[go: up one dir, main page]

KR102229179B1 - Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube - Google Patents

Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube Download PDF

Info

Publication number
KR102229179B1
KR102229179B1 KR1020180165026A KR20180165026A KR102229179B1 KR 102229179 B1 KR102229179 B1 KR 102229179B1 KR 1020180165026 A KR1020180165026 A KR 1020180165026A KR 20180165026 A KR20180165026 A KR 20180165026A KR 102229179 B1 KR102229179 B1 KR 102229179B1
Authority
KR
South Korea
Prior art keywords
graphite
carbon nanotubes
carbon nanotube
graphite powder
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020180165026A
Other languages
Korean (ko)
Other versions
KR20200076173A (en
Inventor
박영수
허몽영
김원석
한웅
Original Assignee
더원씨엔티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더원씨엔티 주식회사 filed Critical 더원씨엔티 주식회사
Priority to KR1020180165026A priority Critical patent/KR102229179B1/en
Publication of KR20200076173A publication Critical patent/KR20200076173A/en
Application granted granted Critical
Publication of KR102229179B1 publication Critical patent/KR102229179B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법은,
흑연의 표면에 기능기를 부착하는 제1단계;
탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계: 및
기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계를 포함하는 것을 특징으로 한다.
The carbon nanotube-coated graphite powder manufacturing method according to the present invention,
A first step of attaching a functional group to the surface of graphite;
The second step of attaching a cationic surfactant to the surface of the carbon nanotube: and
And a third step of mixing graphite with a functional group and carbon nanotubes with a cationic surfactant, and coating the carbon nanotubes with the cationic surfactant on the surface of the graphite with the functional group. .

Description

탄소나노튜브가 코팅된 흑연분말 제조방법 및 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재{Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube}Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube}

본 발명은 탄소나노튜브가 코팅된 흑연분말 제조방법 및 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재에 관한 것이다.The present invention relates to a carbon nanotube-coated graphite powder manufacturing method and a thermally conductive composite material including the carbon nanotube-coated graphite powder.

흑연분말은 저렴한 가격을 가지면서도 높은 열전도성을 갖는 재료로 알려져 있어, 열전도도 및 방열이 필요한 부품이나 방열 복합소재의 주요 충전재로 사용이 되고 있다.Graphite powder is known as a material having high thermal conductivity while having an inexpensive price, and is therefore used as a main filler for components requiring thermal conductivity and heat dissipation or heat dissipation composite materials.

그러나, 흑연은 적층된 방향에 따라 열전도도가 크게 차이가 나는 이방성 특징(수평:~2,000W/mK, 수직:~5W/mK)을 가지고 있어, 흑연-고분자 방열 복합재의 열전도성이, 혼합법칙(law of mixture)에 의해 예상할 수 있는 복합재의 열전도도에 비해 매우 낮게 나타나는 경향을 보이고 있다. However, graphite has anisotropic characteristics (horizontal: ~2,000W/mK, vertical: ~5W/mK) in which the thermal conductivity varies greatly depending on the stacking direction, so the thermal conductivity of the graphite-polymer heat dissipating composite material is mixed. It tends to be very low compared to the thermal conductivity of the composite, which can be expected by the law of mixture.

이러한 이방성 열전도성을 해결하기 위해, 흑연의 수직방향 열전도성 보다 높은 열전도성을 갖는 구리, 니켈, 주석, 알루미늄 등과 같은 금속을 흑연에 코팅하는 시도가 이루어지고 있다.In order to solve such anisotropic thermal conductivity, attempts have been made to coat graphite with a metal such as copper, nickel, tin, aluminum, etc. having a thermal conductivity higher than that of graphite in the vertical direction.

이를 위해서, 전기화학적, 물리적, 열적인 방법이 사용된다.For this, electrochemical, physical and thermal methods are used.

전기화학적인 방법은 균일한 코팅과 대량생산을 이룰 수 있으나, 금속-흑연과의 계면 젖음성이 낮아, 고분자와 흑연 사이의 높은 열저항을 발생시키는 단점을 가지고 있다.The electrochemical method can achieve uniform coating and mass production, but has a disadvantage of generating high thermal resistance between the polymer and graphite due to low interfacial wettability with metal-graphite.

반면, 물리적(sputter 등) 및 열적(thermal evaporator 등)과 같은 방법에 의한 코팅은, 금속-흑연과의 계면접합성은 높으나, 균일한 코팅과 대량생산이 어려워, 높은 제조단가를 가진다.On the other hand, coating by methods such as physical (sputter, etc.) and thermal (thermal evaporator, etc.) has high interfacial bonding with metal-graphite, but uniform coating and mass production are difficult, and thus, has a high manufacturing cost.

이러한 문제점을 해결하기 위하여, 열전도도가 뛰어난 탄소나노튜브를 흑연과 함께 열전도성 복합재 충전재로 사용하는 시도를 하고 있다. 그러나, 이 경우 탄소나노튜브의 분산이 잘되지 않고, 흑연과 탄소나노튜브의 계면 접촉력과, 탄소나노튜브 간의 계면 접촉력이 매우 낮아, 복합재의 열전도도 향상을 기대하기 어렵다.In order to solve this problem, attempts have been made to use carbon nanotubes having excellent thermal conductivity together with graphite as a filler for a thermally conductive composite material. However, in this case, the dispersion of the carbon nanotubes is not good, the interface contact force between graphite and the carbon nanotubes and the interface contact force between the carbon nanotubes are very low, so it is difficult to expect an improvement in the thermal conductivity of the composite material.

한국등록특허(10-1274441)Korean registered patent (10-1274441)

본 발명의 목적은, 상술한 문제점을 모두 해결할 수 있는 탄소나노튜브가 코팅된 흑연분말 제조방법 및 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재를 제공하는 데 있다.An object of the present invention is to provide a carbon nanotube-coated graphite powder manufacturing method and a thermally conductive composite material including the carbon nanotube-coated graphite powder capable of solving all of the above-described problems.

상기 목적을 달성하기 위한 탄소나노튜브가 코팅된 흑연분말 제조방법은,The carbon nanotube-coated graphite powder manufacturing method for achieving the above object,

흑연의 표면에 기능기를 부착하는 제1단계;A first step of attaching a functional group to the surface of graphite;

탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계: 및The second step of attaching a cationic surfactant to the surface of the carbon nanotubes: and

기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계를 포함하는 것을 특징으로 한다.And a third step of mixing graphite with a functional group and carbon nanotubes with a cationic surfactant, and coating the carbon nanotubes with the cationic surfactant on the surface of the graphite with the functional group. .

또한, 상기 목적은,In addition, the above purpose,

흑연의 표면에 기능기를 부착하는 제1단계;A first step of attaching a functional group to the surface of graphite;

탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계The second step of attaching a cationic surfactant to the surface of carbon nanotubes

기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계; 및A third step of mixing graphite to which a functional group is attached and carbon nanotubes to which a cationic surfactant is attached, and coating the carbon nanotubes to which the cationic surfactant is attached to the surface of the graphite to which the functional group is attached; And

50W/mK 이상의 열전도도를 갖는 금속을, 탄소나노튜브가 코팅된 흑연에 무전해 도금하는 제4단계를 포함하는 것을 특징으로 하는 탄소나노튜브가 코팅된 흑연분말 제조방법에 의해 달성된다.It is achieved by the carbon nanotube-coated graphite powder manufacturing method comprising a fourth step of electroless plating a metal having a thermal conductivity of 50 W/mK or more on the carbon nanotube-coated graphite.

또한, 상기 목적은, 상술한 방법들에 의해 제조된 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재에 의해 달성된다.In addition, the above object is achieved by a thermally conductive composite material including graphite powder coated with carbon nanotubes manufactured by the above-described methods.

본 발명은, 흑연의 표면에 쿨롱 상호작용(coulomb interaction)으로 탄소나노튜브를 부착시켜, 탄소나노튜브가 코팅된 흑연을 제조한다. 여기에, 50W/mK 이상의 열전도도를 갖는 금속을 무전해 도금할 수도 있다.In the present invention, carbon nanotubes are attached to the surface of graphite through coulomb interaction to prepare graphite coated with carbon nanotubes. Here, a metal having a thermal conductivity of 50 W/mK or more may be electrolessly plated.

이렇게 탄소나노튜브 코팅된 흑연을 포함시켜 복합재를 만들면, 복합재 내에서의 흑연의 판상수직방향으로의 열전도도가 향상된다. 이로 인해, 흑연소재 간의 열계면저항 및 전기접촉저항이 작아져, 복합재의 열전도도 및 전기전도도가 모두 향상된다.When a composite material is made by including carbon nanotube-coated graphite in this way, the thermal conductivity of the graphite in the composite material in the plate-shaped vertical direction is improved. Accordingly, the thermal interface resistance and electrical contact resistance between the graphite materials are reduced, and both the thermal conductivity and the electrical conductivity of the composite material are improved.

도 1은 본 발명의 제1실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법을 나타낸 순서도이다.
도 2는 흑연에 탄소나노튜브를 코팅하기 전과 후의 샘플을 5만 배 확대하여 찍은 전자 현미경 사진으로, 도 2(a)는 탄소나노튜브가 코팅되기 전 흑연을 찍은 전자 현미경 사진, 도 2(b)는 실시예 1에 따라 흑연에 탄소나노튜브가 코팅된 상태를 찍은 전자 현미경 사진, 도 2(c)는 실시예 2에 따라 흑연에 탄소나노튜브가 코팅된 상태를 찍은 전자 현미경 사진, 도 2(d)는 실시예 3에 따라 흑연에 탄소나노튜브가 코팅된 상태를 찍은 전자 현미경 사진이다.
도 3은 본 발명의 제2실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법을 나타낸 순서도이다.
도 4는 본 발명의 실시예 및 비교예에 따라 제조된 열전도성 복합재의 열전도도를 비교한 표이다.
1 is a flow chart showing a method of manufacturing graphite powder coated with carbon nanotubes according to a first embodiment of the present invention.
FIG. 2 is an electron micrograph taken by magnifying a sample before and after coating carbon nanotubes on graphite by 50,000 times. FIG. 2(a) is an electron micrograph taken of graphite before and after the carbon nanotubes were coated, and FIG. 2(b) ) Is an electron micrograph of graphite coated with carbon nanotubes according to Example 1, and FIG. 2(c) is an electron micrograph of graphite coated with carbon nanotubes according to Example 2, and FIG. 2 (d) is an electron micrograph taken of a state in which carbon nanotubes are coated on graphite according to Example 3.
3 is a flowchart showing a method of manufacturing graphite powder coated with carbon nanotubes according to a second embodiment of the present invention.
4 is a table comparing the thermal conductivity of thermally conductive composites manufactured according to Examples and Comparative Examples of the present invention.

이하, 본 발명의 제1실시예에 따른, 탄소나노튜브가 코팅된 흑연분말 제조방법을 자세히 설명한다.Hereinafter, a method of manufacturing graphite powder coated with carbon nanotubes according to a first embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 제1실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법은,As shown in Figure 1, the carbon nanotube-coated graphite powder manufacturing method according to the first embodiment of the present invention,

흑연의 표면에 기능기를 부착하는 제1단계(S11);A first step of attaching a functional group to the surface of graphite (S11);

탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계(S12);A second step (S12) of attaching a cationic surfactant to the surface of the carbon nanotubes;

기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계(S13)로 구성된다.It consists of a third step (S13) of mixing graphite to which a functional group is attached and carbon nanotubes to which a cationic surfactant is attached, and coating the carbon nanotubes to which the cationic surfactant is attached to the surface of the graphite to which the functional group is attached.

물론, 제1단계(S11)와 제2단계(S12)의 순서는 바뀔 수 있다.Of course, the order of the first step (S11) and the second step (S12) may be changed.

이하, 제1단계(S11)를 설명한다.Hereinafter, the first step (S11) will be described.

500도 이상의 기능기를 부착시킬 수 있는 용액에 흑연을 담가, 흑연의 표면을 산화시켜, 흑연의 표면에 기능기를 부착한다.Graphite is immersed in a solution capable of attaching a functional group of 500 degrees or more to oxidize the surface of the graphite, and the functional group is attached to the surface of the graphite.

용액은 흑연과 반응하여, 흑연 표면에 기능기를 부착시킬 수 있는 물질이다.The solution is a substance capable of reacting with graphite and attaching functional groups to the graphite surface.

용액은 순수한 물, 염기성수용액, 산성수용액, 에탄올, 메탄올을 포함하는 알콜류와 흑연을 산화시킬 수 있는 산소가 포함된 화합물이 녹아 있는 용액으로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있다. 물론, 이에 한정되는 것은 아니다. The solution may be one or more selected from the group consisting of pure water, basic aqueous solution, acidic aqueous solution, alcohol including ethanol, methanol, and a solution in which a compound including oxygen capable of oxidizing graphite is dissolved. Of course, it is not limited thereto.

이하, 제2단계(S12)를 설명한다.Hereinafter, the second step (S12) will be described.

양이온 계면활성제는, 머리부분이 +로 이온화하면서, 꼬리부분 및 중간부분이 탄소나노튜브에 부착될 수 있는 물질이다.Cationic surfactants are substances that can be attached to carbon nanotubes in the tail and the middle while the head is ionized to +.

양이온성 계면활성제는 탄소나노튜브 중량부 대비 10 내지 200 중량부로 첨가될 수 있다.The cationic surfactant may be added in an amount of 10 to 200 parts by weight based on parts by weight of the carbon nanotube.

양이온성 계면활성제는 1급 아민염(DDAC), 제2/3급 아민염, 4급 암모늄염(EQ), 이미다졸염, 폴리옥시에틸렌알킬아민, 피리늄형등의 화합물을 포함하는 지방족 아민염 및 4급 암모늄염 군에서 선택되어지는 1종 이상일 수 있다. 물론, 이에 한정되는 것은 아니다.Cationic surfactants include aliphatic amine salts including compounds such as primary amine salts (DDAC), secondary/tertiary amine salts, quaternary ammonium salts (EQ), imidazole salts, polyoxyethylenealkylamines, and pyridinium types, and It may be one or more selected from the group of quaternary ammonium salts. Of course, it is not limited thereto.

이하, 제3단계(S13)를 설명한다.Hereinafter, the third step (S13) will be described.

기능기가 부착된 흑연과 상기 양이온 계면활성제가 부착된 탄소나노튜브를, 물리적 혼합기(homogenizer)로 혼합하거나, 초음파혼합기(utrasonicater)로 혼합하거나, 필터링 후 건조하거나, 스프레이 건조하거나, 회전형 드럼 필터링하는 것에 의해, 기능기가 부착된 흑연의 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅한다.Graphite with a functional group and carbon nanotubes with the cationic surfactant are mixed with a physical homogenizer, mixed with an ultrasonic mixer, dried after filtering, spray dried, or filtered with a rotary drum. As a result, the carbon nanotubes to which the cationic surfactant is attached are coated on the surface of the graphite to which the functional group is attached.

양이온 계면활성제가 부착된 탄소나노튜브는, 기능기가 부착된 흑연 중량부 대비 0.1 내지 50 중량부, 0.5 내지 20 중량부일 수 있고, 1 내지 10 중량부 일 수 있다. 물론, 이에 한정되는 것은 아니다.The carbon nanotubes to which the cationic surfactant is attached may be 0.1 to 50 parts by weight, 0.5 to 20 parts by weight, and 1 to 10 parts by weight based on the weight part of graphite to which the functional group is attached. Of course, it is not limited thereto.

[실시예 1][Example 1]

탄소나노튜브에 코팅된 흑연의 중량비가 3:100 (흑연대비 탄소나노튜브 함량 3%)가 되도록, 다음과 같은 순서로 흑연에 탄소나노튜브를 코팅한다.The carbon nanotubes are coated on the graphite in the following order so that the weight ratio of the graphite coated on the carbon nanotubes is 3:100 (the content of the carbon nanotubes to the graphite is 3%).

탄소나노튜브는 직경이 10~20nm이며, 흑연은 40um 크기의 분말 형태이다.Carbon nanotubes have a diameter of 10-20 nm, and graphite is in the form of a powder with a size of 40 μm.

5L 통에 탄소나노튜브 40g과 3.5L 증류수에 넣고, 균질 분산기(Homogenizer)를 이용하여 6000 RPM에서 2시간 동안 분산한 후, 필터링한다.Put 40g of carbon nanotubes and 3.5L distilled water in a 5L bucket, disperse for 2 hours at 6000 RPM using a homogenizer, and filter.

필터링 후, 탄소나노튜브 1.5g과 양이온성 계면활성제인 CTAB(cetyltrimethylammonium bromide) 1.5g을 1000ml의 증류수에 섞은 후, 초음파 분산기(700W, bar-type)로 1시간 동안 분산한다.After filtering, 1.5 g of carbon nanotubes and 1.5 g of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, were mixed with 1000 ml of distilled water, and then dispersed for 1 hour with an ultrasonic disperser (700W, bar-type).

흑연분말 100g을 650도에서 CVD(chemical vapor deposition)로 30분 동안 산화시켜 약 97g 정도 회수한다.100 g of graphite powder is oxidized at 650 degrees by CVD (chemical vapor deposition) for 30 minutes to recover about 97 g.

산화시킨 흑연 50g과 물 1000ml을 5L 통에 넣고, 균질 분산기로 500 RPM으로 혼합하여 분산된 수용액을 얻는다.50 g of oxidized graphite and 1000 ml of water are placed in a 5 L bucket, and mixed at 500 RPM with a homogeneous disperser to obtain a dispersed aqueous solution.

산화시킨 흑연 50g이 분산된 수용액 1000ml에, 탄소나노튜브 1.5g과 양이온성 계면활성제인 CTAB(cetyltrimethylammonium bromide) 1.5g이 들어간 1000ml의 증류수를 혼합한다. (이하, “탄소나노튜브 용액" 이라 칭함)To 1000 ml of an aqueous solution in which 50 g of oxidized graphite is dispersed, 1.5 g of carbon nanotubes and 1000 ml of distilled water containing 1.5 g of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, are mixed. (Hereinafter referred to as “carbon nanotube solution”)

균질 분산기(Homogenizer)로 탄소나노튜브 용액을 약 30분간 더 섞은 후, 필터링하여 120도에서 12시간 동안 건조한다. 그러면, 도 2(a)에 도시된 흑연에 탄소나노튜브가 코팅되어, 도 2(b)에 도시된 흑연대비 탄소나노튜브의 함량이 3%인 탄소나노튜브가 코팅된 흑연분말이 제조된다.The carbon nanotube solution is further mixed for about 30 minutes with a homogenizer, filtered, and dried for 12 hours at 120 degrees. Then, the carbon nanotubes are coated on the graphite shown in FIG. 2(a), and graphite powder coated with carbon nanotubes having a carbon nanotube content of 3% compared to the graphite shown in FIG. 2(b) is prepared.

[실시예 2][Example 2]

탄소나노튜브에 코팅된 흑연의 중량비가 6:100 (흑연대비 탄소나노튜브 함량 6%)가 되도록, 산화시킨 흑연 50g이 분산된 수용액 1000ml에, 탄소나노튜브 3g과 양이온성 계면활성제인 CTAB(cetyltrimethylammonium bromide) 3g이 들어간 2000ml의 증류수를 혼합한다. 그러면, 도 2(a)에 도시된 흑연에 탄소나노튜브가 코팅되어, 도 2(c)에 도시된 흑연대비 탄소나노튜브의 함량이 6%인 탄소나노튜브가 코팅된 흑연분말이 제조된다. 이 밖의 과정은 실시예 1과 동일하다.In 1000 ml of an aqueous solution in which 50 g of oxidized graphite is dispersed so that the weight ratio of the graphite coated on the carbon nanotubes is 6:100 (the content of carbon nanotubes relative to graphite is 6%), 3 g of carbon nanotubes and CTAB (cetyltrimethylammonium), a cationic surfactant. Bromide) 3g of distilled water containing 2000ml is mixed. Then, the carbon nanotubes are coated on the graphite shown in FIG. 2(a), and graphite powder coated with carbon nanotubes having a content of 6% carbon nanotubes compared to the graphite shown in FIG. 2(c) is prepared. Other procedures are the same as in Example 1.

[실시예 3][Example 3]

탄소나노튜브에 코팅된 흑연의 중량비가 9:100 (흑연대비 탄소나노튜브 함량 9%)가 되도록, 산화시킨 흑연 50g이 분산된 수용액 1000ml에, 탄소나노튜브 4.5g과 양이온성 계면활성제인 CTAB(cetyltrimethylammonium bromide) 4.5g이 들어간 3000ml의 증류수를 혼합한다. 그러면, 도 2(a)에 도시된 흑연에 탄소나노튜브가 코팅되어, 도 2(d)에 도시된 흑연대비 탄소나노튜브의 함량이 9%인 탄소나노튜브가 코팅된 흑연분말이 제조된다. 이 밖의 과정은 실시예 1과 동일하다.In 1000 ml of an aqueous solution in which 50 g of oxidized graphite is dispersed so that the weight ratio of the graphite coated on the carbon nanotubes is 9:100 (the content of carbon nanotubes to the graphite is 9%), 4.5 g of carbon nanotubes and CTAB (a cationic surfactant) Mix 3000ml of distilled water containing 4.5g of cetyltrimethylammonium bromide). Then, the carbon nanotubes are coated on the graphite shown in FIG. 2(a), and graphite powder coated with carbon nanotubes having a carbon nanotube content of 9% compared to the graphite shown in FIG. 2(d) is prepared. Other procedures are the same as in Example 1.

이하, 본 발명의 제2실시예에 따른, 탄소나노튜브가 코팅된 흑연분말 제조방법을 자세히 설명한다.Hereinafter, a method of manufacturing graphite powder coated with carbon nanotubes according to a second embodiment of the present invention will be described in detail.

도 3에 도시된 바와 같이, 본 발명의 제2실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법은,As shown in Figure 3, the carbon nanotube-coated graphite powder manufacturing method according to the second embodiment of the present invention,

흑연의 표면에 기능기를 부착하는 제1단계(S21);A first step of attaching a functional group to the surface of graphite (S21);

탄소나노튜브의 표면에 양이온 계면활성제를 부착하는 제2단계(S22);A second step (S22) of attaching a cationic surfactant to the surface of the carbon nanotubes;

기능기가 부착된 흑연과 양이온 계면활성제가 부착된 탄소나노튜브를 혼합하여, 상기 기능기가 부착된 흑연 표면에 상기 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계(S23);A third step (S23) of mixing graphite to which a functional group is attached and carbon nanotubes to which a cationic surfactant is attached, and coating the carbon nanotubes to which the cationic surfactant is attached to the surface of the graphite to which the functional group is attached;

50W/mK 이상의 열전도도를 갖는 금속을, 탄소나노튜브가 코팅된 흑연에 무전해 도금하는 제4단계(S24)로 구성된다.It consists of a fourth step (S24) of electroless plating a metal having a thermal conductivity of 50 W/mK or more on the carbon nanotube-coated graphite.

물론, 제1단계(S21)와 제2단계(S22)의 순서는 바뀔 수 있다. Of course, the order of the first step (S21) and the second step (S22) may be changed.

본 발명의 제2실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법에서 제1단계(S21), 제2단계(S22), 제3단계(S23)는, 본 발명의 제1실시예에 따른 탄소나노튜브가 코팅된 흑연분말 제조방법의 제1단계(S11), 제2단계(S12), 제3단계(S13)와 동일하므로, 그 설명을 생략한다.In the carbon nanotube-coated graphite powder manufacturing method according to the second embodiment of the present invention, the first step (S21), the second step (S22), and the third step (S23) are performed according to the first embodiment of the present invention. Since it is the same as the first step (S11), the second step (S12), and the third step (S13) of the carbon nanotube-coated graphite powder manufacturing method, a description thereof will be omitted.

이하, 제4단계(S24)를 설명한다.Hereinafter, the fourth step (S24) will be described.

탄소나노튜브가 코팅된 흑연분말에 구리, 니켈, 철, 알루미늄과 같이 50W/mK 이상의 열전도도를 갖는 금속을 무전해 도금한다.Metals having a thermal conductivity of 50 W/mK or more, such as copper, nickel, iron, and aluminum, are electrolessly plated on the carbon nanotube-coated graphite powder.

[실시예 4][Example 4]

실시예 2에 의해 탄소나노튜브가 코팅된 흑연분말에 무전해 코팅법으로 구리 코팅을 실시한다. 이를 위해, 구리 금속염이 녹아있는 도금용액 250ml에 탄소나노튜브가 코팅된 흑연분말 20g을 넣고, 20분간 혼합한 후, 환원제가 들어있는 도금용액을 200ml를 넣는다. 60도에서 120분간 섞어준 후, 필터링 및 세척한 후, 120도에서 12시간 건조한다. 그러면, 구리가 도금된 탄소나노튜브가 코팅된 흑연분말을 얻을 수 있다. Copper coating was performed on the graphite powder coated with carbon nanotubes according to Example 2 by an electroless coating method. To this end, 20 g of graphite powder coated with carbon nanotubes is added to 250 ml of a plating solution in which a copper metal salt is dissolved, and after mixing for 20 minutes, 200 ml of a plating solution containing a reducing agent is added. After mixing at 60°C for 120 minutes, filtering and washing, and then drying at 120°C for 12 hours. Then, it is possible to obtain graphite powder coated with copper-plated carbon nanotubes.

[실시예 5][Example 5]

실시예 2에 의해 탄소나노튜브가 코팅된 흑연분말에 무전해 코팅법으로 구리 코팅을 실시한다. 이를 위해, 구리 금속염이 녹아있는 도금용액 250ml에 탄소나노튜브가 코팅된 흑연분말 20g을 넣고, 20분간 혼합한 후, 환원제가 들어있는 도금용액을 200ml를 넣는다. 60도에서 240분간 섞어준 후, 필터링 및 세척한 후, 120도에서 12시간 건조한다. 그러면, 구리가 도금된 탄소나노튜브가 코팅된 흑연분말을 얻을 수 있다.Copper coating was performed on the graphite powder coated with carbon nanotubes according to Example 2 by an electroless coating method. To this end, 20 g of graphite powder coated with carbon nanotubes is added to 250 ml of a plating solution in which a copper metal salt is dissolved, and after mixing for 20 minutes, 200 ml of a plating solution containing a reducing agent is added. After mixing at 60°C for 240 minutes, filtering and washing, and then drying at 120°C for 12 hours. Then, it is possible to obtain graphite powder coated with copper-plated carbon nanotubes.

이하, 본 발명의 제1실시예 및 제2실시예의 방법으로 제조된 탄소나노튜브가 코팅된 흑연분말이 포함된, 복합재의 열전도도를 설명한다. 이를 위해, 열전도도를 측정할 수 있는 열전도성 복합재 시편을 제조한다.Hereinafter, the thermal conductivity of the composite material including the carbon nanotube-coated graphite powder manufactured by the method of the first and second embodiments of the present invention will be described. To this end, a thermally conductive composite specimen capable of measuring thermal conductivity is prepared.

[실시예 6][Example 6]

실시예 1에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared according to Example 1, a composite specimen in which the weight of the carbon nanotube-coated graphite powder is 60% of the total weight of the composite material. To manufacture.

이를 위해, 에탄올에 녹는 폴리아미드(Elvamide-8602, 듀폰)를 이용하여 10% 폴리아미드 에탄올 용액을 제조한다.To this end, a 10% polyamide ethanol solution is prepared using polyamide (Elvamide-8602, DuPont) soluble in ethanol.

폴리아미드 에탄올 용액에 탄소나노튜브가 코팅된 흑연분말을 넣고 자기교반기로 30분간 각각 혼합한 후 차가운 물에 넣어 굳힌다.Carbon nanotube-coated graphite powder is added to the polyamide ethanol solution, mixed with a magnetic stirrer for 30 minutes, and then put in cold water to harden.

건조한 후, 열압기(Hot press)를 이용하여 170도에서 800kgf로 압축 성형한다.After drying, it is compression molded to 800kgf at 170°C using a hot press.

도 4에 도시된 바와 같이, 실시예 6의 방법으로 제조된 복합재 시편의 열전도도는 5.51W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen prepared by the method of Example 6 was 5.51W/mK.

[실시예 7][Example 7]

실시예 2에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다. 복합재 시편을 제조하는 방법은 실시예 6과 동일하다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared according to Example 2, a composite sample in which the weight of the carbon nanotube-coated graphite powder is 60% of the total weight of the composite material. To manufacture. The method of manufacturing the composite specimen is the same as in Example 6.

도 4에 도시된 바와 같이, 실시예 7의 방법으로 제조된 복합재 시편의 열전도도는 7.12W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen prepared by the method of Example 7 was 7.12 W/mK.

[실시예 8][Example 8]

실시예 3에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다. 복합재 시편을 제조하는 방법은 실시예 6과 동일하다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared according to Example 3, a composite sample in which the weight of the carbon nanotube-coated graphite powder is 60% of the total weight of the composite material. To manufacture. The method of manufacturing the composite specimen is the same as in Example 6.

도 4에 도시된 바와 같이, 실시예 8의 방법으로 제조된 복합재 시편의 열전도도는 5.68W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen prepared by the method of Example 8 was 5.68W/mK.

[실시예 9][Example 9]

실시예 4에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다. 복합재 시편을 제조하는 방법은 실시예 6과 동일하다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared according to Example 4, a composite sample in which the weight of the carbon nanotube-coated graphite powder is 60% of the total weight of the composite material. To manufacture. The method of manufacturing the composite specimen is the same as in Example 6.

도 4에 도시된 바와 같이, 실시예 9의 방법으로 제조된 복합재 시편의 열전도도는 8.62W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen prepared by the method of Example 9 was 8.62W/mK.

[실시예 10][Example 10]

실시예 5에 의해 제조한 탄소나노튜브가 코팅된 흑연분말이 포함된 열전도성 복합재의 열전도도를 측정하기 위해, 탄소나노튜브가 코팅된 흑연분말의 중량이 복합재 전체 중량의 60%인 복합재 시편을 제조한다. 복합재 시편을 제조하는 방법은 실시예 6과 동일하다.In order to measure the thermal conductivity of the thermally conductive composite material containing the carbon nanotube-coated graphite powder prepared according to Example 5, a composite sample in which the weight of the carbon nanotube-coated graphite powder is 60% of the total weight of the composite material. To manufacture. The method of manufacturing the composite specimen is the same as in Example 6.

도 4에 도시된 바와 같이, 실시예 10의 방법으로 제조된 복합재 시편의 열전도도는 9.15W/mK로 나타났다.As shown in Figure 4, the thermal conductivity of the composite specimen prepared by the method of Example 10 was found to be 9.15 W / mK.

[비교예 1] 탄소나노튜브는 전혀 혼합되지 않고, 흑연분말만이 크기를 달리하여 포함된 복합재 시편[Comparative Example 1] A composite specimen containing no carbon nanotubes and only graphite powder in different sizes

탄소나노튜브가 전혀 첨가되지 않은 분말크기가 5um, 10um, 20um인 흑연으로, 흑연분말의 함량이 60wt%인 열전도도 측정용 복합재 시편을 각각 제조한다. 이를 위해, 에탄올에 녹는 폴리아미드(Elvamide-8602,듀폰)를 이용하여 먼저 10% 폴리아미드 에탄올 용액을 제조한다. 여기에 흑연분말을 복합재 전체 중량의 40%, 50%, 60%가 되도록, 각각 자기교반기로 30분간 혼합한 후 차가운 물에 넣어 굳힌다. 건조한 후, 열압기(Hot press)를 이용하여 170도에서 800kgf로 압축 성형한다.Composite specimens for measuring thermal conductivity were prepared with graphite having a powder size of 5 μm, 10 μm, and 20 μm to which no carbon nanotubes were added, and the content of graphite powder was 60 wt%. To this end, a 10% polyamide ethanol solution is first prepared using polyamide (Elvamide-8602, DuPont) soluble in ethanol. Here, graphite powder is mixed with a magnetic stirrer for 30 minutes so that it becomes 40%, 50%, and 60% of the total weight of the composite material, and then put in cold water to harden. After drying, it is compression molded to 800kgf at 170°C using a hot press.

흑연분말 크기에 따라 열전도도 측정용 복합재 시편 3개가 만들어진다.According to the graphite powder size, three composite specimens for measuring thermal conductivity are made.

ASTM D5470 측정 규격에 준하여, 복합재 시편의 수직열전도도를 측정한다.In accordance with the ASTM D5470 measurement standard, measure the vertical thermal conductivity of the composite specimen.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 5um인 흑연이 포함된 복합재 시편의 열전도도는 1.46W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing graphite having a powder size of 5 μm to which no carbon nanotubes were added was 1.46 W/mK.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 10um인 흑연이 포함된 복합재 시편의 열전도도는 1.83W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing graphite having a powder size of 10 μm to which no carbon nanotubes were added was 1.83 W/mK.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 20um인 흑연이 포함된 복합재 시편의 열전도도는 2.13W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing graphite having a powder size of 20 μm to which no carbon nanotubes were added was 2.13 W/mK.

[비교예 2] 탄소나노튜브는 전혀 혼합되지 않고, 흑연분말만이 함량을 달리하여 포함된 복합재 시편[Comparative Example 2] A composite specimen containing no carbon nanotubes and only graphite powder with different contents

탄소나노튜브가 전혀 첨가되지 않은, 분말크기가 40um인 흑연으로, 흑연분말의 함량이 40wt%, 50wt%, 60wt%인 열전도도 측정용 복합재 시편을 각각 제조한다. 제조방법은 비교예 1과 동일하다.Composite specimens for measuring thermal conductivity of 40 wt%, 50 wt%, and 60 wt% of graphite powder were prepared with graphite having a powder size of 40 μm to which no carbon nanotubes were added. The manufacturing method is the same as in Comparative Example 1.

ASTM D5470 측정 규격에 준하여, 복합재 시편의 수직열전도도를 측정한다.In accordance with the ASTM D5470 measurement standard, measure the vertical thermal conductivity of the composite specimen.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 40um인 흑연이 40wt% 포함된 복합재 시편의 열전도도는 1.98W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing 40wt% of graphite having a powder size of 40um to which no carbon nanotubes were added was 1.98W/mK.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 40um인 흑연이 50wt% 포함된 복합재 시편의 열전도도는 2.21W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing 50wt% of graphite having a powder size of 40um to which no carbon nanotubes were added was 2.21W/mK.

도 4에 도시된 바와 같이, 탄소나노튜브가 전혀 첨가되지 않은 분말크기가 40um인 흑연이 60wt% 포함된 복합재 시편의 열전도도는 3.28W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen containing 60wt% of graphite having a powder size of 40um to which no carbon nanotubes were added was 3.28W/mK.

[비교예 3] 탄소나노튜브와 흑연분말이, 탄소나노튜브의 함량만을 달리한 단순히 첨가된 복합재 시편[Comparative Example 3] Carbon nanotubes and graphite powder are simply added composite specimens with only different contents of carbon nanotubes

탄소나노튜브와 흑연의 비율이 중량비 3:100, 6:100, 9:100이 되도록 다음과 같은 순서로 탄소나노튜브와 흑연분말을 각각 혼합한다. 탄소나노튜브는 직경이 10~20nm이며, 흑연은 40um 크기의 분말 형태이다.Carbon nanotubes and graphite powder are each mixed in the following order so that the ratio of carbon nanotubes and graphite is 3:100, 6:100, and 9:100 by weight. Carbon nanotubes have a diameter of 10-20 nm, and graphite is in the form of a powder with a size of 40 μm.

탄소나노튜브 40g과 3.5L 증류수를 5L 통에 넣고, 균질분산기(Homogenizer)를 이용하여, 6000 RPM에서 2시간 분쇄한 후, 필터링한다. 이후, 탄소나노튜브 1.5g과 음이온 계면활성제 NaDDBS 1.5g을 각각 물 1000ml과 혼합한 후, 초음파 분산기(700W, bar-type)를 이용하여 2시간 동안 분산한다.Put 40g of carbon nanotubes and 3.5L of distilled water into a 5L bucket, pulverize for 2 hours at 6000 RPM using a homogenizer, and then filter. Thereafter, 1.5 g of carbon nanotubes and 1.5 g of anionic surfactant NaDDBS were mixed with 1000 ml of water, respectively, and then dispersed for 2 hours using an ultrasonic disperser (700W, bar-type).

5L 통에 산화시킨 흑연 50g과 물 1000ml에 넣고, 균질분산기로 500 RPM으로 섞었다.50g of oxidized graphite and 1000ml of water were put in a 5L bucket, and mixed at 500 RPM with a homogeneous disperser.

여기에, 탄소나노튜브 1.5g과 음이온 계면활성제 NaDDBS(anionic surfactant sodium dodecyl benzene sulfonate) 1.5g이 분산된 수용액을, 1000ml(탄소나노튜브:흑연=3:100), 2000ml(탄소나노튜브:흑연=6:100), 3000ml(탄소나노튜브:흑연=9:100)을 넣고, 약 30분간 더 섞은 후, 필터링하여 120도에서 12시간 동안 건조한다.Here, an aqueous solution in which 1.5 g of carbon nanotubes and 1.5 g of anionic surfactant NaDDBS (anionic surfactant sodium dodecyl benzene sulfonate) are dispersed, 1000 ml (carbon nanotubes: graphite = 3:100), 2000 ml (carbon nanotubes: graphite = 6:100), 3000ml (carbon nanotubes: graphite = 9:100) was added, mixed for about 30 minutes, filtered, and dried at 120 degrees for 12 hours.

탄소나노튜브와 흑연이 단순한 혼합된 복합재의 열전도도를 측정하기 위한 복합재 시편을 제조한다. 에탄올에 녹는 폴리아미드(Elvamide-8602,듀폰)를 이용하여 10% 폴리아미드 에탄올 용액을 제조한다. 여기에 흑연분말을 복합재 전체 중량의 60%가 되도록 자기교반기로 30분간 혼합한 후, 차가운 물에 넣어 굳혔다. 건조한 후, 열압기(Hot press)를 이용하여, 170도에서 800kgf로 압축 성형한다.A composite specimen was prepared to measure the thermal conductivity of a simple mixture of carbon nanotubes and graphite. A 10% polyamide ethanol solution was prepared using ethanol-soluble polyamide (Elvamide-8602, DuPont). The graphite powder was mixed with a magnetic stirrer for 30 minutes so that the total weight of the composite material was 60%, and then put in cold water to harden. After drying, it is compression molded to 800kgf at 170°C using a hot press.

흑연대비 탄소나노튜브 함량에 따라 열전도도 측정용 복합재 시편 3개가 만들어진다.According to the content of carbon nanotubes compared to graphite, three composite specimens for measuring thermal conductivity are made.

ASTM D5470 측정 규격에 준하여, 복합재 시편의 수직열전도도를 측정한다.In accordance with the ASTM D5470 measurement standard, measure the vertical thermal conductivity of the composite specimen.

도 4에 도시된 바와 같이, 흑연대비 3%의 탄소나노튜브와, 40um인 흑연이 60wt% 가 단순히 혼합된 복합재 시편의 열전도도는 3.41W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen obtained by simply mixing 3% carbon nanotubes compared to graphite and 60 wt% of 40 μm graphite was found to be 3.41 W/mK.

도 4에 도시된 바와 같이, 흑연대비 6%의 탄소나노튜브와, 40um인 흑연이 60wt% 가 단순히 혼합된 복합재 시편의 열전도도는 3.63W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen obtained by simply mixing 6% carbon nanotubes compared to graphite and 60 wt% of 40 μm graphite was found to be 3.63 W/mK.

도 4에 도시된 바와 같이, 흑연대비 9%의 탄소나노튜브와, 40um인 흑연이 60wt% 가 단순히 혼합된 복합재 시편의 열전도도는 3.57W/mK로 나타났다.As shown in FIG. 4, the thermal conductivity of the composite specimen in which the carbon nanotubes of 9% compared to graphite and 60wt% of graphite of 40um were simply mixed was 3.57W/mK.

상술한 실시예 6,7,8,9,10 들과 비교예 1,2,3 들을 보면, 탄소나노튜브를 넣지 않거나, 탄소나노튜브가 단순히 첨가된 경우보다, 탄소나노튜브가 코팅된 흑연이 포함된 경우, 복합재의 열전도도가 높은 것을 알 수 있다. 열전도도는 실시예 7에서 최고 7.12Wm/K 까지 측정된다.Looking at Examples 6, 7, 8, 9, 10 and Comparative Examples 1,2, and 3 described above, graphite coated with carbon nanotubes is more than when carbon nanotubes are not added or carbon nanotubes are simply added. If included, it can be seen that the thermal conductivity of the composite material is high. Thermal conductivity was measured up to 7.12 Wm/K in Example 7.

더 나아가, 탄소나노튜브가 코팅된 흑연에 전도도가 높은 금속이 도금된 경우, 열전도도가 더 높은 것을 알 수 있다. 열전도도는 실시예 10에서 최고 9.15Wm/K 까지 측정된다.Furthermore, it can be seen that when the carbon nanotube-coated graphite is plated with a metal having high conductivity, the thermal conductivity is higher. Thermal conductivity was measured up to 9.15 Wm/K in Example 10.

Claims (6)

삭제delete 삭제delete 삭제delete 삭제delete 순수한 물, 염기성수용액, 산성수용액, 에탄올, 메탄올을 포함하는 알콜류와 흑연을 산화시킬 수 있는 산소가 포함된 화합물이 녹아 있는 용액으로 이루어진 군에서 선택된 하나 또는 둘 이상인 기능기를 부착시킬 수 있는 용액에, 흑연분말을 담가, 흑연분말의 표면을 산화시켜, 흑연분말의 표면에 기능기를 부착하는 제1단계;
1급 아민염(DDAC), 제2/3급 아민염, 4급 암모늄염(EQ), 이미다졸염, 폴리옥시에틸렌알킬아민, 피리늄형등의 화합물을 포함하는 지방족 아민염 및 4급 암모늄염 군에서 선택된 양이온 계면활성제를 탄소나노튜브의 표면에 부착하는 제2단계;
표면에 기능기가 부착된 흑연분말과, 표면에 양이온 계면활성제가 부착된 탄소나노튜브를, 물리적 혼합기(homogenizer)로 혼합하거나, 초음파혼합기(utrasonicater)로 혼합하거나, 필터링 후 건조하거나, 스프레이 건조하거나, 회전형 드럼 필터링하는 것에 의해 혼합하여, 상기 표면에 기능기가 부착된 흑연분말 표면에, 상기 표면에 양이온 계면활성제가 부착된 탄소나노튜브를 코팅하는 제3단계; 및
50W/mK 이상의 열전도도를 갖는 금속을, 탄소나노튜브가 코팅된 흑연분말에 무전해 도금하는 제4단계를 포함하는 것을 특징으로 하는 탄소나노튜브가 코팅된 흑연분말 제조방법.
To a solution capable of attaching one or more functional groups selected from the group consisting of a solution in which an alcohol containing pure water, a basic aqueous solution, an acidic aqueous solution, ethanol, methanol, and a compound containing oxygen capable of oxidizing graphite is dissolved, A first step of soaking the graphite powder, oxidizing the surface of the graphite powder, and attaching a functional group to the surface of the graphite powder;
In the group of aliphatic amine salts and quaternary ammonium salts including compounds such as primary amine salts (DDAC), secondary and tertiary amine salts, quaternary ammonium salts (EQ), imidazole salts, polyoxyethylenealkylamines and pyridinium-type compounds A second step of attaching the selected cationic surfactant to the surface of the carbon nanotubes;
Graphite powder with functional groups attached to the surface and carbon nanotubes with cationic surfactant attached to the surface are mixed with a physical homogenizer, mixed with an ultrasonic mixer, dried after filtering, or spray dried, A third step of mixing by filtering a rotary drum to coat the surface of the graphite powder having a functional group attached thereto, and coating a carbon nanotube having a cationic surfactant attached thereto; And
A method for producing carbon nanotube-coated graphite powder comprising a fourth step of electroless plating a metal having a thermal conductivity of 50 W/mK or more on the carbon nanotube-coated graphite powder.
삭제delete
KR1020180165026A 2018-12-19 2018-12-19 Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube Expired - Fee Related KR102229179B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180165026A KR102229179B1 (en) 2018-12-19 2018-12-19 Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180165026A KR102229179B1 (en) 2018-12-19 2018-12-19 Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube

Publications (2)

Publication Number Publication Date
KR20200076173A KR20200076173A (en) 2020-06-29
KR102229179B1 true KR102229179B1 (en) 2021-03-18

Family

ID=71401042

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180165026A Expired - Fee Related KR102229179B1 (en) 2018-12-19 2018-12-19 Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube

Country Status (1)

Country Link
KR (1) KR102229179B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473708B1 (en) * 2013-02-21 2014-12-19 엠케이전자 주식회사 Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
KR101728720B1 (en) * 2015-04-16 2017-04-20 성균관대학교산학협력단 Graphene composite comprising three dimensional carbon nanotube pillars and method of fabricating thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274441B1 (en) 2011-07-04 2013-06-18 (주)월드튜브 method for mixed dispersion of graphene and graphite nanoplatelets and method for mixed powder of graphene and graphite nanoplatelets
JP2014021257A (en) * 2012-07-18 2014-02-03 Canon Inc Zoom lens and image capturing device having the same
US10163540B2 (en) * 2015-12-03 2018-12-25 Nanotek Instruments, Inc. Production process for highly conducting and oriented graphene film
KR101809355B1 (en) * 2016-03-17 2017-12-14 전자부품연구원 3-dimensional carbon nano structure and preparing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473708B1 (en) * 2013-02-21 2014-12-19 엠케이전자 주식회사 Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
KR101728720B1 (en) * 2015-04-16 2017-04-20 성균관대학교산학협력단 Graphene composite comprising three dimensional carbon nanotube pillars and method of fabricating thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPWO2014021257 A1

Also Published As

Publication number Publication date
KR20200076173A (en) 2020-06-29

Similar Documents

Publication Publication Date Title
US20190284094A1 (en) Electrically conductive cement-based composite composition
KR102111920B1 (en) Conductive paste composition and ceramic electronic component having external electrodes formed using the same
JP5563607B2 (en) Flaky conductive filler
CN103923552B (en) A kind of high-performance graphene-acicular titanium dioxide conductive coating and preparation method thereof
JP2013522155A (en) Material composition, its manufacture and use as seal layer and oxidation protection layer
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
KR101294593B1 (en) Electrical conductive adhesives and fabrication method therof
Xu et al. Preparation, morphology, and properties of conducting polyaniline‐grafted multiwalled carbon nanotubes/epoxy composites
KR102229179B1 (en) Method for manufacturing the graphite powders coated by carbon nanotube and thermal conducting composite materials containing the graphite powders coated by carbon nanotube
KR20090091762A (en) Conductive paste
US20110284807A1 (en) Metal fine particle, conductive metal paste and metal film
CN108385090A (en) A kind of Ti of core/shell structure3C2Alkene/Cu powders and preparation method thereof
KR20170035571A (en) Improved Graphene ink composition and manufacturing method
CN110090966A (en) A kind of conductive metal filler and preparation method thereof
KR102411685B1 (en) Filler composite material with high insulation and heat resistance, and the method for manufacturing through dry particle-particle complexation
CN111205719A (en) Silver-copper conductive paint and preparation method thereof
CN103219065B (en) A kind of environmental-friendly conductive sizing agent based on carbon nanotube-nano copper powder
KR20180039968A (en) Electrical contact materials with high radiating properties and arc-resistivity using silver-silver coated carbon nanotube composites and its manufacturing method
Xie et al. Thermal conductive composites based on silver‐plating graphite nanosheet and epoxy polymer
JP2016151029A (en) Conductive filler and method for producing the same, and conductive paste
KR101648472B1 (en) Preparing method of reinforcement for metal-carbon complex
TWI631160B (en) Conductive paste and substrate with conductive film
Liu et al. Nanoscale polygonal carbon: a unique low-loading filler for effective microwave absorption
JP2002220507A (en) Phenol resin molding material
KR101157737B1 (en) Conductive adhesive and manufacturing method thereof

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20181219

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200727

Patent event code: PE09021S01D

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20201127

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210119

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210311

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210312

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20241222