Furthermore, the pattern of the negative domain structure is circular, arc-shaped or prism-shaped, and preferably, the domain wall of the negative domain structure has a certain degree of curvature, and the pattern is circular or arc-shaped.
상기 니오브산리튬 도파관 변조기의 제조 방법은, 표면에 필름이 코팅된 기판 및 필름 니오브산리튬을 결합한 다음, 결합된 필름 니오브산리튬을 리브 도파관으로 가공한 후, 실온 전계 분극 공정을 통해 네거티브 도메인 구조를 제작하고, 마지막으로 리브 도파관 양측에 전극을 제조하는 단계를 포함한다.The method for manufacturing the above lithium niobate waveguide modulator includes the steps of combining a substrate having a film coated on its surface and a film lithium niobate, then processing the combined film lithium niobate into a rib waveguide, then fabricating a negative domain structure through a room temperature electric field polarization process, and finally fabricating electrodes on both sides of the rib waveguide.
더 나아가, 상기 리브 도파관은 포토리소그래피, 에칭 및/또는 집속 이온빔의 방법을 채택하여 가공 획득하며, 상기 전극은 포토리소그래피 및/또는 필름 코팅의 방식을 통해 가공 획득한다.Furthermore, the rib waveguide is processed and obtained by adopting the methods of photolithography, etching and/or focused ion beam, and the electrode is processed and obtained by adopting the methods of photolithography and/or film coating.
본 발명의 원리는 다음과 같다. 즉, 전기광학 효과에 따라 외부 전기장 E의 작용 하에서 니오브산리튬 결정의 굴절률 주축이 변하여 각 방향의 굴절률이 변한다. 니오브산리튬의 선형 전기광학 효과 행렬에 따라, Z축 방향으로 전기장 E를 인가하면 Ex=Ey=0, Ez=V/w이며, 굴절률 증가는 다음과 같다. The principle of the present invention is as follows. That is, the refractive index principal axis of a lithium niobate crystal changes under the action of an external electric field E according to the electro-optic effect, so that the refractive index in each direction changes. According to the linear electro-optic effect matrix of lithium niobate, when an electric field E is applied in the Z-axis direction, Ex = Ey = 0, Ez = V/w, and the increase in the refractive index is as follows.
……(1) … … (1)
여기에서 은 e광 굴절률이고, 는 전기광학 계수이고, 는 전압이고, 는 전기장 폭이다.Here is the refractive index of e light, is the electro-optic coefficient, is the voltage, is the electric field width.
단일 렌즈의 경우 렌즈 제작자 공식의 단순화된 형식에 따를 수 있다.For single lenses, a simplified form of the lens maker's formula can be followed.
……(2) … … (2)
단일 렌즈의 초점 거리를 계산하며, 여기에서 r은 원형 네거티브 도메인의 반경 또는 원호의 곡률 반경이다. 포커싱 효과를 높이기 위해 복수의 원형 네거티브 도메인을 제작할 수 있다. 복수개 렌즈의 경우 하기 식에 따라 초점 거리를 계산할 수 있다.Calculate the focal length of a single lens, where r is the radius of the circular negative domain or the radius of curvature of the arc. Multiple circular negative domains can be produced to enhance the focusing effect. For multiple lenses, the focal length can be calculated according to the following formula.
……(3) … … (3)
종래 기술과 비교하여, 본 발명은 다음과 같은 중요한 이점을 갖는다. 즉, 처음으로 니오브산리튬의 도메인 역전 특성을 이용하여 전기광학 변조를 수행하고 니오브산리튬 도파관 변조기를 제조 획득하였으며, 이의 제조 방법은 간단하고 수행하기가 용이하며 응용 가능성이 넓다.Compared with the prior art, the present invention has the following significant advantages: that is, for the first time, the domain inversion characteristic of lithium niobate is utilized to perform electro-optic modulation, and a lithium niobate waveguide modulator is manufactured and obtained, the manufacturing method of which is simple, easy to perform, and has wide applicability.
도 1은 본 발명에 따른 니오브산리튬 도파관 변조기의 구조도이다.
도 2는 본 발명에 따른 니오브산리튬 도파관 변조기의 3차원도이다.
도 3은 본 발명에 따른 니오브산리튬 도파관 변조기의 단면도이다. Figure 1 is a structural diagram of a lithium niobate waveguide modulator according to the present invention.
FIG. 2 is a three-dimensional diagram of a lithium niobate waveguide modulator according to the present invention.
FIG. 3 is a cross-sectional view of a lithium niobate waveguide modulator according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 기술적 해결책을 더욱 상세하게 설명한다.Hereinafter, the technical solution of the present invention will be described in more detail with reference to the attached drawings.
실시예Example
도 1 내지 도 2에 도시된 바와 같이, 본 발명의 니오브산리튬 도파관 변조기는 기판(1)과 기판(1) 상의 리브 도파관(2)을 포함한다. 상기 리브 도파관(2)에는 한 구간이 니오브산리튬 네거티브 도메인 구조(3)이고, 상기 네거티브 도메인 구조(3)의 도메인 벽은 일정한 정도의 곡률을 가지며, 패턴은 원형이다. 상기 니오브산리튬 네거티브 도메인 구조(3)의 양측에는 전극이 설치되고, 상기 전극(4)은 니오브산리튬 네거티브 도메인 구조(3)를 완전히 덮는다.As illustrated in FIGS. 1 and 2, the lithium niobate waveguide modulator of the present invention includes a substrate (1) and a rib waveguide (2) on the substrate (1). The rib waveguide (2) has a section of a lithium niobate negative domain structure (3), and the domain wall of the negative domain structure (3) has a certain degree of curvature and a circular pattern. Electrodes are installed on both sides of the lithium niobate negative domain structure (3), and the electrodes (4) completely cover the lithium niobate negative domain structure (3).
본 실시예에서는 실리콘 웨이퍼 상에 이산화규소 필름을 코팅한 후, 두께 1μm의 필름 니오브산리튬을 결합하였다. 결합된 필름 니오브산리튬은 집속 이온빔 공정을 통해 폭 1μm, 높이 1μm, 길이 10mm의 리브 도파관(2)으로 가공된다. 그 후, 실온 전계 분극 공정을 통해 도 3에 도시된 바와 같은 원형 네거티브 도메인 구조(3)를 제작한다. 마지막으로, 포토리소그래피, 필름 코팅 방식을 통해 구리 금속 전극(4)을 가공한다.In this embodiment, a silicon dioxide film is coated on a silicon wafer, and then a 1 μm thick lithium niobate film is bonded thereto. The bonded lithium niobate film is processed into a rib waveguide (2) having a width of 1 μm, a height of 1 μm, and a length of 10 mm through a focused ion beam process. Thereafter, a circular negative domain structure (3) as shown in Fig. 3 is fabricated through a room temperature electric field polarization process. Finally, a copper metal electrode (4) is processed through photolithography and a film coating method.
상기 리브 도파관(2)은 격자를 통해 결합되어, 1064nm 선형 편광 레이저를 전송하며, 편광 방향은 Z축에 평행하다(도 1의 니오브산리튬 도파관의 Z축(광축)은 지면 내에 있으며, 도파관은 X 방향을 따라 전파되고, 전기장은 Y축에 평행함). 전극(4)에 전압이 없는 경우, 네거티브 도메인의 굴절률은 도파관과 동일하며 레이저는 네거티브 도메인을 통과할 때 영향을 받지 않는다.The above rib waveguide (2) is coupled through a grating to transmit a 1064 nm linearly polarized laser, and the polarization direction is parallel to the Z-axis (the Z-axis (optical axis) of the lithium niobate waveguide of Fig. 1 is in the ground, the waveguide propagates along the X-direction, and the electric field is parallel to the Y-axis). When there is no voltage on the electrode (4), the refractive index of the negative domain is the same as that of the waveguide, and the laser is not affected when passing through the negative domain.
네거티브 도메인 구조(3) 양측의 전극(4)에 각각 양의 전압과 음의 전압 ±0.5V를 인가한 후, 전기광학 효과에 따라 원형 네거티브 도메인의 굴절률이 변화한다. 니오브산리튬의 이고, 공식 (1)에 따라, , V=1V, w=1μm를 대입하여 를 획득한다.Negative domain structure (3) After applying a positive voltage and a negative voltage of ±0.5 V to the electrodes (4) on both sides, the refractive index of the circular negative domain changes according to the electro-optical effect. Lithium niobate And, according to formula (1), , V=1V, w=1μm by substituting Obtain .
공식 (2)에 따라, 원호의 곡률 반경은 이며, 단일 네거티브 도메인의 초점 거리는 로 계산된다. 이 효과를 강화하기 위해, 10개의 네거티브 도메인을 직렬로 연결할 수 있으며, 공식 (3)에 따라, 총 초점 거리는 로 획득된다.According to formula (2), the radius of curvature of the arc is , and the focal length of a single negative domain is is calculated as . To enhance this effect, 10 negative domains can be connected in series, and according to formula (3), the total focal length is is obtained by
정상적으로 전송되는 레이저는 상기 네거티브 도메인을 통과한 후, 네거티브 도메인의 렌즈 투과 효과의 공간적 변조를 받아 포커싱이 발생하므로 리브 도파관의 도파관 전송 조건을 벗어난다. 따라서 전송되는 레이저의 강도가 낮아지고 인가되는 전압이 높을수록 강도가 낮아지므로 강도 변조된 도파관 전기광학 변조기를 형성하게 된다.The normally transmitted laser passes through the negative domain and then is spatially modulated by the lens transmission effect of the negative domain, causing focusing, which deviates from the waveguide transmission condition of the rib waveguide. Therefore, the intensity of the transmitted laser decreases, and the higher the applied voltage, the lower the intensity, thereby forming an intensity-modulated waveguide electro-optic modulator.
1: 기판
2: 리브 도파관
3: 네거티브 도메인 구조
4: 전극1: Substrate
2: Rib waveguide
3: Negative domain structure
4: Electrode
Claims (10)
기판(1) 및 기판 상의 리브 도파관(2)을 포함하고, 상기 리브 도파관(2) 중 적어도 일부가 니오브산리튬 네거티브 도메인 구조(3)이고, 상기 니오브산리튬 네거티브 도메인 구조(3)의 양측에 전극(4)이 설치되는 것을 특징으로 하는, 니오브산리튬 도파관 변조기.In lithium niobate waveguide modulators,
A lithium niobate waveguide modulator comprising a substrate (1) and a rib waveguide (2) on the substrate, wherein at least a portion of the rib waveguide (2) is a lithium niobate negative domain structure (3), and electrodes (4) are installed on both sides of the lithium niobate negative domain structure (3).
상기 기판(1)의 재료는 니오브산리튬, 사파이어, 탄화규소 또는 이산화규소인 것을 특징으로 하는, 니오브산리튬 도파관 변조기.In the first paragraph,
A lithium niobate waveguide modulator, characterized in that the material of the above substrate (1) is lithium niobate, sapphire, silicon carbide or silicon dioxide.
상기 기판(1)의 상표면은 필름으로 코팅되고, 필름 코팅 재료는 이산화규소, 산화알루미늄, 산화티타늄, 불화마그네슘 또는 불화칼슘인 것을 특징으로 하는, 니오브산리튬 도파관 변조기.In the first paragraph,
A lithium niobate waveguide modulator, characterized in that the surface of the substrate (1) is coated with a film, and the film coating material is silicon dioxide, aluminum oxide, titanium oxide, magnesium fluoride or calcium fluoride.
상기 리브 도파관(2)의 재료는 동일한 성분 니오브산리튬, 화학양론적 니오브산리튬 또는 마그네슘 도핑 니오브산리튬인 것을 특징으로 하는, 니오브산리튬 도파관 변조기.In the first paragraph,
A lithium niobate waveguide modulator, characterized in that the material of the above rib waveguide (2) is lithium niobate, stoichiometric lithium niobate or magnesium-doped lithium niobate of the same component.
상기 전극(4)은 금속 전극이고, 전극 재료는 금, 은, 구리 또는 알루미늄인 것을 특징으로 하는, 니오브산리튬 도파관 변조기.In the first paragraph,
A lithium niobate waveguide modulator, characterized in that the above electrode (4) is a metal electrode and the electrode material is gold, silver, copper or aluminum.
상기 전극(4)은 니오브산리튬 네거티브 도메인 구조(3)를 완전히 덮는 것을 특징으로 하는, 니오브산리튬 도파관 변조기.In the first paragraph,
A lithium niobate waveguide modulator, characterized in that the above electrode (4) completely covers the lithium niobate negative domain structure (3).
상기 니오브산리튬 네거티브 도메인 구조(3) 양측의 전극(4)이 각각 양전압 및 음전압과 통하는 것을 특징으로 하는, 니오브산리튬 도파관 변조기.In the first paragraph,
A lithium niobate waveguide modulator, characterized in that the electrodes (4) on both sides of the lithium niobate negative domain structure (3) communicate with a positive voltage and a negative voltage, respectively.
상기 니오브산리튬 네거티브 도메인 구조(3)의 패턴이 원형, 호형 또는 프리즘형인 것을 특징으로 하는, 니오브산리튬 도파관 변조기.In the first paragraph,
A lithium niobate waveguide modulator, characterized in that the pattern of the lithium niobate negative domain structure (3) is circular, arc-shaped or prism-shaped.
상기 방법은, 표면에 필름이 코팅된 기판(1) 및 필름 니오브산리튬을 결합한 다음, 결합된 필름 니오브산리튬을 리브 도파관(2)으로 가공한 후, 실온 전계 분극 공정을 통해 네거티브 도메인 구조(3)를 제작하고, 마지막으로 리브 도파관(2) 양측에 전극(4)을 제조하는 단계를 포함하는 것을 특징으로 하는, 니오브산리튬 도파관 변조기의 제조 방법.In a method for manufacturing a lithium niobate waveguide modulator according to any one of claims 1 to 8,
The above method is a method for manufacturing a lithium niobate waveguide modulator, characterized in that it includes the steps of combining a substrate (1) having a film coated on its surface and lithium niobate film, then processing the combined lithium niobate film into a rib waveguide (2), then fabricating a negative domain structure (3) through a room temperature electric field polarization process, and finally fabricating electrodes (4) on both sides of the rib waveguide (2).
상기 리브 도파관(2)은 포토리소그래피, 에칭 및/또는 집속 이온빔의 방법을 채택하여 가공 획득하고, 상기 전극(4)은 포토리소그래피 및 /또는 필름 코팅의 방식을 통해 가공 획득하는 것을 특징으로 하는, 니오브산리튬 도파관 변조기의 제조 방법.In Article 9,
A method for manufacturing a lithium niobate waveguide modulator, characterized in that the rib waveguide (2) is processed and obtained by adopting a method of photolithography, etching and/or focused ion beam, and the electrode (4) is processed and obtained by adopting a method of photolithography and/or film coating.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411181902X | 2024-08-27 | ||
CN202411181902.XA CN119087704A (en) | 2024-08-27 | 2024-08-27 | A lithium niobate waveguide modulator and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240158178A true KR20240158178A (en) | 2024-11-04 |
Family
ID=93459217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020240121895A Pending KR20240158178A (en) | 2024-08-27 | 2024-09-06 | Lithium niobate waveguide modulator device and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240158178A (en) |
CN (1) | CN119087704A (en) |
-
2024
- 2024-08-27 CN CN202411181902.XA patent/CN119087704A/en active Pending
- 2024-09-06 KR KR1020240121895A patent/KR20240158178A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN119087704A (en) | 2024-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4984861A (en) | Low-loss proton exchanged waveguides for active integrated optic devices and method of making same | |
Janner et al. | Micro‐structured integrated electro‐optic LiNbO3 modulators | |
US7447389B2 (en) | Optical modulator | |
US11841563B2 (en) | Electro-optic modulators that include caps for optical confinement | |
US20210223657A1 (en) | Active photonic networks on integrated lithium niobate platforms | |
KR100472056B1 (en) | Polarization-independent optical polymeric intensity modulator | |
JP2015230466A (en) | Optical waveguide element and optical modulator using the same | |
JPH07318986A (en) | Waveguide type optical switch | |
JP2015014715A (en) | Electro-optic device | |
JP2014112171A (en) | Optical modulator | |
CN112859477B (en) | A Mach-Zehnder Interferometer Based on Nanoantennas | |
JP2765529B2 (en) | Waveguide type optical device | |
KR20240158178A (en) | Lithium niobate waveguide modulator device and method for manufacturing same | |
JPH04172316A (en) | Wave guide type light control device | |
JPH05241115A (en) | Waveguide type optical device | |
JP2008009314A (en) | Optical waveguide element, optical modulator, and optical communication device | |
JPH01201609A (en) | Optical device | |
JP4161897B2 (en) | Method of adjusting phase difference of optical waveguide element | |
JP2005274793A (en) | Optical waveguide and optical waveguide device | |
JP3139009B2 (en) | Light switch | |
JPS6263917A (en) | light modulator | |
JPH0980364A (en) | Waveguide type optical device | |
JP2606552B2 (en) | Light control device | |
CN115728970A (en) | Photoelectric integrated structure and forming method thereof | |
JP3602874B2 (en) | Branch modulation type optical modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20240906 |
|
PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20240906 Comment text: Patent Application |
|
PG1501 | Laying open of application |