KR20210103319A - 무선 통신 시스템에서 기본 빔 설정 방법 및 장치 - Google Patents
무선 통신 시스템에서 기본 빔 설정 방법 및 장치 Download PDFInfo
- Publication number
- KR20210103319A KR20210103319A KR1020200017923A KR20200017923A KR20210103319A KR 20210103319 A KR20210103319 A KR 20210103319A KR 1020200017923 A KR1020200017923 A KR 1020200017923A KR 20200017923 A KR20200017923 A KR 20200017923A KR 20210103319 A KR20210103319 A KR 20210103319A
- Authority
- KR
- South Korea
- Prior art keywords
- terminal
- pdsch
- base station
- search space
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0408—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signalling for the administration of the divided path, e.g. signalling of configuration information
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/063—Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1273—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
-
- H04W72/1278—
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.
Description
본 개시(disclosure)는 무선 통신 시스템에 대한 것으로서, 무선 통신 시스템에서 데이터 수신을 위한 빔 설정 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
본 개시(disclosure)는 무선 통신 시스템에서 단말이 데이터 수신을 위한 빔 정보가 지시되지 않은 경우 가정하는 기본 빔(default beam)을 결정하는 방법을 제공한다.
상기와 같은 문제점을 해결하기 위한 본 발명은 무선 통신 시스템에서 제어 신호 처리 방법에 있어서, 기지국으로부터 전송되는 제1 제어 신호를 수신하는 단계; 상기 수신된 제1 제어 신호를 처리하는 단계; 및 상기 처리에 기반하여 생성된 제2 제어 신호를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.
본 개시에 따르면, 무선통신 시스템에서 단말이 기지국으로부터 데이터를 수신하기 위한 빔의 기본값을 미리 약속함으로써 빔 설정을 위한 오버헤드 감소가 가능하다.
도 1은 본 발명의 일 실시 예에 따른 LTE(Long Term Evolution 또는 E-UTRA(Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), NR 또는 이와 유사한 무선 통신 시스템의 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 2는 본 발명의 일 실시 예에 따른 5G(5th generation)에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.
도 3은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분(bandwidth part, BWP) 구성 예시를 도시한다.
도 4는 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분 지시 및 변경에 대한 예시를 도시한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 일 예를 도시한 도면이다.
도 6은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH 주파수 축 자원 할당 예제를 도시한 도면이다.
도 7은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel) 시간 축 자원 할당의 예시를 도시한 도면이다.
도 8은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간 축 자원 할당 예시를 도시한 도면이다.
도 9은 본 발명의 일 실시 예에 따른 협력 통신 안테나 포트 구성 예시를 도시한 도면이다.
도 10은 본 발명의 일 실시 예에 따른 PDCCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한 도면이다.
도 11은 본 발명의 일 실시 예에 따른 PDCCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한 도면이다.
도 12는 본 발명의 일 실시 예에 따른 PDSCH 기본 빔 동작에 대한 예시를 도시한 도면이다.
도 13은 본 발명의 제1 실시 예에 따른 기지국 및 단말 동작을 도시한 도면이다.
도 14는 본 발명의 제1 실시 예에 따른 기지국 및 단말 동작을 도시한 도면이다.
도 15는 본 발명의 제3 실시 예에 따른 조건 별 기지국 및 단말 동작을 도시한 도면이다.
도 16은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 단말 구조를 도시한다.
도 17은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 기지국 구조를 도시한다.
도 2는 본 발명의 일 실시 예에 따른 5G(5th generation)에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.
도 3은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분(bandwidth part, BWP) 구성 예시를 도시한다.
도 4는 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분 지시 및 변경에 대한 예시를 도시한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 일 예를 도시한 도면이다.
도 6은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH 주파수 축 자원 할당 예제를 도시한 도면이다.
도 7은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel) 시간 축 자원 할당의 예시를 도시한 도면이다.
도 8은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간 축 자원 할당 예시를 도시한 도면이다.
도 9은 본 발명의 일 실시 예에 따른 협력 통신 안테나 포트 구성 예시를 도시한 도면이다.
도 10은 본 발명의 일 실시 예에 따른 PDCCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한 도면이다.
도 11은 본 발명의 일 실시 예에 따른 PDCCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한 도면이다.
도 12는 본 발명의 일 실시 예에 따른 PDSCH 기본 빔 동작에 대한 예시를 도시한 도면이다.
도 13은 본 발명의 제1 실시 예에 따른 기지국 및 단말 동작을 도시한 도면이다.
도 14는 본 발명의 제1 실시 예에 따른 기지국 및 단말 동작을 도시한 도면이다.
도 15는 본 발명의 제3 실시 예에 따른 조건 별 기지국 및 단말 동작을 도시한 도면이다.
도 16은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 단말 구조를 도시한다.
도 17은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 기지국 구조를 도시한다.
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시 예들은 본 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시 예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시 예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다. 이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G (4th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G (5th generation) 통신 시스템을 IoT (Internet of Things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB (Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성(Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 증가된 모바일 광대역 통신(Enhanced Mobile BroadBand: eMBB), 대규모 기계형 통신(massive Machine Type Communication: mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communication: URLLC) 등이 있다.
일부 실시 예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력 (Multi Input Multi Output: MIMO) 전송 기술을 포함하여 송수신 기술의 향상을 요구한다. 또한 현재의 LTE가 사용하는 2GHz 대역 대신에 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.
상기에서 전술한 5G 통신시스템에서 고려되는 서비스들은 하나의 프레임워크 (Framework) 기반으로 서로 융합되어 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 NR 시스템을 일례로서 본 발명의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시 예가 적용될 수 있다. 또한, 본 발명의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
본 개시는 무선 통신 시스템에서 단말의 전력 절약 효율을 높이기 위한 채널상태정보 보고 방법 및 장치에 관한 것이다.
본 개시에 따르면, 무선통신 시스템에서 단말이 전력 절약 모드로 동작하는 경우 채널상태정보 보고 방법을 그에 맞추어 최적화 함으로써 전력 절약 효과가 더욱 향상될 수 있다.
이하 5G 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다.
도 1은 본 개시의 일 실시 예에 따른 무선 통신 시스템의 시간-주파수 자원의 기본 구조를 도시한 도면이다.
도 1을 참조하면, 도 1에 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(Resource Element, RE, 1-01)로서 시간 축으로 1 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(1-02) 및 주파수 축으로 1 부반송파(Subcarrier)(1-03)로 정의될 수 있다. 주파수 영역에서 (일례로 12)개의 연속된 RE들은 하나의 자원 블록(Resource Block, RB, 1-04)을 구성할 수 있다. 일 실시 예에서, 복수 개의 OFDM 심볼들은 하나의 서브프레임(One subframe, 1-10)을 구성할 수 있다.
도 2는 본 개시의 일 실시 예에 따른 무선 통신 시스템의 프레임, 서브프레임 및 슬롯 구조를 설명하기 위한 도면이다.
도 2를 참조하면, 하나의 프레임(Frame, 2-00)은 하나 이상의 서브프레임(Subframe, 2-01)으로 구성되고, 하나의 서브프레임은 하나 이상의 슬롯(Slot, 2-02)으로 구성될 수 있다. 일례로, 1 프레임(2-00)은 10ms로 정의될 수 있다. 1 서브프레임(2-01)은 1ms로 정의될 수 있으며, 이 경우 1 프레임(2-00)은 총 10개의 서브프레임(2-01)으로 구성될 수 있다. 1 슬롯(2-02, 2-03)은 14개의 OFDM 심볼로 정의될 수 있다 (즉 1 슬롯 당 심볼 수()=14). 1 서브프레임(2-01)은 하나 또는 다수 개의 슬롯(2-02, 2-03)으로 구성될 수 있으며, 1 서브프레임(2-01)당 슬롯(2-02, 2-03)의 개수는 부반송파 간격에 대한 설정 값 μ(2-04, 2-05)에 따라 다를 수 있다. 도 2의 일 예에서는 부반송파 간격 설정 값으로 μ=0(2-04)인 경우와 μ=1(2-05)인 경우가 도시되어 있다. μ=0(2-04)일 경우, 1 서브프레임(2-01)은 1개의 슬롯(2-02)으로 구성될 수 있고, μ=1(2-05)일 경우, 1 서브프레임(2-01)은 2개의 슬롯(2-03)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수()가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수()가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른 및 는 하기의 [표 1]과 같이 정의될 수 있다.
[표 1]
NR에서 한 개의 컴포넌트 캐리어(component carrier, CC) 혹은 서빙 셀(serving cell)은 최대 250개 이상의 RB로 구성되는 것이 가능하다. 따라서 단말이 LTE와 같이 항상 전체 서빙 셀 대역폭(serving cell bandwidth)을 수신하는 경우 단말의 파워 소모가 극심할 수 있고, 이를 해결하기 위하여 기지국은 단말에게 하나 이상의 대역폭 부분(bandwidth part, BWP)을 설정하여 단말이 셀(cell) 내 수신 영역을 변경할 수 있도록 지원하는 것이 가능하다. NR에서 기지국은 CORESET #0 (혹은 common search space, CSS)의 대역폭인 'initial BWP'를 MIB(master information block)를 통하여 단말에게 설정할 수 있다. 이후 기지국은 RRC 시그날링을 통하여 단말의 초기 BWP(first BWP)를 설정하고, 향후 하향링크 제어 정보(downlink control information, DCI)를 통하여 지시될 수 있는 적어도 하나 이상의 BWP 설정 정보들을 통지할 수 있다. 이후 기지국은 DCI를 통하여 BWP ID를 공지함으로써 단말이 어떠한 대역을 사용할 지 지시할 수 있다. 만약 단말이 특정 시간 이상 동안 현재 할당된 BWP에서 DCI를 수신하지 못할 경우 단말은 'default BWP'로 회귀하여 DCI 수신을 시도한다.
도 3은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분(bandwidth part, BWP) 구성의 예시를 도시하는 도면이다.
도 3을 참조하면, 도 3은 단말 대역폭(3-00)이 두 개의 대역폭 부분, 즉 대역폭 부분 #1(3-05)과 대역폭 부분 #2(3-10)로 설정된 일 예를 도시한다. 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정해줄 수 있으며, 각 대역폭 부분에 대하여 하기의 [표 2]와 같은 정보들을 설정해 줄 수 있다.
[표 2]
물론 상술된 예시에 제한되는 것은 아니며, 상술된 설정 정보 외에도 대역폭 부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상술한 정보들은 상위 계층 시그널링, 예컨대 RRC 시그널링을 통해 기지국이 단말에게 전달할 수 있다. 설정된 하나 또는 다수 개의 대역폭 부분들 중에서 적어도 하나의 대역폭 부분이 활성화(Activation)될 수 있다. 설정된 대역폭 부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적(semi-static)으로 전달되거나, MAC CE(control element) 또는 DCI를 통해 동적으로 전달될 수 있다.
일 실시 예에 따르면, RRC(Radio Resource Control) 연결 전의 단말은 초기 접속을 위한 초기 대역폭 파트(Initial BWP)을 MIB(Master Information Block)를 통해 기지국으로부터 설정 받을 수 있다. 보다 구체적으로, 단말은 초기 접속 단계에서 MIB를 통해 초기 접속에 필요한 시스템 정보(Remaining System Information; RMSI 또는 System Information Block 1; SIB1에 해당할 수 있음)를 수신하기 위하여, PDCCH가 전송될 수 있는 제어영역(Control Resource Set, CORESET)과 탐색 공간(Search Space)에 대한 설정 정보를 수신할 수 있다. MIB로 설정되는 제어영역과 탐색공간은 각각 식별자(Identity, ID) 0으로 간주될 수 있다.
기지국은 단말에게 MIB를 통해 제어영역#0에 대한 주파수 할당 정보, 시간 할당 정보, 뉴머롤로지(Numerology) 등의 설정 정보를 통지할 수 있다. 또한, 기지국은 단말에게 MIB를 통해 제어영역#0에 대한 모니터링 주기 및 occasion에 대한 설정정보, 즉 탐색공간#0에 대한 설정 정보를 통지할 수 있다. 단말은 MIB로부터 획득한 제어영역#0으로 설정된 주파수 영역을 초기 접속을 위한 초기 대역폭 파트로 간주할 수 있다. 이 때, 초기 대역폭 파트의 식별자(ID)는 0으로 간주될 수 있다.
상술된 차세대 이동통신 시스템(5G 또는 NR 시스템)에서 지원하는 대역폭 파트에 대한 설정은 다양한 목적으로 사용될 수 있다.
일 예로 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에, 대역폭 부분에 대한 설정을 통해, 단말이 지원하는 대역폭이 지원될 수 있다. 예컨대 <표 2>에서 대역폭 부분의 주파수 위치(설정정보 2)가 단말에게 설정됨으로써, 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신할 수 있다.
또 다른 일 예로 서로 다른 뉴머롤로지를 지원하기 위한 목적으로, 기지국이 단말에게 다수 개의 대역폭 부분을 설정할 수 있다. 예컨대, 임의의 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분이 각각 15kHz와 30kHz의 부반송파 간격을 이용하도록 설정될 수 있다. 서로 다른 대역폭 부분은 FDM(Frequency Division Multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우 해당 부반송파 간격으로 설정되어 있는 대역폭 부분이 활성화 될 수 있다.
또 다른 일 예로 단말의 전력 소모 감소를 위한 목적으로, 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭 부분을 설정할 수 있다. 예컨대, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모를 야기할 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 단말이 100MHz의 큰 대역폭에 대한 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적이다. 그러므로 단말의 전력 소모를 줄이기 위한 목적으로 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭 부분, 예컨대 20MHz의 대역폭 부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭 부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭 부분을 이용하여 데이터를 송수신할 수 있다.
상술된 대역폭 파트를 설정하는 방법에 있어서, RRC 연결(Connected) 전의 단말들은 초기 접속 단계에서 MIB(Master Information Block)을 통해 초기 대역폭 파트(Initial Bandwidth Part)에 대한 설정 정보를 수신할 수 있다. 보다 구체적으로, 단말은 PBCH(Physical Broadcast Channel)의 MIB로부터, SIB(System Information Block)를 스케줄링하는 DCI(Downlink Control Information)가 전송될 수 있는 하향링크 제어채널을 위한 제어영역(또는 제어자원셋, Control Resource Set, CORESET)을 설정 받을 수 있다. MIB로 설정된 제어영역의 대역폭이 초기 대역폭 파트로 간주될 수 있으며, 설정된 초기 대역폭 파트를 통해 단말은 SIB가 전송되는 PDSCH를 수신할 수 있다. 초기 대역폭 파트는 SIB를 수신하는 용도 외에도, 다른 시스템 정보(Other System Information, OSI), 페이징(Paging), 랜덤 엑세스(Random Access)를 위해 활용될 수도 있다.
이하에서는 차세대 이동통신 시스템(5G 또는 NR 시스템)의 SS(Synchronization Signal)/PBCH 블록(SSB)에 대하여 설명된다.
SS/PBCH 블록은, PSS(Primary SS), SSS(Secondary SS) 및 PBCH로 구성된 물리계층 채널 블록을 의미할 수 있다. 보다 구체적으로, SS/PBCH 블록은 아래와 같이 정의될 수 있다.
- PSS: 하향링크 시간/주파수 동기의 기준이 되는 신호로 셀 ID 의 일부 정보를 제공할 수 있다.
- SSS: 하향링크 시간/주파수 동기의 기준이 되고, PSS 가 제공하지 않은 나머지 셀 ID 정보를 제공할 수 있다. 추가적으로 PBCH 의 복조를 위한 기준신호(Reference Signal) 역할을 할 수 있다.
- PBCH: 단말의 데이터채널 및 제어채널 송수신에 필요한 필수 시스템 정보를 제공할 수 있다. 필수 시스템 정보는 제어채널의 무선자원 매핑 정보를 나타내는 탐색공간 관련 제어정보, 시스템 정보를 전송하는 별도의 데이터 채널에 대한 스케줄링 제어정보 등을 포함할 수 있다.
- SS/PBCH 블록: SS/PBCH 블록은 PSS, SSS 및 PBCH의 조합으로 이루어질 수 있다. SS/PBCH 블록은 5ms 시간 내에서 하나 또는 복수 개가 전송될 수 있고, 전송되는 각각의 SS/PBCH 블록은 인덱스로 구별될 수 있다.
단말은 초기 접속 단계에서 PSS 및 SSS를 검출할 수 있고, PBCH를 디코딩할 수 있다. 단말은 PBCH로부터 MIB를 획득할 수 있고, MIB를 통해 제어영역#0을 설정 받을 수 있다. 단말은 선택한 SS/PBCH 블록과 제어영역#0에서 전송되는 DMRS(Demodulation RS(Reference Signal)가 QCL(Quasi Co Location)되어 있다고 가정하고 제어영역#0에 대한 모니터링을 수행할 수 있다. 단말은 제어영역#0에서 전송된 하향링크 제어정보로 시스템 정보를 수신할 수 있다. 단말은 수신한 시스템 정보로부터 초기 접속에 필요한 RACH(Random Access Channel) 관련 설정 정보를 획득할 수 있다. 단말은 선택한 SS/PBCH 인덱스를 고려하여 PRACH(Physical RACH)를 기지국으로 전송할 수 있고, PRACH를 수신한 기지국은 단말이 선택한 SS/PBCH 블록 인덱스에 대한 정보를 획득할 수 있다. 기지국은 단말이 각각의 SS/PBCH 블록들 중에서 어떤 블록을 선택하였고, 단말이 선택한 SS/PBCH 블록과 대응되는(또는 연관되는) 제어영역#0을 모니터링함을 알 수 있다.
이하에서는 차세대 이동통신 시스템(5G 또는 NR 시스템)에서의 하향링크 제어 정보(Downlink Control Information, 이하 DCI라 한다)가 구체적으로 설명된다.
차세대 이동통신 시스템(5G 또는 NR 시스템)에서 상향링크 데이터(또는 물리 상향링크 데이터 채널(Physical Uplink Shared Channel, PUSCH)) 또는 하향링크 데이터(또는 물리 하향링크 데이터 채널(Physical Downlink Shared Channel, PDSCH))에 대한 스케줄링 정보는, DCI를 통해 기지국으로부터 단말에게 전달될 수 있다. 단말은 PUSCH 또는 PDSCH에 대하여 폴백(Fallback)용 DCI 포맷과 논-폴백(Non-fallback)용 DCI 포맷을 모니터링(Monitoring)할 수 있다. 폴백 DCI 포맷은 기지국과 단말 사이에서 선정의된 고정된 필드로 구성될 수 있고, 논-폴백용 DCI 포맷은 설정 가능한 필드를 포함할 수 있다.
DCI는 채널코딩 및 변조 과정을 거쳐 물리 하향링크 제어 채널인 PDCCH(Physical Downlink Control Channel)을 통해 전송될 수 있다. DCI 메시지 페이로드(payload)에는 CRC(Cyclic Redundancy Check)가 부착될 수 있고, CRC는 단말의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로 스크램블링(scrambling) 될 수 있다. DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력 제어 명령 또는 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI들이 DCI 메시지의 페이로드에 부착되는 CRC의 스크램블링을 위해 사용될 수 있다. 즉, RNTI는 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송될 수 있다. PDCCH 상으로 전송되는 DCI 메시지가 수신되면, 단말은 할당 받은 RNTI를 사용하여 CRC를 확인할 수 있다. CRC 확인 결과가 맞으면 단말은 해당 메시지가 단말에게 전송된 것임을 알 수 있다.
예를 들면, 시스템 정보(System Information, SI)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(Random Access Response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. 페이징(Paging) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(Slot Format Indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(Transmit Power Control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(Cell RNTI)로 스크램블링 될 수 있다.
DCI 포맷 0_0은 PUSCH를 스케줄링하는 폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시 예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_0은 아래의 [표 3]과 같은 정보들을 포함할 수 있다.
[표 3]
DCI 포맷 0_1은 PUSCH를 스케줄링하는 논-폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시 예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_1은, 아래의 [표 4]와 같은 정보들을 포함할 수 있다.
[표 4]
DCI 포맷 1_0은 PDSCH를 스케줄링하는 폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시 예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_0은, 아래의 [표 5]와 같은 정보들을 포함할 수 있다.
[표 5]
또는, DCI 포맷 1_0은 RAR 메시지에 대한 PDSCH를 스케줄링하는 DCI로 사용될 수 있고, 이 때 CRC는 RA-RNTI로 스크램블링 될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_0은, 아래의 [표 6] 와 같은 정보들을 포함할 수 있다.
[표 6]
DCI 포맷 1_1은 PDSCH를 스케줄링하는 논-폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시 예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_1은, 아래의 [표 7]과 같은 정보들을 포함할 수 있다.
[표 7]
도 4는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 예를 도시하는 도면이다. 도 4는 본 개시의 일 실시 예에 따른 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(Control Resource Set, CORESET)에 대한 일 실시 예를 도시한 도면이다.
도 4를 참조하면, 도 4는 주파수 축으로 단말의 대역폭 파트(UE bandwidth part)(4-10), 시간축으로 1 슬롯(4-20) 내에 2개의 제어영역(제어영역#1(4-01), 제어영역#2(4-02))이 설정되어 있는 일 실시 예를 도시한다. 제어영역(4-01, 4-02)은 주파수 축으로 전체 단말 대역폭 파트(4-10) 내에서 특정 주파수 자원(4-03)에 설정될 수 있다. 제어영역(4-01, 4-02)은 시간 축으로는 하나 또는 복수 개의 OFDM 심볼로 설정될 수 있고, 이는 제어영역 길이(Control Resource Set Duration, 4-04)으로 정의될 수 있다. 도 4를 참조하면, 제어영역#1(4-01)은 2 심볼의 제어영역 길이로 설정될 수 있고, 제어영역#2(4-02)는 1 심볼의 제어영역 길이로 설정될 수 있다.
전술된 차세대 이동통신 시스템(5G 또는 NR 시스템)에서의 제어영역은, 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC(Radio Resource Control) 시그널링)을 함으로써 설정될 수 있다. 단말에게 제어영역을 설정한다는 것은 제어영역 식별자(Identity), 제어영역의 주파수 위치, 제어영역 의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예를 들면, 제어영역의 설정은 아래의 [표 8]과 같은 정보들을 포함할 수 있다.
[표 8]
[표 8]에서 tci-StatesPDCCH (이하 'TCI state'라 한다) 설정 정보는, 해당 제어영역에서 전송되는 DMRS(Demodulation Reference Signal)와 QCL(Quasi Co Located) 관계에 있는 하나 또는 다수 개의 SS(Synchronization Signal)/PBCH(Physical Broadcast Channel) 블록(Block) 인덱스 또는 CSI-RS(Channel State Information Reference Signal) 인덱스의 정보를 포함할 수 있다.
무선 통신 시스템에서 하나 이상의 서로 다른 안테나 포트들(혹은 하나 이상의 채널, 시그날 및 이들의 조합들로 대체되는 것도 가능하나 향후 본 개시의 설명에서는 편의를 위하여 서로 다른 안테나 포트들로 통일하여 지칭한다)은 아래 [표 9]와 같은 QCL 설정에 의하여 서로 연결(associate)될 수 있다.
[표 9]
구체적으로 QCL 설정은 두 개의 서로 다른 안테나 포트들을 (QCL) target 안테나 포트와 (QCL) reference 안테나 포트의 관계로 연결할 수 있으며, 단말은 상기 reference 안테나 포트에서 측정된 채널의 통계적인 특성들(예를 들어 Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx (혹은 Tx) 파라미터 등 채널의 large scale 파라미터 내지 단말의 수신 공간 필터 계수 혹은 송신 공간 필터 계수) 중 전부 혹은 일부를 target 안테나 포트 수신 시 적용 (혹은 가정) 할 수 있다. 위에서 target 안테나 포트라 함은 상기 QCL 설정을 포함하는 상위레이어 설정에 의하여 설정되는 채널 혹은 신호를 송신하는 안테나 포트 내지는 상기 QCL 설정을 지시하는 TCI state가 적용되는 채널 혹은 신호를 송신하는 안테나 포트를 의미한다. 위에서 reference 안테나 포트라 함은 상기 QCL 설정 내 referenceSignal 파라미터에 의하여 지시(특정)되는 채널 혹은 신호를 송신하는 안테나 포트를 의미한다.
구체적으로, 상기 QCL 설정에 의하여 한정되는 (상기 QCL 설정 내에서 파라미터 qcl-Type에 의하여 지시되는) 채널의 통계적인 특성들은 QCL type에 따라 다음과 같이 분류될 수 있다.
*
'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
*
'QCL-TypeB': {Doppler shift, Doppler spread}
*
'QCL-TypeC': {Doppler shift, average delay}
*
'QCL-TypeD': {Spatial Rx parameter}
이때 QCL type의 종류는 위 네 가지 종류에 한정되는 것은 아니나 설명의 요지를 흐리지 않기 위하여 모든 가능한 조합들을 나열하지는 않는다. 위에서 QCL-TypeA는 target 안테나 포트의 대역폭 및 전송 구간이 reference 안테나 포트 대비 모두 충분하여 (즉 주파수 축 및 시간 축 모두에서 target 안테나 포트의 샘플 수 및 전송 대역/시간이 reference 안테나 포트의 샘플 수 및 전송 대역/시간보다 많은 경우) 주파수 및 시간 축에서 측정 가능한 모든 통계적 특성들을 참조 가능한 경우에 사용되는 QCL type이다. QCL-TypeB는 target 안테나 포트의 대역폭이 주파수 축에서 측정 가능한 통계적 특성들, 즉 Doppler shift, Doppler spread들을 측정하기에 충분한 경우에 사용되는 QCL type이다. QCL-TypeC는 target 안테나 포트의 대역폭 및 전송 구간이 second-order statistics, 즉 Doppler spread 및 delay spread들을 측정하기에는 불충분하여 first-order statistics, 즉 Doppler shift, average delay만을 참조 가능한 경우에 사용되는 QCL type이다. QCL-TypeD는 reference 안테나 포트를 수신할 때 사용한 공간 수신 필터 값 들을 target 안테나 포트 수신 시 사용할 수 있을 때 설정되는 QCL type이다.
한편, 기지국은 아래 표 9a와 같은 TCI state설정을 통하여 최대 두 개의 QCL 설정을 하나의 target 안테나 포트에 설정 혹은 지시하는 것이 가능하다.
[표 9a]
하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 첫 번째 QCL 설정은 QCL-TypeA, QCL-TypeB, QCL-TypeC 중 하나로 설정될 수 있다. 이때 설정 가능한 QCL type은 target 안테나 포트 및 reference 안테나 포트의 종류에 따라 특정되며 아래 상세히 설명한다. 또한 상기 하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 두 번째 QCL 설정은 QCL-TypeD로 설정될 수 있으며 경우에 따라 생략되는 것이 가능하다.
아래 표 9ba 내지 9be에서는 target 안테나 포트 종류에 따른 유효한 TCI state 설정들을 나타내는 표 들이다.
표 9ba은 target 안테나 포트가 CSI-RS for tracking (TRS) 일 경우 유효한 TCI state 설정을 나타낸다. 상기 TRS는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info가 true로 설정된 NZP CSI-RS를 의미한다. 표 9ba에서 3번 설정의 경우 aperiodic TRS를 위하여 사용될 수 있다.
[표 9ba] Target 안테나 포트가 CSI-RS for tracking (TRS) 일 경우 유효한 TCI state 설정
표 9bb는 target 안테나 포트가 CSI-RS for CSI 일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for CSI는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info 또한 true로 설정되지 않은 NZP CSI-RS를 의미한다.
[표 9bb] Target 안테나 포트가 CSI-RS for CSI일 경우 유효한 TCI state 설정
표 9bc은 target 안테나 포트가 CSI-RS for beam management (BM, CSI-RS for L1 RSRP reporting과 동일한 의미)일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for BM은 CSI-RS 중 repetition 파라미터가 설정되어 On 또는 Off의 값을 가지며, trs-Info가 true로 설정되지 않은 NZP CSI-RS를 의미한다.
[표 9bc] Target 안테나 포트가 CSI-RS for BM (for L1 RSRP reporting)일 경우 유효한 TCI state 설정
표 9bd는 target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.
[표 9bd] Target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정
표 9be는 target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.
[표 9be] Target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정
상기 표 9ba 내지 9be에 의한 대표적인 QCL 설정 방법은 각 단계 별 target 안테나 포트 및 reference 안테나 포트를 "SSB" -> "TRS" -> "CSI-RS for CSI, 또는 CSI-RS for BM, 또는 PDCCH DMRS, 또는 PDSCH DMRS"와 같이 설정하여 운용하는 것이다. 이를 통하여 SSB 및 TRS로부터 측정할 수 있는 통계적 특성들을 각 안테나 포트들까지 연계시켜 단말의 수신 동작을 돕는 것이 가능하다.
도 5는 본 개시의 일 실시 예에 따른 무선 통신 시스템의 하향링크 제어채널의 구조를 설명하는 도면이다. 즉, 도 5는 본 개시의 일 실시 예에 따른 5G에서 사용될 수 있는 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 예시를 도시하는 도면이다.
도 5를 참조하면, 제어채널을 구성하는 시간 및 주파수 자원의 기본 단위는 REG(Resource Element Group, 5-03)로 정의될 수 있다. REG(5-03)는 시간 축으로 1 OFDM 심볼(5-01), 주파수 축으로 1 PRB(Physical Resource Block, 5-02), 즉, 12개 서브캐리어(Subcarrier)로 정의될 수 있다. 기지국은 REG(5-03)를 연접하여 하향링크 제어채널 할당 단위를 구성할 수 있다.
도 5에 도시된 바와 같이, 5G에서 하향링크 제어채널이 할당되는 기본 단위를 CCE(Control Channel Element, 5-04)라고 할 경우, 1 CCE(5-04)는 복수의 REG(5-03)로 구성될 수 있다. 예를 들면, 도 5에 도시된 REG(5-03)는 12개의 RE로 구성될 수 있고, 1 CCE(5-04)가 6개의 REG(5-03)로 구성된다면 1 CCE(5-04)는 72개의 RE로 구성될 수 있다. 하향링크 제어영역이 설정되면 해당 영역은 복수의 CCE(5-04)로 구성될 수 있으며, 특정 하향링크 제어채널은 제어영역 내의 집성 레벨(Aggregation Level, AL)에 따라 하나 또는 복수의 CCE(5-04)로 매핑 되어 전송될 수 있다. 제어영역내의 CCE(5-04)들은 번호로 구분되며 이 때 CCE(5-04)들의 번호는 논리적인 매핑 방식에 따라 부여될 수 있다.
도 5에 도시된 하향링크 제어채널의 기본 단위, 즉 REG(5-03)에는 DCI가 매핑되는 RE들과, 이를 디코딩하기 위한 레퍼런스 신호인 DMRS(5-05)가 매핑되는 영역이 모두 포함될 수 있다. 도 5에서와 같이 1 REG(5-03) 내에 3개의 DMRS(5-05)가 전송될 수 있다. PDCCH를 전송하는데 필요한 CCE의 개수는 집성 레벨(Aggregation Level, AL)에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 하향링크 제어채널의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예를 들어, AL=L일 경우, 하나의 하향링크 제어채널이 L 개의 CCE를 통해 전송될 수 있다.
단말은 하향링크 제어채널에 대한 정보를 모르는 상태에서 신호를 검출해야 하는데, 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색공간(search space)이 정의될 수 있다. 탐색공간은 주어진 집성 레벨 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 하향링크 제어채널 후보군(Candidate)들의 집합이다. 1, 2, 4, 8, 16 개의 CCE로 하나의 묶음을 만드는 여러 가지 집성 레벨이 있으므로, 단말은 복수개의 탐색공간을 가질 수 있다. 탐색공간 세트(Set)는 설정된 모든 집성 레벨에서의 탐색공간들의 집합으로 정의될 수 있다.
탐색공간은 공통(Common) 탐색공간과 단말-특정(UE-specific) 탐색공간으로 분류될 수 있다. 본 개시의 일 실시 예에 따르면, 일정 그룹의 단말들 또는 모든 단말들은 시스템 정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 PDCCH의 공통 탐색 공간을 조사할 수 있다.
예를 들어, 단말은 셀의 사업자 정보 등을 포함하는 SIB의 전송을 위한 PDSCH 스케줄링 할당 정보를 PDCCH의 공통 탐색 공간을 조사하여 수신할 수 있다. 공통 탐색공간의 경우, 일정 그룹의 단말들 또는 모든 단말들이 PDCCH를 수신해야 하므로, 공통 탐색공간은 기 약속된 CCE의 집합으로써 정의될 수 있다. 한편, 단말은 단말-특정적인 PDSCH 또는 PUSCH에 대한 스케줄링 할당 정보를 PDCCH의 단말-특정 탐색공간을 조사함으로써 수신할 수 있다. 단말-특정 탐색공간은 단말의 신원(Identity) 및 다양한 시스템 파라미터의 함수로 단말-특정적으로 정의될 수 있다.
5G에서는 PDCCH에 대한 탐색공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)으로 기지국으로부터 단말로 설정될 수 있다. 예를 들면, 기지국은 각 집성 레벨 L에서의 PDCCH 후보군 수, 탐색공간에 대한 모니터링 주기, 탐색공간에 대한 슬롯 내 심볼 단위의 모니터링 occasion, 탐색공간 타입(공통 탐색공간 또는 단말-특정 탐색공간), 해당 탐색공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI의 조합, 탐색공간을 모니터링 하고자 하는 제어영역 인덱스 등을 단말에게 설정할 수 있다. 예를 들면, 상술된 설정은 아래의 [표 10]과 같은 정보들을 포함할 수 있다.
[표 10]
설정 정보에 기초하여 기지국은 단말에게 하나 또는 복수 개의 탐색공간 세트를 설정할 수 있다. 본 개시의 일 실시 예에 따르면, 기지국은 단말에게 탐색공간 세트 1과 탐색공간 세트 2를 설정할 수 있고, 탐색공간 세트 1에서 X-RNTI로 스크램블링된 DCI 포맷 A를 공통 탐색공간에서 모니터링 하도록 설정할 수 있고, 탐색공간 세트 2에서 Y-RNTI로 스크램블링된 DCI 포맷 B를 단말-특정 탐색공간에서 모니터링 하도록 설정할 수 있다.
설정 정보에 따르면, 공통 탐색공간 또는 단말-특정 탐색공간에 하나 또는 복수 개의 탐색공간 세트가 존재할 수 있다. 예를 들어 탐색공간 세트#1과 탐색공간 세트#2가 공통 탐색공간으로 설정될 수 있고, 탐색공간 세트#3과 탐색공간 세트#4가 단말-특정 탐색공간으로 설정될 수 있다.
공통 탐색공간은 목적에 따라 특정 타입(type)의 탐색공간 세트로 분류될 수 있다. 정해진 탐색공간 세트 타입 별로 모니터링 될 RNTI가 서로 다를 수 있다. 예를 들어 공통 탐색공간 타입, 목적, 및 모니터링 될 RNTI는 다음 표 10a과 같이 분류할 수 있다.
[표 10a]
한편 공통 탐색공간에서는 아래의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI
- DCI format 2_0 with CRC scrambled by SFI-RNTI
- DCI format 2_1 with CRC scrambled by INT-RNTI
- DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI
- DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI
단말-특정 탐색공간에서는 아래의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
- DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
명시되어 있는 RNTI들은 아래와 같은 정의 및 용도를 따를 수 있다.
C-RNTI (Cell RNTI): 단말-특정 PDSCH 스케줄링 용도
TC-RNTI (Temporary Cell RNTI): 단말-특정 PDSCH 스케줄링 용도
CS-RNTI(Configured Scheduling RNTI): 준정적으로 설정된 단말-특정 PDSCH 스케줄링 용도
RA-RNTI (Random Access RNTI): 랜덤 엑세스 단계에서 PDSCH 스케줄링 용도
P-RNTI (Paging RNTI): 페이징이 전송되는 PDSCH 스케줄링 용도
SI-RNTI (System Information RNTI): 시스템 정보가 전송되는 PDSCH 스케줄링 용도
INT-RNTI (Interruption RNTI): PDSCH에 대한 pucturing 여부를 알려주기 위한 용도
TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): PUSCH에 대한 전력 조절 명령 지시 용도
TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): PUCCH에 대한 전력 조절 명령 지시 용도
TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): SRS에 대한 전력 조절 명령 지시 용도
일 실시 예에서, 상술된 DCI 포맷들은 아래의 [표 11]와 같이 정의될 수 있다.
[표 11]
본 개시의 일 실시 예에 따르면, 5G에서는 복수 개의 탐색공간 세트가 서로 다른 파라미터들(예컨대, [표 10]의 파라미터들)로 설정될 수 있다. 따라서, 매 시점에서 단말이 모니터링하는 탐색공간 세트의 집합이 달라질 수 있다. 예를 들면, 탐색공간 세트#1이 X-슬롯 주기로 설정되어 있고, 탐색공간 세트#2가 Y-슬롯 주기로 설정되어 있고 X와 Y가 다를 경우, 단말은 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2를 모두 모니터링 할 수 있고, 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2 중 하나를 모니터링 할 수 있다.
복수 개의 탐색공간 세트가 단말에게 설정되었을 경우, 단말이 모니터링해야 하는 탐색공간 세트를 결정하기 위하여, 아래와 같은 조건들이 고려될 수 있다.
[조건 1: 최대 PDCCH 후보군 수 제한]
슬롯 당 모니터링 할 수 있는 PDCCH 후보군의 수는 Mμ를 넘지 않을 수 있다. Mμ는 서브캐리어 간격 15·2μ kHz으로 설정된 셀에서의 슬롯 당 최대 PDCCH 후보군 수로 정의될 수 있으며, 아래의 [표 12]과 같이 정의될 수 있다.
[표 12]
[조건 2: 최대 CCE 수 제한]
슬롯 당 전체 탐색공간(여기서 전체 탐색공간이란 복수 개의 탐색공간 세트의 union 영역에 해당하는 전체 CCE 집합을 의미할 수 있다)을 구성하는 CCE의 개수는 Cμ를 넘지 않을 수 있다. Cμ는 서브캐리어 간격 15·2μ kHz으로 설정된 셀에서의 슬롯 당 최대 CCE의 수로 정의될 수 있으며, 아래의 [표 13]과 같이 정의될 수 있다.
[표 13]
설명의 편의를 위해, 특정 시점에서 상기 조건 1, 2를 모두 만족시키는 상황은 예시적으로 "조건 A"로 정의될 수 있다. 따라서, 조건 A를 만족시키지 않는 것은 상술된 조건 1, 2 중에서 적어도 하나의 조건을 만족시키지 않는 것을 의미할 수 있다.
기지국의 탐색공간 세트들의 설정에 따라 특정 시점에서 조건 A가 만족되지 않는 경우가 발생할 수 있다. 특정 시점에서 조건 A가 만족되지 않을 경우, 단말은 해당 시점에서 조건 A를 만족하도록 설정된 탐색공간 세트들 중에서 일부만을 선택하여 모니터링 할 수 있고, 기지국은 선택된 탐색공간 세트로 PDCCH를 전송할 수 있다.
본 개시의 일 실시 예에 따르면, 전체 설정된 탐색공간 세트 중에서 일부 탐색공간을 선택하는 방법으로 하기의 방법을 따를 수 있다.
[방법 1]
특정 시점(슬롯)에서 PDCCH에 대한 조건 A를 만족시키지 못할 경우,
단말은(또는 기지국은) 해당 시점에 존재하는 탐색공간 세트들 중에서 탐색 공간 타입이 공통 탐색공간으로 설정되어 있는 탐색공간 세트를 단말-특정 탐색공간으로 설정된 탐색공간 세트보다 우선적으로 선택할 수 있다.
공통 탐색공간으로 설정되어 있는 탐색공간 세트들이 모두 선택되었을 경우(즉, 공통 탐색공간으로 설정되어 있는 모든 탐색공간을 선택한 후에도 조건 A를 만족할 경우), 단말은(또는 기지국은) 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트들을 선택할 수 있다. 이 때, 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트가 복수 개일 경우, 탐색공간 세트 인덱스(Index)가 낮은 탐색공간 세트가 더 높은 우선 순위를 가질 수 있다. 우선 순위를 고려하여, 단말 혹은 기지국은 단말-특정 탐색공간 세트들을 조건 A가 만족되는 범위 내에서 선택할 수 있다.
아래에서는 NR에서 데이터 전송을 위한 시간 및 주파수 자원 할당 방법들이 설명된다.
NR에서는 BWP 지시(indication)를 통한 주파수 축 자원 후보 할당에 더하여 다음과 같은 세부적인 주파수 축 자원 할당 방법(frequency domain resource allocation, FD-RA)들이 제공될 수 있다.
도 6은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel)의 주파수축 자원 할당 예를 도시하는 도면이다.
도 6은 NR에서 상위 레이어를 통하여 설정 가능한 type 0 (6-00), type 1 (6-05), 그리고 동적 변경(dynamic switch) (6-10)의 세 가지 주파수 축 자원 할당 방법들을 도시하는 도면이다.
도 6을 참조하면, 만약 상위 레이어 시그널링을 통하여 단말이 resource type 0 만을 사용하도록 설정된 경우(6-00), 해당 단말에게 PDSCH를 할당하는 일부 하향링크 제어 정보(downlink control information, DCI)는 NRBG개의 비트로 구성되는 비트맵을 가진다. 이를 위한 조건은 차후 다시 설명한다. 이때 NRBG는 BWP 지시자(indicator)가 할당하는 BWP 크기(size) 및 상위 레이어 파라미터 rbg-Size에 따라 아래 [표 14]와 같이 결정되는 RBG(resource block group)의 수를 의미하며, 비트맵에 의하여 1로 표시되는 RBG에 데이터가 전송되게 된다.
[표 14]
만약 상위 레이어 시그널링을 통하여 단말이 resource type 1 만을 사용하도록 설정된 경우(6-05), 해당 단말에게 PDSCH를 할당하는 일부 DCI는 개의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 차후 다시 설명된다. 기지국은 이를 통하여 starting VRB(6-20)와 이로부터 연속적으로 할당되는 주파수 축 자원의 길이(6-25)를 설정할 수 있다.
만약 상위 레이어 시그널링을 통하여 단말이 resource type 0과 resource type 1를 모두 사용하도록 설정된 경우(6-10), 해당 단말에게 PDSCH를 할당하는 일부 DCI는 resource type 0을 설정하기 위한 payload(6-15)와 resource type 1을 설정하기 위한 payload(6-20, 6-25)중 큰 값(6-35)의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 차후 다시 설명된다. 이때, DCI 내 주파수 축 자원 할당 정보의 제일 앞 부분(MSB)에 한 비트가 추가될 수 있고, 해당 비트가 0일 경우 resource type 0이 사용됨을 지시되고, 1일 경우 resource type 1이 사용됨을 지시될 수 있다.
아래에서는 차세대 이동통신 시스템(5G 또는 NR 시스템)에서의 데이터 채널에 대한 시간 도메인 자원할당 방법이 설명된다.
기지국은 단말에게 하향링크 데이터채널(Physical Downlink Shared Channel, PDSCH) 및 상향링크 데이터채널(Physical Uplink Shared Channel, PUSCH)에 대한 시간 도메인 자원할당 정보에 대한 테이블(Table)을, 상위 계층 시그널링 (예를 들어 RRC 시그널링)으로 설정할 수 있다. PDSCH에 대해서는 최대 maxNrofDL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있고, PUSCH에 대해서는 최대 maxNrofUL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있다. 일 실시 예에서, 시간 도메인 자원할당 정보에는 PDCCH-to-PDSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K0로 표기함), PDCCH-to-PUSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PUSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K2로 표기함), 슬롯 내에서 PDSCH 또는 PUSCH가 스케줄링된 시작 심볼의 위치 및 길이에 대한 정보, PDSCH 또는 PUSCH의 매핑 타입 등이 포함될 수 있다. 예를 들면, 아래의 [표 15] 또는 [표 16]와 같은 정보들이 기지국으로부터 단말로 통지될 수 있다.
[표 15]
[표 16]
기지국은 상술된 시간 도메인 자원할당 정보에 대한 테이블의 엔트리 중 하나를, L1 시그널링(예를 들어 DCI)를 통해 단말에게 통지할 수 있다 (예를 들어 DCI 내의 '시간 도메인 자원할당' 필드로 지시될 수 있음). 단말은 기지국으로부터 수신한 DCI에 기반하여 PDSCH 또는 PUSCH에 대한 시간 도메인 자원할당 정보를 획득할 수 있다.
도 7은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH의 시간축 자원 할당 예를 도시하는 도면이다.
도 7을 참조하면, 기지국은 상위 레이어를 이용하여 설정되는 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격(subcarrier spacing, SCS)(, ), 스케줄링 오프셋(scheduling offset)(K0) 값, 그리고 DCI를 통하여 동적으로 지시되는 한 slot 내 OFDM symbol 시작 위치(7-00)와 길이(7-05)에 따라 PDSCH 자원의 시간 축 위치를 지시할 수 있다.
도 8은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간축 자원 할당 예를 도시하는 도면이다.
도 8을 참조하면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 같은 경우 (8-00, ), 데이터와 제어를 위한 슬롯 번호(slot number)가 같으므로, 기지국 및 단말은 미리 정해진 슬롯 오프셋(slot offset) K0에 맞추어, 스케줄링 오프셋(scheduling offset)이 발생하는 것을 알 수 있다. 반면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 다른 경우 (8-05, ), 데이터와 제어를 위한 슬롯 번호(slot number)가 다르므로, 기지국 및 단말은 PDCCH의 서브캐리어 간격을 기준으로 하여, 미리 정해진 슬롯 오프셋(slot offset) K0에 맞추어 스케줄링 오프셋(scheduling offset)이 발생하는 것을 알 수 있다.
다음으로, 기지국이 단말로 제어 정보 및 데이터 전송을 위한 빔 설정 방법을 살펴본다. 본 발명에서는 설명의 편의를 위해 PDCCH를 통해 제어 정보를 전송하는 과정을 PDCCH를 전송한다고 표현할 수 있으며, PDSCH를 통해 데이터를 전송하는 과정을 PDSCH를 전송한다고 표현할 수 있다.
먼저 PDCCH에 대한 빔 설정 방법에 대해 다룬다. 도 9는 PDCCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한다. 우선 각 CORESET 별로 TCI State의 list가 RRC 등 상위 레이어 목록을 통해 지시될 수 있다 (9-00). 상기 TCI state의 list는 상기 [표 8]의 tci-StatesPDCCH-ToAddList 및/또는 tci-StatesPDCCH-ToReleaseList 로 지시될 수 있다. 다음으로, CORESET별로 설정된 상기 TCI state의 list 중 하나가 MAC-CE를 통해 활성화될 수 있다 (9-20). (9-50)은 PDCCH의 TCI state 활성화를 위한 MAC-CE 구조의 일례를 도시한다. 상기 MAC CE 내의 각 필드의 의미 및 각 필드에 설정 가능한 값은 다음과 같다.
다음으로 PDSCH에 대한 빔 설정 방법을 살펴본다. 도 10은 PDSCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한다. PDSCH에 대한 TCI state의 list는 RRC 등 상위 레이어 목록을 통해 지시될 수 있다 (10-00). 상기 TCI state의 list는 예컨대 BWP 별 PDSCH-Config IE 내 tci-StatesToAddModList 및/또는 tci-StatesToReleaseList 로 지시될 수 있다. 다음으로 상기 TCI state의 list 중 일부가 MAC-CE를 통해 활성화될 수 있다 (10-20). 활성화되는 TCI state의 최대 수는 단말이 보고하는 capability에 따라 결정될 수 있다. (10-50)는 Rel-15 기반 PDSCH의 TCI state activation/deactivation을 위한 MAC-CE 구조의 일례를 도시한다.
상기 MAC CE 내 각 필드의 의미 및 각 필드에 설정 가능한 값은 다음과 같다.
단말은 DCI format 1_1 혹은 DCI format 1_2를 수신한 경우, DCI 내 transmission configuration indication (TCI) 필드의 정보에 기반하여 상기 MAC-CE로 활성화된 TCI state 중 하나의 빔으로 PDSCH를 수신할 수 있다 (10-40). 상기 TCI 필드의 존재 여부는 상기 DCI 수신을 위해 설정된 CORESET 내의 상위 레이어 파라미터인 tci-PresentinDCI 값에 의해 결정된다. 만일 상기 상위 레이어에서 tci-PresentinDCI가 'enabled'로 설정되면, 단말은 3bits 정보의 TCI 필드를 확인하여 DL BWP 또는 스케줄된 component carrier에 활성화된 TCI states와 DL-RS에 연계된 빔의 방향을 판단할 수 있다.
LTE 및 NR에서 단말은 서빙 기지국에 연결한 상태에서 해당 기지국에게 단말이 지원하는 capability를 보고하는 절차를 가진다. 아래 설명에서 이를 UE capability (보고)로 지칭한다. 기지국은 연결 상태의 단말에게 capability 보고를 요청하는 UE capability enquiry 메시지를 전달할 수 있다. 상기 메시지에는 기지국이 RAT type 별 단말 capability 요청을 포함할 수 있다. 상기 RAT type 별 요청에는 요청하는 주파수 밴드 정보가 포함될 수 있다. 또한, 상기 UE capability enquiry 메시지는 하나의 RRC 메시지 container에서 복수의 RAT type을 요청할 수 있으며, 혹은 각 RAT type 별 요청을 포함한 UE capability enquiry 메시지를 복수번 포함해서 단말에게 전달할 수 있다. 즉, UE capability enquiry가 복수회 반복 되고 단말은 이에 해당하는 UE capability information 메시지를 구성하여 복수회 보고할 수 있다. 차세대 이동 통신 시스템에서는 NR, LTE, EN-DC를 비롯한 MR-DC에 대한 단말 capability 요청을 할 수 있다. 참고로 상기 UE capability enquiry 메시지는 일반적으로 단말이 연결을 하고 난 이후, 초기에 보내는 것이 일반적이지만, 기지국이 필요할 때 어떤 조건에서도 요청할 수 있다.
상기 단계에서 기지국으로부터 UE capability 보고 요청을 받은 단말은 기지국으로부터 요청받은 RAT type 및 밴드 정보에 따라 단말 capability를 구성한다. 아래에 NR 시스템에서 단말이 UE capability를 구성하는 방법을 정리하였다.
1.
만약 단말이 기지국으로부터 UE capability 요청으로 LTE 그리고/혹은 NR 밴드에 대한 리스트를 제공받으면, 단말은 EN-DC 와 NR stand alone (SA)에 대한 band combination (BC)를 구성한다. 즉, 기지국에 FreqBandList로 요청한 밴드들을 바탕으로 EN-DC 와 NR SA에 대한 BC의 후보 리스트를 구성한다. 또한, 밴드의 우선순위는 FreqBandList에 기재된 순서대로 우선순위를 가진다.
2.
만약 기지국이 “eutra-nr-only”flag 혹은 “eutra”flag를 세팅하여 UE capability 보고를 요청한 경우, 단말은 상기의 구성된 BC의 후보 리스트 중에서 NR SA BC들에 대한 것은 완전히 제거한다. 이러한 동작은 LTE 기지국(eNB)이 “eutra”capability를 요청하는 경우에만 일어날 수 있다.
3.
이후 단말은 상기 단계에서 구성된 BC의 후보 리스트에서 fallback BC들을 제거한다. 여기서 fallback BC는 어떤 super set BC에서 최소 하나의 SCell에 해당하는 밴드를 제거한 경우에 해당하며, super set BC가 이미 fallback BC를 커버할 수 있기 때문에 생략이 가능하다. 이 단계는 MR-DC에서도 적용되며, 즉 LTE 밴드들도 적용된다. 이 단계 이후에 남아있는 BC는 최종 “후보 BC 리스트”이다.
4.
단말은 상기의 최종 “후보 BC 리스트”에서 요청받은 RAT type에 맞는 BC들을 선택하여 보고할 BC들을 선택한다. 본 단계에서는 정해진 순서대로 단말이 supportedBandCombinationList를 구성한다. 즉, 단말은 미리 설정된 rat-Type의 순서에 맞춰서 보고할 BC 및 UE capability를 구성하게 된다. (nr -> eutra-nr -> eutra). 또한 구성된 supportedBandCombinationList에 대한 featureSetCombination을 구성하고, fallback BC (같거나 낮은 단계의 capability를 포함하고 있는)에 대한 리스트가 제거된 후보 BC 리스트에서 “후보 feature set combination”의 리스트를 구성한다. 상기의 “후보 feature set combination”은 NR 및 EUTRA-NR BC에 대한 feature set combination을 모두 포함하며, UE-NR-Capabilities와 UE-MRDC-Capabilities 컨테이너의 feature set combination으로부터 얻을 수 있다.
5.
또한, 만약 요청된 rat Type이 eutra-nr이고 영향을 준다면, featureSetCombinations은 UE-MRDC-Capabilities 와 UE-NR-Capabilities 의 두 개의 컨테이너에 전부 포함된다. 하지만 NR의 feature set은 UE-NR-Capabilities만 포함된다.
단말 capability가 구성되고 난 이후, 단말은 UE capability가 포함된 UE capability information 메시지를 기지국에 전달한다. 기지국은 단말로부터 수신한 UE capability를 기반으로 이후 해당 단말에게 적당한 스케줄링 및 송수신 관리를 수행한다.
도 11은 본 개시의 일 실시 예에 따른 single cell, carrier aggregation, dual connectivity 상황에서 기지국과 단말의 무선 프로토콜 구조를 도시하는 도면이다.
도 11을 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR SDAP(Service Data Adaptation Protocol S25, S70), NR PDCP(Packet Data Convergence Protocol S30, S65), NR RLC(Radio Link Control S35, S60), NR MAC(Medium Access Control S40, S55)으로 이루어진다.
NR SDAP(S25, S70)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
-
사용자 데이터의 전달 기능(transfer of user plane data)
-
상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
-
상향 링크와 하향 링크에 대해서 QoS flow ID의 마킹 기능(marking QoS flow ID in both DL and UL packets)
-
상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
상기 SDAP 계층 장치에 대해 단말은 RRC 메시지로 각 PDCP 계층 장치 별로 혹은 베어러 별로 혹은 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 혹은 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있으며, SDAP 헤더가 설정된 경우, SDAP 헤더의 NAS QoS 반영 설정 1비트 지시자(NAS reflective QoS)와 AS QoS 반영 설정 1비트 지시자(AS reflective QoS)로 단말이 상향 링크와 하향 링크의 QoS flow와 데이터 베어러에 대한 맵핑 정보를 갱신 혹은 재설정할 수 있도록 지시할 수 있다. 상기 SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 상기 QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케줄링 정보 등으로 사용될 수 있다.
NR PDCP (10-30, 10-65)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
-
헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
-
사용자 데이터 전송 기능 (Transfer of user data)
-
순차적 전달 기능(In-sequence delivery of upper layer PDUs)
-
비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
-
순서 재정렬 기능(PDCP PDU reordering for reception)
-
중복 탐지 기능(Duplicate detection of lower layer SDUs)
-
재전송 기능(Retransmission of PDCP SDUs)
-
암호화 및 복호화 기능(Ciphering and deciphering)
-
타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상기에서 NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 말하며, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 순서를 고려하지 않고, 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(S35, S60)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
-
데이터 전송 기능(Transfer of upper layer PDUs)
-
순차적 전달 기능(In-sequence delivery of upper layer PDUs)
-
비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
-
ARQ 기능(Error Correction through ARQ)
-
접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
-
재분할 기능(Re-segmentation of RLC data PDUs)
-
순서 재정렬 기능(Reordering of RLC data PDUs)
-
중복 탐지 기능(Duplicate detection)
-
오류 탐지 기능(Protocol error detection)
-
RLC SDU 삭제 기능(RLC SDU discard)
-
RLC 재수립 기능(RLC re-establishment)
상기에서 NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들을 RLC SN(sequence number) 혹은 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있으며, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한 상기에서 RLC PDU들을 수신하는 순서대로 (일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 상기 NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상기에서 NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들의 RLC SN 혹은 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(S40, S55)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
-
맵핑 기능(Mapping between logical channels and transport channels)
-
다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
-
스케줄링 정보 보고 기능(Scheduling information reporting)
-
HARQ 기능(Error correction through HARQ)
-
로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
-
단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
-
MBMS 서비스 확인 기능(MBMS service identification)
-
전송 포맷 선택 기능(Transport format selection)
-
패딩 기능(Padding)
NR PHY 계층(S45, S50)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
상기 무선 프로토콜 구조는 캐리어 (혹은 셀) 운영 방식에 따라 세부 구조가 다양하게 변경될 수 있다. 일례로 기지국이 단일 캐리어(혹은 셀)을 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S00과 같이 각 계층 별 단일 구조를 가지는 프로토콜 구조를 사용하게 된다. 반면 기지국이 단일 TRP에서 다중 캐리어를 사용하는 CA(carrier aggregation)를 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S10과 같이 RLC 까지는 단일 구조를 가지지만 MAC layer를 통하여 PHY layer를 multiplexing 하는 프로토콜 구조를 사용하게 된다. 또 다른 예시로 기지국이 다중 TRP에서 다중 캐리어를 사용하는 DC(dual connectivity)를 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S20과 같이 RLC 까지는 단일 구조를 가지지만 MAC layer를 통하여 PHY layer를 multiplexing 하는 프로토콜 구조를 사용하게 된다.
한편, PDCCH의 전송이 끝나는 심볼과 상기 PDCCH가 스케줄한 PDSCH의 시작 심볼 사이의 간격이 특정한 threshold 미만이라면, 단말은 PDSCH를 수신하는 시점에서 상기 PDCCH에 대한 디코딩을 완료하지 못할 수 있다. 이는 PDSCH 수신을 위해, PDCCH의 DCI에서 지시하는 빔 정보를 수신 받지 못함을 의미한다. 상기 상황에서 기지국과 단말은 PDSCH 수신을 위한 기본 빔을 지정할 수 있다. 즉, 상기 상황에서 기지국은 상기 지정된 기본 빔으로 PDSCH를 전송하며, 단말은 상기 지정된 기본 빔으로 버퍼링을 수행한다. 만일 단말이 PDCCH 디코딩 이후, PDCCH 디코딩 이전 시점에 스케줄된 PDSCH가 있음을 판별했다면, 상기 기본 빔에 따라 버퍼링 된 신호로부터 PDSCH 디코딩을 수행할 수 있다. 이 때 상술한 threshold는 단말 capability로 보고되는 timeDurationForQCL 값일 수 있다. 한편, 상기한 기본 빔 동작은 PDSCH를 위해 설정된 TCI state list (10-00) 중 하나 이상의 TCI state가 QCL-TypeD 를 포함하는, 즉 단말의 수신 빔 설정을 수반하는 경우로 한정할 수 있으며, 이 때의 기본 빔은 PDSCH 수신 슬롯 기준 가장 최근 slot의 monitored search space에 대응하는 CORESET 중 가장 낮은 ID에 대응하는 CORESET (예: CORESET #0)에 설정된 빔일 수 있다.
상기 PDSCH 수신을 위한 기본 빔 동작은, PDSCH에 대한 cross-carrier 설정이 되지 않은 경우에 한정될 수 있다.
도 12는 상기 PDSCH 기본 빔 동작에 대한 예시를 도시한다. PDCCH로 전송되는 DCI(12-00) 내, PDSCH 수신을 위한 TCI 필드가 TCI state #n(12-10)을 가리키는 경우, 만일 PDCCH의 전송이 끝나는 심볼과 상기 PDCCH가 스케줄한 PDSCH(12-40)의 시작 심볼 사이의 간격이 timeDurationforQCL (12-20)보다 짧으며, PDSCH를 위해 RRC로 설정된 TCI state list 중 하나 이상의 TCI state가 QCL-TypeD 를 포함한다면, 상기 PDSCH에는 기본 빔(12-60)이 적용된다.
한편, CORESET 내의 상기 파라미터 tci-PresentinDCI가 설정되지 않은 경우 혹은 DCI format 1_0으로 PDSCH가 스케줄 되는 경우, 단말은 DCI 내 TCI 필드가 존재하지 않으므로 PDSCH 수신을 위한 빔을 DCI로 지시받지 못한다. 이 때, PDCCH의 전송이 끝나는 심볼과 상기 PDCCH가 스케줄한 PDSCH의 시작 심볼 사이의 간격이 상기 timeDurationForQCL 값 이상이면, 단말은 PDSCH 수신을 위한 빔은 PDCCH 전송 CORESET에 설정/활성화 된 빔과 동일하다고 가정하며, 기지국은 상기 단말의 가정에 맞추어 PDSCH 송신 빔을 설정할 수 있다. 상기 PDSCH 수신을 위한 기본 빔 동작은, PDSCH에 대한 cross-carrier 설정이 되지 않은 경우에 한정될 수 있다.
다음으로 PDSCH에 대한 cross-carrier 스케줄링 설정에 대하여 설명한다. Cross-carrier 스케줄링을 위해, RRC 로 설정되는 서빙셀 별 설정 파라미터, 즉 서빙셀/component carrier(CC)별로 설정되는 ServingCellConfig IE 내 다음의 구조를 갖는 crossCarrierSchedulingConfig 가 설정될 수 있다.
특정 서빙셀에서 다른 서빙셀로 cross-carrier scheduling을 하고자 하는 경우, 상기 특정 서빙셀은 편의를 위해 scheduling cell로 명명하며, 상기 crossCarrierSchedulingConfig 파라미터의 own 값 내 cif-Presence 값을 true로 설정할 수 있다. 이 때, 상기 scheduling cell의 DCI format 0_1 또는 1_1 내에 [표 4]에서 상술한 캐리어 지시자(CIF) 필드가 존재할 수 있다. 상기 CIF 필드에 0 값이 지시된 경우, 상기 DCI format으로 스케줄된 PDSCH는 scheduling cell로 전송된다. 한편 상기 CIF 필드에 0이 아닌 값이 지시된 경우, 상기 DCI format으로 스케줄된 PDSCH는 scheduling cell이 아닌 다른 서빙셀로 전송된다. CIF 필드의 값에 대응하는 서빙셀은 편의를 위해 scheduled cell로 명명하며, 특정 scheduled cell과 상기한 CIF 값 간의 매핑은 상기 crossCarrierSchedulingConfig 파라미터의 other 값 내 cif-InSchedulingCell 값을 통해 이루어질 수 있다. 즉, 특정 scheduled cell의 ServingCellConfig 내 상기 cif-InSchedulingCell 값이 설정된 경우, scheduling cell의 DCI 내 CIF 필드 값을 상기 cif-InSchedulingCell 값으로 설정함으로써 scheduled cell로 PDSCH를 전송함을 단말에게 지시할 수 있다. 특정 scheduled cell에 대한 scheduling cell은 하나일 수 있으며, 특정 scheduled cell에 대한 scheduling cell의 지시는 scheduled cell에 대한 ServingCellConfig 내, 상기 crossCarrierSchedulingConfig 파라미터의 other 값 내 schedulingCellId 값을 scheduling cell의 ID로 지정함으로써 이루어질 수 있다.
또한, cross-carrier 스케줄링 설정을 위해서는, 상기 scheduling cell 의 active BWP 와 scheduled cell의 active BWP 간에서로 동일한 ID를 갖는 search space set이 구성될 필요가 있다.
상기와 같이 특정 서빙셀에 cross-carrier 스케줄링 설정이 된 경우, scheduling cell의 DCI 필드 내 CIF 값을 통해 scheduling cell과 scheduled cell이 동일한 서빙셀인지의 여부를 알 수 있다. 한편, scheduled cell이 scheduling cell과 다른 경우, scheduled cell에는 CORESET이 설정되지 않을 수 있으며, 이 때 i. scheduling cell의 PDCCH의 마지막 심볼과 scheduled PDSCH간의 시작 심볼 사이의 간격이 timeDurationforQCL (11-20)보다 짧은 경우 또는
ii. PDSCH를 스케줄하는 DCI 내 tci-PresentinDCI가 설정되지 않은 경우
각각에 대한 PDSCH 기본 빔이 불분명할 수 있다. 만일 기지국과 단말 간 cross-carrier 스케줄링이 설정되었을 때 PDSCH 기본 빔에 대한 가정이 다르다면, 단말은 PDSCH를 정상적으로 수신하지 못하는 문제가 발생한다. 따라서 본 발명에서는 cross-carrier 스케줄링이 설정된 경우에 대한 PDSCH 기본 빔을 설정하는 방법을 제공한다.
<제1 실시 예: cross-carrier 스케줄링이 설정된 경우 PDSCH 기본 빔 비허용>
cross-carrier 스케줄링이 설정된 경우, 단말은 상기 PDSCH 기본 빔이 설정되는 상황, 즉
상황 i. scheduling cell의 PDCCH의 마지막 심볼과 scheduled PDSCH간의 시작 심볼 사이의 간격이 timeDurationforQCL (11-20)보다 짧은 경우 또는
상황 ii. PDSCH를 스케줄하는 DCI 내 tci-PresentinDCI가 설정되지 않은 경우
을 기대하지 않을 수 있다. 또한 기지국은 상기 단말 동작에 따라, 상기의 상황이 발생하지 않도록 PDSCH를 스케줄할 수 있다.
상기 단말과 기지국의 동작은 PDSCH를 스케줄하는 DCI format 내 모든 CIF 값에 대해 적용될 수 있다. 즉, scheduling cell과 scheduled cell이 동일한 경우와 다른 경우 모두에 대해 적용될 수 있다. 그 이유로, DCI format 내의 CIF 값이 0인지(scheduling cell과 scheduled cell이 동일) 아닌지(scheduling cell과 scheduled cell이 다름) 여부는 PDCCH를 디코딩한 후에나 알 수 있으므로, CIF 값에 따라 PDSCH 기본 빔 적용 여부를 달리 하기 어렵기 때문일 수 있다.
도 13은 제1 실시 예를 따르는 경우의 기지국 및 단말 동작을 도시한다. (13-00)과 같이 cross-carrier 스케줄링이 설정되지 않은 경우에서는 PDSCH 기본 빔 동작이 허용되나, (13-50)과 같이 cross-carrier 스케줄링이 설정된 경우에는 (13-60)의 조건, 즉 CIF 값과 관계 없이 PDSCH 기본 빔이 허용되지 않는다.
상기 단말과 기지국의 동작은 특정 조건에 한정할 수 있다. 예컨대, 상기 상황 ii를 허용하지 않는 것은 특정 DCI format, 예컨대 DCI format 1_1 및 DCI format 1_2으로 스케줄된 PDSCH에 한정할 수 있다. DCI format 1_0으로 스케줄된 PDSCH의 경우에는 CIF 필드가 DCI format 내에 없으며 TCI 필드 역시 DCI format 내에 없으므로, 상기 PDSCH를 스케줄한 PDCCH의 CORESET에 설정된 빔을 PDSCH의 기본 빔으로 사용할 수 있다.
<제2 실시 예: cross-carrier 스케줄링이 설정된 경우, CIF 필드 값≠0에 대한 PDSCH 기본 빔 허용>
cross-carrier 스케줄링이 설정된 경우에서, scheduling DCI 내 CIF 필드 값≠0인 경우 즉 scheduling cell과 scheduled cell이 다른 경우에 대한 PDSCH 기본 빔을 설정할 수 있다. 이 때, scheduled cell에는 CORESET이 설정되지 않을 수 있으므로, 단말은 아래의 상황 각각에 대해 PDSCH 기본 빔을 아래와 같이 기대할 수 있다.
상황 i. scheduling cell의 PDCCH의 마지막 심볼과 scheduled PDSCH간의 시작 심볼 사이의 간격이 timeDurationforQCL (11-20)보다 짧은 경우
상황 ii. PDSCH를 스케줄하는 DCI 내 tci-PresentinDCI가 설정되지 않은 경우
또한 기지국은 단말이 PDSCH 기본 빔을 사용하는 상황에서, 상기한 단말의 PDSCH 기본 빔 가정에 따라 PDSCH를 전송할 수 있다.
상기 단말과 기지국의 동작은 PDSCH를 스케줄하는 DCI format 내 특정 CIF 값에 한정하여 적용될 수 있다. 예컨대, CIF 값이 0이 아닌 경우(scheduling cell과 scheduled cell이 다른 경우)에만 적용되며 CIF 값이 0인 경우 (scheduling cell과 scheduled cell이 동일한 경우)에는 적용되지 않을 수 있다. 그 이유로, 상술한 단말의 PDSCH 기본 빔 가정은 scheduled cell에 CORESET이 없는 경우에 적합한 가정이기 때문이다. 만일 CIF 값이 0인 경우에는 실시 예 1에 따라, 단말은 상기 PDSCH 기본 빔이 설정되는 상황을 기대하지 않으며 기지국은 상기의 기본 빔이 설정되는 상황이 발생하지 않도록 PDSCH를 스케줄할 수 있다.
도 14는 제2 실시 예를 따르는 경우의 기지국 및 단말 동작을 도시한다. (14-00)과 같이 cross-carrier 스케줄링이 설정되지 않은 경우에서는 PDSCH 기본 빔 동작이 허용되나, (14-50)과 같이 cross-carrier 스케줄링이 설정된 경우에는 (14-60)의 조건, 즉 CIF 값에 따라, CIF 값이 0이 아닌 경우(scheduling cell과 scheduled cell이 다른 경우)에는 PDSCH 기본 빔이 허용되나 CIF 값이 0인 경우(scheduling cell과 scheduled cell이 동일한 경우)에는 PDSCH 기본 빔이 허용되지 않는다.
<제3 실시 예: cross-carrier 스케줄링이 설정된 경우, CIF 값에 따라 서로 다른 PDSCH 기본 빔 허용>
cross-carrier 스케줄링이 설정된 경우에서, 실시 예 1에 따라 PDSCH 기본 빔을 허용하지 않는다면 PDCCH와 스케줄된 PDSCH 간의 심볼 간격이 항상 특정 값 이상이어야 하므로 PDSCH 전송 지연(latency) 시간이 긴 한계가 있다. 또한, 단말이 실내에 위치하며 이동성이 없는 경우와 같이 PDSCH에 대한 동적 빔 변경이 필요 없는 경우가 있을 수 있으나, 이 때 PDSCH 기본 빔을 허용하지 않는다면 매 PDSCH마다 빔을 지시하기 위한 불필요한 설정 및 제어 정보 전송 오버헤드가 발생할 수 있다. 또한 실시 예 2에 따라, cross-carrier 스케줄링이 설정된 경우 CIF 필드 값≠0인 경우에만 PDSCH 기본 빔을 허용한다면 scheduling cell과 scheduled cell이 같은 경우 즉 CIF 필드 값=0인 경우는 여전히 PDSCH 기본 빔이 비허용되는 제약이 발생하며 이는 불필요한 제약일 수 있다. 따라서 모든 CIF 필드 값에 대해 PDSCH 기본 빔을 허용하며, CIF 필드 값=0인 경우와 CIF 필드 값≠0인 경우 각각에 대해 서로 다른 PDSCH 기본 빔을 설정하는 것이 필요하다.
먼저, CIF 필드 값≠0인 경우에는 실시 예 2에 따라 PDSCH 기본 빔이 허용될 수 있다.
한편, CIF 필드 값=0인 경우 즉 scheduling cell과 scheduled cell이 동일한 경우, scheduled cell에는 CORESET이 설정될 수 있다. 따라서 단말은 아래의 상황 각각에 대해 PDSCH 기본 빔을 아래 중 하나와 같이 기대할 수 있다.
상황 i. scheduling cell의 PDCCH의 마지막 심볼과 scheduled PDSCH간의 시작 심볼 사이의 간격이 timeDurationforQCL (11-20)보다 짧은 경우
방법 i-1. PDSCH 수신 슬롯 기준 가장 최근 slot의 monitored search space에 대응하는 CORESET 중 가장 낮은 ID에 대응하는 CORESET (예: CORESET #0)에 설정된 TCI state를 PDSCH의 기본 빔으로 가정.
상기 방법은 cross-carrier 스케줄링이 설정된 경우와 설정되지 않은 경우, 각각에 대한 단말 동작의 일관성을 보장한다. 단말은 상기 상황 i. 에서 cross-carrier 스케줄링 설정 여부에 따라 서로 다른 PDSCH 기본 빔이 설정된다면, cross-carrier 스케줄링 설정 여부에 따른 서로 다른 버퍼링 동작을 구현해야 하므로 단말 구현이 크게 복잡해질 수 있다.
상기 방법은 cross-carrier 스케줄링이 설정된 경우, 모든 CIF 값에 대한 단말 동작의 일관성을 보장한다. 단말은 상기 상황 i. 에서 CIF 값이 0인지 아닌지에 따라 서로 다른 PDSCH 기본 빔이 설정된다면, 서빙셀 별로 서로 다른 버퍼링 동작을 구현해야 하므로 단말 구현이 복잡해질 수 있다.
상황 ii. PDSCH를 스케줄하는 DCI 내 tci-PresentinDCI가 설정되지 않은 경우
상기 방법은 cross-carrier 스케줄링이 설정된 경우와 설정되지 않은 경우, 각각에 대한 단말 동작의 일관성을 보장한다. 또한, 상기 방법은 DCI format 1_0에 적용할 수 있는 PDSCH 기본 빔이므로, 상기 방법은 서로 다른 DCI format, 예컨대 DCI format 1_0, DCI format 1_1, DCI format 1_2 각각에 대한 단말 동작의 일관성을 보장한다.
상기 방법은 cross-carrier 스케줄링이 설정된 경우, 모든 CIF 값에 대한 단말 동작의 일관성을 보장한다.
또한 기지국은 단말이 PDSCH 기본 빔을 사용하는 상황에서, 상기한 단말의 PDSCH 기본 빔 가정에 따라 PDSCH를 전송할 수 있다.
상술한 제 3실시 예의 동작에 대한 조건이 설정될 수 있다. 도 15는 상기 제 3 실시 예의 동작 조건에 대한 예시를 도시한다. 예컨대 기존 단말의 하위 호환성(backward compatibility) 보장을 위해, Rel-15로 동작하는 단말은 제 1실시 예에 따라 동작하는 반면, Rel-16으로 동작하는 단말은 제 3실시 예에 따라 동작할 수 있다(15-00). 또는, 제 3실시 예에 따라 동작하는 단말과 제 1실시 예 및 제 2실시 예에 따라 동작하는 단말이 단말 capability에 따라 구분될 수 있다. 예컨대, 제 1실시 예와 제2실시 예에 따라 동작하는 단말 간 구분은 단말의 Release에 따라 구분되며, 예컨대 Rel-15 단말은 제 1 실시 예에 따라 동작하고 Rel-16 단말은 제 2 실시 예에 따라 동작, 제2 실시 예와 제3 실시 예에 따라 동작하는 단말 간 구분은 단말이 추가로 보고하는 capability에 따를 수 있다. 예컨대, Rel-16 단말 중 특정 capability를 지원하는 단말은 제3 실시 예에 따라 동작하는 반면, 상기 capability를 미지원하는 단말은 제2 실시 예에 따라 동작할 수 있다 (15-50).
도 16은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 단말의 구조를 도시하는 블록도이다.
도 16을 참조하면, 단말은 단말기 수신부(16-00), 단말기 송신부(16-10) 및 단말기 처리부(제어부)(16-05)를 포함할 수 있다.
단말기 수신부(16-00)와 단말기 송신부(16-10)는 함께 송수신부라 칭해질 수 있다. 전술한 단말의 통신 방법에 따라, 단말의 단말기 수신부(16-00), 단말기 송신부(16-10) 및 단말기 처리부(16-05)가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소(예를 들어, 메모리 등)를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 단말기 수신부(16-00), 단말기 송신부(16-10) 및 단말기 처리부(16-05)가 하나의 칩(chip) 형태로 구현될 수도 있다.
단말기 수신부(16-00) 및 단말기 송신부(16-10)(또는, 송수신부)는 기지국과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부의 일 실시 예일뿐이며, 송수신부의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 단말기 처리부(16-05)로 출력하고, 단말기 처리부(16-05)로부터 출력되는 신호를 무선 채널을 통해 전송할 수 있다.
메모리(미도시)는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리는 단말에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.
단말기 처리부(16-05)는 전술한 본 개시의 실시 예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 단말기 처리부(16-05)는 제어부나 하나 이상의 프로세서로 구현될 수 있다.
도 17은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 기지국의 구조를 도시하는 블록도이다.
도 17을 참조하면, 기지국은 기지국 수신부(17-00), 기지국 송신부(17-10), 기지국 처리부(제어부)(17-05)를 포함할 수 있다.
기지국 수신부(17-00)와 기지국 송신부(17-10)는 함께 송수신부라 칭해질 수 있다. 전술한 기지국의 통신 방법에 따라, 기지국의 기지국 수신부(17-00), 기지국 송신부(17-10), 기지국 처리부(17-05)가 동작할 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소(예를 들어, 메모리 등)를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 기지국 수신부(17-00), 기지국 송신부(17-10), 기지국 처리부(17-05)가 하나의 칩(chip) 형태로 구현될 수도 있다.
기지국 수신부(17-00) 및 기지국 송신부(17-10)(또는, 송수신부)는 단말과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부의 일 실시 예일뿐이며, 송수신부의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 기지국 처리부(17-05)로 출력하고, 기지국 처리부(17-05)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
메모리(미도시)는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리는 기지국에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.
기지국 처리부(17-05)는 전술한 본 개시의 실시 예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 기지국 처리부(17-05)는 제어부나 하나 이상의 프로세서로 구현될 수 있다.
한편, 본 발명의 방법을 설명하는 도면에서 설명의 순서가 반드시 실행의 순서와 대응되지는 않으며, 선후 관계가 변경되거나 병렬적으로 실행 될 수도 있다.
또는, 본 발명의 방법을 설명하는 도면은 본 발명의 본질을 해치지 않는 범위 내에서 일부의 구성 요소가 생략되고 일부의 구성요소만을 포함할 수 있다.
또한, 본 발명의 방법은 발명의 본질을 해치지 않는 범위 내에서 각 실시 예에 포함된 내용의 일부 또는 전부가 조합되어 실행될 수도 있다.
또한, 본 발명에 개시되지는 않았지만, 본 개시에서 제안하는 table에 포함된 적어도 하나의 구성요소를 포함한 별도의 table 또는 정보가 사용되는 방법도 가능하다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 실시 예 1 내지 실시 예 9의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다.
Claims (1)
- 무선 통신 시스템에서 제어 신호 처리 방법에 있어서,
기지국으로부터 전송되는 제1 제어 신호를 수신하는 단계;
상기 수신된 제1 제어 신호를 처리하는 단계; 및
상기 처리에 기반하여 생성된 제2 제어 신호를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 제어 신호 처리 방법.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200017923A KR20210103319A (ko) | 2020-02-13 | 2020-02-13 | 무선 통신 시스템에서 기본 빔 설정 방법 및 장치 |
PCT/KR2021/001718 WO2021162416A1 (en) | 2020-02-13 | 2021-02-09 | Method and apparatus for configuring default beam in wireless communication systems |
CN202180009717.0A CN115066839A (zh) | 2020-02-13 | 2021-02-09 | 在无线通信系统中配置默认光束的方法和装置 |
US17/171,298 US11924842B2 (en) | 2020-02-13 | 2021-02-09 | Method and apparatus for configuring default beam in wireless communication systems |
EP21753880.0A EP4062545A4 (en) | 2020-02-13 | 2021-02-09 | METHOD AND DEVICE FOR CONFIGURING THE STANDARD BEAM IN WIRELESS COMMUNICATION SYSTEMS |
US18/587,154 US20240215040A1 (en) | 2020-02-13 | 2024-02-26 | Method and apparatus for configuring default beam in wireless communication systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200017923A KR20210103319A (ko) | 2020-02-13 | 2020-02-13 | 무선 통신 시스템에서 기본 빔 설정 방법 및 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20210103319A true KR20210103319A (ko) | 2021-08-23 |
Family
ID=77273329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200017923A Pending KR20210103319A (ko) | 2020-02-13 | 2020-02-13 | 무선 통신 시스템에서 기본 빔 설정 방법 및 장치 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11924842B2 (ko) |
EP (1) | EP4062545A4 (ko) |
KR (1) | KR20210103319A (ko) |
CN (1) | CN115066839A (ko) |
WO (1) | WO2021162416A1 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116528370A (zh) | 2017-06-16 | 2023-08-01 | 华为技术有限公司 | 一种通信方法及装置 |
US20220312382A1 (en) * | 2021-03-29 | 2022-09-29 | Qualcomm Incorporated | Identifying a default beam for communications on a physical downlink shared channel (pdsch) |
US11617178B2 (en) * | 2021-04-21 | 2023-03-28 | Qualcomm Incorporated | Sib PDSCH beam clustering for initial access information |
KR20220166656A (ko) * | 2021-06-10 | 2022-12-19 | 삼성전자주식회사 | 네트워크 협력 통신에서 하향링크 데이터 송수신 방법 및 장치 |
US20230209529A1 (en) * | 2021-12-29 | 2023-06-29 | Samsung Electronics Co., Ltd. | Method and apparatus for timing of cross carrier beam indications |
WO2024000113A1 (zh) * | 2022-06-27 | 2024-01-04 | 北京小米移动软件有限公司 | 调度确定、指示确定、关联关系指示方法和装置 |
WO2024031677A1 (en) * | 2022-08-12 | 2024-02-15 | Apple Inc. | Methods and apparatus for multiple default beams and multiple tci states with single dci-based multi-cell scheduling |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9225503B2 (en) * | 2011-05-02 | 2015-12-29 | Lg Electronics Inc. | Method for transmitting/receiving data in wireless communication system and base station for same |
KR102053228B1 (ko) * | 2015-01-12 | 2019-12-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말의 단말 능력 정보 전송 방법 및 장치 |
US10764896B2 (en) * | 2017-11-08 | 2020-09-01 | Samsung Electronics Co., Ltd. | Method and apparatus for beam management in the unlicensed spectrum |
JP6756001B2 (ja) * | 2018-05-04 | 2020-09-16 | 華碩電腦股▲ふん▼有限公司 | 無線通信システムにおけるアクティブ下りリンク(dl)帯域幅部分(bwp)変更を考慮する下りリンク制御情報(dci)コンテンツ処理のための方法および装置 |
US11968679B2 (en) * | 2019-01-09 | 2024-04-23 | Comcast Cable Communications, Llc | Methods, systems, and apparatuses for beam management |
US12047150B2 (en) * | 2019-02-01 | 2024-07-23 | Lg Electronics Inc. | Beam failure reporting method of terminal in wireless communication system, and terminal and base station supporting same |
CN114642054A (zh) * | 2019-11-01 | 2022-06-17 | 汉尼拔Ip有限责任公司 | 用于预设空间关系信息确定的方法和装置 |
WO2021088012A1 (zh) * | 2019-11-08 | 2021-05-14 | Oppo广东移动通信有限公司 | 信息处理方法、终端设备及存储介质 |
-
2020
- 2020-02-13 KR KR1020200017923A patent/KR20210103319A/ko active Pending
-
2021
- 2021-02-09 EP EP21753880.0A patent/EP4062545A4/en active Pending
- 2021-02-09 US US17/171,298 patent/US11924842B2/en active Active
- 2021-02-09 WO PCT/KR2021/001718 patent/WO2021162416A1/en active Application Filing
- 2021-02-09 CN CN202180009717.0A patent/CN115066839A/zh active Pending
-
2024
- 2024-02-26 US US18/587,154 patent/US20240215040A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115066839A (zh) | 2022-09-16 |
US11924842B2 (en) | 2024-03-05 |
US20210259001A1 (en) | 2021-08-19 |
EP4062545A1 (en) | 2022-09-28 |
EP4062545A4 (en) | 2023-01-04 |
WO2021162416A1 (en) | 2021-08-19 |
US20240215040A1 (en) | 2024-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102688462B1 (ko) | 네트워크 협력 통신을 위한 상향링크 반복 전송 방법 및 장치 | |
US11882569B2 (en) | Method and apparatus for data transmission and reception for network coordinated communication | |
KR20210011303A (ko) | 네트워크 협력통신을 위한 채널 상태 정보 측정 및 보고 방법 | |
KR20210101002A (ko) | 네트워크 협력 통신을 위한 제어 정보 전송 방법 및 장치 | |
KR20210103319A (ko) | 무선 통신 시스템에서 기본 빔 설정 방법 및 장치 | |
KR20210083845A (ko) | 네트워크 협력통신을 위한 상향링크 데이터 반복 전송 방법 및 장치 | |
KR102688475B1 (ko) | 네트워크 협력통신을 위한 데이터 송수신 방법 및 장치 | |
KR20220126012A (ko) | 무선 통신 시스템에서 빔 설정 방법 및 장치 | |
KR20200115375A (ko) | 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치 | |
KR20220050597A (ko) | 네트워크 협력통신을 위한 채널상태정보 보고 방법 및 장치 | |
KR20220144706A (ko) | 네트워크 협력 통신에서 하향링크 제어정보 반복 전송 방법 및 장치 | |
KR20210103292A (ko) | 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치 | |
KR20220136788A (ko) | 네트워크 협력 통신에서 하향링크 제어정보 반복 전송 방법 및 장치 | |
KR20220015839A (ko) | 무선 협력 통신 시스템에서 제어 정보 송수신 방법 및 장치 | |
KR20220151476A (ko) | 네트워크 협력 통신에서 데이터를 전송하는 방법 및 장치 | |
KR20210132441A (ko) | 무선 통신 시스템에서 사운딩 방법 및 장치 | |
KR20220104573A (ko) | 네트워크 협력 통신을 위한 상향링크 데이터 반복 송수신 방법 및 장치 | |
KR20220103237A (ko) | 네트워크 협력통신을 위한 harq-ack 피드백 송수신 방법 및 장치 | |
KR20220053510A (ko) | 무선 통신 시스템의 네트워크 협력 통신을 위한 제어 정보 전송 방법 및 장치 | |
KR20210103882A (ko) | 네트워크 협력통신을 위한 기본 빔 설정 방법 및 장치 | |
KR20220053933A (ko) | 무선 통신 시스템에서 하향링크 제어정보 반복 송수신 방법 및 장치 | |
KR20220167157A (ko) | 무선 통신 시스템에서 하향링크 제어 정보 및 데이터를 전송 및 수신하기 위한 방법 및 장치 | |
KR20220131126A (ko) | 네트워크 협력 통신 시스템을 위한 상향링크 전송 전력 제어 방법 및 장치 | |
KR20210125877A (ko) | 무선 통신 시스템에서 채널 상태 정보를 제공하는 장치 및 방법 | |
KR102589485B1 (ko) | 무선 통신 시스템에서 상향링크 위상 추정 기준 신호 전송 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20200213 |
|
PG1501 | Laying open of application |