[go: up one dir, main page]

JP2005113971A - Liner for pressure vessel - Google Patents

Liner for pressure vessel Download PDF

Info

Publication number
JP2005113971A
JP2005113971A JP2003346401A JP2003346401A JP2005113971A JP 2005113971 A JP2005113971 A JP 2005113971A JP 2003346401 A JP2003346401 A JP 2003346401A JP 2003346401 A JP2003346401 A JP 2003346401A JP 2005113971 A JP2005113971 A JP 2005113971A
Authority
JP
Japan
Prior art keywords
dome
liner
cylindrical
cylindrical portion
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003346401A
Other languages
Japanese (ja)
Inventor
Shugo Yasui
秀吾 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2003346401A priority Critical patent/JP2005113971A/en
Publication of JP2005113971A publication Critical patent/JP2005113971A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

【課題】 円筒部及びドーム部を有し、これらの外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナにおいて、繊維束の巻付状態を、強度上理想的な状態に近付けることにより、耐圧容器の強度低下を阻止する。
【解決手段】 円筒部11と、この円筒部11の両端に連設されたドーム部12と、を備え、これら円筒部11及びドーム部12の外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナ10であって、円筒部11の外径がドーム部12との接合部において最大とされる。また、ドーム部12の頂部には、軸方向外方に突出する小径円筒状の口金取付部13が形成され、この口金取付部13の根元部が略軸方向内方に凹まされている。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a pressure vessel liner having a cylindrical portion and a dome portion, in which a fiber bundle is wound around an outer periphery thereof to form an outer shell made of a fiber reinforced composite material. By approaching the ideal state, the strength of the pressure vessel is prevented from decreasing.
SOLUTION: A cylindrical portion 11 and a dome portion 12 connected to both ends of the cylindrical portion 11 are provided, and a fiber bundle is wound around the outer periphery of the cylindrical portion 11 and the dome portion 12 to be made of a fiber reinforced composite material. The outer diameter of the cylindrical portion 11 is maximized at the joint portion with the dome portion 12. Further, a small-diameter cylindrical base attachment portion 13 protruding outward in the axial direction is formed on the top portion of the dome portion 12, and a base portion of the base attachment portion 13 is recessed substantially inward in the axial direction.
[Selection] Figure 1

Description

本発明は、耐圧容器用ライナに関する。   The present invention relates to a pressure vessel liner.

現在、CNG(Compressed Natural Gas)やCHG(Compressed Hydrogen Gas)等の加圧ガスや低温ガスを貯蔵・輸送するための耐圧容器が実用化されている。従来は、高強度でガスバリア性に優れる金属製の耐圧容器が主流であったが、金属製の耐圧容器は重量が大きいため、軽量化が求められる自動車や宇宙航行体の燃料タンクに適用することが困難であった。このため、近年においては、円筒状のライナの外周に繊維強化複合材(FRP:Fiber Reinforced Plastics)製の外殻を形成してなる比較的軽量のFRP外装耐圧容器が提案されている。   Currently, pressure-resistant containers for storing and transporting pressurized gas and low-temperature gas such as CNG (Compressed Natural Gas) and CHG (Compressed Hydrogen Gas) have been put into practical use. Conventionally, metal pressure vessels with high strength and excellent gas barrier properties have been the mainstream, but metal pressure vessels are heavy, so they should be applied to fuel tanks for automobiles and spacecraft that require weight reduction. It was difficult. For this reason, in recent years, a relatively lightweight FRP exterior pressure vessel has been proposed in which an outer shell made of a fiber reinforced composite material (FRP) is formed on the outer periphery of a cylindrical liner.

かかるFRP外装耐圧容器を構成するライナは、円筒部と、この円筒部の両端に連設されたドーム部と、を有している。そして、各ドーム部の頂部には、ライナの軸方向外方に突出するように形成された小径円筒状の口金取付部が形成されており、この口金取付部に金属製の口金が取り付けられることとなる(例えば、特許文献1参照。)。
特開平10−231998号公報(第1頁、第1図)
The liner which comprises this FRP exterior pressure-resistant container has a cylindrical part and the dome part provided in a row by the both ends of this cylindrical part. The top of each dome is formed with a small-diameter cylindrical base attachment part formed so as to protrude outward in the axial direction of the liner, and a metal base is attached to this base attachment part. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 10-231998 (first page, FIG. 1)

ところで、ライナの外周にFRP製の外殻を形成する際には、炭素繊維等からなる繊維束をライナの外周に巻き付けて繊維層を形成する。この際、ライナの軸方向に近い方向に繊維束を配向させて巻く「ヘリカル巻き」と、ライナの周方向に繊維束を配向させて巻く「フープ巻き」と、を交互に施すことにより、繊維束をライナに巻き付けている。なお、ヘリカル巻きはライナ全体(円筒部及びドーム部)に繊維束を巻き付ける際に使用され、フープ巻きはライナの円筒部のみに繊維束を巻き付ける際に使用される。   By the way, when forming the outer shell made of FRP on the outer periphery of the liner, a fiber layer made of carbon fiber or the like is wound around the outer periphery of the liner to form a fiber layer. At this time, the fiber is formed by alternately applying “helical winding” in which the fiber bundle is oriented in a direction close to the axial direction of the liner and “hoop winding” in which the fiber bundle is oriented in the circumferential direction of the liner. A bundle is wrapped around the liner. Helical winding is used when the fiber bundle is wound around the entire liner (cylindrical portion and dome portion), and hoop winding is used when the fiber bundle is wound only around the cylindrical portion of the liner.

従来のライナ100(図2(b)参照)においては、円筒部110とドーム部120とが滑らかに連設されているが、フープ巻きは円筒部110にのみ施されるため、ヘリカル巻きによって形成された繊維層200と、フープ巻きによって形成された繊維層300と、によって円筒部110とドーム部120との境界部分に段差が生じてしまう。この結果、円筒部110とドーム部120との境界部分に応力集中が生じて強度が低下してしまう。また、従来のライナ100の円筒部110とドーム部120との境界部分にはフープ巻きを施し難いため、この境界部分の繊維層が薄くなり(図2(b)参照)、この点からも強度が低下してしまうという問題がある。   In the conventional liner 100 (see FIG. 2B), the cylindrical portion 110 and the dome portion 120 are smoothly connected. However, since the hoop winding is performed only on the cylindrical portion 110, it is formed by helical winding. Due to the fiber layer 200 formed and the fiber layer 300 formed by hoop winding, a step is generated at the boundary portion between the cylindrical portion 110 and the dome portion 120. As a result, stress concentration occurs at the boundary portion between the cylindrical portion 110 and the dome portion 120, and the strength decreases. Further, since the hoop winding is difficult to be applied to the boundary portion between the cylindrical portion 110 and the dome portion 120 of the conventional liner 100, the fiber layer at the boundary portion becomes thin (see FIG. 2 (b)). There is a problem that will decrease.

また、従来のライナ100においては、口金取付部130に口金400が取り付けられるため、口金取付部130の根元付近が隆起することとなる(図3(b)参照)。その上、ドーム部120にヘリカル巻きを施して繊維層200を形成する際に、口金取付部130の根元付近に繊維束が集中し、その部分の繊維層200が厚くなってしまう。この結果、繊維束の配向方向が理想的な方向からずれてしまうため、充分な強度が得られなくなる場合がある。また、従来のライナのドーム部は曲面を有するため、その外周に形成される繊維層の厚さや、この繊維層に含まれる繊維束の配向方向が位置によって異なるため、ドーム部上の繊維層の強度が充分でないという問題があった。   Further, in the conventional liner 100, since the base 400 is attached to the base attaching portion 130, the vicinity of the base of the base attaching portion 130 is raised (see FIG. 3B). In addition, when the fiber layer 200 is formed by helically winding the dome portion 120, the fiber bundle concentrates near the base of the base attaching portion 130, and the fiber layer 200 in that portion becomes thick. As a result, the orientation direction of the fiber bundle is deviated from the ideal direction, so that sufficient strength may not be obtained. Further, since the dome portion of the conventional liner has a curved surface, the thickness of the fiber layer formed on the outer periphery thereof and the orientation direction of the fiber bundle included in this fiber layer vary depending on the position. There was a problem that the strength was not sufficient.

本発明の課題は、円筒部及びドーム部を有し、これらの外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナにおいて、繊維束の巻付状態を、強度上理想的な状態に近付けることにより、耐圧容器の強度低下を阻止することである。   An object of the present invention is a pressure vessel liner having a cylindrical portion and a dome portion, and a fiber bundle is wound around the outer periphery thereof to form an outer shell made of a fiber reinforced composite material. By reducing the strength of the pressure vessel, the strength of the pressure vessel is prevented.

以上の課題を解決するために、請求項1に記載の発明は、円筒部と、この円筒部の両端に連設されたドーム部と、を備え、これら円筒部及びドーム部の外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナであって、前記円筒部の外径が前記ドーム部との接合部において最大とされることを特徴とする。   In order to solve the above-described problems, the invention described in claim 1 includes a cylindrical portion and a dome portion connected to both ends of the cylindrical portion, and a fiber bundle on the outer periphery of the cylindrical portion and the dome portion. Is a liner for a pressure vessel in which an outer shell made of a fiber reinforced composite material is formed, and the outer diameter of the cylindrical portion is maximized at the joint portion with the dome portion.

請求項1に記載の発明によれば、円筒部の外径がドーム部との接合部において最大とされるので、ヘリカル巻きによって形成された繊維層と、フープ巻きによって形成された繊維層と、によって円筒部とドーム部との境界部分に生じる段差を小さくすることができる。従って、円筒部とドーム部との境界部分に応力集中が生じて、耐圧容器の強度が低下するのを阻止することができる。また、円筒部の外径がドーム部との接合部において最大とされるので、円筒部の外周に充分にフープ巻きを施すことができる。従って、この点からも、強度低下を阻止することが可能となる。   According to the invention described in claim 1, since the outer diameter of the cylindrical portion is maximized at the joint portion with the dome portion, a fiber layer formed by helical winding, a fiber layer formed by hoop winding, Therefore, the step generated at the boundary portion between the cylindrical portion and the dome portion can be reduced. Therefore, it is possible to prevent the stress concentration from occurring at the boundary portion between the cylindrical portion and the dome portion, thereby reducing the strength of the pressure vessel. Further, since the outer diameter of the cylindrical portion is maximized at the joint portion with the dome portion, the hoop winding can be sufficiently performed on the outer periphery of the cylindrical portion. Therefore, also from this point, it is possible to prevent a decrease in strength.

請求項2に記載の発明は、円筒部と、この円筒部の両端に連設されたドーム部と、を備え、前記円筒部及び前記ドーム部の外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナであって、前記ドーム部は、その頂部から軸方向外方に突出するように形成された小径円筒状の口金取付部を有するとともに、前記口金取付部の根元部が略軸方向内方に凹まされてなることを特徴とする。   The invention according to claim 2 includes a cylindrical portion and a dome portion provided continuously at both ends of the cylindrical portion, and a fiber bundle is wound around the outer periphery of the cylindrical portion and the dome portion, thereby a fiber reinforced composite material. A liner for a pressure vessel in which an outer shell is formed, wherein the dome portion has a small-diameter cylindrical base attachment portion formed so as to protrude axially outward from a top portion thereof, and the base attachment The root portion of the portion is recessed substantially inward in the axial direction.

請求項2に記載の発明によれば、ドーム部は、その頂部から軸方向外方に突出するように形成された小径円筒状の口金取付部を有するとともに、口金取付部の根元部が略軸方向内方に凹まされているので、この凹まされた部分に口金を嵌め込むことができ、口金取付部の根元付近を略平滑にすることができる。従って、ドーム部にヘリカル巻きを施す際に、繊維束の配向方向を理想的な方向に近付けることができるので、耐圧容器の強度低下を阻止することができる。   According to the second aspect of the present invention, the dome portion has the small-diameter cylindrical base attachment portion formed so as to protrude outward in the axial direction from the top portion, and the base portion of the base attachment portion is substantially axial. Since it is recessed inward in the direction, the base can be fitted into the recessed portion, and the vicinity of the base of the base mounting portion can be made substantially smooth. Therefore, when helically winding the dome part, the orientation direction of the fiber bundle can be brought close to an ideal direction, and thus the strength of the pressure vessel can be prevented from being reduced.

請求項3に記載の発明は、請求項1に記載の耐圧容器用ライナにおいて、前記ドーム部は、その頂部から軸方向外方に突出するように形成された小径円筒状の口金取付部を有するとともに、前記口金取付部の根元部が略軸方向内方に凹まされてなることを特徴とする。   According to a third aspect of the present invention, in the pressure vessel liner according to the first aspect, the dome portion has a small-diameter cylindrical base attachment portion formed so as to protrude outward in the axial direction from the top portion. At the same time, the base portion of the base mounting portion is recessed substantially inward in the axial direction.

請求項4に記載の発明は、円筒部と、この円筒部の両端に連設されたドーム部と、を備え、これら円筒部及びドーム部の外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナであって、前記ドーム部は、その外周に前記繊維束が巻き付けられて形成された繊維層に引張り荷重のみが生じるように決定された曲面を有することを特徴とする。   The invention according to claim 4 is provided with a cylindrical portion and a dome portion continuously provided at both ends of the cylindrical portion, and a fiber bundle is wound around the outer periphery of the cylindrical portion and the dome portion. The dome portion has a curved surface determined so that only a tensile load is generated in a fiber layer formed by wrapping the fiber bundle around an outer periphery thereof. It is characterized by.

請求項4に記載の発明によれば、ドーム部は、その外周に繊維束が巻き付けられて形成された繊維層に引張り荷重のみが生じるように決定された曲面を有しているため、ドーム部上の繊維層に発生する歪みを均一にすることができる。従って、ドーム部の強度を向上させることができ、ひいては、耐圧容器の強度を向上させることができる。   According to the invention described in claim 4, the dome portion has a curved surface determined so that only a tensile load is generated in the fiber layer formed by winding the fiber bundle around the outer periphery thereof. The strain generated in the upper fiber layer can be made uniform. Therefore, the strength of the dome portion can be improved, and as a result, the strength of the pressure vessel can be improved.

請求項5に記載の発明は、請求項1から3の何れか一項に記載の耐圧容器用ライナにおいて、前記ドーム部は、その外周に前記繊維束が巻き付けられて形成された繊維層に引張り荷重のみが生じるように決定された曲面を有することを特徴とする。   According to a fifth aspect of the present invention, in the liner for a pressure vessel according to any one of the first to third aspects, the dome portion is pulled on a fiber layer formed by winding the fiber bundle around an outer periphery thereof. It has a curved surface determined so that only a load is generated.

本発明によれば、円筒部とドーム部との境界部分や口金取付部の根元部やドーム部における繊維束の巻付状態を、強度上理想的な状態に近付けることにより、耐圧容器の強度低下を阻止することができる。   According to the present invention, the strength of the pressure vessel is reduced by bringing the fiber bundle winding state at the boundary portion between the cylindrical portion and the dome portion, the base portion of the base attachment portion, and the dome portion close to an ideal state in terms of strength. Can be prevented.

以下、本発明の実施の形態を、図を用いて詳細に説明する。なお、本実施の形態に係るライナ10は、数100気圧の気体を充填可能な耐圧容器の一部となるものであり、ガスバリア性に優れるとともに寸法安定性・耐薬品性に優れる液晶樹脂を用いてブロー成形法により成形されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The liner 10 according to the present embodiment is a part of a pressure-resistant container that can be filled with a gas of several hundred atmospheres, and uses a liquid crystal resin that has excellent gas barrier properties and excellent dimensional stability and chemical resistance. It is molded by blow molding method.

まず、本実施の形態に係るライナ10の構成について説明する。ライナ10は、図1に示すように、円筒部11と、この円筒部11の両端に形成されたドーム部12と、を有している。   First, the configuration of the liner 10 according to the present embodiment will be described. As shown in FIG. 1, the liner 10 includes a cylindrical portion 11 and dome portions 12 formed at both ends of the cylindrical portion 11.

円筒部11の直径は、図1に示すようにドーム部12の最大直径よりも小さく設定されている。そして、円筒部11は、図2(a)に示すように、ドーム部12に近付くに従って漸次拡大されたテーパ部14を介してドーム部12に接合されている。すなわち、円筒部11とドーム部12との境界を除き、円筒部11の直径がドーム部12の直径よりも小さく設定されている。そして、この境界において、円筒部11の直径及びドーム部12の直径が最大とされている。   The diameter of the cylindrical part 11 is set smaller than the maximum diameter of the dome part 12 as shown in FIG. As shown in FIG. 2A, the cylindrical portion 11 is joined to the dome portion 12 via a tapered portion 14 that is gradually enlarged as it approaches the dome portion 12. That is, the diameter of the cylindrical portion 11 is set smaller than the diameter of the dome portion 12 except for the boundary between the cylindrical portion 11 and the dome portion 12. At this boundary, the diameter of the cylindrical portion 11 and the diameter of the dome portion 12 are maximized.

ドーム部12の頂部には、図1に示すように、ライナ10の軸方向外方に突出するように小径円筒状の口金取付部13が形成されている。そして、この口金取付部13の根元部には、図3(a)に示すように、略軸方向内方に凹まされた凹部15が形成されている。   As shown in FIG. 1, a small-diameter cylindrical base attachment portion 13 is formed on the top of the dome portion 12 so as to protrude outward in the axial direction of the liner 10. Then, as shown in FIG. 3A, a recess 15 that is recessed substantially inward in the axial direction is formed at the base of the base attachment portion 13.

凹部15の形状は、口金取付部13に取り付けられる金属製の口金40の形状に合わせて決定される。例えば、円筒状のボス部41と、このボス部41に連設されたフランジ部42と、を有する口金40(図3(a)参照)を採用する場合には、口金40のフランジ部42の形状に合わせて凹部15を形成するようにする。このように凹部15を形成することにより、口金40のフランジ部42の上面と、ドーム部12の表面と、で略平滑面を形成することができる。   The shape of the recess 15 is determined in accordance with the shape of the metal base 40 attached to the base attachment portion 13. For example, when a base 40 (see FIG. 3A) having a cylindrical boss 41 and a flange 42 connected to the boss 41 is employed, the flange 42 of the base 40 is formed. The recess 15 is formed in accordance with the shape. By forming the recess 15 in this way, a substantially smooth surface can be formed by the upper surface of the flange portion 42 of the base 40 and the surface of the dome portion 12.

また、本実施の形態においては、ライナ10のドーム部12に特定の曲面形状を採用している。この曲面形状は、ドーム部12の外周に炭素繊維等からなる繊維束を巻き付けてヘリカル繊維層20(図3(a)参照)を形成した際に、このヘリカル繊維層20に曲げ荷重がほとんど生じず引張り荷重のみが生じるような曲面形状である(図4参照)。本実施の形態においては、かかる曲面形状の決定のために、ヘリカル繊維層20の厚さや繊維束の配向方向を考慮して網目理論を使用した。   Further, in the present embodiment, a specific curved surface shape is adopted for the dome portion 12 of the liner 10. This curved surface shape is such that when a helical fiber layer 20 (see FIG. 3A) is formed by wrapping a fiber bundle made of carbon fiber or the like around the outer periphery of the dome portion 12, a bending load is almost generated in the helical fiber layer 20. It is a curved surface shape in which only a tensile load is generated (see FIG. 4). In the present embodiment, in order to determine such a curved surface shape, the network theory is used in consideration of the thickness of the helical fiber layer 20 and the orientation direction of the fiber bundle.

次に、本実施の形態に係るライナ10に繊維束を巻き付けて繊維層を形成し、この繊維層に樹脂を含浸させ硬化させて耐圧容器を製造する方法について説明する。   Next, a method of manufacturing a pressure vessel by winding a fiber bundle around the liner 10 according to the present embodiment to form a fiber layer, impregnating the fiber layer with a resin, and curing the resin layer will be described.

まず、炭素繊維等からなる繊維束を、ライナ10の円筒部11の周方向に配向させて巻き付ける(すなわちフープ巻きを施す)ことにより、円筒部11の外周にフープ繊維層30を形成する(図2(a)参照)。この際、フープ繊維層30の厚さを合わせた円筒部11の外径(最外径)が、ドーム部12の最大径に略等しくなるまでフープ巻きを施すようにする。   First, a hoop fiber layer 30 is formed on the outer periphery of the cylindrical portion 11 by winding a fiber bundle made of carbon fibers or the like while being oriented in the circumferential direction of the cylindrical portion 11 of the liner 10 (that is, by applying a hoop winding) (FIG. 2 (a)). At this time, hoop winding is performed until the outer diameter (outermost diameter) of the cylindrical portion 11 with the combined thickness of the hoop fiber layer 30 becomes substantially equal to the maximum diameter of the dome portion 12.

次いで、前記した繊維束をライナ10の軸方向に近い方向に配向させて巻き付ける(すなわちヘリカル巻きを施す)ことにより、ライナ10の円筒部11に形成されたフープ繊維層30及びドーム12の外周にヘリカル繊維層20を形成する(図2(a)、図3(a)参照)。   Next, the above-mentioned fiber bundle is oriented and wound in a direction close to the axial direction of the liner 10 (ie, helically wound), so that the hoop fiber layer 30 formed on the cylindrical portion 11 of the liner 10 and the outer periphery of the dome 12 are wound. A helical fiber layer 20 is formed (see FIGS. 2A and 3A).

次いで、再びフープ巻きを施すことにより、ライナ10の円筒部11に形成されたヘリカル繊維層20の外周にフープ繊維層30を形成する(図2(a)参照)。この際、ヘリカル繊維層20の内側のフープ繊維層30の厚さと、ヘリカル繊維層20の外側のフープ繊維層30の厚さと、を略同一にする。   Next, hoop winding is performed again to form the hoop fiber layer 30 on the outer periphery of the helical fiber layer 20 formed in the cylindrical portion 11 of the liner 10 (see FIG. 2A). At this time, the thickness of the hoop fiber layer 30 inside the helical fiber layer 20 and the thickness of the hoop fiber layer 30 outside the helical fiber layer 20 are made substantially the same.

続いて、前記したヘリカル繊維層20及びフープ繊維層30に、樹脂を含浸させ、この樹脂を硬化させて、繊維強化複合材製の外殻を形成する。以上の工程群を経ることにより、耐圧容器が得られる。   Subsequently, the above-described helical fiber layer 20 and hoop fiber layer 30 are impregnated with resin, and the resin is cured to form an outer shell made of fiber-reinforced composite material. A pressure vessel is obtained through the above process group.

以上説明した実施の形態に係るライナ10においては、円筒部11の外径がドーム部12との接合部において最大とされるので、ヘリカル繊維層20とフープ繊維層30とによって円筒部11とドーム部12との境界部分に生じる段差をなくすことができる(図2(a)参照)。従って、円筒部11とドーム部12との境界部分に応力集中が生じるのを抑制することができるので、耐圧容器の強度低下を阻止することができる。   In the liner 10 according to the embodiment described above, since the outer diameter of the cylindrical portion 11 is maximized at the joint portion with the dome portion 12, the cylindrical portion 11 and the dome are formed by the helical fiber layer 20 and the hoop fiber layer 30. The level | step difference which arises in the boundary part with the part 12 can be eliminated (refer Fig.2 (a)). Therefore, it is possible to suppress stress concentration at the boundary portion between the cylindrical portion 11 and the dome portion 12, and thus it is possible to prevent a decrease in strength of the pressure vessel.

また、以上説明した実施の形態に係るライナ10においては、円筒部11の外径がドーム部12との接合部において最大とされるので、円筒部11の外周に充分にフープ巻きを施すことができる(図2(a)参照)。従って、この点からも、強度低下を阻止することが可能となる。   Further, in the liner 10 according to the embodiment described above, the outer diameter of the cylindrical portion 11 is maximized at the joint portion with the dome portion 12, so that the outer periphery of the cylindrical portion 11 can be sufficiently hoop-wrapped. (See FIG. 2 (a)). Therefore, also from this point, it is possible to prevent a decrease in strength.

また、以上説明した実施の形態に係るライナ10のドーム部12は、その頂部から軸方向外方に突出するように形成された小径円筒状の口金取付部13を有するとともに、口金取付部13の根元部が略軸方向内方に凹まされているので、この凹まされた部分(凹部15)に口金40を嵌め込むことができ、口金取付部13の根元付近を略平滑にすることができる。従って、ドーム部12にヘリカル巻きを施す際に、繊維束の配向方向を理想的な方向に近付けることができるので、耐圧容器の強度低下を阻止することができる。   In addition, the dome portion 12 of the liner 10 according to the embodiment described above has a small-diameter cylindrical base attachment portion 13 formed so as to protrude axially outward from the top portion of the liner attachment portion 13. Since the root portion is recessed substantially inward in the axial direction, the base 40 can be fitted into the recessed portion (recess 15), and the vicinity of the base of the base attachment portion 13 can be made substantially smooth. Therefore, when helically winding the dome portion 12, the orientation direction of the fiber bundle can be brought close to an ideal direction, and thus the strength reduction of the pressure vessel can be prevented.

また、以上説明した実施の形態に係るライナ10のドーム部12は、その外周に形成された繊維層(ヘリカル繊維層20)に引張り荷重のみが生じるように決定された曲面を有しているため、ヘリカル繊維層20に発生する歪みを均一にすることができる。従って、ドーム部12の強度を向上させることができ、ひいては、耐圧容器の強度を向上させることができる。   Further, the dome portion 12 of the liner 10 according to the embodiment described above has a curved surface determined so that only a tensile load is generated in the fiber layer (helical fiber layer 20) formed on the outer periphery thereof. The strain generated in the helical fiber layer 20 can be made uniform. Therefore, the strength of the dome portion 12 can be improved, and as a result, the strength of the pressure vessel can be improved.

なお、以上の実施の形態においては、液晶樹脂を用いてライナ10を調製した例を示したが、ライナ10の材料は液晶樹脂に限られるものではない。例えば、高密度ポリエチレン等のガスバリア性を有する他の合成樹脂やアルミニウム合金等の金属材料を用いてライナ10を調製することもできる。また、以上の実施の形態においては、ブロー成形法によりライナ10を成形した例を示したが、射出成形法等を採用してライナ10を成形することもできる。   In the above embodiment, the example in which the liner 10 is prepared using the liquid crystal resin has been described. However, the material of the liner 10 is not limited to the liquid crystal resin. For example, the liner 10 can also be prepared using another synthetic resin having a gas barrier property such as high density polyethylene or a metal material such as an aluminum alloy. Moreover, although the example which shape | molded the liner 10 by the blow molding method was shown in the above embodiment, the liner 10 can also be shape | molded using an injection molding method etc.

本発明の実施の形態に係るライナの形状を説明するための断面図である。It is sectional drawing for demonstrating the shape of the liner which concerns on embodiment of this invention. (a)は図1に示したライナの円筒部とドーム部との境界部分を示す拡大図であり、(b)は従来のライナの円筒部とドーム部との境界部分を示す拡大図である。(A) is an enlarged view showing a boundary portion between the cylindrical portion and the dome portion of the liner shown in FIG. 1, and (b) is an enlarged view showing a boundary portion between the cylindrical portion and the dome portion of the conventional liner. . (a)は図1に示したライナの口金取付部に口金を取り付け繊維束を巻き付けた状態を示す説明図であり、(b)は従来のライナの口金取付部に口金を取り付け繊維束を巻き付けた状態を示す説明図である。(A) is explanatory drawing which shows the state which attached the nozzle | cap | die to the nozzle | cap | die attachment part of the liner shown in FIG. 1, and wound the fiber bundle, (b) attached the nozzle | cap | die to the nozzle | cap | die attachment part of the conventional liner, and wound the fiber bundle It is explanatory drawing which shows the state. 図1に示したライナのドーム部の曲面形状を説明するための断面図である。It is sectional drawing for demonstrating the curved surface shape of the dome part of the liner shown in FIG.

符号の説明Explanation of symbols

10 ライナ
11 円筒部
12 ドーム部
13 口金取付部
20 ヘリカル繊維層
DESCRIPTION OF SYMBOLS 10 Liner 11 Cylindrical part 12 Dome part 13 Base attachment part 20 Helical fiber layer

Claims (5)

円筒部と、この円筒部の両端に連設されたドーム部と、を備え、これら円筒部及びドーム部の外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナであって、
前記円筒部の外径が前記ドーム部との接合部において最大とされることを特徴とする耐圧容器用ライナ。
A pressure-resistant container comprising a cylindrical portion and a dome portion provided continuously at both ends of the cylindrical portion, and a fiber bundle is wound around the outer periphery of the cylindrical portion and the dome portion to form an outer shell made of fiber-reinforced composite material A liner for
A liner for a pressure vessel, wherein an outer diameter of the cylindrical portion is maximized at a joint portion with the dome portion.
円筒部と、この円筒部の両端に連設されたドーム部と、を備え、前記円筒部及び前記ドーム部の外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナであって、
前記ドーム部は、
その頂部から軸方向外方に突出するように形成された小径円筒状の口金取付部を有するとともに、前記口金取付部の根元部が略軸方向内方に凹まされてなることを特徴とする耐圧容器用ライナ。
A cylindrical part and a dome part connected to both ends of the cylindrical part, and a fiber bundle is wound around the outer circumference of the cylindrical part and the dome part to form an outer shell made of fiber reinforced composite material A container liner,
The dome part is
A pressure resistance characterized by having a small-diameter cylindrical base attachment part formed so as to protrude outward in the axial direction from the top part, and a base part of the base attachment part being recessed substantially inward in the axial direction. Container liner.
前記ドーム部は、
その頂部から軸方向外方に突出するように形成された小径円筒状の口金取付部を有するとともに、前記口金取付部の根元部が略軸方向内方に凹まされてなることを特徴とする請求項1に記載の耐圧容器用ライナ。
The dome part is
A small-diameter cylindrical base attachment portion formed so as to protrude outward in the axial direction from the top portion, and a base portion of the base attachment portion is recessed substantially inward in the axial direction. Item 2. A pressure vessel liner according to Item 1.
円筒部と、この円筒部の両端に連設されたドーム部と、を備え、これら円筒部及びドーム部の外周に繊維束が巻き付けられて繊維強化複合材製の外殻が形成される耐圧容器用ライナであって、
前記ドーム部は、
その外周に前記繊維束が巻き付けられて形成された繊維層に引張り荷重のみが生じるように決定された曲面を有することを特徴とする耐圧容器用ライナ。
A pressure-resistant container comprising a cylindrical portion and a dome portion provided continuously at both ends of the cylindrical portion, and a fiber bundle is wound around the outer periphery of the cylindrical portion and the dome portion to form an outer shell made of fiber-reinforced composite material A liner for
The dome part is
A pressure vessel liner having a curved surface determined so that only a tensile load is generated in a fiber layer formed by winding the fiber bundle around the outer periphery thereof.
前記ドーム部は、
その外周に前記繊維束が巻き付けられて形成された繊維層に引張り荷重のみが生じるように決定された曲面を有することを特徴とする請求項1から3の何れか一項に記載の耐圧容器用ライナ。
The dome part is
The pressure vessel according to any one of claims 1 to 3, further comprising a curved surface determined so that only a tensile load is generated in a fiber layer formed by winding the fiber bundle around the outer periphery thereof. Liner.
JP2003346401A 2003-10-03 2003-10-03 Liner for pressure vessel Pending JP2005113971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346401A JP2005113971A (en) 2003-10-03 2003-10-03 Liner for pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346401A JP2005113971A (en) 2003-10-03 2003-10-03 Liner for pressure vessel

Publications (1)

Publication Number Publication Date
JP2005113971A true JP2005113971A (en) 2005-04-28

Family

ID=34539334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346401A Pending JP2005113971A (en) 2003-10-03 2003-10-03 Liner for pressure vessel

Country Status (1)

Country Link
JP (1) JP2005113971A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016807A (en) * 2005-07-05 2007-01-25 Showa Denko Kk Liner for pressure vessel
JP2007263290A (en) * 2006-03-29 2007-10-11 Fuji Heavy Ind Ltd Pressure-resistant container
WO2010116526A1 (en) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 Tank and fabrication method thereof
WO2011154994A1 (en) * 2010-06-08 2011-12-15 トヨタ自動車株式会社 High pressure tank, and high pressure tank manufacturing method
WO2015064424A1 (en) * 2013-10-30 2015-05-07 横浜ゴム株式会社 Aircraft water tank
JP2015152017A (en) * 2014-02-10 2015-08-24 トヨタ自動車株式会社 tank
WO2016020972A1 (en) * 2014-08-04 2016-02-11 日産自動車株式会社 High-pressure tank and manufacturing method for high-pressure tank
JP2017141947A (en) * 2016-02-12 2017-08-17 トヨタ自動車株式会社 Tank manufacturing method
CN108870062A (en) * 2018-06-07 2018-11-23 浙江大学 A kind of variation rigidity intensity adjustable composite material high pressure gas cylinder winding method
LU102847B1 (en) * 2021-07-16 2023-01-16 Plastic Omnium New Energies France Reinforced pressure vessel
WO2023284459A1 (en) * 2021-07-13 2023-01-19 北京国家新能源汽车技术创新中心有限公司 High-pressure hydrogen storage bottle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299400A (en) * 1988-05-24 1989-12-04 Claude L Hembert Fluid tank and manufacture thereof
JPH05164295A (en) * 1990-11-19 1993-06-29 Inst Fr Petrole Light-weight container, in which pressure fluid is preserved, and manufacture thereof
JPH0615760A (en) * 1992-03-17 1994-01-25 Agency For Defense Developments Method for manufacturing pressure vessel in which opening diameters of both end dome are different from each other
JPH0996399A (en) * 1995-07-25 1997-04-08 Toyoda Gosei Co Ltd Pressure container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299400A (en) * 1988-05-24 1989-12-04 Claude L Hembert Fluid tank and manufacture thereof
JPH05164295A (en) * 1990-11-19 1993-06-29 Inst Fr Petrole Light-weight container, in which pressure fluid is preserved, and manufacture thereof
JPH0615760A (en) * 1992-03-17 1994-01-25 Agency For Defense Developments Method for manufacturing pressure vessel in which opening diameters of both end dome are different from each other
JPH0996399A (en) * 1995-07-25 1997-04-08 Toyoda Gosei Co Ltd Pressure container

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016807A (en) * 2005-07-05 2007-01-25 Showa Denko Kk Liner for pressure vessel
JP2007263290A (en) * 2006-03-29 2007-10-11 Fuji Heavy Ind Ltd Pressure-resistant container
WO2007119444A1 (en) * 2006-03-29 2007-10-25 Fuji Jukogyo Kabushiki Kaisha Pressure-resistant vessel
EP2000734A2 (en) * 2006-03-29 2008-12-10 Fuji Jukogyo Kabushiki Kaisha Pressure-resistant vessel
EP2000734A4 (en) * 2006-03-29 2011-07-06 Fuji Heavy Ind Ltd PRESSURE-RESISTANT VESSEL
US8231028B2 (en) 2006-03-29 2012-07-31 Fuji Jukogyo Kabushiki Kaisha Pressure resistant container with sealed mouth entrance
EP2418412A4 (en) * 2009-04-10 2014-01-01 Toyota Motor Co Ltd RESERVOIR AND METHOD FOR MANUFACTURING THE SAME
WO2010116526A1 (en) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 Tank and fabrication method thereof
EP2418412A1 (en) * 2009-04-10 2012-02-15 Toyota Jidosha Kabushiki Kaisha Tank and fabrication method thereof
US8727174B2 (en) 2009-04-10 2014-05-20 Toyota Jidosha Kabushiki Kaisha Tank and manufacturing method thereof
WO2011154994A1 (en) * 2010-06-08 2011-12-15 トヨタ自動車株式会社 High pressure tank, and high pressure tank manufacturing method
JP5408351B2 (en) * 2010-06-08 2014-02-05 トヨタ自動車株式会社 High-pressure tank and method for manufacturing high-pressure tank
CN102939496A (en) * 2010-06-08 2013-02-20 丰田自动车株式会社 High pressure tank, and high pressure tank manufacturing method
US9879825B2 (en) 2010-06-08 2018-01-30 Toyota Jidosha Kabushiki Kaisha High-pressure tank and manufacturing method of high-pressure tank
JP2015085946A (en) * 2013-10-30 2015-05-07 横浜ゴム株式会社 Aircraft water tank
WO2015064424A1 (en) * 2013-10-30 2015-05-07 横浜ゴム株式会社 Aircraft water tank
JP2015152017A (en) * 2014-02-10 2015-08-24 トヨタ自動車株式会社 tank
WO2016020972A1 (en) * 2014-08-04 2016-02-11 日産自動車株式会社 High-pressure tank and manufacturing method for high-pressure tank
CN106662290A (en) * 2014-08-04 2017-05-10 日产自动车株式会社 High-pressure tank and manufacturing method for high-pressure tank
JPWO2016020972A1 (en) * 2014-08-04 2017-05-25 日産自動車株式会社 High-pressure tank and high-pressure tank manufacturing method
JP2017141947A (en) * 2016-02-12 2017-08-17 トヨタ自動車株式会社 Tank manufacturing method
CN108870062A (en) * 2018-06-07 2018-11-23 浙江大学 A kind of variation rigidity intensity adjustable composite material high pressure gas cylinder winding method
WO2023284459A1 (en) * 2021-07-13 2023-01-19 北京国家新能源汽车技术创新中心有限公司 High-pressure hydrogen storage bottle
LU102847B1 (en) * 2021-07-16 2023-01-16 Plastic Omnium New Energies France Reinforced pressure vessel
WO2023285513A1 (en) * 2021-07-16 2023-01-19 Plastic Omnium New Energies France Reinforced pressure vessel

Similar Documents

Publication Publication Date Title
JP4588307B2 (en) Pressure vessel manufacturing method
EP3479004B1 (en) Pressure vessel with a tape-based reinforcement structure
EP1520683B1 (en) Pressure container manufacturing method
US5865923A (en) Method of fabricating a dual chamber composite pressure vessel
US9879825B2 (en) High-pressure tank and manufacturing method of high-pressure tank
CN105705856A (en) High-pressure composite vessel and the method of manufacturing high-pressure composite vessel
JP2011504567A (en) Compressed gas container and production method thereof
US20210404603A1 (en) Compressed gas storage unit with preformed endcaps
JP2005113971A (en) Liner for pressure vessel
JP2016183709A (en) High-pressure gas storage vessel and method of manufacturing the same
JP2005214271A (en) Fiber reinforced pressure vessel
KR102347694B1 (en) Method for manufacturing a pressure vessel
JPH10332084A (en) Pressure-resisting container
JPH10332083A (en) Pressure-resisting container
JP2020067102A (en) High-pressure tank
US11649926B2 (en) Pressure vessel
JP2005113963A (en) Pressure vessel manufacturing method
JP2022043724A (en) High pressure tank and manufacturing method of the same
JP2012096381A (en) Method for manufacturing high-pressure tank
JP6726408B2 (en) High pressure tank manufacturing method and high pressure tank
JP4431351B2 (en) Pressure vessel manufacturing method
JP7603495B2 (en) High pressure tank and its manufacturing method
CN108790797A (en) Plastic inner container winds the liner of composite cylinder entirely
JP2000337594A (en) Pressure vessel
KR102719092B1 (en) Small Diameter Long Length High Pressure Vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A02