[go: up one dir, main page]

KR20240095931A - Hydrogen pressure vessel and method for manufacturing the same - Google Patents

Hydrogen pressure vessel and method for manufacturing the same Download PDF

Info

Publication number
KR20240095931A
KR20240095931A KR1020220178081A KR20220178081A KR20240095931A KR 20240095931 A KR20240095931 A KR 20240095931A KR 1020220178081 A KR1020220178081 A KR 1020220178081A KR 20220178081 A KR20220178081 A KR 20220178081A KR 20240095931 A KR20240095931 A KR 20240095931A
Authority
KR
South Korea
Prior art keywords
boss
cylinder
carbon fiber
dome
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
KR1020220178081A
Other languages
Korean (ko)
Inventor
김신
Original Assignee
재단법인 한국탄소산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020220178081A priority Critical patent/KR20240095931A/en
Publication of KR20240095931A publication Critical patent/KR20240095931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/067Synthetics in form of fibers or filaments helically wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명은 수소압력용기 및 그 제작방법에 관한 것으로, 본 발명은 탄소섬유 강화플라스틱 재질의 실린더; 상기 실린더의 길이 방향 양단에 각각 결합되며, 보스와 돔이 일체로 형성되며, 알루미늄 재질을 포함하는 보스일체형 돔; 및 상기 실린더와 보스일체형 돔을 강화제가 도포된 탄소섬유로 다수 회 와인딩한 섬유와인딩체를 포함한다. 본 발명에 따르면, 안전성을 유지하면서 내부 가스 저장공간을 증가시킴과 아울러 탄소섬유의 사용량을 감소시켜 무게를 감소시킨다.The present invention relates to a hydrogen pressure vessel and a method of manufacturing the same. The present invention includes a cylinder made of carbon fiber reinforced plastic; a boss-integrated dome that is coupled to both ends of the cylinder in the longitudinal direction, has a boss and a dome formed as one piece, and includes an aluminum material; and a fiber winding body in which the cylinder and the boss-integrated dome are wound multiple times with carbon fiber coated with a reinforcing agent. According to the present invention, the internal gas storage space is increased while maintaining safety, and the weight is reduced by reducing the amount of carbon fiber used.

Description

수소압력용기 및 그 제작방법{HYDROGEN PRESSURE VESSEL AND METHOD FOR MANUFACTURING THE SAME}Hydrogen pressure vessel and its manufacturing method {HYDROGEN PRESSURE VESSEL AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 수소압력용기 및 그 제작방법에 관한 것이다.The present invention relates to a hydrogen pressure vessel and a method of manufacturing the same.

최근 대체연료가스의 활용 범위가 점점 넓어짐에 따라 수소모빌리티 및 우주항공 분야 등에 활용되도록 대체연료가스를 저장하는 압력용기 개발이 활발하게 진행되고 있다.Recently, as the scope of use of alternative fuel gases has expanded, the development of pressure vessels to store alternative fuel gases for use in hydrogen mobility and aerospace fields is actively underway.

수소모빌리티 및 우주항공 분야에 사용되는 수소압력용기는 가볍고, 부피가 작고, 안전해야 한다. 또한, 수소압력용기는 용기 전체의 비강도(Specific Strength)는 물론 수소에 대한 기밀유지 및 사용압력 700Bar, 파열압 2,100Bar의 고압력 때문에 탄성강도 또한 커야 한다. 그 이유는, 동일한 무게에서 일시적으로 과도한 충전압력이나 용기의 일부분에 가해지는 외부충격을 견뎌내는 지표인 비강도도 중요하지만 반복사용 과정에서 고압가스의 충방전에 따른 용기의 변형 횟수가 누적됨에도 불구하고 내부의 고압기체가 누설되지 않아야 하기 때문이다.Hydrogen pressure vessels used in hydrogen mobility and aerospace fields must be light, small in volume, and safe. In addition, the hydrogen pressure container must have high elastic strength due to the specific strength of the entire container, as well as the high pressure of hydrogen airtightness and the operating pressure of 700 Bar and bursting pressure of 2,100 Bar. The reason is that specific strength, which is an indicator of the ability to temporarily withstand excessive charging pressure or external shock applied to a part of the container at the same weight, is important, but despite the accumulated number of deformations of the container due to charging and discharging of high-pressure gas during repeated use. This is because the high pressure gas inside must not leak.

이러한 수소압력용기는, 수소가스의 높은 내압을 견디기 위해 비강도와 비강성 높은 탄소섬유 및 유리섬유 등의 섬유강화 복합재료로 외피가 보강되며, 내부에는 가스의 기밀성을 유지하는 라이너가 삽입된다.In order to withstand the high internal pressure of hydrogen gas, the outer shell of this hydrogen pressure vessel is reinforced with fiber-reinforced composite materials such as carbon fiber and glass fiber with high specific strength and specific rigidity, and a liner is inserted inside to maintain gas tightness.

여기서, 수소압력용기는 라이너의 재질에 따라 타입(Type)이 나뉜다. 알루미늄과 같은 금속 재질의 라이너가 삽입된 용기를 타입 3(Type Ⅲ)라 하고, HDPE나 PA6와 같은 고밀도 폴리머 재질의 라이너가 삽입된 용기를 타입4(Type Ⅳ)라 한다.Here, hydrogen pressure vessels are divided into types depending on the material of the liner. A container with a liner made of a metal material such as aluminum is called Type 3 (Type Ⅲ), and a container with a liner made of a high-density polymer material such as HDPE or PA6 is called Type 4 (Type 4).

종래 수소압력용기 타입 4의 일예로, 도 1에 도시한 바와 같이, 수소압력용기 타입 4는 실린더와 돔이 일체인 형태로 형성된 라이너(1)가 고밀도 폴리머 재질로 형성되고 돔부분에 금속재질의 보스(2)가 결합되고, 보스(2)와 라이너(1) 전체를 탄소섬유 복합재(3)로 감싸 형태로 이루어진다.As an example of the conventional hydrogen pressure vessel type 4, as shown in Figure 1, the hydrogen pressure vessel type 4 has a liner (1) in which the cylinder and the dome are integrated, is made of a high-density polymer material, and the dome portion is made of a metal material. The boss (2) is combined, and the entire boss (2) and liner (1) are wrapped with carbon fiber composite material (3) to form a shape.

그러나 이와 같은 종래 구조는 실린더와 돔의 일체형인 라이너의 강도를 보강하고 라이너와 보스의 연결부분을 보강하기 위하여 탄소섬유를 보스와 라이너 전체를 탄소섬유로 감싸게 되므로 탄소섬유량이 많아지게 될 뿐만 아니라 두께가 두꺼워 전체 체적대비 내부 저장 공간이 작아 공간 효율이 떨어지고 무게가 무거지는 단점이 있다.However, in this conventional structure, the entire boss and liner are wrapped with carbon fiber to reinforce the strength of the liner, which is an integrated cylinder and dome, and to reinforce the connection between the liner and the boss, so not only does the amount of carbon fiber increase, but the thickness also increases. Because it is thick, the internal storage space is small compared to the total volume, which has the disadvantage of being less space efficient and being heavy.

대한민국 공개특허 제10-2017-0140574호Republic of Korea Patent Publication No. 10-2017-0140574

본 발명의 목적은 안전성을 유지하면서 내부 가스 저장공간을 증가시킴과 아울러 탄소섬유의 사용량을 감소시켜 무게를 감소시키는 수소압력용기 및 그 제작방법을 제공하는 것이다.The purpose of the present invention is to provide a hydrogen pressure vessel and a manufacturing method thereof that increase internal gas storage space while maintaining safety and reduce weight by reducing the amount of carbon fiber used.

상기 목적을 달성하기 위하여, 탄소섬유 강화플라스틱 재질의 실린더; 상기 실린더의 길이 방향 양단에 각각 결합되며, 보스와 돔이 일체로 형성되며, 알루미늄 재질을 포함하는 보스일체형 돔; 상기 실린더와 보스일체형 돔을 탄소섬유로 다수 회 와인딩한 섬유와인딩체를 포함하는 수소압력용기가 제공된다.In order to achieve the above object, a cylinder made of carbon fiber reinforced plastic; a boss-integrated dome that is coupled to both ends of the cylinder in the longitudinal direction, has a boss and a dome formed as one piece, and includes an aluminum material; A hydrogen pressure vessel is provided including a fiber winding body obtained by winding the cylinder and the boss-integrated dome with carbon fiber multiple times.

또한, 탄소섬유 강화플라스틱 재질로 실린더를 제작하는 단계; 보스와 돔이 일체로 형성된 보스일체형 돔을 제작하는 단계; 상기 실린더의 길이 방향 양단에 각각 보스일체형 돔을 결합하는 단계; 및 상기 실린더와 두 개의 보스일체형 돔들에 경화제가 도포된 탄소섬유를 와인딩하는 탄소섬유 와인딩단계를 포함하는 수소압력용기 제작방법이 제공된다.Additionally, manufacturing a cylinder from carbon fiber reinforced plastic material; Manufacturing a boss-integrated dome in which the boss and the dome are formed as one body; coupling boss-integrated domes to both ends of the cylinder in the longitudinal direction; and a carbon fiber winding step of winding carbon fiber coated with a hardener around the cylinder and the two boss-integrated domes.

본 발명은 탄소섬유 강화플라스틱 재질인 실린더의 길이 방향 양쪽에 각각 금속 알루미늄 재질인 보스일체형 돔이 결합되고 실린더와 보스일체형 돔의 결합체에 탄소섬유가 다수 회 와인딩되어 섬유와인딩체를 형성하게 되어 실린더와 그 실린더를 와인딩한 섬유와인딩체 부분의 비강성이 커지게 되므로 두께가 상대적으로 얇으면서도 안정성을 유지하게 되어 전체 체적대비 가스를 채우는 내부 공간을 증가시킬 수 있어 공간 효율을 높이게 된다.In the present invention, a boss-integrated dome made of metal aluminum is combined on both sides in the longitudinal direction of a cylinder made of carbon fiber-reinforced plastic, and carbon fiber is wound multiple times on the combination of the cylinder and the boss-integrated dome to form a fiber winding body, so that the cylinder and the boss-integrated dome are combined. Since the specific rigidity of the fiber winding body part that winds the cylinder increases, the thickness is relatively thin but stability is maintained, and the internal space filled with gas can be increased compared to the total volume, thereby increasing space efficiency.

또한, 본 발명은 내부 압력이 많이 작용하게 되는 보스 부분과 돔 부분이 일체로 형성되되, 금속 알루미늄 재질로 형성되고, 그 보스 부분과 돔 부분이 일체로 형성된 금속 알루미늄 재질의 보스일체형 돔이 실린더의 단부에 결합되고 보스일체형 돔과 실린더를 걸치도록 탄소섬유로 와인딩하되 고각헬리컬 와인딩하게 되므로 보스일체형 돔과 실린더의 결합이 견고하게 되어 보스일체형 돔에 와인딩하는 탄소섬유의 양을 감소시킬 수 있게 되고 이로 인하여, 용기 전체 무게를 감소시키게 된다.In addition, in the present invention, the boss part and the dome part, on which a lot of internal pressure acts, are formed integrally, and are formed of metal aluminum, and the boss part and the dome part are formed integrally, and the boss-integrated dome made of metal aluminum is formed as a single body of the cylinder. It is bonded to the end and wound with carbon fiber to cover the boss-integrated dome and cylinder, but is wound in a high-angle helical, so the bond between the boss-integrated dome and the cylinder is strengthened, and the amount of carbon fiber wound on the boss-integrated dome can be reduced. As a result, the overall weight of the container is reduced.

또한, 본 발명인 수소압력탱크는 무게를 감소시키고 내부 공간 효율을 높이게 되므로 모빌리티 분야나 우주항공 분야 등에 활용성을 높이고 수소 저장량을 증가시켜 상업성을 확대할 수 있다.In addition, the hydrogen pressure tank of the present invention reduces weight and increases internal space efficiency, thereby increasing usability in the mobility and aerospace fields and increasing hydrogen storage to expand commerciality.

도 1은 종래 수소압력용기의 일예를 도시한 부분 단면도,
도 2는 본 발명에 따른 수소압력용기의 일실시예를 도시한 정단면도,
도 3은 본 발명에 따른 수소압력용기의 일실시예를 구성하는 실린더와 보스일체형 돔을 분해하여 도시한 단면도,
도 4는 본 발명에 따른 수소압력용기의 일실시예를 구성하는 섬유와인딩체를 도시한 정면도,
도 5는 본 발명에 따른 수소압력용기 제작방법의 일실시예를 도시한 순서도,
도 6은 본 발명에 따른 수소압력용기 제작방법의 일실시예를 순서적으로 도시한 단면도.
1 is a partial cross-sectional view showing an example of a conventional hydrogen pressure vessel;
Figure 2 is a front cross-sectional view showing one embodiment of a hydrogen pressure vessel according to the present invention;
Figure 3 is an exploded cross-sectional view showing the cylinder and boss-integrated dome constituting an embodiment of the hydrogen pressure vessel according to the present invention;
Figure 4 is a front view showing a fiber winding body constituting an embodiment of the hydrogen pressure vessel according to the present invention;
Figure 5 is a flowchart showing an embodiment of the method for manufacturing a hydrogen pressure vessel according to the present invention;
Figure 6 is a cross-sectional view sequentially showing an embodiment of the method for manufacturing a hydrogen pressure vessel according to the present invention.

이하, 본 발명에 따른 수소압력용기 및 그 제작방법의 실시예를 첨부도면을 참조하여 상세히 설명한다.Hereinafter, embodiments of the hydrogen pressure vessel and its manufacturing method according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 수소압력용기의 일실시예는, 도 2, 3에 도시한 바와 같이, 실린더(10), 보스일체형 돔(20)들, 섬유와인딩체(30)를 포함한다. One embodiment of the hydrogen pressure vessel according to the present invention includes a cylinder 10, boss-integrated domes 20, and a fiber winding body 30, as shown in FIGS. 2 and 3.

실린더(10)는 균일한 내경과 길이를 갖는다. 실린더(10)는 탄소섬유 강화 플라스틱(Carbon Fiber Reinforced Plastic, CFRP) 재질로 제작된다. 따라서, 가볍고, 고강도, 고탄성률의 실린더(10)를 제작할 수 있다.The cylinder 10 has a uniform inner diameter and length. The cylinder 10 is made of carbon fiber reinforced plastic (CFRP). Therefore, it is possible to manufacture a cylinder 10 that is light, has high strength, and has a high elastic modulus.

보스일체형 돔(20)은 실린더(10)의 길이 방향 양단에 각각 결합되며, 금속 알루미늄 재질로 제작된다. 금속 알루미늄 재질이란 알루이늄을 주성분으로 하는 금속 재질임을 의미한다.The boss-integrated dome 20 is coupled to both ends of the cylinder 10 in the longitudinal direction and is made of metal aluminum. Metal aluminum material means a metal material whose main component is aluminum.

보스일체형 돔(20)은 보스와 돔이 일체로 형성된다. 보스일체형 돔(20)의 일예로, 보스일체형 돔(20)은 균일한 내경과 두께를 갖는 보스부(21)와, 그 보스부(21)의 한쪽에 연장 확관되어 돔 형상으로 형성되는 돔부(22)와, 그 돔부(22)의 단부에 구비되어 실린더(10)의 길이 방향 단부에 삽입되는 결합부(23)를 포함한다. 결합부(23)는 돔부(22)의 단부에 일정 깊이를 갖는 링형홈이 형성된 것으로 다른 부분보다 두께가 작고 단턱이 구비된다.In the boss-integrated dome 20, the boss and the dome are formed as one piece. As an example of the boss-integrated dome 20, the boss-integrated dome 20 includes a boss portion 21 having a uniform inner diameter and thickness, and a dome portion ( 22) and a coupling portion 23 provided at the end of the dome 22 and inserted into the longitudinal end of the cylinder 10. The coupling portion 23 is formed with a ring-shaped groove having a certain depth at the end of the dome portion 22, is smaller in thickness than other portions, and is provided with a step.

보스일체형 돔(20)은 결합부(23)의 외주면에 접착제가 도포된 상태에서 결합부(23)가 실린더(10)의 길이 방향 단부에 삽입되도록 결합된다. 이때, 보스일체형 돔(20)과 실린더(10)가 결합된 부분은 단턱지지 않고 동일 외주면을 형성하는 것이 바람직하다.The boss-integrated dome 20 is coupled so that the coupling portion 23 is inserted into the longitudinal end of the cylinder 10 with adhesive applied to the outer peripheral surface of the coupling portion 23. At this time, it is desirable that the portion where the boss-integrated dome 20 and the cylinder 10 are joined form the same outer peripheral surface without being stepped.

섬유와인딩체(30)는 실린더(10)와 두 개의 보스일체형 돔(20)을 경화제가 도포된 탄소섬유로 다수 회 와인딩되고 그 경화제가 경화된 것이다. 경화제는 에폭시인 것이 바람직하다. 섬유와인딩체(30)는 설정된 복수 개의 패턴을 형성하면서 와인딩되는 것이 바람직하다.The fiber winding body 30 is formed by winding the cylinder 10 and the two boss-integrated domes 20 with carbon fiber coated with a hardener multiple times and curing the hardener. The curing agent is preferably epoxy. The fiber winding body 30 is preferably wound while forming a plurality of set patterns.

섬유와인딩체(30)의 일예로, 도 4에 도시한 바와 같이, 섬유와인딩체(30)는 실린더(10)를 탄소섬유가 다수 회 와인딩한 후우프 와인딩부(Hoop winding portion)(31)와, 실린더(10)와 보스일체형 돔(20)에 걸치도록 탄소섬유가 다수 회 와인딩된 고각헬리컬 와인딩부(Hihg angle helical winding portion)(32)와, 한쪽 보스일체형 돔(20)과 실린더(10)와 다른 한쪽 보스일체형 돔(20)을 걸치도록 탄소섬유가 다수 회 와인딩된 저각헬리컬 와인딩부(Low angle helical winding portion)(33)를 포함한다.As an example of the fiber winding body 30, as shown in FIG. 4, the fiber winding body 30 includes a hoop winding portion 31 in which carbon fiber is wound around the cylinder 10 multiple times. , a high angle helical winding portion 32 in which carbon fiber is wound multiple times so as to span the cylinder 10 and the boss-integrated dome 20, and one boss-integrated dome 20 and the cylinder 10. and a low angle helical winding portion 33 in which carbon fiber is wound multiple times so as to span the boss-integrated dome 20 on the other side.

후우프 와인딩부(31), 고각헬리컬 와인딩부(32), 그리고 저각헬리컬 와인딩부(33)는 서로 연결된 것이다.The hoop winding part 31, the high angle helical winding part 32, and the low angle helical winding part 33 are connected to each other.

후우프 와인딩부(31)는 탄소섬유가 실린더(10)의 길이 방향으로 헬리컬 형태, 즉 나선 형태로 서로 접촉되게 다수 회 와인딩된 구조이며, 복수 층을 이룬다. 후우프 와인딩부(31)는 탄소섬유가 실린더(10)를 다수 회 와인딩하게 되어 실린더(10)의 구조적 강도를 강화시킨다.The hoop winding portion 31 has a structure in which carbon fibers are wound multiple times in contact with each other in a helical shape, that is, a spiral shape, in the longitudinal direction of the cylinder 10, and forms multiple layers. The hoop winding unit 31 allows carbon fiber to wind the cylinder 10 multiple times, thereby strengthening the structural strength of the cylinder 10.

고각헬리컬 와인딩부(32)는 탄소섬유가 실린더(10)와 보스일체형 돔(20)을 걸치도록 실린더(10)의 축방향으로 헬리컬 형태로 서로 접촉되게 다수 회 와인딩된 정방향 와인딩층(32a)과, 그 정방향 와인딩층(32a) 위로 실린더(10)와 보스일체형 돔(20)을 걸치도록 실린더(10)의 축방향으로 서로 접촉되게 다수 회 와인딩된 역방향 와인딩층(32b)들로 구성된다. 즉, 정방향 와인딩층(32a)은 탄소섬유 턴(한바퀴 와인딩된 것)들이 보스일체형 돔(20) 쪽으로 경사지게 위치하고, 역방향 와인딩층(32b)은 탄소섬유 턴들이 실린더(10) 쪽으로 경사지게 위치한다. 이로 인하여 정방향 와인딩층(32a)과 역방향 와인딩층(32b)은 탄소섬유 턴들이 서로 교차하게 위치하게 된다. 고각헬리컬 와인딩은 탄소섬유가 실린더(10)의 중심선상을 기준으로 큰 각으로 경사지게 와인딩된 것이다. 고각헬리컬 와인딩부(32)는 탄소섬유가 실린더(10)와 보스일체형 돔(20)의 연결부분 영역을 감싸게 되어 실린더(10)와 보스일체형 돔(20)을 서로 견고하게 잡아 연결시켜 주게 된다.The high-angle helical winding portion 32 includes a forward winding layer 32a in which the carbon fibers are wound multiple times in contact with each other in a helical shape in the axial direction of the cylinder 10 so that the carbon fibers span the cylinder 10 and the boss-integrated dome 20. , It is composed of reverse winding layers 32b wound multiple times in contact with each other in the axial direction of the cylinder 10 so as to span the cylinder 10 and the boss-integrated dome 20 over the forward winding layer 32a. That is, in the forward winding layer 32a, the carbon fiber turns (wound once) are positioned inclined towards the boss-integrated dome 20, and in the reverse winding layer 32b, the carbon fiber turns are positioned inclined towards the cylinder 10. As a result, the carbon fiber turns of the forward winding layer 32a and the reverse winding layer 32b are positioned to cross each other. High-angle helical winding is where carbon fiber is wound inclined at a large angle based on the center line of the cylinder (10). In the high-angle helical winding portion 32, carbon fiber surrounds the connection area between the cylinder 10 and the boss-integrated dome 20, thereby firmly connecting the cylinder 10 and the boss-integrated dome 20 to each other.

저각헬리컬 와인딩부(33)는 탄소섬유가 한쪽 보스일체형 돔(20)과 실린더(10)와 다른 한쪽 보스일체형 돔(20)을 걸치도록 헬리컬 형태로 탄소섬유가 다수 회 와인딩된 구조이다. 저각헬리컬 와인딩은 탄소섬유가 실린더(10)의 중심선상을 기준으로 작은 각으로 경사지게 와인딩된 것이다. 저각헬리컬 와인딩부(33)는 탄소섬유가 한쪽 보스일체형 돔(20)과 실린더(10)와 다른 한쪽 보스일체형 돔(20)을 걸치도록 다수 회 와인딩되어 두 개의 보스일체형 돔(20)들과 실린더(10)를 길이 방향으로 가압하면서 서로 견고하게 잡아 연결시켜 주게 된다. The low-angle helical winding portion 33 is a structure in which carbon fiber is wound multiple times in a helical shape so that the carbon fiber covers the boss-integrated dome 20 and cylinder 10 on one side and the boss-integrated dome 20 on the other side. Low-angle helical winding is where carbon fiber is wound inclined at a small angle based on the center line of the cylinder (10). The low-angle helical winding portion 33 is wound multiple times so that the carbon fiber covers the boss-integrated dome 20 and cylinder 10 on one side and the boss-integrated dome 20 on the other side, forming two boss-integrated domes 20 and the cylinder. While pressing (10) in the longitudinal direction, they are firmly connected to each other.

도 5는 본 발명에 따른 수소압력용기 제작방법의 일실시예를 도시한 순서도이다. 도 6은 본 발명에 따른 수소압력용기 제작방법의 일실시예를 순서적으로 도시한 단면도이다.Figure 5 is a flowchart showing an embodiment of the method for manufacturing a hydrogen pressure vessel according to the present invention. Figure 6 is a cross-sectional view sequentially showing an embodiment of the method for manufacturing a hydrogen pressure vessel according to the present invention.

도 5, 6에 도시한 바와 같이, 본 발명에 따른 수소압력용기 제작방법의 일실시예는, 먼저, 탄소섬유 강화플라스틱 재질로 실린더(10)를 제작하는 단계(S10)가 진행된다(도 6a 참조). 실린더(10)는 균일한 내경과 설정된 길이를 갖는 원통체이다.As shown in FIGS. 5 and 6, in one embodiment of the method for manufacturing a hydrogen pressure vessel according to the present invention , first, a step (S10) of manufacturing the cylinder 10 from a carbon fiber reinforced plastic material is performed (FIG. 6a) reference). The cylinder 10 is a cylindrical body with a uniform inner diameter and a set length.

탄소섬유 강화플라스틱 재질로 실린더(10)를 제작한 다음 보스와 돔이 일체로 형성된 보스일체형 돔(20)을 제작하는 단계(S20)가 진행된다(도 6b 참조). 보스일체형 돔(20)의 일예로, 보스일체형 돔(20)은 균일한 내경과 두께를 갖는 보스부(21)와, 그 보스부(21)의 한쪽에 연장 확관되어 돔 형상으로 형성되는 돔부(22)와, 그 돔부(22)의 단부에 구비되어 실린더(10)의 길이 방향 단부에 삽입되는 결합부(23)를 포함한다.The cylinder 10 is manufactured from a carbon fiber reinforced plastic material, and then a step (S20) of manufacturing the boss-integrated dome 20 in which the boss and the dome are formed as one body is performed (see FIG. 6b). As an example of the boss-integrated dome 20, the boss-integrated dome 20 includes a boss portion 21 having a uniform inner diameter and thickness, and a dome portion ( 22) and a coupling portion 23 provided at the end of the dome 22 and inserted into the longitudinal end of the cylinder 10.

한편, 보스일체형 돔(20)들을 제작한 다음 탄소섬유 강화플라스틱 재질의 실린더(10)를 제작할 수도 있다.Meanwhile, after manufacturing the boss-integrated domes 20, the cylinder 10 made of carbon fiber reinforced plastic can also be manufactured.

보스일체형 돔(20)들을 제작한 다음 실린더(10)의 길이 방향 양단에 각각 보스일체형 돔(20)을 결합하는 단계(S30)가 진행된다(도 6c 참조). 이때, 보스일체형 돔(20)의 한쪽, 즉 결합부(23)에 접착제를 도포하고, 보스일체형 돔(20)의 결합부(23)가 실린더(10)의 길이 방향 단부에 삽입되도록 결합한다.After manufacturing the boss-integrated domes 20, a step (S30) of attaching the boss-integrated domes 20 to both ends of the cylinder 10 in the longitudinal direction is performed (see FIG. 6C). At this time, adhesive is applied to one side of the boss-integrated dome 20, that is, the coupling portion 23, and the coupling portion 23 of the boss-integrated dome 20 is coupled so that it is inserted into the longitudinal end of the cylinder 10.

실린더(10)의 양단부에 각각 보스일체형 돔(20)을 결합한 다음 실린더(10)와 두 개의 보스일체형 돔(20)들에 경화제가 도포된 탄소섬유를 와인딩하는 탄소섬유 와인딩단계(S40)가 진행된다(도 6d 참조). 이때, 탄소섬유는 에폭시로 도포된 상태로 와인딩된다.A carbon fiber winding step (S40) is performed in which the boss-integrated domes 20 are joined to both ends of the cylinder 10, and then carbon fiber coated with a hardener is wound on the cylinder 10 and the two boss-integrated domes 20. (see Figure 6d). At this time, the carbon fiber is wound while being coated with epoxy.

탄소섬유 와인딩단계(S40)는 일예로, 탄소섬유로 실린더(10)를 다수 회 와인딩하고, 이어 그 탄소섬유로 한쪽 보스일체형 돔(20)과 실린더(10)를 걸치도록 다수 회 와인딩하고, 이어 그 탄소섬유로 실린더(10)를 다수 회 와인딩한다. 이어 그 탄소섬유로 다른 한쪽 보스일체형 돔(20)과 실린더(10)를 걸치도록 다수 회 와인딩하고, 이어 그 탄소섬유로 한 개의 보스일체형 돔(20)과 실린더(10) 그리고 다른 한 개의 보스일체형 돔(20)을 걸치도록 다수 회 와인딩하는 것을 포함한다.The carbon fiber winding step (S40) is, for example, winding the cylinder 10 with carbon fiber multiple times, then winding the carbon fiber multiple times to cover the boss-integrated dome 20 and the cylinder 10 on one side, and then winding the cylinder 10 with carbon fiber multiple times. The cylinder 10 is wound several times with the carbon fiber. Then, the carbon fiber was wound several times to cover the other boss-integrated dome (20) and cylinder (10), and then the carbon fiber was used to create one boss-integrated dome (20) and cylinder (10) and the other boss-integrated dome (20). It involves winding multiple turns to span the dome 20.

탄소섬유를 실린더(10)를 다수 회 와인딩할 때 탄소섬유를 실린더(10)의 길이 방향으로 헬리컬 형태로 와인딩한다. 탄소섬유로 보스일체형 돔(20)과 실린더(10)를 걸치도록 다수 회 와인딩할 때 실린더(10)와 보스일체형 돔(20)의 길이 방향으로 헬리컬 형태로 와인딩하되, 고각을 갖도록 와인딩한다. 탄소섬유로 한 개의 보스일체형 돔(20)과 실린더(10) 그리고 다른 한 개의 보스일체형 돔(20)을 걸치도록 다수 회 와인딩할 때 헬리컬 형태로 와인딩하되, 저각을 갖도록 와인딩한다.When winding carbon fiber around the cylinder 10 multiple times, the carbon fiber is wound in a helical shape in the longitudinal direction of the cylinder 10. When winding carbon fiber multiple times to cover the boss-integrated dome (20) and the cylinder (10), the cylinder (10) and the boss-integrated dome (20) are wound in a helical shape in the longitudinal direction, and are wound to have an elevation angle. When winding carbon fiber multiple times to cover one boss-integrated dome (20) and cylinder (10) and the other boss-integrated dome (20), it is wound in a helical shape and wound at a low angle.

탄소섬유로 두 개의 보스일체형 돔(20)들과 실린더(10)를 와인딩하는 것이 완료되면 탄소섬유에 도포된 에폭시를 경화시킨다.When winding the two boss-integrated domes 20 and the cylinder 10 with carbon fiber is completed, the epoxy applied to the carbon fiber is cured.

이와 같이, 본 발명은 탄소섬유 강화플라스틱 재질인 실린더(10)의 길이 방향 양쪽에 각각 금속 알루미늄 재질인 보스일체형 돔(20)이 결합되고 실린더(10)와 보스일체형 돔(20)의 결합체에 탄소섬유가 다수 회 와인딩되어 섬유와인딩체(30)를 형성하게 되어 실린더(10)와 그 실린더(10)를 와인딩한 섬유와인딩체(30) 부분의 비강성이 커지게 되므로 두께가 상대적으로 얇으면서도 안정성을 유지하게 되어 전체 체적대비 가스를 채우는 내부 공간을 증가시킬 수 있며 이로 인하여 공간 효율을 높이게 된다.In this way, in the present invention, boss-integrated domes 20 made of metal aluminum are coupled to both sides of the cylinder 10, which is made of carbon fiber-reinforced plastic, in the longitudinal direction, and carbon is added to the combination of the cylinder 10 and the boss-integrated dome 20. The fiber is wound multiple times to form the fiber winding body 30, which increases the specific rigidity of the cylinder 10 and the portion of the fiber winding body 30 wound around the cylinder 10, making it relatively thin and stable. By maintaining this, the internal space filled with gas can be increased compared to the total volume, thereby increasing space efficiency.

또한, 본 발명은 내부 압력이 많이 작용하게 되는 보스 부분과 돔 부분이 일체로 형성되되, 금속 알루미늄 재질로 형성되고, 그 보스 부분과 돔 부분이 일체로 형성된 금속 알루미늄 재질의 보스일체형 돔(20)이 실린더(10)의 단부에 결합되고 보스일체형 돔(20)과 실린더(10)를 걸치도록 탄소섬유로 와인딩하되 고각헬리컬 와인딩하게 되므로 보스일체형 돔(20)과 실린더(10)의 결합이 견고하게 되어 보스일체형 돔(20)에 와인딩하는 탄소섬유의 양을 감소시킬 수 있게 되고 이로 인하여, 용기 전체 무게를 감소시키게 된다.In addition, the present invention provides a boss-integrated dome (20) made of metal aluminum in which the boss part and the dome part, on which a lot of internal pressure is applied, are formed integrally, and are formed of metal aluminum, and the boss part and the dome part are formed integrally. It is coupled to the end of the cylinder (10) and is wound with carbon fiber to span the boss-integrated dome (20) and the cylinder (10), but is wound in a high-angle helical manner, so that the bond between the boss-integrated dome (20) and the cylinder (10) is strong. This makes it possible to reduce the amount of carbon fiber wound on the boss-integrated dome 20, thereby reducing the overall weight of the container.

본 발명인 수소압력탱크는 무게를 감소시키고 내부 공간 효율을 높이게 되므로 모빌리티 분야나 우주항공 분야 등에 활용성을 높이고 수소 저장량을 증가시켜 상업성을 확대할 수 있다.The hydrogen pressure tank of the present invention reduces weight and increases internal space efficiency, thereby increasing usability in the mobility and aerospace fields and increasing hydrogen storage to expand commercial viability.

10; 실린더 20; 보스일체형 돔
30; 섬유와인딩체
10; cylinder 20; Boss integrated dome
30; fiber winding body

Claims (5)

탄소섬유 강화플라스틱 재질의 실린더;
상기 실린더의 길이 방향 양단에 각각 결합되며, 보스와 돔이 일체로 형성되며, 알루미늄 재질을 포함하는 보스일체형 돔; 및
상기 실린더와 보스일체형 돔을 탄소섬유로 다수 회 와인딩한 섬유와인딩체를 포함하는 수소압력용기.
Cylinder made of carbon fiber reinforced plastic;
a boss-integrated dome that is coupled to both ends of the cylinder in the longitudinal direction, has a boss and a dome formed as one piece, and includes an aluminum material; and
A hydrogen pressure vessel including a fiber winding body in which the cylinder and the boss-integrated dome are wound multiple times with carbon fiber.
제1항에 있어서,
상기 보스일체형 돔은,
균일한 내경과 두께를 갖는 보스부와,
상기 보스부의 한쪽에 연장 확관되는 돔부와,
상기 돔부의 단부에 구비되어 상기 실린더의 길이 방향 단부에 삽입되는 결합부를 포함하는 수소압력용기.
According to paragraph 1,
The boss-integrated dome,
A boss portion having a uniform inner diameter and thickness,
A dome portion extending and expanding to one side of the boss portion,
A hydrogen pressure container including a coupling portion provided at an end of the dome portion and inserted into a longitudinal end of the cylinder.
제1항에 있어서,
상기 섬유와인딩체는,
상기 실린더를 탄소섬유가 다수 회 와인딩한 후우프 와인딩부와,
상기 실린더와 보스일체형 돔에 걸치도록 탄소섬유가 다수 회 와인딩된 고각헬리컬 와인딩부와,
상기 한쪽 보스일체형 돔과 실린더와 다른 한쪽 보스일체형 돔을 걸치도록 탄소섬유가 다수 회 와인딩된 저각헬리컬 와인딩부를 포함하는 수소압력용기.
According to paragraph 1,
The fiber winding body,
a hoop winding portion in which carbon fiber is wound around the cylinder multiple times;
A high-angle helical winding portion in which carbon fiber is wound multiple times so as to span the cylinder and boss-integrated dome,
A hydrogen pressure vessel including a low-angle helical winding portion in which carbon fiber is wound multiple times so as to span the boss-integrated dome and cylinder on one side and the boss-integrated dome on the other side.
탄소섬유 강화플라스틱 재질로 실린더를 제작하는 단계;
보스와 돔이 일체로 형성된 보스일체형 돔을 제작하는 단계;
상기 실린더의 길이 방향 양단에 각각 보스일체형 돔을 결합하는 단계; 및
상기 실린더와 두 개의 보스일체형 돔들에 경화제가 도포된 탄소섬유를 와인딩하는 탄소섬유 와인딩단계를 포함하는 수소압력용기 제작방법.
Manufacturing a cylinder from carbon fiber reinforced plastic material;
Manufacturing a boss-integrated dome in which the boss and the dome are formed as one body;
coupling boss-integrated domes to both ends of the cylinder in the longitudinal direction; and
A method of manufacturing a hydrogen pressure vessel including a carbon fiber winding step of winding carbon fiber coated with a hardener on the cylinder and the two boss-integrated domes.
제4항에 있어서,
상기 탄소섬유 와인딩단계는 탄소섬유로 상기 실린더를 다수 회 와인딩하고, 이어 상기 탄소섬유로 상기 한쪽 보스일체형 돔과 실린더를 걸치도록 다수 회 와인딩하고, 이어 상기 탄소섬유로 상기 실린더를 다수 회 와인딩하고 이어 상기 탄소섬유로 상기 다른 한쪽 보스일체형 돔과 실린더를 걸치도록 다수 회 와인딩하고, 이어 상기 탄소섬유로 상기 한 개의 보스일체형 돔과 실린더 그리고 다른 한 개의 보스일체형 돔을 걸치도록 다수 회 와인딩하는 것을 포함하는 수소압력용기 제작방법.
According to paragraph 4,
The carbon fiber winding step involves winding the cylinder with carbon fiber multiple times, then winding the carbon fiber multiple times to cover the one boss-integrated dome and the cylinder, and then winding the cylinder with the carbon fiber multiple times. Winding the carbon fiber multiple times to cover the other boss-integrated dome and cylinder, and then winding the carbon fiber multiple times to cover the one boss-integrated dome and cylinder and the other boss-integrated dome. How to manufacture a hydrogen pressure vessel.
KR1020220178081A 2022-12-19 2022-12-19 Hydrogen pressure vessel and method for manufacturing the same Pending KR20240095931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220178081A KR20240095931A (en) 2022-12-19 2022-12-19 Hydrogen pressure vessel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220178081A KR20240095931A (en) 2022-12-19 2022-12-19 Hydrogen pressure vessel and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20240095931A true KR20240095931A (en) 2024-06-26

Family

ID=91689558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220178081A Pending KR20240095931A (en) 2022-12-19 2022-12-19 Hydrogen pressure vessel and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20240095931A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170140574A (en) 2016-06-13 2017-12-21 회명산업 주식회사 Hydrogen stage vessel and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170140574A (en) 2016-06-13 2017-12-21 회명산업 주식회사 Hydrogen stage vessel and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5865923A (en) Method of fabricating a dual chamber composite pressure vessel
KR102322373B1 (en) High-pressure tank having hoop layers and helical layers
US8074826B2 (en) Damage and leakage barrier in all-composite pressure vessels and storage tanks
US10619794B2 (en) Pressurized-fluid storage device
WO2011154994A1 (en) High pressure tank, and high pressure tank manufacturing method
US20200158286A1 (en) Improved pressure vessel
EP3385597B1 (en) A composite vessel assembly and method of manufacture
JP2008169893A (en) Pressure vessel and method for manufacturing the same
US20210404603A1 (en) Compressed gas storage unit with preformed endcaps
KR101846733B1 (en) Pressure vessel using fiber-reinforced composite and method manufacturing thereof
JP2005214271A (en) Fiber reinforced pressure vessel
KR102322371B1 (en) Pressure vessel including reinforced cylinder part
WO2020084946A1 (en) High-pressure tank
CN115143384A (en) High pressure tank and method of manufacturing the same
US20220299162A1 (en) High-pressure tank and method for manufacturing high-pressure tank
KR20240095931A (en) Hydrogen pressure vessel and method for manufacturing the same
JP2005113971A (en) Liner for pressure vessel
US20240084967A1 (en) Pressure vessel
EP4284624B1 (en) High pressure composite pressure vessel method of manufacture and product
US20220065399A1 (en) Composite gas storage tank
RU2141073C1 (en) High pressure vessel
JP2019108903A (en) High-pressure tank
JP2017145962A (en) High pressure tank and method for manufacturing high pressure tank
KR102719092B1 (en) Small Diameter Long Length High Pressure Vessel
JP2020112234A (en) Pressure vessel

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20221219

PA0201 Request for examination

Patent event code: PA02011R01I

Patent event date: 20221219

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20250204

Patent event code: PE09021S01D