[go: up one dir, main page]

KR20190044158A - 라이다 장치 및 이를 포함하는 라이다 시스템 - Google Patents

라이다 장치 및 이를 포함하는 라이다 시스템 Download PDF

Info

Publication number
KR20190044158A
KR20190044158A KR1020170136198A KR20170136198A KR20190044158A KR 20190044158 A KR20190044158 A KR 20190044158A KR 1020170136198 A KR1020170136198 A KR 1020170136198A KR 20170136198 A KR20170136198 A KR 20170136198A KR 20190044158 A KR20190044158 A KR 20190044158A
Authority
KR
South Korea
Prior art keywords
lens unit
unit
optical signal
lens
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020170136198A
Other languages
English (en)
Other versions
KR102093637B1 (ko
Inventor
심영보
문연국
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to KR1020170136198A priority Critical patent/KR102093637B1/ko
Priority to PCT/KR2017/012756 priority patent/WO2019078401A1/en
Priority to US15/814,131 priority patent/US10775485B2/en
Publication of KR20190044158A publication Critical patent/KR20190044158A/ko
Application granted granted Critical
Publication of KR102093637B1 publication Critical patent/KR102093637B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/127Adaptive control of the scanning light beam, e.g. using the feedback from one or more detectors
    • G02B26/128Focus control

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

실시예는 광 신호를 조사하는 송신부; 상기 광 신호를 평행광으로 변환시키는 제1 렌즈부; 상기 변환된 광 신호의 방향을 조절하는 반사부; 상기 제1 반사부의 반사 각도의 변동에도 상기 조절된 광 신호가 동일 초점면을 갖는 제2 렌즈부; 상기 제2 렌즈부를 통과한 광 신호를 평행광으로 변환하는 제3 렌즈부; 상기 제3 렌즈부를 통과한 광 신호는 피사체로부터 반사되고, 반사된 광 신호가 통과하는 제4 렌즈부; 및 상기 제4 렌즈부를 통과한 광 신호를 수신하는 수신부;를 포함하고, 상기 제3 렌즈부와 상기 제4 렌즈부는 제1 방향으로 동일 선상에 위치하고, 상기 제1 방향은 제2 방향과 수직한 방향이고, 상기 제2 방향은 상기 제3 렌즈부에서 상기 피사체를 향한 방향인 라이다 장치를 개시한다.

Description

라이다 장치 및 이를 포함하는 라이다 시스템{LIDAR DEVICE AND SYSTEM COMPRISING THE SAME}
실시예는 라이다 장치 및 이를 포함하는 라이다 시스템에 관한 것이다.
LIDAR(Light Detection and Ranging)는 피사체에 빛, 예를 들어 레이저를 조사한 후, 피사체로부터 반사된 빛을 분석하여 피사체의 물성, 예를 들어 거리, 방향, 속도, 온도, 물질 분포 및 농도 특성 등을 측정할 수 있는 원격 탐지 장치 중 하나이다. LIDAR는 높은 에너지 밀도와 짧은 주기를 가지는 펄스 신호를 생성할 수 있는 레이저의 장점을 활용하여 보다 정밀하게 피사체의 물성을 측정할 수 있다.
LIDAR는 특정 파장의 레이저 광원 또는 파장 가변이 가능한 레이저 광원을 광원으로 사용하여 3차원 영상 획득, 기상 관측, 피사체의 속도 또는 거리 측정, 자율 주행 등과 같은 다양한 분야에서 사용되고 있다. 예를 들어, LIDAR는 항공기, 위성 등에 탑재되어 정밀한 대기 분석 및 지구 환경 관측에 활용되고 있으며, 우주선 및 탐사 로봇에 장착되어 피사체까지의 거리 측정 등 카메라 기능을 보완하기 위한 수단으로 활용되고 있다.
또한, 지상에서는 원거리 측정, 자동차 속도 위반 단속 등을 위한 간단한 형태의 라이다 센서 기술들이 상용화되고 있다. 최근에는 레이저 스캐너 또는 3D 영상 카메라로 활용되어 3D 리버스 엔지니어링이나 무인 자동차 등에 사용되고 있다.
최근에는 360도 회전에 따라 공간 정보를 인지하는 라이다가 개발되고 있다. 하지만, 모터 등의 기계적 회전에 따른 라이다 장치는 마모, 유격 등의 기계적 결함이 존재한다는 한계점이 있어, 사람의 생명과 직접적인 관련성이 있는 자율 주행에 적용되는데 어려움이 존재한다.
실시예는 차량 및 모바일에 적용 가능한 라이다 장치를 제공한다.
또한, 광 효율이 향상된 라이다 장치 및 라이다 시스템을 제공한다.
또한, 소형, 경량이며 내구성이 개선된 라이다 장치를 제공한다.
또한, 기계적인 회전이 없이 광학적인 구성만으로 공간을 스캐닝하는 라이다 장치를 제공한다.
실시예에 따른 라이다 장치는 광 신호를 조사하는 송신부; 상기 광 신호를 평행광으로 변환시키는 제1 렌즈부; 상기 변환된 광 신호의 방향을 조절하는 반사부; 상기 제1 반사부의 반사 각도의 변동에도 상기 조절된 광 신호가 동일 초점면을 갖는 제2 렌즈부; 상기 제2 렌즈부를 통과한 광 신호를 평행광으로 변환하는 제3 렌즈부; 상기 제3 렌즈부를 통과한 광 신호는 피사체로부터 반사되고, 반사된 광 신호가 통과하는 제4 렌즈부; 및 상기 제4 렌즈부를 통과한 광 신호를 수신하는 수신부;를 포함하고, 상기 제3 렌즈부와 상기 제4 렌즈부는 제1 방향으로 동일 선상에 위치하고, 상기 제1 방향은 제2 방향과 수직한 방향이고, 상기 제2 방향은 상기 제3 렌즈부에서 상기 피사체를 향한 방향이다.
상기 제4 렌즈부는 상기 제3 렌즈부를 통과한 광 신호의 각도를 증가시킬 수 있다.
상기 광 신호는, 상기 제1 렌즈부와 상기 제2 렌즈부 사이, 상기 제3 렌즈부와 상기 피사체 사이 및 상기 피사체와 상기 제4 렌즈부에서 평행광일 수 있다.
상기 광 신호는 상기 제2 렌즈부에서 경로인 제1 경로와 제4 렌즈부에서 경로인 제2 경로를 포함하고, 상기 제1 경로와 상기 제2 경로는 상기 제2 방향으로 평행할 수 있다.
상기 제1 경로와 상기 제2 경로는 상기 광 신호의 방향이 서로 반대일 수 있다.
상기 수신부는, 상기 제4 렌즈부를 통과한 광 신호를 수신하는 채널부; 및 상기 채널부에서 수신한 광 신호를 이용하여 상기 피사체 사이의 거리를 연산하는 조작부를 포함할 수 있다.
상기 채널부는 상기 동일 초점면에 위치할 수 있다.
상기 채널부는 복수의 수광 소자를 포함하는 복수 개의 채널을 포함할 수 있다.
상기 조작부는, 상기 반사부의 방향에 대응하는 상기 복수 개의 채널을 선택하여 상기 제4 렌즈부를 통과한 광신호를 수신할 수 있다.
상기 동일 초점면에 위치하는 위치하는 초점부;를 더 포함할 수 있다.
상기 반사부는 틸팅 각도를 조절하여 광학 수차를 보상할 수 있다.
상기 반사부는 MEMS(Micro Electro Mechanical system) 미러를 포함할 수 있다.
실시예에 따른 라이다 시스템은 복수 개의 영역을 스캐닝하는 라이다 장치를 포함하고, 상기 라이다 장치는, 광 신호를 조사하는 송신부; 상기 광 신호를 평행광으로 변환시키는 제1 렌즈부; 상기 변환된 광 신호의 방향을 조절하는 반사부; 상기 제1 반사부의 반사 각도의 변동에도 상기 조절된 광 신호가 동일 초점면을 갖는 제2 렌즈부; 상기 제2 렌즈부를 통과한 광 신호를 평행광으로 변환하는 제3 렌즈부; 상기 제3 렌즈부를 통과한 광 신호는 피사체로부터 반사되고, 반사된 광 신호가 통과하는 제4 렌즈부; 및 상기 제4 렌즈부를 통과한 광 신호를 수신하는 수신부;를 포함하고, 상기 제3 렌즈부와 상기 제4 렌즈부는 제1 방향으로 동일 선상에 위치하고, 상기 제1 방향은 제2 방향과 수직한 방향이고, 상기 제2 방향은 상기 제3 렌즈부에서 상기 피사체를 향한 방향이다.
실시예에 따르면, 라이다 장치를 차량 및 모바일에 적용 가능한 형태로 구현할 수 있다.
또한, 광 효율이 향상되고 스캔 각도가 개선된 라이다 장치를 제작할 수 있다.
또한, 소형, 경량이며 내구성이 개선된 라이다 장치를 제작할 수 있다.
또한, 기계적인 회전이 없이 광학적인 구성만으로 공간을 스캐닝하여 기계적인 결함 등을 보완하는 라이다 장치를 제작할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 실시예에 따른 라이다 장치의 분해 사시도이고,
도 2는 실시예에 따른 라이다 장치가 송광 및 수광 시 단면도이고,
도 3은 실시예에 따른 라이다 장치의 송신부, 제1 렌즈부 및 반사부를 도시한 도면이고,
도 4는 실시예에 따른 라이다 장치의 반사부, 제2 렌즈부 및 초점부를 도시한 도면이고,
도 5는 실시예에 따른 라이다 장치의 제2 렌즈부, 초점부 및 제3 렌즈부를 도시한 도면이고,
도 6은 실시예에 다른 라이다 장치의 제4 렌즈부 및 조리개를 도시한 도면이고,
도 7은 실시예에 따른 라이다 장치의 채널부를 도시한 도면이고,
도 8은 실시예에 따른 라이다 장치의 조작부를 도시한 도면이고,
도 9는 실시예에 따른 라이다 시스템을 도시한 도면이고,
도 10은 본 발명의 한 실시예에 따른 라이다 장치가 차량에 장착된 예를 나타낸다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 실시예에 따른 라이다 장치의 분해 사시도이고, 도 2는 실시예에 따른 라이다 장치가 송광 및 수광 시 단면도이다.
도 1 및 도 2를 참조하면, 실시예에 따른 라이다 장치(10)는 송신부(110), 제1 렌즈부(120), 반사부(130), 제2 렌즈부(140), 초점부(150), 제3 렌즈부(160), 제4 렌즈부(170), 조리개(180), 수신부(190)를 포함할 수 있다.
먼저, 송신부(110)는 레이저 펄스 광을 출력할 수 있으며, 송신부(110)는 LD(laser diode)를 포함할 수 있다. 또한, 송신부(110)는 다양한 파장을 갖는 광을 송출할 수 있다. 예시적으로, 송신부(110)가 송출하는 광은 RF(Radio Frequency)보다 파장이 작을 수 있다. 이러한 구성에 의하여, 송신부(110)는 높은 광 에너지를 출사하므로 수신부는 높은 에너지를 갖는 반사된 광을 수신할 수 있다. 이에, 높은 해상도의 공간 정보를 얻을 수 있으므로, 3차원 공간 정보 활용에 라이다 장치가 이용될 수 있다. 이하에서, 송신부(110)에서 송출된 광을 제1 신호라 한다.
제1 렌즈부(120)는 송신부(110)로부터 제1 신호를 평행광으로 변환할 수 있다. 예컨대, 제1 렌즈부(120)는 콜리메이터 렌즈(Collimator lens)를 포함할 수 있다. 그리고 제1 렌즈부(120)는 복수 개의 렌즈를 포함할 수 있다. 도 1 및 도 2에서와 같이, 제1 렌즈부(120)는 제1-1 렌즈(121)와 제1-2 렌즈(122)를 포함할 수 있다. 그리고 앞서 설명한 바와 같이 제1-1 렌즈(121) 및 제1-2 렌즈(122)를 통과한 광은 평행광일 수 있다. 예컨대, 제1 신호는 제1-2 렌즈(122)를 지나면 평행광일 수 있다.
여기서, 평행광은 광 경로 상의 광의 다발이 서로 평행한 광을 말한다. 따라 제1 렌즈부(120)는 송신부(110)에서 광이 조사되는 광 경로 상에 배치될 수 있다. 다만, 이러한 위치에 한정되는 것은 아니며, 제1 렌즈부(120)는 송신부(110)와 제1 렌즈부(120) 사이에 반사 부재를 추가하여 반사 부재에 의해 변환된 광 경로 상에 배치될 수 있다. 이에, 제1 렌즈부(120)는 이러한 위치에 한정되지 않는다.
반사부(130)는 제1 렌즈부(120)를 통과한 제1 신호의 광 경로 상에 배치될 수 있다. 그리고 반사부(130)는 제1 신호의 광 경로를 조절할 수 있다. 반사부(130)는 제1 렌즈부(120)를 통과한 제1 신호가 입사된 방향에 대해 수직한 방향으로 제1 신호를 반사할 수 있다. 다만, 이러한 반사 각도에 한정되는 것은 아니며, 실시예에 따른 라이다 장치(10)가 적용되는 환경에 따라 다양한 반사 각도를 가질 수 있다. 이하에서 반사 각도는 틸팅 각도에 대응하여 변경될 수 있다.
반사부(130)로 입사된 광과 평행광이며, 반사부(130)에서 반사되어 출력된 광도 모두 평행광일 수 있다. 반사부(130)는 마이크로 전자 기계적 시스템(MEMS) 미러를 포함할 수 있다. 예컨대, 반사부(130)는 미러판(미도시됨)과 구동부(미도시됨)를 포함할 수 있다.
미러판(미도시됨)은 소정의 각도로 틸팅될 수 있다. 미러판(미도시됨)은 제5 렌즈부(130)를 통과한 제1 신호의 광 경로 상에 배치되어 제1 신호를 틸팅 각도에 따라 다양한 방향으로 반사할 수 있다. 미러판(미도시됨)은 1㎜2 내지 25㎜2의 크기를 가질 수 있으나, 이에 한정되는 것은 아니다. 또한, 미러판(미도시됨)의 틸팅 각도는 최대 20도 정도일 수 있다. 이 때, 미러판(미도시됨)에 평행광이 입사되어 광의 송광/수광에서 광의 발산이 차단되어 광 효율이 개선될 수 있다.
반사부(130)는 구동부(142)의 동작으로 미러판(미도시됨)이 소정의 각도로 틸팅될 수 있다. 반사부(130)는 구동부(142)에 의해 평행 광들의 광 경로를 다양하게 변경할 수 있다.
미러판(미도시됨)은 기계적 방식이 아니라 전자기력에 의해 틸팅될 수 있다. 미러판(미도시됨)은 시간에 대해 사인파의 형태로 틸팅하여, 수신부(190)로 입사되는 광의 사인형의 구면 수차를 시간축에서 보상할 수 있다.
제2 렌즈부(140)는 반사부(130)로부터 반사된 광 경로 상에 배치될 수 있다. 제2 렌즈부(140)는 동일 초점면을 갖도록 반사부(130)에서 반사된 제1 신호를 굴절 시킬 수 있다. 일예로, 제2 렌즈부(140)는 에프 세타 렌즈(F-theta lens)를 포함할 수 있다.
제2 렌즈부(140)는 평행광을 굴절시켜 초점을 형성시킬 수 있다. 그리고 제2 렌즈부(140)를 통과한 광은 평행광은 아닐 수 있으나, 평행한 광경로를 가질 수 있다. 예컨대, 제2 렌즈부(140)로 입사되는 광은 평행광이나, 제2 렌즈부(140)를 통과한 광은 평행광이 아니나 평행한 광경로를 가진 광일 수 있다.
즉, 제2 렌즈부(140)를 통과한 광은 평행광(collimation)은 아니지만 반사부(130)의 틸팅 각도가 바뀌어도 진행 방향(예컨대, 광의 진행 각도)이 달라지지 않는다. 이에 따라, 광 신호를 생성하는 송신부가 물리적으로 평행하게 이동하는 것과 동일한 효과를 제공할 수 있다. 즉, 실시예에 따른 라이다 장치는 광학적으로 송신부를 평행 이동하여 다양한 광 신호의 이동 경로를 제공할 수 있습니다. 제2 렌즈부(140)는 반사부(130)로부터 반사된 다양한 경로의 광이 동일한 평면 상의 초점을 갖도록 할 수 있다.
예컨대, 제2 렌즈부(140)는 동일 평면 상에 스캔 각도 별 이격된 초점을 형성할 수 있다.
즉, 제2 렌즈부(140)로 입사된 제1 신호는 반사부(130)에서 반사된 광으로 광 면적이 반사부(130)의 크기만큼 작아 평행광으로 스캔 각도를 크게 하기 전까지 광 효율은 매우 높은 상태로 유지될 수 있다. 그리고 제2 렌즈부(140)는 반사부(130)를 통과한 제1 신호의 피사체에 대한 스캔 각도를 증가시키면서 높은 광 효율이 유지되도록 스캔 각도 별 이격된 초점거리를 형성할 수 있다. 즉, 반사부(130)의 각도에 따라 제2 렌즈부(140)를 통과한 광이 일정 영역에 집중되지 않아 광손실 없이 서로 다른 변위에 형성될 수 있다.
초점부(150)는 제2 렌즈부(140)를 통과한 광들이 형성하는 초점 상에 배치될 수 있다. 광은 초점부(150)로부터 다시 평행한 광경로를 가지면서 제3 렌즈부(160)로 조사될 수 있다. 초점부(150)는 제2 렌즈부(140)와 제3 렌즈부(160) 사이에 배치될 수 있으며, 제3 렌즈부(160)보다 제2 렌즈부(140)에 더 가깝게 위치할 수 있다. 이로써, 제3 렌즈부(160)로 입사되는 광의 전체 각도를 크게하여 스캔 각도를 개선할 수 있다. 여기서, 스캔 각도는 물체를 향해 제3 렌즈부(160)를 통과한 광이 가질 수 있는 각도를 의미한다.
제3 렌즈부(160)는 초점부(150)를 통과한 제1 신호를 다시 평행광으로 변환시킬 수 있다. 이에, 제3 렌즈부(160)를 통과한 제1 신호는 평행광일 수 있다. 제3 렌즈부(160)는 텔레센트릭 렌즈(telecentric lens)를 포함할 수 있다.
제3 렌즈부(160)는 제3-1 렌즈부(161)와 제3-2 렌즈부(162)를 포함할 수 있다. 제3-1 렌즈부(161)와 제3-2 렌즈부(162)는 복수 개의 렌즈를 포함할 수 있다. 그리고 제3-1 렌즈부(161)는 볼록 렌즈일 수 있다. 이에, 제3-1 렌즈부(161)는 제3 렌즈부(160)로 입사된 광을 집광할 수 있다. 그리고 제3-2 렌즈부(162)는 오목 렌즈를 포함할 수 있다. 이에, 제3-2 렌즈부(162)는 제3 렌즈부(160)로 입사된 광을 퍼지게 할 수 있다. 이러한 구성에 의하여, 실시예에 따른 라이다 장치(10)는 소형으로 제작 가능하면서 스캔 각도가 향상된 효과를 제공할 수 있다.
그리고 앞서 설명한 바와 같이, 초점부(150)가 제3 렌즈부(160)보다 제2 렌즈부(140)에 가깝게 위치하여 제3 렌즈부(160)로 입사되는 제1 신호의 면적이 제2 렌즈부(140)에서 출사되는 제1 신호의 면적보다 클 수 있다. 이러한 구성에 의하여, 제2 렌즈부(140)로 입사된 광은 제3 렌즈부(160)로 입사된 광보다 입사 면적이 작다. 또한, 제2 렌즈부(140)로 입사된 광과 제3 렌즈부(160)를 통과한 광은 모두 평행광일 수 있으며, 제2 렌즈부(140)로 입사된 평행광은 제3 렌즈부(160)를 통과한 평행광보다 큰 광각을 가질 수 있다. 그리고 제3 렌즈부(160)를 통과한 광은 제4 렌즈부(170)를 통과하면서 광각이 커져 120° 이상의 스캔 각도를 제공할 수 있다.
제4 렌즈부(170)는 피사체(O)로부터 제3 렌즈부(160)와 동일 거리 상에 위치할 수 있다. 즉, 제4 렌즈부(170)는 피사체(O)에서 제3 렌즈부(160)를 향한 방향(이하 제1 방향)과 수직한 방향(이하 제2 방향)으로 동일하게 위치할 수 있다. 제2 방향은 제2 렌즈부(140)에서 피사체(O)를 향한 방향과 동일 할 수 있다. 제4 렌즈부(170)는 제4-1 렌즈부(171)와 제4-2 렌즈부(172)를 포함할 수 있다. 제4-1 렌즈부(171)은 피사체(O)로부터 제3-1 렌즈부(161)가 제1 방향으로 이격된 거리와 동일하게 피사체(O)로부터 제1 방향으로 이격 배치될 수 있다. 마찬가지로, 제4-2 렌즈부(172)는 피사체(O)로부터 제3-2 렌즈부(162)가 제1 방향으로 이격된 거리와 동일하게 피사체(O)로부터 제1 방향으로 이격 배치될 수 있다.
또한, 제3-1 렌즈부(161)와 제4-1 렌즈부(171)는 제2 방향으로 동일 직선 상에 위치할 수 있다. 마찬가지로, 제3-2 렌즈부(162)와 제4-2 렌즈부(172)는 제2 방향으로 동일 직선 상에 위치할 수 있다. 이로써, 실시예에 따른 라이다 장치는 동일 렌즈를 갖는 제3 렌즈부(160) 및 제4 렌즈부(170)를 포함하고, 제3 렌즈부(160)와 제4 렌즈부(170)는 동일 렌즈 및 렌즈가 동일 위치에 배치되므로 제조 비용을 절감하고 광 경로가 동일하여 수신부에서 선택적으로 광 신호를 수신할 수 있다. 이에, 수신부에서 광 수신을 위한 전력 소모를 감소할 수 있다.
제4 렌즈부(170)는 제4-1 렌즈부(171)와 제4-2 렌즈부(172)를 포함할 수 있다. 제4-1 렌즈부(171)와 제4-2 렌즈부(172)는 복수 개의 렌즈를 포함할 수 있다. 그리고 제4-1 렌즈부(171)는 볼록 렌즈일 수 있다. 이에, 제4-1 렌즈부(171)는 제4 렌즈부(170)로 입사된 광을 집광할 수 있다. 그리고 제4-2 렌즈부(172)는 오목 렌즈를 포함할 수 있다. 이에, 제4-2 렌즈부(172)는 제4 렌즈부(170)로 입사된 광을 퍼지게 할 수 있다. 이러한 구성에 의하여, 실시예에 따른 라이다 장치(10)는 소형으로 제작 가능하면서 스캔 각도가 향상된 효과를 제공할 수 있다.
제4 렌즈부(170)는 제3 렌즈부(160)와 마찬가지로 광각 렌즈(wide angle lens)일 수 있다. 이러한 구성에 의하여, 제4 렌즈부(170)는 광축을 기준으로 피사체(O)로부터 반사된 제1 신호의 각도를 증가시킬 수 있다. 반사부에서 틸팅이 없는 경우 제4 렌즈부(170)에 대한 광축은 제4 렌즈부(170)에서 피사체(O)를 향한 광 경로이며, 제3 렌즈부(160)에 대한 광축은 제3 렌즈부(160)에서 피사체(O)를 향한 광 경로를 의미한다.
즉, 광은 반사부(130)의 다양한 틸팅 각도에 따라 다양한 광 경로를 이루며, 다양한 광 경로를 이루는 광은 제3 렌즈부(160)를 지나 광각이 커져 넓은 스캔범위를 이룰 수 있으며, 피사체(O)로부터 수신하는 범위도 제4 렌즈부(170)에서 상기 스캔범위와 동일하게 넓은 범위를 제공할 수 있다.
예시적으로, 피사체(O)를 향한 제1 신호(R1)는 1-1 신호(R1-1), 제1-2 신호(R1-2) 제1-3 신호(R1-3)을 포함할 수 있다. 여기서, 제1-2 신호(R1-2)는 광축과 동일 축의 제1 신호(R1)일 수 있다. 제1-2 신호(R1-2)는 반사부(130)의 틸팅 각도가 0도일 때 피사체(O)로 출력되는 광일 수 있다. 또한, 제1-1 신호(R1-1)는 광축으로부터 가장 작은 각도를 갖는 제1 신호(R1)일 수 있다. 그리고 제1-3 신호(R1-3)는 광축으로부터 가장 큰 각도를 갖는 제1 신호(R1)일 수 있다. 이 경우, 반사부(130)는 틸팅 각도 최대 크기를 가질 수 있다. 예시적으로, 제1-1 신호(R1-1)는 반사부(130)가
Figure pat00001
도 틸팅된 경우이고, 제1-3 신호(R1-3)는 반사부(130)가
Figure pat00002
도 틸팅된 경우에 라이다 장치(10)에서 피사체(O)로 출력되는 광일 수 있다.
그리고 피사체(O)에서 산란 및 반사된 광은 피사체(O)로 조사된 광이 제1 방향으로 평행 이동한 광 경로와 동일한 광 경로를 가질 수 있다. 피사체(O)로부터 반사, 산란된 광 중 수신부(190)로 수신되는 광을 제2 신호(R2)라 한다.
마찬가지로, 제2 신호(R2)는 제2-1 신호(R2-1), 제2-2 신호(R2-2) 제2-3 신호(R2-3)을 포함할 수 있다. 제2-1 신호(R2-1)는 제1-1 신호(R1-1)가 피사체(O)에서 반사된 광이며, 제2-2 신호(R2-2)는 제1-2 신호(R1-2)가 피사체(O)에서 반사된 광이고, 제2-3 신호(R2-3)는 제1-3 신호(R1-3)가 피사체(O)에서 반사된 광일 수 있다.
제2 신호(R2)는 제4 렌즈부(170)로 입사되며, 평행광일 수 있다. 입사된 광은 제3 렌즈부(160)의 광 경로가 제2 방향으로 평행 이동한 광 경로를 가지며, 평행 이동한 광 경로 상에 초점을 형성할 수 있다. 그리고 이하 설명한 바와 같이, 제1 신호와 마찬가지로 스캔 각도에 따른 복수 개의 초점이 수신부(190)의 채널부(191) 상에 형성될 수 있다.
조리개(180)는 제4-1 렌즈부(171)과 제4-2 렌즈부(172) 사이에 배치될 수 있다. 조리개(180)는 반사부(130)의 각도에 따라 균일한 광량을 가지도록 광량을 제어할 수 있다. 이러한 구성에 의하여, 실시예에 따른 라이다 장치(10)는 광량이 균일하여 해상도가 개선된 영상을 제공할 수 있다.
수신부(190)는 송신부(110)에서 송출된 광이 피사체(O)에서 반사 또는 산란된 광을 수신할 수 있다. 수신부(190)는 송신부(110)와 인접 배치되어, 이로써, 실시예에 따른 라이다 장치(10)는 광 손실을 저감하여 광 효율을 개선할 수 있다.
수신부(190)는 채널부(191)과 조작부(192)를 포함할 수 있다. 채널부(191)는 제4 렌즈부(170)를 통과한 광을 수신할 수 있다. 예컨대, 채널부(191)는 다채널로 이루어져, 반사부(130)의 각도에 따라 수신되는 채널은 변경될 수 있다. 채널부(191)는 초점부(150)와 제2 방향으로 동일 직선 상에 위치할 수 있다. 즉, 채널부(191)는 제4 렌즈부(170)의 후초점거리(back focal length)에 배치될 수 있다. 이에 따라, 실시예에 따른 라이다 장치(10)는 초점부(150)의 실상의 크기를 감지하여, 채널부(191)의 각 채널의 크기를 초점부(150)의 각 광의 실상의 크기보다 크게하여 수신 효율을 개선할 수 있다. 구체적인 설명은 이하 도 7 및 도 8에서 설명한다.
수신부(190)는 채널부(191)에서 수신한 레이저 광에 대응하는 신호를 조작부(192)에 전송할 수 있다. 조작부(192)는 라이다 장치(10)로부터 수신한 신호를 이용하여 라이다 장치(10)와 피사체(O) 간의 거리를 계산한다. 한 예로, 조작부(192)는 TOF(Time Of Flight) 방식에 따라, 송신부(110)가 레이저 광을 출력한 후, 피사체(O)로부터 반사되어 수신부(190)로 돌아오기까지 걸리는 시간을 이용하여 라이다 장치(10)와 피사체(O) 간의 거리를 계산할 수 있다. 또는, 조작부(192)는 PS(Phase Shift) 방식에 따라, 송신부(110)가 특정 주파수를 가지고 연속적으로 변조되는 레이저 광을 방출한 후, 피사체(O)로부터 반사되어 수신부(190)로 돌아온 신호의 위상을 이용하여 라이다 장치(10)와 피사체(O) 간의 거리를 계산할 수 있다. 즉, 이를 위하여, 라이다 장치(10)의 조작부(192)는 수신한 레이저 광을 신호 처리하는 연산부를 포함할 수 있다. 이에 대해서는, 이하 도 8에서 자세히 설명한다.
도 3은 실시예에 따른 라이다 장치의 송신부, 제1 렌즈부 및 반사부를 도시한 도면이고, 도 4는 실시예에 따른 라이다 장치의 반사부, 제2 렌즈부 및 초점부를 도시한 도면이고, 도 5는 실시예에 따른 라이다 장치의 제2 렌즈부, 초점부 및 제3 렌즈부를 도시한 도면이고, 도 6은 실시예에 다른 라이다 장치의 제4 렌즈부 및 조리개를 도시한 도면이고, 도 7은 실시예에 따른 라이다 장치의 채널부를 도시한 도면이고, 도 8은 실시예에 따른 라이다 장치의 조작부를 도시한 도면이다.
먼저, 도 3을 참조하면, 송신부(110)는 출력되는 레이저 광의 광축이 제1 렌즈부(120)와 동일 선상에 위치하도록 배치될 수 있다. 실시예로, 앞서 설명한 바와 같이 제1 렌즈부(120)를 지난 제1 신호는 평행광일 수 있다.
그리고 제1 렌즈부(120)를 지난 제1 신호는 반사부(130)에서 반사될 수 있다. 반사부(130)에서 반사된 제1 신호(R3)는 반사부(130)의 틸팅 각도에 따라 여러 방향으로 반사될 수 있다. 예컨대, 반사부(130)의 틸팅 각도가 0도인 경우에 제1 렌즈부(120)를 지난 제1 신호는 반사부(130)로 입사되는 각에 대해 수직한 방향으로 반사될 수 있다. 예컨대, 반사부(130)의 틸팅 각도가 0도인 경우에 반사부(130)에서 반사된 제1 신호(R3)는 제2 방향과 동일한 방향으로 광 경로를 형성할 수 있다. 그리고 반사부(130)는 틸팅 각도가 0도인 경우 대비 제1 방향으로 일측으로 기울어질 수 있다. 이 경우, 반사부(130)의 틸팅 각도는 음이 될 수 있다. 예컨대, 반사부(130)의 틸팅 각도는 -6도까지 형성될 수 있다. 또한, 반사부(130)는 틸팅 각도가 0도인 경우 대비 제1 방향으로 타측으로 기울어질 수 있다. 이 경우, 반사부(130)의 틸팅 각도는 양이 될 수 있다. 예컨대, 반사부(130)의 틸팅 각도는 +6도까지 형성될 수 있다. 반사부(130)의 틸팅 각도에 따라 반사부(130)에서 반사된 제1 신호(R3)는 다양한 방향으로 광 경로를 형성할 수 있다. 또한, 반사부(130)에서 반사된 제1 신호(R3)는 평행광일 수 있다.
도 4를 참조하면, 반사부(130)가 양의 방향으로 최대 틸팅된 경우(도 4a), 반사부(130)가 0도로 틸팅된 경우(도 4b), 반사부(130)가 음의 방향으로 최대 틸팅된 경우(도 4c)에 각각의 제1 신호의 광 경로를 나타낸다.
반사부(130)로 입사된 제1 신호(R4, R7, R10)는 반사부(130)의 틸팅으로 제2 렌즈부(140)를 향해 반사될 수 있다. 제2 렌즈부(140)로 입사되는 제1 신호(R5, R8, R11)는 제2 렌즈부(140)에 서로 다른 변위의 평행한 각도의 광 경로를 가질 수 있다. 또한, 제2 렌즈부(140)를 통과한 제1 신호(R6, R9, R12,)는 동일한 거리의 초점을 갖도록 변환될 수 있다. 이러한 구성에 의하여, 반사부(130)에서 반사되는 광은 평행광을 유지한 상태로 제2 렌즈부(140)에 서로 다른 변위로 입사될 수 있다. 또한, 제2 렌즈부(140)를 통과한 제1 신호는 초점부(150) 상에(동일 평면 상에) 제2 렌즈부(140)로부터 동일 거리를 가지면서, 반사부(130)의 각도에 따라 서로 다른 변위를 이룰 수 있다. 즉, 반사부(130)의 틸팅에 따라 상이한 변위를 갖는 제1 신호가 초점부(150) 상에 형성될 수 있다. 그리고 초점부(150)를 통과한 서로 다른 변위를 갖는 제1 신호는 스캔 각도가 향상될 수 있다.
도 5를 참조하면, 초점부(150)는 제2 렌즈부를 통과하고 반사부의 틸팅 각도에 따라 다양한 제1 신호(R13, R14, R15)의 초점이 초점부(150) 상에 상이한 변위를 갖도록 형성될 수 있다. 그리고 초점부(150)는 제3 렌즈부(160)의 후초점거리(back focal length)에 배치될 수 있다. 이에 따라, 실시예에 따른 라이다 장치(10)는 초점부(150)의 실상의 크기를 감지하고, 앞서 설명한 바와 같이 채널부(191)의 각 채널의 크기를 초점부(150)의 각 광의 실상의 크기보다 크게하여 수신 효율을 개선할 수 있다.
또한, 다양한 제1 신호(R13, R14, R15)는 제3-1 렌즈부(161)을 통해 집광되어 제1 포인트(F1)를 초점으로 형성할 수 있다. 그리고 다양한 제1 신호(R13, R14, R15)는 제1 포인트(F1)를 통과할 수 있다.
그리고 다양한 제1 신호(R13, R14, R15) 는 제3 렌즈부(160)를 지나 평행광으로 변환되고, 제3 렌즈부(160)를 통해 광각이 증가할 수 있다. 예시적으로, 앞서 설명한 바와 같이 반사부의 틸팅 각도는 -6도 내지 6도일 수 있다.
반면, 제3 렌즈부(160)를 통과한 제1 신호가 피사체(O)로 출력되는 전체 각도는 120도 이상일 수 있다. 이에, 스캔 각도(S)는 120도 이상일 수 있다. 이러한 구성에 의하여, 초소형의 MEMS 미러를 포함하는 반사부를 이용하여서 스캔 각도를 크게 개선할 수 있다. 또한, 제1 신호는 반사부에서의 반사 및 제3 렌즈부에서의 광각 시에도 평행광을 유지할 수 있다. 이로써, 실시예에 따른 라이다 장치는 광 효율이 크게 개선될 수 있다. 뿐만 아니라, 소형의 라이다 장치를 제조할 수 있으며, 기계적 회전이 없어 유격, 마모 등에 의한 오류를 제거할 수 있다.
또한, 실시예에 따른 제3-1 렌즈부(161)는 3매의 볼록 렌즈를 포함할 수 있다. 제1 볼록렌즈의 상면(S1)과 하면(S2) 사이의 최대 거리는 5mm 내지 10mm일 수 있다. 제2 볼록렌즈의 상면(S3)과 하면(S4) 사이의 최대 거리는 5mm 내지 10mm일 수 있다. 제3 볼록렌즈의 상면(S5)과 하면(S6) 사이의 최대 거리는 5mm 내지 10mm일 수 있다.
제1 볼록렌즈의 하면(S2)과 제2 볼록렌즈의 상면(S3) 사이의 거리는 1mm 내지 3mm일 수 있다. 제2 볼록렌즈의 하면(S4)과 제3 볼록렌즈의 상면(S5) 사이의 거리는 1mm 내지 3mm일 수 있다. 그리고 제3 볼록렌즈의 하면(S6)과 제1 포인트(F1) 사이의 거리는 15mm 내지 20mm일 수 있다. 그리고 제1 포인트(F1)와 제1 오목렌즈의 상면(S7) 사이의 거리는 50mm 내지 70mm일 수 있다.
또한, 실시예에 따른 제3-2 렌즈부(162)는 3매의 오목렌즈를 포함할 수 있다. 제1 오목렌즈의 상면(S7)과 하면(S8) 사이의 최대 거리는 5mm 내지 10mm일 수 있다. 제2 오목렌즈의 상면(S9)과 하면(S10) 사이의 최대 거리는 5mm 내지 10mm일 수 있다. 제3 오목렌즈의 상면(S11)과 하면(S12) 사이의 최대 거리는 5mm 내지 20mm일 수 있다. 또한, 제1 오목렌즈의 하면(S8)과 제2 오목렌즈의 상면(S9) 사이의 거리는 25mm 내지 30mm일 수 있다. 제2 오목렌즈의 하면(S10)과 제3 오목렌즈의 상면(S11) 사이의 거리는 15mm 내지 30mm일 수 있다.
여기서, 제1 볼록렌즈는 제2 방향으로 반사부(130)에 가장 인접한 렌즈이며, 제3 볼록렌즈는 제2 방향으로 피사체(O)에 가장 인접한 렌즈이다. 그리고 제1 오목렌즈는 제2 방향으로 반사부(130)에 가장 인접한 렌즈이며, 제3 오목렌즈는 제2 방향으로 피사체(O)에 가장 인접한 렌즈이다. 제2 볼록렌즈는 제1 볼록렌즈와 제3 볼록렌즈 사이에 배치되며, 제2 오목렌즈는 제1 오목렌즈와 제3 오목렌즈 사이에 배치된다. 또한, 상면은 반사부(130)에 가장 인접한 렌즈의 일면이고, 하면은 피사체(O)에 가장 인접한 렌즈의 일면이다.
도 6을 참조하면, 다양한 제1 신호(R13, R14, R15)는 피사체(O)에서 반사될 수 있다. 피사체(O)에서 반사된 다양한 제1 신호(R13', R14', R15')는 제4 렌즈부(170)을 지나갈 수 있다. 앞서 설명한 바와 같이 제4 렌즈부(170)는 제4-1 렌즈부(171)와 제4-2 렌즈부(172)를 포함할 수 있으며, 제4-1 렌즈부(171)는 제3-1 렌즈부(161)와 동일한 렌즈로 이루어지고 제2 방향으로 동일 선상에 위치하고, 제4-2 렌즈부(172)도 제3-2 렌즈부(162)와 동일한 렌즈로 이루어지고 제2 방향으로 동일 선상에 위치할 수 있다.
이에, 제4 렌즈부(170)에서 피사체(O)에 반사된 다양한 제1 신호(R13', R14', R15')는 제3 렌즈부(160)에서 제1 신호와 광의 진행방향은 반대이나 광 경로가 동일할 수 있다.
그리고 제4 렌즈부(170) 이후에 다 채널의 채널부(191)를 포함하는 수신부(190)를 배치할 수 있습니다. 그리고 채널부(191)는 이하 설명하는 바와 같이 제4 렌즈부(170)의 후초점거리(back focal length)에 배치되고, 채널부(191)는 초점부(150)와 제2 방향으로 동일 선상에 위치할 수 있다. 이에 따라, 초점부(150)에서 광 신호의 변위에 따라 이에 대응되는 채널부(191)에서 광 신호를 수신하는 위치를 조절할 수 있다. 이에, 실시예에 다른 라이다 장치는 용이하게 스위칭 작용하여 복수의 채널로 수신되는 광 신호를 분리할 수 있다. 이로써, 다채널 송신부를 구성하지 않으면서 동시에 복수의 채널 중 광 신호를 수신하는 채널만을 제어하여 전력 소모를 감소할 수 있다.또한, 수신부(190)는 FPGA를 포함할 수 있다. 그리고 FPGA를 통해 스위칭 로직 속도가 개선될 수 있다. 이로써, 실시예에 따른 라이다 장치는 고 해상도의 영상 신호를 제공할 수 있다.
또한, 실시예에 따른 라이다 장치는 광학적, 전자적 구성을 이용하여 발광 시 광 신호의 경로와 수광의 광 신호 경로가 일치된 구조를 제공할 수 있다. 또한, 실시예에 따른 라이다 장치는 발광 시 광 경로를 제공하는 렌즈와 수광 시 광 경로를 제공하는 렌즈 간의 일치된 구조를 제공할 수 있다. 이에, 렌즈는 대량 생산을 용이하게 제공할 수 있다.또한, 제4-1 렌즈부(171)와 제4-2 렌즈부(172)의 각 렌즈의 두께 등에 구성도 상기 제3 렌즈부(160)에서 설명한 내용이 동일하게 적용될 수 있다.
조리개(180)는 제1 포인트(F1)와 제2 방향으로 동일 선상에 배치될 수 있다. 이에, 조리개(180)는 수신부(190)로 수신되는 다양한 제1 신호(R16, R17, R18)가 반사부(130)의 각도에 무관하게 균일한 광량을 가지도록 제어할 수 있다. 이에, 실시예에 따른 라이다 장치는 정확도 개선될 수 있다.
도 7 및 도 8을 참조하면, 채널부(191)는 복수 개의 채널로 이루어질 수 있다. 다만, 이에 한정되는 것은 아니다. 또한, 채널부(191)는 복수 개의 수광 소자를 포함할 수 있으나, 이러한 개수에 한정되는 것은 아니다.
예컨대, 채널부(191)는 16개의 채널(ch1 내지 ch16)을 포함할 수 있다. 예를 들어, 채널부(191)는 제1 채널(ch1)내지 제16 채널(ch16)로 구성될 수 있다. 그리고 스캔 각도가 120도인 경우, 제1 채널(ch1)은 -60도 내지 -52.5도의 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 또한, 제2 채널(ch2)은 -52.5도 내지 -45도의 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 그리고 제3 채널(ch3)은 -45도 내지 -37.5도의 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 제4 채널(ch4)는 -37.5도 내지 -30도의 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 제5 채널(ch5)는 -30.0도 내지 -22.5도의 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 제6 채널(ch6)는 -22.5도 내지 -15도의 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 제7 채널(ch7)는 -15도 내지 -7.5도의 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 제8 채널(ch8)는 -7.5도 내지 0도의 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 제 9채널(ch9) 내지 제 16채널(ch16)은 각각 제8 채널(ch8) 내지 제1 채널(ch1)의 스캔 각도에서 양의 범위를 갖는 스캔 각도에서 피사체(O)로부터 반사된 제1 신호를 수신할 수 있다. 다만, 이는 채널부(191)의 채널 수에 따라 다양하게 변경될 수 있다.
그리고 상기 스캔 각도와 대응되게 제1 채널은 반사부(130)의 틸팅 각도가 +6도인 경우에 피사체(O)로부터 반사된 제1 신호가 수신될 수 있다. 그리고 제16 채널은 반사부(130)의 틸팅 각도가 -6도인 경우에 피사체(O)로부터 반사된 제1 신호가 수신될 수 있다.
채널부(191)는 조작부(192)와 연결될 수 있다. 조작부(192)는 수신부(1001), 스캔부(1002), 필터부(1003), 연산부(1004), 제어부(1005)를 포함할 수 있다.
조작부(192)는 수신부(190) 내에 설치될 수 있으나, 이에 한정되는 것은 아니다. 조작부(192)는 반사부(130)의 틸팅 각도에 따라 채널부(191)의 채널의 스위칭을 제어할 수 있다.
먼저, 수신부(1001)는 복수개의 스위칭 소자를 포함하는 신호 분리기로 이루어질 수 있다. 예컨대, 수신부(1001)는 멀티플렉서(multiplexer)일 수 있으나, 이에 한정되는 것은 아니다. 수신부(1001)는 채널부(191)의 각 채널(ch1 내지 ch16)과 연결될 수 있다. 예컨대, 수신부(1001)는 채널부(191)의 각 채널 중 어느 하나의 채널로부터 수신한 신호 중 어느 하나만을 분리하여 수신할 수 있다. 수신부(1001)는 제어부(1005)로부터 제어 신호를 수신하여 해당하는 채널로부터 수신한 신호만을 수신할 수 있다.
스캔부(1002)는 반사부(130)로부터 틸팅 각도에 대한 스캔 각도를 제어부(1005)로 송신할 수 있다. 틸팅 각도에 대응한 스캔 각도의 범위는 기 저장된 데이터일 수 있다.
필터부(1003)는 신호의 왜곡을 보정할 수 있다. 예를 들어, 필터부(1003)는 펄스 파형의 광이 송신부(110)로부터 출력되는 경우 제1 렌즈부(120), 반사부(130), 제2 렌즈부(140), 초점부(150), 제3 렌즈부(160), 제4 렌즈부(170) 및 수신부(190)를 통과하면서 출력된 광에 발생하는 신호 왜곡을 보정할 수 있다. 예컨대, 필터부(1003)는 베셀 필터(Bessel filter)를 포함할 수 있다. 필터부(1003)는 채널부(191)와 제4 렌즈부(170) 사이에 배치될 수도 있다.
제어부(1005)는 스캔부(1003)로부터 수신한 스캔 각도에 대응되는 채널을 예컨대, 멀티플렉서로 분리하여 수신할 수 있다. 이러한 구성에 의하여, 실시예에 따른 라이다 장치는 원하는 채널에 대한 신호만을 분리하여, 스캔 각도에 대응하지 않는 채널에 대한 신호 수신을 차단하여 전력 효율 및 발열 효율을 개선할 수 있다. 즉, 제어부(1005)는 스캔부(1003)의 스캔 각도에 대응하는 채널에 대해서 수신부(1002)로 제어신호를 송신할 수 있다.
연산부(1004)는 수신부(1001)에서 수신한 신호의 횟수 또는 시간을 이용하여 피사체(O)에 대한 거리를 연산할 수 있다. 예컨대, 연산부(1004)는 수신부(1001)에서 수신한 신호의 채널에 대한 정보를 제어부(1005)로부터 수신하여 스캔 각도를 연산함으로써 피사체의 위치를 연산할 수 있다. 그리고 연산부(1004)는 TDC(Time to Digital Converter)를 포함할 수 있다. 이에, 연산부(1004)는 수신된 신호의 시간 간격을 측정하여 디지털 신호를 생성할 수 있다. 연산부(1004)는 생성된 디지털 신호를 이용하여 피사체(O)까지의 거리를 연산할 수 있다. 예컨대, 연산부(1004)는 생성된 디지털 신호의 횟수에 따라 광의 이동 시간을 산출할 수 있다. 여기서, 생성된 디지털 신호의 1회당 시간 간격은 사용자 등에 의해 설정될 수 있다. 또한, 채널은 복수 개의 광 수신기를 포함하며, 광 수신기 별로 각 영역이 구획될 수 있다. 이에, 연산부(1004)는 수신한 신호에 대응되는 영역을 통해 피사체와의 각도를 연산할 수 있다. 이로써, 연산부(1004)는 피사체(O)와의 거리, 각도 등을 연산하여 형상을 출력할 수 있다.
조작부(192)는 추가적으로 통신부(미도시됨)를 더 포함할 수 있다. 연산부(1004)에서 연산된 피사체(O)와의 거리, 각도에 대한 출력 신호를 외부 등으로 송신할 수 있다. 통신부(미도시됨)는 유선 또는 무선의 다양한 통신 모듈을 포함할 수 있다. 일예로, 통신부(미도시됨)는 UDP(user datagram protocol)일 수 있으나, 이에 한정되는 것은 아니다.
도 9는 실시예에 따른 라이다 시스템을 도시한 도면이고, 도 10은 본 발명의 한 실시예에 따른 라이다 장치가 차량에 장착된 예를 나타낸다.
도 9은 실시예에 따른 라이다 시스템을 도시한 도면이다.
도 9을 참조하면, 실시예에 따른 라이다 시스템(1000)은 복수 개의 라이다 장치(10-1, 10-2, 10-3)를 포함할 수 있다. 라이다 시스템(1000)은 라이다 장치(10-1, 10-2, 10-3)를 복수 개 포함하여, 360도 전방위를 스캐닝할 수 있다.
예시적으로, 라이다 시스템(1000)은 라이다 장치(10-1, 10-2, 10-3)를 3개 포함할 수 있다. 라이다 장치(10-1, 10-2, 10-3) 각각은 중첩되는 영역을 제외하고 120도의 각도(θ1 , θ2 , θ3)로 스캔할 수 있다. 이러한 구성에 의하여, 각각의 라이다 장치(10-1, 10-2, 10-3)를 단일 제어 및 신호처리할 수 있으며, 소형화, 저전력화 및 저비용화의 효과를 제공할 수 있다.
도 10은 본 발명의 한 실시예에 따른 라이다 장치가 차량에 장착된 예를 나타낸다.
도 10을 참조하면, 본 발명의 한 실시예에 따른 라이다 장치(300)는 차체의 상단에 장착될 수 있으며, 차량(1)의 전방뿐만 아니라 360˚ 전방향을 스캐닝하는 것이 가능하다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 광 신호를 조사하는 송신부;
    상기 광 신호를 평행광으로 변환시키는 제1 렌즈부;
    상기 변환된 광 신호의 방향을 조절하는 반사부;
    상기 제1 반사부의 반사 각도의 변동에도 상기 조절된 광 신호가 동일 초점면을 갖는 제2 렌즈부;
    상기 제2 렌즈부를 통과한 광 신호를 평행광으로 변환하는 제3 렌즈부;
    상기 제3 렌즈부를 통과한 광 신호는 피사체로부터 반사되고, 반사된 광 신호가 통과하는 제4 렌즈부; 및
    상기 제4 렌즈부를 통과한 광 신호를 수신하는 수신부;를 포함하고,
    상기 제3 렌즈부와 상기 제4 렌즈부는 제1 방향으로 동일 선상에 위치하고,
    상기 제1 방향은 제2 방향과 수직한 방향이고,
    상기 제2 방향은 상기 제3 렌즈부에서 상기 피사체를 향한 방향인 라이다 장치.
  2. 제1항에 있어서,
    상기 제4 렌즈부는 상기 제3 렌즈부를 통과한 광 신호의 각도를 증가시키는 라이다 장치.
  3. 제1항에 있어서,
    상기 광 신호는,
    상기 제1 렌즈부와 상기 제2 렌즈부 사이, 상기 제3 렌즈부와 상기 피사체 사이 및 상기 피사체와 상기 제4 렌즈부에서 평행광인 라이다 장치.
  4. 제1항에 있어서,
    상기 광 신호는 상기 제2 렌즈부에서 경로인 제1 경로와 제4 렌즈부에서 경로인 제2 경로를 포함하고,
    상기 제1 경로와 상기 제2 경로는 상기 제2 방향으로 평행한 라이다 장치.
  5. 제4항에 있어서,
    상기 제1 경로와 상기 제2 경로는 상기 광 신호의 방향이 서로 반대인 라이다 장치.
  6. 제1항에 있어서,
    상기 수신부는,
    상기 제4 렌즈부를 통과한 광 신호를 수신하는 채널부; 및
    상기 채널부에서 수신한 광 신호를 이용하여 상기 피사체 사이의 거리를 연산하는 조작부를 포함하는 라이다 장치.
  7. 제6항에 있어서
    상기 채널부는 상기 동일 초점면에 위치하는 라이다 장치.
  8. 제6항에 있어서,
    상기 채널부는 복수의 수광 소자를 포함하는 복수 개의 채널을 포함하는 라이다 장치.
  9. 제8항에 있어서,
    상기 조작부는,
    상기 반사부의 방향에 대응하는 상기 복수 개의 채널을 선택하여 상기 제4 렌즈부를 통과한 광신호를 수신하는 라이다 장치.
  10. 제1항에 있어서,
    상기 동일 초점면에 위치하는 위치하는 초점부;를 더 포함하는 라이다 장치.
  11. 제1항에 있어서,
    상기 반사부는 틸팅 각도를 조절하여 광학 수차를 보상하는 라이다 장치.
  12. 제1항에 있어서,
    상기 반사부는 MEMS(Micro Electro Mechanical system) 미러를 포함하는 라이다 장치.
  13. 복수 개의 영역을 스캐닝하는 라이다 장치를 포함하고,
    상기 라이다 장치는,
    광 신호를 조사하는 송신부;
    상기 광 신호를 평행광으로 변환시키는 제1 렌즈부;
    상기 변환된 광 신호의 방향을 조절하는 반사부;
    상기 제1 반사부의 반사 각도의 변동에도 상기 조절된 광 신호가 동일 초점면을 갖는 제2 렌즈부;
    상기 제2 렌즈부를 통과한 광 신호를 평행광으로 변환하는 제3 렌즈부;
    상기 제3 렌즈부를 통과한 광 신호는 피사체로부터 반사되고, 반사된 광 신호가 통과하는 제4 렌즈부; 및
    상기 제4 렌즈부를 통과한 광 신호를 수신하는 수신부;를 포함하고,
    상기 제3 렌즈부와 상기 제4 렌즈부는 제1 방향으로 동일 선상에 위치하고,
    상기 제1 방향은 제2 방향과 수직한 방향이고,
    상기 제2 방향은 상기 제3 렌즈부에서 상기 피사체를 향한 방향인 라이다 시스템.
KR1020170136198A 2017-10-20 2017-10-20 라이다 장치 및 이를 포함하는 라이다 시스템 Active KR102093637B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020170136198A KR102093637B1 (ko) 2017-10-20 2017-10-20 라이다 장치 및 이를 포함하는 라이다 시스템
PCT/KR2017/012756 WO2019078401A1 (en) 2017-10-20 2017-11-10 LIDAR DEVICE AND SYSTEM COMPRISING SAME
US15/814,131 US10775485B2 (en) 2017-10-20 2017-11-15 LIDAR device and system comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170136198A KR102093637B1 (ko) 2017-10-20 2017-10-20 라이다 장치 및 이를 포함하는 라이다 시스템

Publications (2)

Publication Number Publication Date
KR20190044158A true KR20190044158A (ko) 2019-04-30
KR102093637B1 KR102093637B1 (ko) 2020-03-27

Family

ID=66174517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170136198A Active KR102093637B1 (ko) 2017-10-20 2017-10-20 라이다 장치 및 이를 포함하는 라이다 시스템

Country Status (2)

Country Link
KR (1) KR102093637B1 (ko)
WO (1) WO2019078401A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102105310B1 (ko) * 2018-10-22 2020-05-29 전자부품연구원 고효율 무회전 스캐닝 라이다 장치
KR102685735B1 (ko) * 2023-05-11 2024-07-19 오토엘 주식회사 편향된 수직 시야각을 갖는 라이다 시스템
WO2025147022A1 (ko) * 2024-01-02 2025-07-10 동우 화인켐 주식회사 멀티-렌즈 구조체 및 광 스캐닝 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830009501A (ko) * 1981-03-17 1983-12-21 이와마 가즈오 초점조절장치(焦點調節裝置)
KR20000058118A (ko) * 1999-02-23 2000-09-25 야스카와 히데아키 조명 광학계 및 투사기
KR20060130900A (ko) * 2005-06-09 2006-12-20 엘지전자 주식회사 광 픽업 장치
KR20080022260A (ko) * 2006-09-06 2008-03-11 엘지전자 주식회사 줌 렌즈 광학장치
KR20100107164A (ko) * 2009-03-25 2010-10-05 삼성전기주식회사 거리 측정 장치
KR20150112747A (ko) * 2014-03-28 2015-10-07 가부시키가이샤 스크린 홀딩스 광조사 장치 및 묘화 장치
KR20160126153A (ko) * 2015-04-22 2016-11-02 한국전자통신연구원 레이저 레이더 또는 다른 장치를 위한 광 스캐너
KR101687994B1 (ko) * 2016-04-29 2016-12-20 (주) 위키옵틱스 라이다 발광 시스템
KR20170030313A (ko) * 2015-09-09 2017-03-17 광주과학기술원 라인 빔을 사용한 레이저 검지 장치 및 이를 이용한 차량정보 인식 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0220914D0 (en) * 2002-09-10 2002-10-23 Qinetiq Ltd Lidar apparatus and method
IL200332A0 (en) * 2008-08-19 2010-04-29 Rosemount Aerospace Inc Lidar system using a pseudo-random pulse sequence
US8054464B2 (en) * 2010-01-25 2011-11-08 Sigma Space Corp. Polarization switching lidar device and method
US9086273B1 (en) * 2013-03-08 2015-07-21 Google Inc. Microrod compression of laser beam in combination with transmit lens
US8836922B1 (en) * 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830009501A (ko) * 1981-03-17 1983-12-21 이와마 가즈오 초점조절장치(焦點調節裝置)
KR20000058118A (ko) * 1999-02-23 2000-09-25 야스카와 히데아키 조명 광학계 및 투사기
KR20060130900A (ko) * 2005-06-09 2006-12-20 엘지전자 주식회사 광 픽업 장치
KR20080022260A (ko) * 2006-09-06 2008-03-11 엘지전자 주식회사 줌 렌즈 광학장치
KR20100107164A (ko) * 2009-03-25 2010-10-05 삼성전기주식회사 거리 측정 장치
KR20150112747A (ko) * 2014-03-28 2015-10-07 가부시키가이샤 스크린 홀딩스 광조사 장치 및 묘화 장치
KR20160126153A (ko) * 2015-04-22 2016-11-02 한국전자통신연구원 레이저 레이더 또는 다른 장치를 위한 광 스캐너
KR20170030313A (ko) * 2015-09-09 2017-03-17 광주과학기술원 라인 빔을 사용한 레이저 검지 장치 및 이를 이용한 차량정보 인식 방법
KR101687994B1 (ko) * 2016-04-29 2016-12-20 (주) 위키옵틱스 라이다 발광 시스템

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102105310B1 (ko) * 2018-10-22 2020-05-29 전자부품연구원 고효율 무회전 스캐닝 라이다 장치
KR102685735B1 (ko) * 2023-05-11 2024-07-19 오토엘 주식회사 편향된 수직 시야각을 갖는 라이다 시스템
WO2025147022A1 (ko) * 2024-01-02 2025-07-10 동우 화인켐 주식회사 멀티-렌즈 구조체 및 광 스캐닝 장치

Also Published As

Publication number Publication date
WO2019078401A1 (en) 2019-04-25
KR102093637B1 (ko) 2020-03-27

Similar Documents

Publication Publication Date Title
KR101951242B1 (ko) 라이다 장치 및 이를 포함하는 라이다 시스템
US10775485B2 (en) LIDAR device and system comprising the same
US10649072B2 (en) LiDAR device based on scanning mirrors array and multi-frequency laser modulation
US10788574B2 (en) LIDAR device and LIDAR system including the same
US11522335B2 (en) Transmitting device with a scanning mirror covered by a collimating cover element
WO2022028496A9 (zh) 激光雷达的光学系统和激光雷达系统
CN107329132B (zh) 一种基于光学相位阵列的激光雷达收发天线及测距方法
KR101979404B1 (ko) 거리 측정 센서 조립체 및 그를 갖는 전자기기
CN110488247A (zh) 一种二维mems扫描振镜激光雷达系统
CN107290733A (zh) 收发天线一体化的激光雷达共轴光学系统
CN210038146U (zh) 测距模组、测距装置及可移动平台
US12140676B2 (en) LiDAR with microlens array and integrated photonic switch array
WO2020062080A1 (zh) 一种激光测距装置及移动设备
KR102093637B1 (ko) 라이다 장치 및 이를 포함하는 라이다 시스템
WO2022110210A1 (zh) 一种激光雷达及移动平台
CN110161483A (zh) 激光雷达系统
CN109444851B (zh) 激光发射机构及相控阵激光雷达
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
KR102178376B1 (ko) 전방위 무회전 스캐닝 라이다 시스템
KR102435908B1 (ko) 2차원 및 3차원 광 조사 광학계
CN113820721B (zh) 一种收发分离的激光雷达系统
US20210341588A1 (en) Ranging device and mobile platform
US20240402305A1 (en) Compact LiDAR Sensor
US20240160028A1 (en) Flat optics for light coupling
US20240159905A1 (en) Fmcw lidar system with integrated receiving optics for multiple channels

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20171020

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20190201

Patent event code: PE09021S01D

PG1501 Laying open of application
E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20190701

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20191220

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200320

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200323

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20221219

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20231227

Start annual number: 5

End annual number: 5