[go: up one dir, main page]

KR20200076173A - Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube - Google Patents

Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube Download PDF

Info

Publication number
KR20200076173A
KR20200076173A KR1020180165026A KR20180165026A KR20200076173A KR 20200076173 A KR20200076173 A KR 20200076173A KR 1020180165026 A KR1020180165026 A KR 1020180165026A KR 20180165026 A KR20180165026 A KR 20180165026A KR 20200076173 A KR20200076173 A KR 20200076173A
Authority
KR
South Korea
Prior art keywords
graphite
carbon nanotubes
carbon nanotube
coated
cationic surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020180165026A
Other languages
Korean (ko)
Other versions
KR102229179B1 (en
Inventor
박영수
허몽영
김원석
한웅
Original Assignee
재단법인 한국탄소융합기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소융합기술원 filed Critical 재단법인 한국탄소융합기술원
Priority to KR1020180165026A priority Critical patent/KR102229179B1/en
Publication of KR20200076173A publication Critical patent/KR20200076173A/en
Application granted granted Critical
Publication of KR102229179B1 publication Critical patent/KR102229179B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A method for manufacturing graphite powders coated with carbon nanotubes according to the present invention includes: a first step of attaching a functional group to the surface of graphite; a second step of attaching a cationic surfactant to the surface of carbon nanotubes; and a third step of mixing graphite to which a functional group is attached and the carbon nanotubes to which a cationic surfactant is attached, and coating the carbon nanotubes to which the cationic surfactant is attached to the surface of the graphite to which the functional group is attached.

Description

탄소나노튜브가 코팅된 흑연분말 제조방법 및 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재{Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube}Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube}

본 발명은 탄소나노튜브가 코팅된 흑연분말 제조방법 및 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재에 관한 것이다.The present invention relates to a method for manufacturing a graphite powder coated with carbon nanotubes and a thermally conductive composite material including a graphite powder coated with carbon nanotubes.

흑연분말은 저렴한 가격을 가지면서도 높은 열전도성을 갖는 재료로 알려져 있어, 열전도도 및 방열이 필요한 부품이나 방열 복합소재의 주요 충전재로 사용이 되고 있다.Graphite powder is known as a material having low cost and high thermal conductivity, and has been used as a main filler for components requiring heat conductivity and heat dissipation or heat dissipation composite materials.

그러나, 흑연은 적층된 방향에 따라 열전도도가 크게 차이가 나는 이방성 특징(수평:~2,000W/mK, 수직:~5W/mK)을 가지고 있어, 흑연-고분자 방열 복합재의 열전도성이, 혼합법칙(law of mixture)에 의해 예상할 수 있는 복합재의 열전도도에 비해 매우 낮게 나타나는 경향을 보이고 있다. However, graphite has anisotropic characteristics (horizontal: ~2,000W/mK, vertical: ~5W/mK) where the thermal conductivity is significantly different depending on the stacked direction, and the thermal conductivity of the graphite-polymer heat dissipation composite material is mixed. It shows a tendency to appear very low compared to the thermal conductivity of the composites, which can be expected by (law of mixture).

이러한 이방성 열전도성을 해결하기 위해, 흑연의 수직방향 열전도성 보다 높은 열전도성을 갖는 구리, 니켈, 주석, 알루미늄 등과 같은 금속을 흑연에 코팅하는 시도가 이루어지고 있다.To solve this anisotropic thermal conductivity, attempts have been made to coat graphite with metals such as copper, nickel, tin, aluminum, etc., which have higher thermal conductivity than the vertical thermal conductivity of graphite.

이를 위해서, 전기화학적, 물리적, 열적인 방법이 사용된다.To this end, electrochemical, physical and thermal methods are used.

전기화학적인 방법은 균일한 코팅과 대량생산을 이룰 수 있으나, 금속-흑연과의 계면 젖음성이 낮아, 고분자와 흑연 사이의 높은 열저항을 발생시키는 단점을 가지고 있다.The electrochemical method can achieve uniform coating and mass production, but has the disadvantage of generating high thermal resistance between polymer and graphite due to low interfacial wettability with metal-graphite.

반면, 물리적(sputter 등) 및 열적(thermal evaporator 등)과 같은 방법에 의한 코팅은, 금속-흑연과의 계면접합성은 높으나, 균일한 코팅과 대량생산이 어려워, 높은 제조단가를 가진다.On the other hand, the coating by methods such as physical (sputter, etc.) and thermal (thermal evaporator, etc.) has high interfacial adhesion with metal-graphite, but it is difficult to produce uniform coating and mass production, and has a high manufacturing cost.

이러한 문제점을 해결하기 위하여, 열전도도가 뛰어난 탄소나노튜브를 흑연과 함께 열전도성 복합재 충전재로 사용하는 시도를 하고 있다. 그러나, 이 경우 탄소나노튜브의 분산이 잘되지 않고, 흑연과 탄소나노튜브의 계면 접촉력과, 탄소나노튜브 간의 계면 접촉력이 매우 낮아, 복합재의 열전도도 향상을 기대하기 어렵다.In order to solve this problem, attempts have been made to use carbon nanotubes having excellent thermal conductivity as a thermally conductive composite filler with graphite. However, in this case, the dispersion of the carbon nanotubes is poor, and the interface contact force between the graphite and the carbon nanotubes and the interface contact force between the carbon nanotubes are very low, so it is difficult to expect an improvement in the thermal conductivity of the composite material.

한국등록특허(10-1274441)Korean Registered Patent (10-1274441)

본 발명의 목적은, 상술한 문제점을 모두 해결할 수 있는 탄소나노튜브가 코팅된 흑연분말 제조방법 및 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재를 제공하는 데 있다.An object of the present invention is to provide a thermally conductive composite material including a carbon nanotube coated graphite powder manufacturing method and a carbon nanotube coated graphite powder that can solve all the above-mentioned problems.

상기 목적을 달성하기 위한 탄소나노튜브가 코팅된 흑연분말 제조방법은,Carbon nanotube-coated graphite powder manufacturing method for achieving the above object,

흑연의 표면에 기능기를 부착하는 제1단계;A first step of attaching a functional group to the surface of graphite;

탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계: 및A second step of attaching a cationic surfactant to the surface of the carbon nanotube: and

기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계를 포함하는 것을 특징으로 한다.And a third step of mixing the functionalized graphite and the carbon nanotube to which the cationic surfactant is attached, and coating the carbon nanotube to which the cationic surfactant is attached to the graphite surface to which the functional group is attached. .

또한, 상기 목적은,In addition, the above object,

흑연의 표면에 기능기를 부착하는 제1단계;A first step of attaching a functional group to the surface of graphite;

탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계The second step of attaching a cationic surfactant to the surface of the carbon nanotube

기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계; 및A third step of mixing the functionalized graphite and the carbon nanotube to which the cationic surfactant is attached, and coating the carbon nanotube to which the cationic surfactant is attached to the graphite surface to which the functional group is attached; And

50W/mK 이상의 열전도도를 갖는 금속을, 탄소나노튜브가 코팅된 흑연에 무전해 도금하는 제4단계를 포함하는 것을 특징으로 하는 탄소나노튜브가 코팅된 흑연분말 제조방법에 의해 달성된다.It is achieved by a carbon nanotube-coated graphite powder manufacturing method, characterized in that it comprises a fourth step of electroless plating a metal having a thermal conductivity of 50 W/mK or more on the carbon nanotube-coated graphite.

또한, 상기 목적은, 상술한 방법들에 의해 제조된 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재에 의해 달성된다.In addition, the above object is achieved by a thermally conductive composite material comprising graphite powder coated with carbon nanotubes prepared by the above-described methods.

본 발명은, 흑연의 표면에 쿨롱 상호작용(coulomb interaction)으로 탄소나노튜브를 부착시켜, 탄소나노튜브가 코팅된 흑연을 제조한다. 여기에, 50W/mK 이상의 열전도도를 갖는 금속을 무전해 도금할 수도 있다.In the present invention, carbon nanotubes are attached to the surface of graphite by coulomb interaction to prepare graphite coated with carbon nanotubes. Here, a metal having a thermal conductivity of 50 W/mK or more may be electroless plated.

이렇게 탄소나노튜브 코팅된 흑연을 포함시켜 복합재를 만들면, 복합재 내에서의 흑연의 판상수직방향으로의 열전도도가 향상된다. 이로 인해, 흑연소재 간의 열계면저항 및 전기접촉저항이 작아져, 복합재의 열전도도 및 전기전도도가 모두 향상된다.When the composite is made by including the carbon nanotube-coated graphite in this way, the thermal conductivity of graphite in the composite in the vertical direction of the plate is improved. For this reason, the thermal interface resistance and the electrical contact resistance between graphite materials are reduced, and both the thermal conductivity and electrical conductivity of the composite material are improved.

도 1은 본 발명의 제1실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법을 나타낸 순서도이다.
도 2는 흑연에 탄소나노튜브를 코팅하기 전과 후의 샘플을 5만 배 확대하여 찍은 전자 현미경 사진으로, 도 2(a)는 탄소나노튜브가 코팅되기 전 흑연을 찍은 전자 현미경 사진, 도 2(b)는 실시예 1에 따라 흑연에 탄소나노튜브가 코팅된 상태를 찍은 전자 현미경 사진, 도 2(c)는 실시예 2에 따라 흑연에 탄소나노튜브가 코팅된 상태를 찍은 전자 현미경 사진, 도 2(d)는 실시예 3에 따라 흑연에 탄소나노튜브가 코팅된 상태를 찍은 전자 현미경 사진이다.
도 3은 본 발명의 제2실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법을 나타낸 순서도이다.
도 4는 본 발명의 실시예 및 비교예에 따라 제조된 열전도성 복합재의 열전도도를 비교한 표이다.
1 is a flowchart illustrating a method for manufacturing a graphite powder coated with carbon nanotubes according to a first embodiment of the present invention.
Figure 2 is an electron micrograph of the sample before and after coating the carbon nanotubes on graphite magnified 50,000 times, Figure 2 (a) is an electron micrograph of graphite before the carbon nanotubes are coated, Figure 2 (b ) Is an electron micrograph of carbon nanotubes coated on graphite according to Example 1, FIG. 2(c) is an electron micrograph of carbon nanotubes coated on graphite according to Example 2, FIG. 2 (d) is an electron micrograph of carbon nanotubes coated with graphite according to Example 3.
3 is a flow chart showing a method for manufacturing a graphite powder coated with carbon nanotubes according to a second embodiment of the present invention.
Figure 4 is a table comparing the thermal conductivity of the thermally conductive composite prepared according to Examples and Comparative Examples of the present invention.

이하, 본 발명의 제1실시예에 따른, 탄소나노튜브가 코팅된 흑연분말 제조방법을 자세히 설명한다.Hereinafter, a method for manufacturing a graphite powder coated with carbon nanotubes according to a first embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 제1실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법은,As shown in Figure 1, the carbon nanotube coated graphite powder manufacturing method according to the first embodiment of the present invention,

흑연의 표면에 기능기를 부착하는 제1단계(S11);A first step of attaching a functional group to the surface of graphite (S11);

탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계(S12);A second step of attaching a cationic surfactant to the surface of the carbon nanotube (S12);

기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계(S13)로 구성된다.It is composed of a third step (S13) of mixing the functionalized graphite and the cationic surfactant-attached carbon nanotube and coating the functionalized graphite surface with the cationic surfactant-attached carbon nanotube.

물론, 제1단계(S11)와 제2단계(S12)의 순서는 바뀔 수 있다.Of course, the order of the first step (S11) and the second step (S12) can be changed.

이하, 제1단계(S11)를 설명한다.Hereinafter, the first step S11 will be described.

500도 이상의 기능기를 부착시킬 수 있는 용액에 흑연을 담가, 흑연의 표면을 산화시켜, 흑연의 표면에 기능기를 부착한다.The graphite is immersed in a solution capable of attaching a functional group of 500 degrees or more, and the surface of the graphite is oxidized to attach the functional group to the surface of the graphite.

용액은 흑연과 반응하여, 흑연 표면에 기능기를 부착시킬 수 있는 물질이다.The solution is a substance that can react with graphite and attach functional groups to the graphite surface.

용액은 순수한 물, 염기성수용액, 산성수용액, 에탄올, 메탄올을 포함하는 알콜류와 흑연을 산화시킬 수 있는 산소가 포함된 화합물이 녹아 있는 용액으로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있다. 물론, 이에 한정되는 것은 아니다. The solution may be one or two or more selected from the group consisting of a solution containing a pure water, a basic aqueous solution, an acidic aqueous solution, an alcohol containing ethanol, methanol, and a compound containing oxygen capable of oxidizing graphite. Of course, it is not limited to this.

이하, 제2단계(S12)를 설명한다.Hereinafter, the second step S12 will be described.

양이온 계면활성제는, 머리부분이 +로 이온화하면서, 꼬리부분 및 중간부분이 탄소나노튜브에 부착될 수 있는 물질이다.The cationic surfactant is a material that can be attached to the carbon nanotubes at the tail and the middle while the head is ionized with +.

양이온성 계면활성제는 탄소나노튜브 중량부 대비 10 내지 200 중량부로 첨가될 수 있다.The cationic surfactant may be added in an amount of 10 to 200 parts by weight based on parts by weight of carbon nanotubes.

양이온성 계면활성제는 1급 아민염(DDAC), 제2/3급 아민염, 4급 암모늄염(EQ), 이미다졸염, 폴리옥시에틸렌알킬아민, 피리늄형등의 화합물을 포함하는 지방족 아민염 및 4급 암모늄염 군에서 선택되어지는 1종 이상일 수 있다. 물론, 이에 한정되는 것은 아니다.Cationic surfactants include aliphatic amine salts including compounds such as primary amine salts (DDAC), secondary third/third amine salts, quaternary ammonium salts (EQ), imidazole salts, polyoxyethylenealkylamines, pyridinium types, and the like. It may be one or more selected from the group of quaternary ammonium salts. Of course, it is not limited to this.

이하, 제3단계(S13)를 설명한다.The third step (S13) will be described below.

기능기가 부착된 흑연과 상기 양이온 계면활성제가 부착된 탄소나노튜브를, 물리적 혼합기(homogenizer)로 혼합하거나, 초음파혼합기(utrasonicater)로 혼합하거나, 필터링 후 건조하거나, 스프레이 건조하거나, 회전형 드럼 필터링하는 것에 의해, 기능기가 부착된 흑연의 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅한다.The functionalized graphite and the carbon nanotubes to which the cationic surfactant is attached are mixed with a physical homogenizer, mixed with an ultrasonic mixer, filtered and dried, spray dried, or rotary drum filtering. Thereby, the carbon nanotube to which the cationic surfactant is attached is coated on the surface of the graphite with a functional group attached.

양이온 계면활성제가 부착된 탄소나노튜브는, 기능기가 부착된 흑연 중량부 대비 0.1 내지 50 중량부, 0.5 내지 20 중량부일 수 있고, 1 내지 10 중량부 일 수 있다. 물론, 이에 한정되는 것은 아니다.The carbon nanotube to which the cationic surfactant is attached may be 0.1 to 50 parts by weight, 0.5 to 20 parts by weight, and 1 to 10 parts by weight relative to the weight part of graphite with a functional group attached. Of course, it is not limited to this.

[실시예 1][Example 1]

탄소나노튜브에 코팅된 흑연의 중량비가 3:100 (흑연대비 탄소나노튜브 함량 3%)가 되도록, 다음과 같은 순서로 흑연에 탄소나노튜브를 코팅한다.The graphite is coated with carbon nanotubes in the following order so that the weight ratio of the graphite coated on the carbon nanotubes is 3:100 (carbon nanotube content 3% compared to graphite).

탄소나노튜브는 직경이 10~20nm이며, 흑연은 40um 크기의 분말 형태이다.Carbon nanotubes have a diameter of 10 to 20 nm, and graphite is a powder with a size of 40 um.

5L 통에 탄소나노튜브 40g과 3.5L 증류수에 넣고, 균질 분산기(Homogenizer)를 이용하여 6000 RPM에서 2시간 동안 분산한 후, 필터링한다.After placing the carbon nanotubes in 40 g and 3.5 L distilled water in a 5 L container, and dispersing for 2 hours at 6000 RPM using a homogenizer, filter.

필터링 후, 탄소나노튜브 1.5g과 양이온성 계면활성제인 CTAB(cetyltrimethylammonium bromide) 1.5g을 1000ml의 증류수에 섞은 후, 초음파 분산기(700W, bar-type)로 1시간 동안 분산한다.After filtering, 1.5 g of carbon nanotubes and 1.5 g of cationic surfactant CTAB (cetyltrimethylammonium bromide) are mixed in 1000 ml of distilled water, and then dispersed with an ultrasonic disperser (700 W, bar-type) for 1 hour.

흑연분말 100g을 650도에서 CVD(chemical vapor deposition)로 30분 동안 산화시켜 약 97g 정도 회수한다.100 g of the graphite powder is oxidized for 30 minutes by CVD (chemical vapor deposition) at 650 degrees to recover about 97 g.

산화시킨 흑연 50g과 물 1000ml을 5L 통에 넣고, 균질 분산기로 500 RPM으로 혼합하여 분산된 수용액을 얻는다.50 g of oxidized graphite and 1000 ml of water were placed in a 5 L container, and mixed at 500 RPM with a homogeneous disperser to obtain a dispersed aqueous solution.

산화시킨 흑연 50g이 분산된 수용액 1000ml에, 탄소나노튜브 1.5g과 양이온성 계면활성제인 CTAB(cetyltrimethylammonium bromide) 1.5g이 들어간 1000ml의 증류수를 혼합한다. (이하, “탄소나노튜브 용액" 이라 칭함)To 1000 ml of an aqueous solution in which 50 g of oxidized graphite is dispersed, 1000 ml of distilled water containing 1.5 g of carbon nanotubes and 1.5 g of cationic surfactant CTAB (cetyltrimethylammonium bromide) is mixed. (Hereinafter referred to as “carbon nanotube solution”)

균질 분산기(Homogenizer)로 탄소나노튜브 용액을 약 30분간 더 섞은 후, 필터링하여 120도에서 12시간 동안 건조한다. 그러면, 도 2(a)에 도시된 흑연에 탄소나노튜브가 코팅되어, 도 2(b)에 도시된 흑연대비 탄소나노튜브의 함량이 3%인 탄소나노튜브가 코팅된 흑연분말이 제조된다.The carbon nanotube solution is further mixed for about 30 minutes with a homogenizer, filtered and dried at 120 degrees for 12 hours. Then, the carbon nanotubes are coated on the graphite shown in FIG. 2(a), and the graphite powder coated with the carbon nanotubes having a content of 3% of the carbon nanotubes compared to the graphite shown in FIG. 2(b) is prepared.

[실시예 2][Example 2]

탄소나노튜브에 코팅된 흑연의 중량비가 6:100 (흑연대비 탄소나노튜브 함량 6%)가 되도록, 산화시킨 흑연 50g이 분산된 수용액 1000ml에, 탄소나노튜브 3g과 양이온성 계면활성제인 CTAB(cetyltrimethylammonium bromide) 3g이 들어간 2000ml의 증류수를 혼합한다. 그러면, 도 2(a)에 도시된 흑연에 탄소나노튜브가 코팅되어, 도 2(c)에 도시된 흑연대비 탄소나노튜브의 함량이 6%인 탄소나노튜브가 코팅된 흑연분말이 제조된다. 이 밖의 과정은 실시예 1과 동일하다.To 1000 ml of an aqueous solution of 50 g of oxidized graphite dispersed so that the weight ratio of graphite coated on carbon nanotubes is 6:100 (6% of carbon nanotubes compared to graphite), 3 g of carbon nanotubes and cationic surfactant CTAB (cetyltrimethylammonium) bromide) Mix 2000 ml of distilled water containing 3 g. Then, the carbon nanotubes are coated on the graphite shown in FIG. 2(a), thereby preparing a graphite powder coated with carbon nanotubes having a content of 6% of the carbon nanotubes compared to the graphite shown in FIG. 2(c). The rest of the procedure is the same as in Example 1.

[실시예 3][Example 3]

탄소나노튜브에 코팅된 흑연의 중량비가 9:100 (흑연대비 탄소나노튜브 함량 9%)가 되도록, 산화시킨 흑연 50g이 분산된 수용액 1000ml에, 탄소나노튜브 4.5g과 양이온성 계면활성제인 CTAB(cetyltrimethylammonium bromide) 4.5g이 들어간 3000ml의 증류수를 혼합한다. 그러면, 도 2(a)에 도시된 흑연에 탄소나노튜브가 코팅되어, 도 2(d)에 도시된 흑연대비 탄소나노튜브의 함량이 9%인 탄소나노튜브가 코팅된 흑연분말이 제조된다. 이 밖의 과정은 실시예 1과 동일하다.To 1000 ml of an aqueous solution of 50 g of oxidized graphite dispersed so that the weight ratio of the graphite coated on the carbon nanotubes was 9:100 (9% of the carbon nanotubes compared to graphite), 4.5 g of carbon nanotubes and CTAB (cationic surfactant) cetyltrimethylammonium bromide) Mix 3000ml of distilled water containing 4.5g. Then, the carbon nanotubes are coated on the graphite shown in FIG. 2(a), and a graphite powder coated with the carbon nanotubes having a carbon nanotube content of 9% compared to the graphite shown in FIG. 2(d) is prepared. The rest of the procedure is the same as in Example 1.

이하, 본 발명의 제2실시예에 따른, 탄소나노튜브가 코팅된 흑연분말 제조방법을 자세히 설명한다.Hereinafter, a method for manufacturing a graphite powder coated with carbon nanotubes according to a second embodiment of the present invention will be described in detail.

도 3에 도시된 바와 같이, 본 발명의 제2실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법은,As shown in Figure 3, the carbon nanotube-coated graphite powder manufacturing method according to the second embodiment of the present invention,

흑연의 표면에 기능기를 부착하는 제1단계(S21);A first step of attaching a functional group to the surface of graphite (S21);

탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계(S22);A second step of attaching a cationic surfactant to the surface of the carbon nanotube (S22);

기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계(S23);A third step of mixing the functionalized graphite and the cationic surfactant-attached carbon nanotube to coat the functionalized graphite surface with the cationic surfactant-attached carbon nanotube (S23);

50W/mK 이상의 열전도도를 갖는 금속을, 탄소나노튜브가 코팅된 흑연에 무전해 도금하는 제4단계(S24)로 구성된다.It is composed of a fourth step (S24) of electroless plating a metal having a thermal conductivity of 50 W/mK or more on graphite coated with a carbon nanotube.

물론, 제1단계(S21)와 제2단계(S22)의 순서는 바뀔 수 있다. Of course, the order of the first step (S21) and the second step (S22) may be changed.

본 발명의 제2실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법에서 제1단계(S21), 제2단계(S22), 제3단계(S23)는, 본 발명의 제1실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법의 제1단계(S11), 제2단계(S12), 제3단계(S13)와 동일하므로, 그 설명을 생략한다.The first step (S21), the second step (S22), the third step (S23) in the carbon nanotube-coated graphite powder manufacturing method according to the second embodiment of the present invention is the first embodiment of the present invention. The carbon nanotube according to the first step (S11), the second step (S12), and the third step (S13) of the graphite powder manufacturing method are the same, so the description thereof will be omitted.

이하, 제4단계(S24)를 설명한다.The fourth step (S24) will be described below.

탄소나노튜브가 코팅된 흑연분말에 구리, 니켈, 철, 알루미늄과 같이 50W/mK 이상의 열전도도를 갖는 금속을 무전해 도금한다.The carbon nanotube coated graphite powder is electrolessly plated with a metal having a thermal conductivity of 50 W/mK or more, such as copper, nickel, iron, and aluminum.

[실시예 4][Example 4]

실시예 2에 의해 탄소나노튜브가 코팅된 흑연분말에 무전해 코팅법으로 구리 코팅을 실시한다. 이를 위해, 구리 금속염이 녹아있는 도금용액 250ml에 탄소나노튜브가 코팅된 흑연분말 20g을 넣고, 20분간 혼합한 후, 환원제가 들어있는 도금용액을 200ml를 넣는다. 60도에서 120분간 섞어준 후, 필터링 및 세척한 후, 120도에서 12시간 건조한다. 그러면, 구리가 도금된 탄소나노튜브가 코팅된 흑연분말을 얻을 수 있다. Copper coating was performed on the graphite powder coated with carbon nanotubes according to Example 2 by an electroless coating method. To this end, 20 g of the carbon nanotube-coated graphite powder is added to 250 ml of a plating solution in which copper metal salt is dissolved, and after mixing for 20 minutes, 200 ml of a plating solution containing a reducing agent is added. After mixing at 60 degrees for 120 minutes, filtering and washing, and drying at 120 degrees for 12 hours. Then, a graphite powder coated with copper-coated carbon nanotubes can be obtained.

[실시예 5][Example 5]

실시예 2에 의해 탄소나노튜브가 코팅된 흑연분말에 무전해 코팅법으로 구리 코팅을 실시한다. 이를 위해, 구리 금속염이 녹아있는 도금용액 250ml에 탄소나노튜브가 코팅된 흑연분말 20g을 넣고, 20분간 혼합한 후, 환원제가 들어있는 도금용액을 200ml를 넣는다. 60도에서 240분간 섞어준 후, 필터링 및 세척한 후, 120도에서 12시간 건조한다. 그러면, 구리가 도금된 탄소나노튜브가 코팅된 흑연분말을 얻을 수 있다.Copper coating was performed on the graphite powder coated with carbon nanotubes according to Example 2 by an electroless coating method. To this end, 20 g of the carbon nanotube-coated graphite powder is added to 250 ml of a plating solution in which copper metal salt is dissolved, and after mixing for 20 minutes, 200 ml of a plating solution containing a reducing agent is added. After mixing at 60 degrees for 240 minutes, filtering and washing, and drying at 120 degrees for 12 hours. Then, a graphite powder coated with copper-coated carbon nanotubes can be obtained.

이하, 본 발명의 제1실시예 및 제2실시예의 방법으로 제조된 탄소나노튜브가 코팅된 흑연분말이 포함된, 복합재의 열전도도를 설명한다. 이를 위해, 열전도도를 측정할 수 있는 열전도성 복합재 시편을 제조한다.Hereinafter, the thermal conductivity of the composite material including the graphite powder coated with the carbon nanotubes prepared by the method of the first and second embodiments of the present invention will be described. To this end, a sample of a thermally conductive composite material capable of measuring thermal conductivity is prepared.

[실시예 6][Example 6]

실시예 1에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared in Example 1, a composite specimen having a carbon nanotube-coated graphite powder having a weight of 60% of the total weight of the composite material was prepared. To manufacture.

이를 위해, 에탄올에 녹는 폴리아미드(Elvamide-8602, 듀폰)를 이용하여 10% 폴리아미드 에탄올 용액을 제조한다.To this end, a 10% polyamide ethanol solution is prepared using polyamide (Elvamide-8602, DuPont) that is soluble in ethanol.

폴리아미드 에탄올 용액에 탄소나노튜브가 코팅된 흑연분말을 넣고 자기교반기로 30분간 각각 혼합한 후 차가운 물에 넣어 굳힌다.Carbon nanotube-coated graphite powder was added to the polyamide ethanol solution, and each was mixed for 30 minutes with a magnetic stirrer and then hardened by putting it in cold water.

건조한 후, 열압기(Hot press)를 이용하여 170도에서 800kgf로 압축 성형한다.After drying, compression molding is performed at 170 degrees to 800 kgf using a hot press.

도 4에 도시된 바와 같이, 실시예 6의 방법으로 제조된 복합재 시편의 열전도도는 5.51W/mK로 나타났다.As shown in Figure 4, the thermal conductivity of the composite specimen prepared by the method of Example 6 was found to be 5.51W / mK.

[실시예 7][Example 7]

실시예 2에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다. 복합재 시편을 제조하는 방법은 실시예 6과 동일하다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared in Example 2, a composite specimen having a carbon nanotube-coated graphite powder weight of 60% of the total weight of the composite material was prepared. To manufacture. The method of manufacturing the composite specimen is the same as in Example 6.

도 4에 도시된 바와 같이, 실시예 7의 방법으로 제조된 복합재 시편의 열전도도는 7.12W/mK로 나타났다.As shown in Figure 4, the thermal conductivity of the composite specimen prepared by the method of Example 7 was found to be 7.12W / mK.

[실시예 8][Example 8]

실시예 3에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다. 복합재 시편을 제조하는 방법은 실시예 6과 동일하다.In order to measure the thermal conductivity of the thermally conductive composite material containing the graphite powder coated with carbon nanotubes prepared in Example 3, a composite specimen having a carbon nanotube coated graphite powder having a weight of 60% of the total weight of the composite material was prepared. To manufacture. The method of manufacturing the composite specimen is the same as in Example 6.

도 4에 도시된 바와 같이, 실시예 8의 방법으로 제조된 복합재 시편의 열전도도는 5.68W/mK로 나타났다.4, the thermal conductivity of the composite specimen prepared by the method of Example 8 was 5.68 W/mK.

[실시예 9][Example 9]

실시예 4에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다. 복합재 시편을 제조하는 방법은 실시예 6과 동일하다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared in Example 4, a composite specimen having a carbon nanotube-coated graphite powder weight of 60% of the total weight of the composite material was prepared. To manufacture. The method of manufacturing the composite specimen is the same as in Example 6.

도 4에 도시된 바와 같이, 실시예 9의 방법으로 제조된 복합재 시편의 열전도도는 8.62W/mK로 나타났다.As shown in Figure 4, the thermal conductivity of the composite specimen prepared by the method of Example 9 was found to be 8.62W / mK.

[실시예 10][Example 10]

실시예 5에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다. 복합재 시편을 제조하는 방법은 실시예 6과 동일하다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared in Example 5, a composite specimen having a carbon nanotube-coated graphite powder weight of 60% of the total weight of the composite material was prepared. To manufacture. The method of manufacturing the composite specimen is the same as in Example 6.

도 4에 도시된 바와 같이, 실시예 10의 방법으로 제조된 복합재 시편의 열전도도는 9.15W/mK로 나타났다.4, the thermal conductivity of the composite specimen prepared by the method of Example 10 was 9.15 W/mK.

[비교예 1] 탄소나노튜브는 전혀 혼합되지 않고, 흑연분말만이 크기를 달리하여 포함된 복합재 시편[Comparative Example 1] The carbon nanotubes are not mixed at all, and only the graphite powder is contained in different sized composite specimens.

탄소나노튜브가 전혀 첨가되지 않은 분말크기가 5um, 10um, 20um인 흑연으로, 흑연분말의 함량이 60wt%인 열전도도 측정용 복합재 시편을 각각 제조한다. 이를 위해, 에탄올에 녹는 폴리아미드(Elvamide-8602,듀폰)를 이용하여 먼저 10% 폴리아미드 에탄올 용액을 제조한다. 여기에 흑연분말을 복합재 전체 중량의 40%, 50%, 60%가 되도록, 각각 자기교반기로 30분간 혼합한 후 차가운 물에 넣어 굳힌다. 건조한 후, 열압기(Hot press)를 이용하여 170도에서 800kgf로 압축 성형한다.Graphite having a powder size of 5 um, 10 um, and 20 um with no carbon nanotubes added at all, to prepare a composite specimen for measuring thermal conductivity with a graphite powder content of 60 wt%, respectively. To this end, a 10% polyamide ethanol solution is first prepared by using polyamide (Elvamide-8602, DuPont) soluble in ethanol. Here, the graphite powder is mixed with a magnetic stirrer for 30 minutes so as to be 40%, 50%, and 60% of the total weight of the composite material, and then hardened by putting it in cold water. After drying, compression molding is performed at 170 degrees to 800 kgf using a hot press.

흑연분말 크기에 따라 열전도도 측정용 복합재 시편 3개가 만들어진다.Three composite specimens for thermal conductivity measurement are made according to the size of the graphite powder.

ASTM D5470 측정 규격에 준하여, 복합재 시편의 수직열전도도를 측정한다.In accordance with the ASTM D5470 measurement standard, the vertical thermal conductivity of the composite specimen is measured.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 5um인 흑연이 포함된 복합재 시편의 열전도도는 1.46W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing graphite having a powder size of 5 μm with no carbon nanotubes added was 1.46 W/mK.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 10um인 흑연이 포함된 복합재 시편의 열전도도는 1.83W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing graphite having a powder size of 10 μm with no carbon nanotubes added was 1.83 W/mK.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 20um인 흑연이 포함된 복합재 시편의 열전도도는 2.13W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing graphite having a powder size of 20 μm with no carbon nanotubes added was 2.13 W/mK.

[비교예 2] 탄소나노튜브는 전혀 혼합되지 않고, 흑연분말만이 함량을 달리하여 포함된 복합재 시편[Comparative Example 2] The carbon nanotubes are not mixed at all, and only the graphite powder is contained in different contents.

탄소나노튜브가 전혀 첨가되지 않은, 분말크기가 40um인 흑연으로, 흑연분말의 함량이 40wt%, 50wt%, 60wt%인 열전도도 측정용 복합재 시편을 각각 제조한다. 제조방법은 비교예 1과 동일하다.Carbon nanotubes are not added at all, and graphite powder having a powder size of 40 μm is prepared, respectively, to prepare a composite specimen for measuring thermal conductivity with graphite powder content of 40 wt%, 50 wt%, and 60 wt%. The manufacturing method is the same as Comparative Example 1.

ASTM D5470 측정 규격에 준하여, 복합재 시편의 수직열전도도를 측정한다.In accordance with the ASTM D5470 measurement standard, the vertical thermal conductivity of the composite specimen is measured.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 40um인 흑연이 40wt% 포함된 복합재 시편의 열전도도는 1.98W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing 40 wt% of graphite having a powder size of 40 μm without any addition of carbon nanotubes was 1.98 W/mK.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 40um인 흑연이 50wt% 포함된 복합재 시편의 열전도도는 2.21W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing 50 wt% of graphite having a powder size of 40 μm with no carbon nanotubes added was 2.21 W/mK.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 40um인 흑연이 60wt% 포함된 복합재 시편의 열전도도는 3.28W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing 60 wt% of graphite having a powder size of 40 μm with no carbon nanotubes added was 3.28 W/mK.

[비교예 3] 탄소나노튜브와 흑연분말이, 탄소나노튜브의 함량만을 달리한 단순히 첨가된 복합재 시편[Comparative Example 3] Carbon nanotubes and graphite powder, simply added composite specimens with different contents of carbon nanotubes

탄소나노튜브와 흑연의 비율이 중량비 3:100, 6:100, 9:100이 되도록 다음과 같은 순서로 탄소나노튜브와 흑연분말을 각각 혼합한다. 탄소나노튜브는 직경이 10~20nm이며, 흑연은 40um 크기의 분말 형태이다.Carbon nanotubes and graphite powder are mixed in the following order so that the ratio of carbon nanotubes and graphite is 3:100, 6:100, and 9:100 by weight. Carbon nanotubes have a diameter of 10 to 20 nm, and graphite is a powder with a size of 40 um.

탄소나노튜브 40g과 3.5L 증류수를 5L 통에 넣고, 균질분산기(Homogenizer)를 이용하여, 6000 RPM에서 2시간 분쇄한 후, 필터링한다. 이후, 탄소나노튜브 1.5g과 음이온 계면활성제 NaDDBS 1.5g을 각각 물 1000ml과 혼합한 후, 초음파 분산기(700W, bar-type)를 이용하여 2시간 동안 분산한다.40 g of carbon nanotubes and 3.5 L of distilled water are placed in a 5 L container, crushed at 6000 RPM for 2 hours using a homogenizer, and filtered. Thereafter, 1.5 g of carbon nanotubes and 1.5 g of anionic surfactant NaDDBS were mixed with 1000 ml of water, respectively, and then dispersed for 2 hours using an ultrasonic disperser (700 W, bar-type).

5L 통에 산화시킨 흑연 50g과 물 1000ml에 넣고, 균질분산기로 500 RPM으로 섞었다.50 g of oxidized graphite in a 5 L container and 1000 ml of water were added and mixed at 500 RPM with a homogenizer.

여기에, 탄소나노튜브 1.5g과 음이온 계면활성제 NaDDBS(anionic surfactant sodium dodecyl benzene sulfonate) 1.5g이 분산된 수용액을, 1000ml(탄소나노튜브:흑연=3:100), 2000ml(탄소나노튜브:흑연=6:100), 3000ml(탄소나노튜브:흑연=9:100)을 넣고, 약 30분간 더 섞은 후, 필터링하여 120도에서 12시간 동안 건조한다.Here, an aqueous solution in which 1.5 g of carbon nanotubes and 1.5 g of anionic surfactant NaDDBS (anionic surfactant sodium dodecyl benzene sulfonate) are dispersed, 1000 ml (carbon nanotube: graphite = 3:100), 2000 ml (carbon nanotube: graphite = 6:100), 3000ml (carbon nanotube:graphite=9:100), mixed for about 30 minutes, filtered and dried at 120 degrees for 12 hours.

탄소나노튜브와 흑연이 단순한 혼합된 복합재의 열전도도를 측정하기 위한 복합재 시편을 제조한다. 에탄올에 녹는 폴리아미드(Elvamide-8602,듀폰)를 이용하여 10% 폴리아미드 에탄올 용액을 제조한다. 여기에 흑연분말을 복합재 전체 중량의 60%가 되도록 자기교반기로 30분간 혼합한 후, 차가운 물에 넣어 굳혔다. 건조한 후, 열압기(Hot press)를 이용하여, 170도에서 800kgf로 압축 성형한다.A composite specimen is prepared to measure the thermal conductivity of a composite in which carbon nanotubes and graphite are simply mixed. A 10% polyamide ethanol solution is prepared using soluble polyamide (Elvamide-8602, DuPont). Here, the graphite powder was mixed with a magnetic stirrer for 30 minutes so as to be 60% of the total weight of the composite material, and then hardened by putting it in cold water. After drying, compression molding is performed at 170 degrees to 800 kgf using a hot press.

흑연대비 탄소나노튜브 함량에 따라 열전도도 측정용 복합재 시편 3개가 만들어진다.Three composite specimens for thermal conductivity measurement are made according to the content of carbon nanotubes compared to graphite.

ASTM D5470 측정 규격에 준하여, 복합재 시편의 수직열전도도를 측정한다.In accordance with the ASTM D5470 measurement standard, the vertical thermal conductivity of the composite specimen is measured.

도 4에 도시된 바와 같이, 흑연대비 3%의 탄소나노튜브와, 40um인 흑연이 60wt% 가 단순히 혼합된 복합재 시편의 열전도도는 3.41W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen in which 60 wt% of graphite with 3% of carbon nanotubes compared to graphite and 60 wt% of graphite was simply mixed was found to be 3.41 W/mK.

도 4에 도시된 바와 같이, 흑연대비 6%의 탄소나노튜브와, 40um인 흑연이 60wt% 가 단순히 혼합된 복합재 시편의 열전도도는 3.63W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen in which 60 wt% of graphite with 6% carbon nanotubes compared to graphite and 60 wt% of graphite was simply mixed was found to be 3.63 W/mK.

도 4에 도시된 바와 같이, 흑연대비 9%의 탄소나노튜브와, 40um인 흑연이 60wt% 가 단순히 혼합된 복합재 시편의 열전도도는 3.57W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen in which 60 wt% of graphite with 9% of carbon nanotubes compared to graphite and 60 wt% of 40 μm was simply mixed was found to be 3.57 W/mK.

상술한 실시예 6,7,8,9,10 들과 비교예 1,2,3 들을 보면, 탄소나노튜브를 넣지 않거나, 탄소나노튜브가 단순히 첨가된 경우보다, 탄소나노튜브가 코팅된 흑연이 포함된 경우, 복합재의 열전도도가 높은 것을 알 수 있다. 열전도도는 실시예 7에서 최고 7.12Wm/K 까지 측정된다.Looking at Examples 6,7,8,9,10 and Comparative Examples 1,2,3 described above, the graphite coated with the carbon nanotubes is not compared with the case where the carbon nanotubes are not added or the carbon nanotubes are simply added. If included, it can be seen that the thermal conductivity of the composite material is high. Thermal conductivity is measured in Example 7 up to 7.12 Wm/K.

더 나아가, 탄소나노튜브가 코팅된 흑연에 전도도가 높은 금속이 도금된 경우, 열전도도가 더 높은 것을 알 수 있다. 열전도도는 실시예 10에서 최고 9.15Wm/K 까지 측정된다.Furthermore, it can be seen that when the metal having high conductivity is plated on the graphite coated with carbon nanotubes, the thermal conductivity is higher. Thermal conductivity is measured in Example 10 up to 9.15 Wm/K.

Claims (6)

흑연의 표면에 기능기를 부착하는 제1단계;
탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계: 및
기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계를 포함하는 것을 특징으로 하는 탄소나노튜브가 코팅된 흑연분말 제조방법.
A first step of attaching a functional group to the surface of graphite;
A second step of attaching a cationic surfactant to the surface of the carbon nanotube: and
And mixing the functionalized graphite and the cationic surfactant-attached carbon nanotube, and coating the functionalized graphite surface with the cationic surfactant-attached carbon nanotube. Method for manufacturing graphite powder coated with carbon nanotubes.
제1항에 있어서, 상기 제1단계에서,
500도 이상의 기능기를 부착시킬 수 있는 용액에 흑연을 담가, 흑연의 표면을 산화시켜, 흑연의 표면에 기능기를 부착하며,
상기 용액은 흑연과 반응하여 흑연 표면에 기능기를 부착시킬 수 있는 물질로,
순수한 물, 염기성수용액, 산성수용액, 에탄올, 메탄올을 포함하는 알콜류와 흑연을 산화시킬 수 있는 산소가 포함된 화합물이 녹아 있는 용액으로 이루어진 군에서 선택된 하나 또는 둘 이상인 것을 특징으로 하는 탄소나노튜브가 코팅된 흑연분말 제조방법.
According to claim 1, In the first step,
The graphite is immersed in a solution capable of attaching a functional group of 500 degrees or more, oxidizes the surface of the graphite, and attaches the functional group to the surface of the graphite,
The solution is a material that can react with graphite to attach functional groups to the graphite surface,
Carbon nanotubes coated with one or two or more selected from the group consisting of a solution containing a pure water, a basic aqueous solution, an acidic aqueous solution, an alcohol containing ethanol, methanol and a compound containing oxygen capable of oxidizing graphite. Graphite powder manufacturing method.
제1항에 있어서, 상기 제2단계에서,
상기 양이온 계면활성제는, 머리부분이 +로 이온화하면서, 꼬리부분 및 중간부분이 탄소나노튜브에 부착될 수 있는 물질인 것을 특징으로 하는 탄소나노튜브가 코팅된 흑연분말 제조방법.
According to claim 1, In the second step,
The cationic surfactant, while the head is ionized to +, the tail and the middle portion is carbon nanotube coated graphite powder production method characterized in that the material that can be attached to the carbon nanotubes.
제1항에 있어서, 상기 제3단계에서,
상기 기능기가 부착된 흑연과 상기 양이온 계면활성제가 부착된 탄소나노튜브를, 물리적 혼합기(homogenizer)로 혼합하거나, 초음파혼합기(utrasonicater)로 혼합하거나, 필터링 후 건조하거나, 스프레이 건조하거나, 회전형 드럼 필터링하는 것에 의해, 상기 기능기가 부착된 흑연의 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 것을 특징으로 하는 탄소나노튜브가 코팅된 흑연분말 제조방법.
According to claim 1, In the third step,
The functionalized graphite and the carbon nanotube to which the cationic surfactant is attached are mixed with a physical mixer, mixed with an ultrasonic mixer, filtered and dried, spray dried, or rotary drum filtering. By, the carbon nanotubes coated graphite powder manufacturing method, characterized in that for coating the carbon nanotubes with the cationic surfactant attached to the surface of the functional group attached graphite.
흑연의 표면에 기능기를 부착하는 제1단계;
탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계
기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계; 및
50W/mK 이상의 열전도도를 갖는 금속을, 탄소나노튜브가 코팅된 흑연에 무전해 도금하는 제4단계를 포함하는 것을 특징으로 하는 탄소나노튜브가 코팅된 흑연분말 제조방법.
A first step of attaching a functional group to the surface of graphite;
The second step of attaching a cationic surfactant to the surface of the carbon nanotube
A third step of mixing the functionalized graphite and the carbon nanotube to which the cationic surfactant is attached, and coating the carbon nanotube to which the cationic surfactant is attached to the graphite surface to which the functional group is attached; And
A method of manufacturing a graphite powder coated with carbon nanotubes, comprising the step of electrolessly plating a metal having a thermal conductivity of 50 W/mK or more onto graphite coated with carbon nanotubes.
제1항 또는 제5항의 방법에 의해 제조된 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재.A thermally conductive composite material comprising graphite powder coated with carbon nanotubes prepared by the method of claim 1 or 5.
KR1020180165026A 2018-12-19 2018-12-19 Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube Expired - Fee Related KR102229179B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180165026A KR102229179B1 (en) 2018-12-19 2018-12-19 Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180165026A KR102229179B1 (en) 2018-12-19 2018-12-19 Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube

Publications (2)

Publication Number Publication Date
KR20200076173A true KR20200076173A (en) 2020-06-29
KR102229179B1 KR102229179B1 (en) 2021-03-18

Family

ID=71401042

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180165026A Expired - Fee Related KR102229179B1 (en) 2018-12-19 2018-12-19 Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube

Country Status (1)

Country Link
KR (1) KR102229179B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274441B1 (en) 2011-07-04 2013-06-18 (주)월드튜브 method for mixed dispersion of graphene and graphite nanoplatelets and method for mixed powder of graphene and graphite nanoplatelets
JP2014021257A (en) * 2012-07-18 2014-02-03 Canon Inc Zoom lens and image capturing device having the same
KR101473708B1 (en) * 2013-02-21 2014-12-19 엠케이전자 주식회사 Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
KR101728720B1 (en) * 2015-04-16 2017-04-20 성균관대학교산학협력단 Graphene composite comprising three dimensional carbon nanotube pillars and method of fabricating thereof
KR20170108416A (en) * 2016-03-17 2017-09-27 전자부품연구원 3-dimensional carbon nano structure and preparing method thereof
KR20180111773A (en) * 2015-12-03 2018-10-11 나노텍 인스트러먼츠, 인코포레이티드 Highly conductive and oriented graphene films and methods of making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274441B1 (en) 2011-07-04 2013-06-18 (주)월드튜브 method for mixed dispersion of graphene and graphite nanoplatelets and method for mixed powder of graphene and graphite nanoplatelets
JP2014021257A (en) * 2012-07-18 2014-02-03 Canon Inc Zoom lens and image capturing device having the same
KR101473708B1 (en) * 2013-02-21 2014-12-19 엠케이전자 주식회사 Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
KR101728720B1 (en) * 2015-04-16 2017-04-20 성균관대학교산학협력단 Graphene composite comprising three dimensional carbon nanotube pillars and method of fabricating thereof
KR20180111773A (en) * 2015-12-03 2018-10-11 나노텍 인스트러먼츠, 인코포레이티드 Highly conductive and oriented graphene films and methods of making
KR20170108416A (en) * 2016-03-17 2017-09-27 전자부품연구원 3-dimensional carbon nano structure and preparing method thereof

Also Published As

Publication number Publication date
KR102229179B1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US8383243B2 (en) Composite containing polymer, filler and metal plating catalyst, method of making same, and article manufactured therefrom
TWI530967B (en) A sheet-like conductive filler, a conductive paste composition, a conductive article, and a sheet-like conductive filler
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
JPH0140070B2 (en)
CN111978822A (en) Two-dimensional composite material modified waterborne epoxy zinc-rich composite coating, and preparation method and application thereof
KR101294593B1 (en) Electrical conductive adhesives and fabrication method therof
TWI417903B (en) Conductive paste
KR102229179B1 (en) Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube
JP2007204673A (en) Epoxy resin composition and conductive adhesive and anisotropic conductive film using the same
US2551712A (en) Process of metallizing surfaces
US2196128A (en) Coating and impregnating composition and method of coating surfaces
CN100571932C (en) A kind of copper-radicle antifriction compound powder and manufacture method thereof
JPS642618B2 (en)
CN111205719A (en) Silver-copper conductive paint and preparation method thereof
JP7455321B2 (en) Surface-treated steel sheet having a film containing reduced graphene and its manufacturing method
KR20180039968A (en) Electrical contact materials with high radiating properties and arc-resistivity using silver-silver coated carbon nanotube composites and its manufacturing method
KR101648472B1 (en) Preparing method of reinforcement for metal-carbon complex
TWI631160B (en) Conductive paste and substrate with conductive film
CN105968929A (en) Preparation method of thin-film coating
KR20130117044A (en) Composition for thermal conducting coating layer and method for fabricating the thermal conducting coating layer
KR101157737B1 (en) Conductive adhesive and manufacturing method thereof
KR20240054838A (en) Silver coating method for copper particles, silver coating copper particles, conductive film having the same and manufacturing method for conductive film
CN111850527B (en) Preparation method of copper-plated tungsten disulfide, copper-plated tungsten disulfide and application thereof
CN108530999A (en) Conductive anti-corrosion coating by organic silver as photocuring accelerating agent
JP2002008442A (en) Thermo setting low resistant conductive paste

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20181219

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200727

Patent event code: PE09021S01D

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20201127

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210119

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210311

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210312

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20241222