KR20130039353A - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- KR20130039353A KR20130039353A KR1020110102995A KR20110102995A KR20130039353A KR 20130039353 A KR20130039353 A KR 20130039353A KR 1020110102995 A KR1020110102995 A KR 1020110102995A KR 20110102995 A KR20110102995 A KR 20110102995A KR 20130039353 A KR20130039353 A KR 20130039353A
- Authority
- KR
- South Korea
- Prior art keywords
- light emitting
- semiconductor layer
- layer
- emitting device
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 308
- 239000000758 substrate Substances 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims description 36
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 34
- 239000011787 zinc oxide Substances 0.000 claims description 17
- 230000000670 limiting effect Effects 0.000 claims description 14
- 150000004767 nitrides Chemical class 0.000 claims description 9
- 239000010410 layer Substances 0.000 description 551
- 239000000463 material Substances 0.000 description 34
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 26
- 230000002441 reversible effect Effects 0.000 description 24
- 239000000203 mixture Substances 0.000 description 23
- 230000004888 barrier function Effects 0.000 description 21
- 239000004973 liquid crystal related substance Substances 0.000 description 19
- 229910052709 silver Inorganic materials 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 239000011701 zinc Substances 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 10
- 238000005530 etching Methods 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 9
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 229910002704 AlGaN Inorganic materials 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 229910052738 indium Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000006798 recombination Effects 0.000 description 8
- 238000005215 recombination Methods 0.000 description 8
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- -1 thicknesses Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 239000011135 tin Substances 0.000 description 6
- 229910001316 Ag alloy Inorganic materials 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 4
- 239000012788 optical film Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 230000007480 spreading Effects 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004954 Polyphthalamide Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920006375 polyphtalamide Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000005701 quantum confined stark effect Effects 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- AIRCTMFFNKZQPN-UHFFFAOYSA-N AlO Inorganic materials [Al]=O AIRCTMFFNKZQPN-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910020286 SiOxNy Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 229910008842 WTi Inorganic materials 0.000 description 1
- DZLPZFLXRVRDAE-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] Chemical compound [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] DZLPZFLXRVRDAE-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006128 poly(nonamethylene terephthalamide) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/813—Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/814—Bodies having reflecting means, e.g. semiconductor Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
Landscapes
- Led Devices (AREA)
Abstract
실시예에 따른 발광소자는, 전도성 기판과, 전도성 기판 상에 제1 반도체층, 제2 반도체층, 및 제1 및 제2 반도체층 사이에 형성되는 제1 활성층을 포함하는 제1 발광 구조물과, 제1 발광 구조물 상에 형성되며 제3 반도체층, 제4 반도체층, 및 제3 및 제4 반도체층 사이에 형성되는 제2 활성층을 포함하는 제2 발광 구조물과, 제2 및 제3 반도체층과 함께 전기적으로 연결되는 제1 전극, 및 제4 반도체층과 전기적으로 연결되는 제2 전극을 포함하며, 제1 반도체층은 전도성 기판과 전기적으로 연결되고, 제1 및 제3 반도체층은 제1 도전형으로 도핑되며, 제2 및 제4 반도체층은 제2 도전형으로 도핑된다.In one embodiment, a light emitting device includes: a first light emitting structure including a conductive substrate, a first semiconductor layer on the conductive substrate, a second semiconductor layer, and a first active layer formed between the first and second semiconductor layers; A second light emitting structure on the first light emitting structure, the second light emitting structure including a third semiconductor layer, a fourth semiconductor layer, and a second active layer formed between the third and fourth semiconductor layers; A first electrode electrically connected together, and a second electrode electrically connected with the fourth semiconductor layer, wherein the first semiconductor layer is electrically connected with the conductive substrate, and the first and third semiconductor layers are first conductive. Doped to a type, and the second and fourth semiconductor layers are doped to a second conductivity type.
Description
실시예는 발광소자에 관한 것이다. An embodiment relates to a light emitting element.
LED(Light Emitting Diode; 발광 다이오드)는 화합물 반도체의 특성을 이용해 전기 신호를 적외선, 가시광선 또는 빛의 형태로 변환시키는 소자로, 가정용 가전제품, 리모콘, 전광판, 표시기, 각종 자동화 기기 등에 사용되고, 점차 LED의 사용 영역이 넓어지고 있는 추세이다.LED (Light Emitting Diode) is a device that converts electrical signals into infrared, visible light or light using the characteristics of compound semiconductors. It is used in household appliances, remote controls, display boards, The use area of LED is becoming wider.
보통, 소형화된 LED는 PCB(Printed Circuit Board) 기판에 직접 장착하기 위해서 표면실장소자(Surface Mount Device)형으로 만들어지고 있고, 이에 따라 표시소자로 사용되고 있는 LED 램프도 표면실장소자 형으로 개발되고 있다. 이러한 표면실장소자는 기존의 단순한 점등 램프를 대체할 수 있으며, 이것은 다양한 칼라를 내는 점등표시기용, 문자표시기 및 영상표시기 등으로 사용된다.In general, miniaturized LEDs are made of a surface mounting device for mounting directly on a PCB (Printed Circuit Board) substrate, and an LED lamp used as a display device is also being developed as a surface mounting device type . Such a surface mount device can replace a conventional simple lighting lamp, which is used for a lighting indicator for various colors, a character indicator, an image indicator, and the like.
공개특허 10-2009-0082453 (이하 선행기술 "1" 이라 함)에서는 발광소자부, 교류 전원을 직류 전원으로 변환하는 정류 회로부, 및 정류된 전원의 크기를 조절하여 발광소자부에 공급하는 평활회로부를 포함하는 발광 장치에 관해 개시한다.Patent Document 10-2009-0082453 (hereinafter referred to as "1") in the light emitting device unit, the rectifier circuit unit for converting AC power into DC power, and the smoothing circuit unit for controlling the size of the rectified power supply to the light emitting device unit Disclosed is a light emitting device comprising a.
그러나, 선행기술 1 에서는 교류 전원에서 발광소자부를 구동하기 위해 정류 회로부, 및 평활회로부를 필요로 하므로, 발광 장치의 경제성이 저해될 수 있다.However, in the
실시예는 교류 전원에서 순방향 전압 및 역방향 전압 양자에 대해 구동할 수 있는 발광소자를 제공한다. The embodiment provides a light emitting device capable of driving both forward voltage and reverse voltage in an AC power supply.
실시예에 따른 발광소자는, 전도성 기판과, 전도성 기판 상에 제1 반도체층, 제2 반도체층, 및 제1 및 제2 반도체층 사이에 형성되는 제1 활성층을 포함하는 제1 발광 구조물과, 제1 발광 구조물 상에 형성되며 제3 반도체층, 제4 반도체층, 및 제3 및 제4 반도체층 사이에 형성되는 제2 활성층을 포함하는 제2 발광 구조물과, 제2 및 제3 반도체층과 함께 전기적으로 연결되는 제1 전극, 및 제4 반도체층과 전기적으로 연결되는 제2 전극을 포함하며, 제1 반도체층은 전도성 기판과 전기적으로 연결되고, 제1 및 제3 반도체층은 제1 도전형으로 도핑되며, 제2 및 제4 반도체층은 제2 도전형으로 도핑된다.In one embodiment, a light emitting device includes: a first light emitting structure including a conductive substrate, a first semiconductor layer on the conductive substrate, a second semiconductor layer, and a first active layer formed between the first and second semiconductor layers; A second light emitting structure on the first light emitting structure, the second light emitting structure including a third semiconductor layer, a fourth semiconductor layer, and a second active layer formed between the third and fourth semiconductor layers; A first electrode electrically connected together, and a second electrode electrically connected with the fourth semiconductor layer, wherein the first semiconductor layer is electrically connected with the conductive substrate, and the first and third semiconductor layers are first conductive. Doped to a type, and the second and fourth semiconductor layers are doped to a second conductivity type.
실시예에 따른 발광소자는 교류 전원에서 순방향 전압 및 역방향 전압에서 모두 구동할 수 있다. 따라서, 별도의 정류 회로 없이 발광소자의 전원으로 교류 전원을 사용할 수 있다. 따라서, 교류 전원에서 정류 회로, 또는 ESD 소자와 같은 별도의 전기 소자가 필요하지 않다.The light emitting device according to the embodiment can be driven at both the forward voltage and the reverse voltage in the AC power supply. Therefore, an AC power source can be used as a power source of the light emitting device without a separate rectifying circuit. Thus, there is no need for a separate electrical element, such as a rectifier circuit, or an ESD element in an AC power source.
또한, 실시예에 따른 발광소자는 교류 전원에서 순방향 전압 구동 및 역방향 전압 구동이 1 chip 에서 이루어질 수 있다. 따라서 단위면적당 발광 효율이 개선될 수 있다.In addition, in the light emitting device according to the embodiment, forward voltage driving and reverse voltage driving in an AC power source may be performed in one chip. Therefore, luminous efficiency per unit area can be improved.
또한, 실시예에 따른 발광소자는 교류 전원에서 순방향 전압 구동 발광 구조물, 및 역방향 전압 구동 발광 구조물이 1 chip 에 포함되며 하나의 공정으로 성장될 수 있기 때문에, 발광소자 제조 공정이 단순화되고 발광소자의 경제성이 개선될 수 있다.In addition, since the light emitting device according to the embodiment includes a forward voltage driving light emitting structure and an reverse voltage driving light emitting structure in one chip in an AC power source and can be grown in one process, the light emitting device manufacturing process is simplified and the Economics can be improved.
도 1은 실시예에 따른 발광소자의 단면도,
도 2는 실시예에 따른 발광소자의 평면도,
도 3은 실시예에 따른 발광소자의 회로도,
도 4는 실시예에 따른 발광소자의 순방향 전압 인가시 구동도,
도 5는 실시예에 따른 발광소자의 역방향 전압 인가시 구동도,
도 6은 실시예에 따른 발광소자의 단면도,
도 7은 실시예에 따른 발광소자의 단면도,
도 8은 실시예에 따른 발광소자의 부분 확대 단면도,
도 9는 실시예에 따른 발광소자의 단면도,
도 10은 실시예에 따른 발광소자의 단면도,
도 11은 실시예에 따른 발광소자의 단면도,
도 12는 실시예에 따른 발광소자의 단면도,
도 13은 실시예에 따른 발광소자의 단면도,
도 14는 실시예에 따른 발광소자의 단면도,
도 15는 실시예에 따른 발광소자의 단면도,
도 16은 실시예에 따른 발광소자의 단면도,
도 17은 실시예에 따른 발광소자의 단면도,
도 18은 실시예에 따른 발광소자의 단면도,
도 19는 실시예에 따른 발광소자의 부분 확대 단면도,
도 20은 실시예에 따른 발광소자의 에너지 밴드 다이어그램을 나타낸 도면,
도 21은 실시예에 따른 발광소자의 에너지 밴드 다이어그램을 나타낸 도면,
도 22는 실시예에 따른 발광소자의 단면도,
도 23은 실시예에 따른 발광소자의 단면도,
도 24는 실시예에 따른 발광소자를 포함한 조명 시스템의 회로도를 나타낸 개념도,
도 25는 실시예에 따른 발광소자를 포함한 조명 시스템의 회로도를 나타낸 개념도,
도 26은 실시예에 따른 발광소자를 포함한 발광소자 패키지의 사시도,
도 27은 실시예에 따른 발광소자를 포함한 발광소자 패키지의 단면도,
도 28은 실시예에 따른 발광소자를 포함한 발광소자 패키지의 단면도,
도 29는 실시예에 따른 발광소자를 포함하는 조명 시스템을 도시한 사시도,
도 30은 도 29의 조명 시스템의 C - C' 단면을 도시한 단면도,
도 31은 실시예에 따른 발광소자를 포함하는 액정표시장치의 분해 사시도, 그리고
도 32는 실시예에 따른 발광소자를 포함하는 액정표시장치의 분해 사시도이다.1 is a cross-sectional view of a light emitting device according to an embodiment;
2 is a plan view of a light emitting device according to an embodiment;
3 is a circuit diagram of a light emitting device according to an embodiment;
4 is a driving diagram when a forward voltage is applied to the light emitting device according to the embodiment;
5 is a driving diagram when applying a reverse voltage of the light emitting device according to the embodiment;
6 is a cross-sectional view of a light emitting device according to the embodiment;
7 is a cross-sectional view of a light emitting device according to the embodiment;
8 is a partially enlarged cross-sectional view of a light emitting device according to the embodiment;
9 is a cross-sectional view of a light emitting device according to the embodiment;
10 is a cross-sectional view of a light emitting device according to the embodiment;
11 is a cross-sectional view of a light emitting device according to the embodiment;
12 is a cross-sectional view of a light emitting device according to the embodiment;
13 is a cross-sectional view of a light emitting device according to the embodiment;
14 is a cross-sectional view of a light emitting device according to the embodiment;
15 is a cross-sectional view of a light emitting device according to the embodiment;
16 is a cross-sectional view of a light emitting device according to the embodiment;
17 is a cross-sectional view of a light emitting device according to the embodiment;
18 is a cross-sectional view of a light emitting device according to the embodiment;
19 is a partially enlarged cross-sectional view of a light emitting device according to the embodiment;
20 is a view showing an energy band diagram of a light emitting device according to the embodiment;
21 is a view showing an energy band diagram of a light emitting device according to the embodiment;
22 is a cross-sectional view of a light emitting device according to the embodiment;
23 is a cross-sectional view of a light emitting device according to the embodiment;
24 is a conceptual diagram illustrating a circuit diagram of a lighting system including a light emitting device according to an embodiment;
25 is a conceptual diagram illustrating a circuit diagram of a lighting system including a light emitting device according to an embodiment;
26 is a perspective view of a light emitting device package including a light emitting device according to the embodiment;
27 is a cross-sectional view of a light emitting device package including a light emitting device according to the embodiment;
28 is a cross-sectional view of a light emitting device package including a light emitting device according to the embodiment;
29 is a perspective view of a lighting system including a light emitting device according to the embodiment;
30 is a cross-sectional view taken along the line CC ′ of the lighting system of FIG. 29;
31 is an exploded perspective view of a liquid crystal display device including a light emitting device according to the embodiment; and
32 is an exploded perspective view of a liquid crystal display including the light emitting device according to the embodiment.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below)"또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 소자는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.The terms spatially relative, "below", "beneath", "lower", "above", "upper" May be used to readily describe a device or a relationship of components to other devices or components. Spatially relative terms should be understood to include, in addition to the orientation shown in the drawings, terms that include different orientations of the device during use or operation. For example, when flipping a device shown in the figure, a device described as "below" or "beneath" of another device may be placed "above" of another device. Thus, the exemplary term "below" can include both downward and upward directions. The device can also be oriented in other directions, so that spatially relative terms can be interpreted according to orientation.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In the present specification, the singular form includes plural forms unless otherwise specified in the specification. It is noted that the terms "comprises" and / or "comprising" used in the specification are intended to be inclusive in a manner similar to the components, steps, operations, and / Or additions.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. Also, commonly used predefined terms are not ideally or excessively interpreted unless explicitly defined otherwise.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다. The thickness and size of each layer in the drawings are exaggerated, omitted, or schematically shown for convenience and clarity of explanation. Also, the size and area of each component do not entirely reflect actual size or area.
또한, 실시예에서 발광소자의 구조를 설명하는 과정에서 언급하는 각도와 방향은 도면에 기재된 것을 기준으로 한다. 명세서에서 발광소자를 이루는 구조에 대한 설명에서, 각도에 대한 기준점과 위치관계를 명확히 언급하지 않은 경우, 관련 도면을 참조하도록 한다.Further, the angle and direction mentioned in the description of the structure of the light emitting device in the embodiment are based on those shown in the drawings. In the description of the structure of the light emitting device in the specification, reference points and positional relationship with respect to angles are not explicitly referred to, refer to the related drawings.
도 1 은 실시예에 따른 발광소자(100)의 단면도이며, 도 2 는 실시예에 따른 발광소자(100)의 평면도이다.1 is a cross-sectional view of a
도 1 및 도 2 를 참조하면, 실시예에 따른 발광소자(100)는, 전도성 기판(142)과, 전도성 기판(142) 상에 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122, 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130)과, 제2 및 제3 반도체층(126, 132)과 함께 연결되는 제1 전극(144)과, 제4 반도체층(136)과 연결되는 제2 전극(146)을 포함하며, 제1 반도체층(122)은 전도성 기판(142)과 전기적으로 연결되고, 제1 및 제3 반도체층(122, 132)은 제1 도전형으로 도핑되며, 제2 및 제4 반도체층(126, 136)은 제2 도전형으로 도핑될 수 있다.1 and 2, the
전도성 기판(142)은 제1 반도체층(122) 하부에 형성될 수 있으며, 제1 반도체층(122)과 연결되어, 하나의 전극으로 역할을 할 수 있다. 전도성 기판(142)은 오믹층(ohmic layer)(미도시), 반사층(reflective layer)(미도시), 본딩층(bonding layer)(미도시) 중 적어도 한 층을 포함할 수 있다. 예를 들어 전도성 기판(142)은 오믹층/반사층/본딩층의 구조이거나, 오믹층/반사층의 적층 구조이거나, 반사층(오믹 포함)/본딩층의 구조일 수 있으나, 이에 대해 한정하지는 않는다. 예컨대, 전도성 기판(142)은 절연층상에 반사층 및 오믹층이 순차로 적층된 형태일 수 있다.The
반사층(미도시)은 오믹층(미도시) 및 절연층(미도시) 사이에 배치될 수 있으며, 반사특성이 우수한 물질, 예를들어 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 구성된 물질 중에서 형성되거나, 상기 금속 물질과 IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO 등의 투광성 전도성 물질을 이용하여 다층으로 형성할 수 있다. 또한 반사층(미도시)은 IZO/Ni, AZO/Ag, IZO/Ag/Ni, AZO/Ag/Ni 등으로 적층할 수 있다. 또한 반사층(미도시)을 제1 발광 구조물(120)과 오믹 접촉하는 물질로 형성할 경우, 오믹층(미도시)은 별도로 형성하지 않을 수 있으며, 이에 대해 한정하지는 않는다.The reflective layer (not shown) may be disposed between the ohmic layer (not shown) and the insulating layer (not shown), and have excellent reflective properties such as Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg , Zn, Pt, Au, Hf, or a combination of these materials, or a combination of these materials or IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO, to form a multi-layer using a transparent conductive material such as Can be. Further, the reflective layer (not shown) can be laminated with IZO / Ni, AZO / Ag, IZO / Ag / Ni, AZO / Ag / Ni and the like. In addition, when the reflective layer (not shown) is formed of a material in ohmic contact with the first
오믹층(미도시)은 제1 발광 구조물(120)의 하면에 오믹 접촉되며, 층 또는 복수의 패턴으로 형성될 수 있다. 오믹층(미도시)은 투광성 전극층과 금속이 선택적으로 사용될 수 있으며, 예를 들어, ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni, Ag, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO 중 하나 이상을 이용하여 단층 또는 다층으로 구현할 수 있다. 오믹층(미도시)은 제1 반도체층(122)에 캐리어의 주입을 원활히 하기 위한 것으로, 반드시 형성되어야 하는 것은 아니다.The ohmic layer (not shown) is in ohmic contact with the bottom surface of the first
또한 전도성 기판(142)은 본딩층(미도시)을 포함할 수 있으며, 이때 본딩층(미도시)은 배리어 금속(barrier metal), 또는 본딩 금속, 예를 들어, Ti, Au, Sn, Ni, Cr, Ga, In, Bi, Cu, Ag 또는 Ta 중 적어도 하나를 포함할 수 있으며 이에 한정하지 않는다.In addition, the
전도성 기판(142)이 제1 반도체층(122) 하부에 형성됨으로서, 제1 반도체층(122) 상에 전극을 형성하기 위해 제1, 제2 발광 구조물(120, 130)을 별도로 식각할 필요가 없게 된다.Since the
아울러, 제1 반도체층(122)의 하부 면적에 걸쳐 전도성 기판(142)이 형성됨으로서, 전류 스프레딩 및 방열 기능이 향상될 수 있다.In addition, since the
제1 발광 구조물(120)은 제1 반도체층(122), 제1 활성층(124), 및 제2 반도체층(126)을 포함할 수 있다.The first
제1 반도체층(122)은 전도성 기판(142) 상에 위치할 수 있다. 제1 반도체층(122)은 제1 도전형으로 도핑될 수 있다. 이때, 제1 도전형은 n 형일 수 있다. 예컨대, 제1 반도체층(122)은 n형 반도체층으로 구현될 수 있으며, 제1 활성층(124)에 전자를 제공할 수 있다. 제1 반도체층(122)은 질화물계 반도체층일 수 있다. 예를 들어, 제1 반도체층(122)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료를 포함할 수 있으며, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등을 포함할 수 있다. 한편, 제1 반도체층(122)은 산화아연계 반도체층일 수 있다. 예를 들어 제1 반도체층(122)은 InxAlyZn1 -x- yO (0≤x≤1, 0≤y≤1, 0≤x+y≤≤)의 조성식을 갖는 반도체 재료를 포함할 수 있으며, 예를 들어 ZnO, AlO, AlZnO, InZnO, InO, InAlZnO. AlInO 등을 포함할 수 있고, 이에 한정하지 아니한다. 또한, 제1 반도체층(122)은 Si, Ge, Sn 등의 n형 도펀트가 도핑될 수 있다. The
또한, 제1 반도체층(122)아래에 언도프트 반도체층(미도시)을 더 포함할 수 있으나, 이에 대해 한정하지는 않는다. 언도프트 반도체층(미도시)은 제1 반도체층(122)의 결정성 향상을 위해 형성되는 층으로, n형 도펀트가 도핑되지 않아 제1 반도체층(122)에 비해 낮은 전기전도성을 갖는 것을 제외하고는 제1 반도체층(122)과 같을 수 있다.In addition, an undoped semiconductor layer (not shown) may be further included below the
상기 제1 반도체층(122) 상에는 제1 활성층(124)이 형성될 수 있다. 제1 활성층(124)은 3족-5족 원소의 화합물 반도체 재료를 이용하여 단일 또는 다중 양자 우물 구조, 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 등으로 형성될 수 있다.The first
제1 활성층(124)이 양자우물구조로 형성된 경우 제1 활성층(124)은 다중양자우물구조를 가질 수 있다. 또한, 제1 활성층(124)은 질화물계, 또는 산화아연계 반도체층일 수 있다. 예컨데, 제1 활성층(124)은 InxAlyGa1 -x- yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 우물층과 InaAlbGa1 -a- bN (0≤a≤1, 0 ≤b≤1, 0≤a+b≤1)의 조성식을 갖는 장벽층을 갖는 단일 또는 다중 양자우물구조를 가질 수 있다. 한편, 우물층은 InxAlyZn1 -x- yO (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖고, 장벽층은 InaAlbZn1-a-bO (0≤a≤1, 0≤b≤1, 0≤a+b≤1)의 조성식을 갖게 형성될 수 있으며, 이에 한정하지 아니한다. 한편, 우물층은 장벽층의 밴드 갭보다 작은 밴드 갭을 갖는 물질로 형성될 수 있다.When the first
또한, 제1 활성층(124)이 다중 양자우물구조를 가질 경우, 각각의 우물층(미도시), 장벽층(미도시)은 서로 상이한 조성, 서로 상이한 두께 및 서로 상이한 밴드갭을 가질 수 있으며, 이에 대해서는 후술한다.In addition, when the first
제1 활성층(124)의 위 또는/및 아래에는 도전성 클래드층(미도시)이 형성될 수 있다. 도전성 클래드층(미도시)은 예컨대 AlGaN계, 또는 AlZnO계 반도체로 형성될 수 있으며, 상기 제1 활성층(124)의 밴드 갭보다는 큰 밴드 갭을 가질 수 있다.A conductive clad layer (not shown) may be formed on or under the first
제2 반도체층(126)은 제2 도전형으로 도핑될 수 있다. 이때, 제2 도전형은 p 형일 수 있다. 예컨대, 제2 반도체층(126)은 제1 활성층(124)에 정공을 주입하도록 p형 반도체층으로 구현될 수 있다. 제2 반도체층(126)은 질화물계 반도체층일 수 있다. 예를 들어, 제2 반도체층(126)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료를 포함할 수 있으며, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등을 포함할 수 있다. 한편, 제2 반도체층(126)은 산화아연계 반도체층일 수 있다. 예를 들어 제2 반도체층(126)은 InxAlyZn1 -x- yO (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료를 포함할 수 있고, 예를 들어 ZnO, AlO, AlZnO, InZnO, InO, InAlZnO. AlInO 등을 포함할 수 있으며, 이에 한정하지 아니한다 한편, 제2 반도체층(126)은 Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑될 수 있다.The
상술한 제1 반도체층(122), 제1 활성층(124), 및 제2 반도체층(126)은 예를 들어, 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD; Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy), 스퍼터링(Sputtering) 등의 방법을 이용하여 형성될 수 있으며, 이에 대해 한정하지는 않는다.The
또한, 제1 반도체층(122) 및 제2 반도체층(126) 내의 도전형 도펀트의 도핑 농도는 균일 또는 불균일하게 형성될 수 있다. 즉, 복수의 반도체층은 다양한 도핑 농도 분포를 갖도록 형성될 수 있으며, 이에 대해 한정하지는 않는다.In addition, the doping concentrations of the conductive dopants in the
또한, 제1 반도체층(122)이 p형 반도체층으로 구현되고, 제2 반도체층(126)이 n형 반도체층으로 구현될 수 있으며, 제2 반도체층(126) 상에는 n형 또는 p형 반도체층을 포함하는 반도체층(미도시)이 형성될 수도 있다. 이에 따라, 제1 발광 구조물(120)은 np, pn, npn, pnp 접합 구조 중 적어도 어느 하나를 가질 수 있다. In addition, the
제1 발광 구조물(120) 상에는 제2 발광 구조물(130)이 형성될 수 있다.The second
제2 발광 구조물(130)은 제3 반도체층(132), 제2 활성층(134), 및 제4 반도체층(136)을 포함할 수 있다.The second
제2 반도체층(126) 상에는 제3 반도체층(132)이 위치할 수 있다. 제3 반도체층(132)은 제1 도전형으로 도핑될 수 있다. 이때, 제1 도전형은 n 형일 수 있다. 예컨대, 제3 반도체층(132)은 n형 반도체층으로 구현될 수 있으며, 제2 활성층(134)에 전자를 제공할 수 있다. 제3 반도체층(132)은 질화물계 반도체층일 수 있다. 예컨대, 제3 반도체층(132)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료를 포함할 수 있으며, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등을 포함할 수 있다. 한편, 제1 반도체층(122)은 산화아연계 반도체층일 수 있다. 예를 들어, 제3 반도체층(132)은 InxAlyZn1 -x- yO (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 ZnO, AlO, AlZnO, InZnO, InO, InAlZnO. AlInO 등에서 선택될 수도 있고, 이에 한정하지 아니한다 또한, 제1 반도체층(122)은 Si, Ge, Sn 등의 n형 도펀트가 도핑될 수 있다.The
제3 반도체층(132) 상에는 제2 활성층(134)이 형성될 수 있다. 제2 활성층(134)은 3족-5족 원소의 화합물 반도체 재료를 이용하여 단일 또는 다중 양자 우물 구조, 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 등으로 형성될 수 있다.The second
제2 활성층(134)은 양자우물구조로 형성될 수 있다. 또한, 제2 활성층(134)은 질화물계, 또는 산화아연계 반도체층일 수 있다. 예컨데, 제2 활성층(134)은 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 우물층과 InaAlbGa1 -a- bN (0≤a≤1, 0 ≤b≤1, 0≤a+b≤1)의 조성식을 갖는 장벽층을 갖는 단일 또는 다중 양자우물구조를 가질 수 있다. 한편, 우물층은 InxAlyZn1 -x- yO (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖고, 장벽층은 InaAlbZn1 -a- bO (0≤a≤1, 0≤b≤1, 0≤a+b≤1)의 조성식을 갖게 형성될 수 있으며, 이에 한정하지 아니한다. 한편, 우물층은 장벽층의 밴드 갭보다 작은 밴드 갭을 갖는 물질로 형성될 수 있다.The second
또한, 제2 활성층(134)이 다중 양자우물구조를 가질 경우, 각각의 우물층(미도시)은 서로 상이한 조성 및 서로 상이한 밴드갭을 가질 수 있으며, 이에 대해서는 후술한다.In addition, when the second
제2 활성층(134)의 위 또는/및 아래에는 도전성 클래드층(미도시)이 형성될 수 있다. 도전성 클래드층(미도시)은 예컨대 AlGaN계, 또는 AlZnO계 반도체로 형성될 수 있으며, 상기 제2 활성층(134)의 밴드 갭보다는 큰 밴드 갭을 가질 수 있다.A conductive clad layer (not shown) may be formed on or under the second
제4 반도체층(136)은 제2 도전형으로 도핑될 수 있다. 이때, 제2 도전형은 p 형일 수 있다. 예컨대, 제4 반도체층(136)은 제2 활성층(134)에 정공을 주입하도록 p형 반도체층으로 구현될 수 있다. 제4 반도체층(136)은 질화물계 반도체층일 수 있다. 예를 들어, 제4 반도체층(136)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료를 포함할 수 있으며, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등을 포함할 수 있다. 한편, 제4 반도체층(136)은 산화아연계 반도체층일 수 있다. 예를 들어, 제4 반도체층(136)은 InxAlyZn1 -x- yO (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료를 포함할 수 있고, 예를 들어 ZnO, AlO, AlZnO, InZnO, InO, InAlZnO. AlInO 등을 포함할 수 있으며, 이에 한정하지 아니한다 한편, 제4 반도체층(136)은 Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑될 수 있다.The
상술한 제3 반도체층(132), 제2 활성층(134), 및 제4 반도체층(136)은 예를 들어, 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD; Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy), 스퍼터링(Sputtering) 등의 방법을 이용하여 형성될 수 있으며, 이에 대해 한정하지는 않는다.For example, the
또한, 제3 반도체층(132) 및 제4 반도체층(136) 내의 도전형 도펀트의 도핑 농도는 균일 또는 불균일하게 형성될 수 있다. 즉, 복수의 반도체층은 다양한 도핑 농도 분포를 갖도록 형성될 수 있으며, 이에 대해 한정하지는 않는다.In addition, the doping concentrations of the conductive dopants in the
또한, 제3 반도체층(132)이 p형 반도체층으로 구현되고, 제4 반도체층(136)이 n형 반도체층으로 구현될 수 있으며, 제4 반도체층(136) 상에는 n형 또는 p형 반도체층을 포함하는 반도체층(미도시)이 형성될 수도 있다. 이에 따라, 제2 발광 구조물(130)은 np, pn, npn, pnp 접합 구조 중 적어도 어느 하나를 가질 수 있다. In addition, the
제1 발광 구조물(120)과 제2 발광 구조물(130)은 일체로 형성될 수 있으며, 예컨대 일 성장 공정에서 순차로 성장될 수 있고, 이에 한정하지 아니한다.. 또한, 제1 발광 구조물(120)과 제2 발광 구조물(130)은 같은 재질로 형성될 수 있으며, 이에 한정하지 아니한다. 또한, 상술한 바와 같이 제1 및 제2 발광 구조물(120, 130)은 각각 np, pn, npn, pnp 접합구조 중 적어도 어느 하나를 가질 수 있음에 따라서, 발광소자(100)는 npnp, nppn, npnpn, nppnp, pnnp, pnpn, pnnpn, pnpnp, npnnp, npnpn, npnnpn, npnpnp, pnpnp, pnppn, pnpnpn, pnppnp 접합 구조 중 적어도 어느 하나를 가질 수 있으며, 이에 한정하지 아니한다.The first
한편, 제1 발광 구조물(120)과 제2 발광 구조물(130)에서 생성되는 광은 서로 상이한 파장일 수 있으며, 생성되는 광량 또한 서로 상이할 수 있다. 예컨대, 제1 발광 구조물(120)에서 생성되는 광량은 제2 발광 구조물(130)에서 생성되는 광량보다 클 수 있다.Meanwhile, the light generated by the first
또한, 제1 발광 구조물(120)과 제2 발광 구조물(130)은 서로 상이한 구조, 재질, 두께, 조성, 및 크기를 가질 수 있으며, 이에 한정하지 아니한다.In addition, the first
또한, 도 1 및 도 2 에는 발광소자(100)가 제1 발광 구조물(120), 및 제1 발광 구조물(120) 상에 형성된 제2 발광 구조물(130)을 포함하는 것으로 도시되었으나, 이에 한정하지 아니하며, 발광소자(100)는 적어도 2개 이상의 발광 구조물(미도시)을 포함할 수 있다. 1 and 2, the
제2 반도체층(126)과 제3 반도체층(132)의 적어도 일 영역 상에 제1 전극(144)이 형성될 수 있다. 예컨대, 제2 발광 구조물(130)의 적어도 일 영역이 제거되어 제2 반도체층(126) 및 제3 반도체층(132)의 일 영역이 노출될 수 있고, 상기 노출된 영역에 제1 전극(144)이 형성될 수 있다. 즉, 도 1 에 도시된 바와 같이 제2 및 3 반도체층(126, 132)은 제4 반도체층(136)을 향하는 상면과 전도성 기판(142)을 향하는 하면을 포함하고, 상면은 적어도 일 영역이 노출된 영역을 포함하며, 제1 전극(144)은 상면의 노출된 영역 상에 배치될 수 있다. 한편, 제3 반도체층(132)의 일 영역을 관통하는 홀이 형성되어 제2 반도체층(126)의 일부가 노출될 수 있다. 제1 전극(144)은 상기 홀을 통해 제3 반도체층(132)을 관통하여 제2 반도체층(126)과 연결될 수 있다.The
한편, 제2 및 제3 반도체층(126, 132)의 일부가 노출되게 하는 방법은 소정의 식각 방법을 사용할 수 있으며, 이에 한정하지 아니한다. 또한, 식각방법은 습식 식각, 건식 식각방법을 사용할 수 있다. 또한, 식각방법은 메사 에칭 방법일 수 있다. Meanwhile, a method of exposing a part of the second and third semiconductor layers 126 and 132 to each other may use a predetermined etching method, but is not limited thereto. The etching method may be a wet etching method or a dry etching method. In addition, the etching method may be a mesa etching method.
한편, 제4 반도체층(136) 상에는 제2 전극(146)이 형성될 수 있다. 제2 전극(146)은 제4 반도체층(136) 상의 적어도 일 영역에 형성될 수 있으며, 제4 반도체층(136)의 중심, 또는 코너 영역에 형성될 수 있고, 이에 한정하지 아니한다. The
제2 및 제3 반도체층(126, 132) 상에 제1 전극(144)이 형성되고 제4 반도체층(136) 상에 제2 전극(146)이 형성됨에 따라서, 제1 및 제2 전극(144, 146)은 같은 방향에 형성될 수 있다.As the
전도성 기판(142)과 제2 전극(146)은 상호 연결될 수 있다. 따라서, 전도성 기판(142)과 제2 전극(146)을 통해서 제1 반도체층(122) 및 제4 반도체층(136)에 동일한 극성의 전원이 인가될 수 있다.The
또한, 제1 전극(144)은 제2 반도체층(126), 및 제3 반도체층(132) 상에 형성되어 제2 반도체층(126)과 제3 반도체층(132)에 동일한 극성의 전원을 인가할 수 있다.In addition, the
한편, 제1 및 제2 전극(144, 146)은 전도성 물질, 예를 들어 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi 중에서 선택된 금속을 포함할 수 있으며, 또는 이들의 합금을 포함할 수 있고, 상기 금속 물질과 IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO 등의 투광성 전도성 물질을 포함할 수 있으며, 이에 한정하지 아니한다. Meanwhile, the first and
또한, 제1 및 제2 전극(144, 146) 중 적어도 하나는 단층, 또는 다층 구조를 가질 수 있으며, 이에 한정하지 아니한다.In addition, at least one of the first and
이하에서는 도 3 내지 도 5 를 참조하여 실시예에 따른 발광소자(100)의 동작을 설명한다. 한편, 이하에서는 제1 및 제3 반도체층(122, 132)은 n 형 반도체층이고, 제2 및 제4 반도체층(126, 136)은 p 형 반도체층인 것으로 가정하여 설명한다.Hereinafter, an operation of the
도 3 은 실시예에 따른 발광소자(100)의 회로도이다.3 is a circuit diagram of a
상술한 바와 같이, 전도성 기판(142)이 제1 반도체층(122)과 연결되고 제1 전극(144)이 제2 반도체층(126), 및 제3 반도체층(132)과 연결되며 제2 전극(146)이 제4 반도체층(136)과 연결되고, 전도성 기판(142)과 제2 전극(146)은 상호 연결될 수 있다. 이때, 제1 및 제3 반도체층(122, 132)은 제1 도전형으로 도핑되고, 제2 및 제4 반도체층(126, 136)은 제2 도전형으로 도핑될 수 있다. 따라서, 실시예에 따른 발광소자(100)는 도 3 에 도시된 바와 같이 2 개의 발광 다이오드가 역병렬 구조로 연결된 회로 구조를 가질 수 있다.As described above, the
도 4 는 순방향 바이어스가 인가된 경우 실시예에 따른 발광소자(100)의 구동을 나타낸 도면이다.4 is a view illustrating driving of the
도 4 에 도시된 바와 같이, 교류 전원에 있어서, 제1 전극(144)으로 정극성 전압(+) 이 연결되고 전도성 기판 및 제2 전극(142, 146)으로 부극성 전압(-)이 연결될 수 있다.As shown in FIG. 4, in an AC power source, a positive voltage (+) may be connected to the
이때, 제1 발광 구조물(120)에는 제2 반도체층(126)으로부터 활성층(124)을 거쳐 제1 반도체층(124)으로 흐르는 제1 전류 패스(A) 가 형성된다. 상술한 바와 같이, 제2 반도체층(126)은 p 형 반도체층이고, 제1 반도체층(122)은 n 형 반도체층으로 형성되므로, 제1 발광 구조물(120)은 턴온되어 제1 활성층(124)에서 광을 생성할 수 있다. In this case, a first current path A flowing from the
한편, 제2 발광 구조물(130)에는 제3 반도체층(132)에 정극성 전압(+)이 연결되고 제4 반도체층(136)에 부극성 전압(-)이 연결되어 역방향 전압이 인가된다. 따라서, 전류 패스가 형성되지 아니하고 제2 발광 구조물(130)은 턴오프된다.On the other hand, a positive voltage (+) is connected to the
도 5 는 실시예에 따른 발광소자(100)에 역방향 바이어스가 인가된 경우 발광소자(100)의 구동을 나타낸 도면이다.5 is a view illustrating driving of the
도 5 에 도시된 바와 같이, 제1 전극(144)으로 부극성 전압(-) 이 공급되고 전도성 기판 및 제3 전극(142, 146)으로 정극성 전압(+)이 공급될 수 있다.As illustrated in FIG. 5, a negative voltage (−) may be supplied to the
이때, 제2 발광 구조물(130)에는 제4 반도체층(136)으로부터 제2 활성층(134)을 거쳐 제3 반도체층(134)으로 흐르는 제2 전류 패스(B)가 형성된다. 상술한 바와같이, 제4 반도체층(136)은 p 형 반도체층이고, 제3 반도체층(132)은 n 형 반도체층으로 형성되므로 제2 발광 구조물(130)은 턴온되어 제2 활성층(134)에서 광을 생성할 수 있다. In this case, a second current path B flowing from the
한편, 제1 발광 구조물(120)은 제1 반도체층(122)에 정극성 전압(+)이 연결되고 제2 반도체층(126)에 부극성 전압(-)이 연결되어 역방향 전압이 인가된다. 따라서, 전류 패스가 형성되지 아니하고 제1 발광 구조물(120)은 턴오프된다.Meanwhile, in the first
도 4 및 도 5 에 도시된 바와 같이, 실시예에 따른 발광소자(100)는 교류 전원에서 순방향 바이어스 및 역방향 바이어스에 대해 모두 발광할 수 있다. As shown in FIG. 4 and FIG. 5, the
따라서, 교류 전원을 발광소자(100)의 전원으로 사용할 때 별도의 정류 회로, 또는 복수의 발광소자가 필요하지 않으므로 실시예에 따른 발광소자(100), 및 실시예에 따른 발광소자(100)를 이용한 장치의 경제성이 개선될 수 있다.Therefore, when the AC power source is used as the power source of the
또한, 단일 칩으로 형성된 발광소자(100)로 정전압 바이어스 및 역전압 바이어스 모두에 대해 발광이 가능하므로 발광소자(100)의 단위 면적당 발광 효율이 개선될 수 있다.In addition, since the
또한, 정전압 및 역전압 모두에 대해 전류 패스가 형성되므로 ESD 에 의한 발광소자(100)의 손상이 방지될 수 있으며, 별도의 ESD 보호 소자가 필요하지 않을 수 있다. 또한, 실시예에 따른 발광소자(100)를 이용한 발광소자 패키지, 또는 조명 장치에 별도의 ESD 소자가 구비되지 않을 수 있으므로 발광소자 패키지, 또는 조명 장치의 부피가 작아질 수 있고 ESD 소자에 의한 광 손실이 방지될 수 있다.In addition, since a current path is formed for both the constant voltage and the reverse voltage, damage to the
또한, 역방향 바이어스 및 순방향 바이어스에 대해서 광을 생성하는 각각의 발광 구조물(120, 130)이 하나의 발광소자(100)에 포함되며 각각의 발광 구조물(120, 13)은 일체로 형성되므로 하나의 공정에서 제1 및 제2 발광 구조물(120, 130)이 성장될 수 있다. 따라서, 발광소자(100) 제조 공정의 경제성이 개선될 수 있다.In addition, each
도 6 은 실시예에 따른 발광소자(100)의 단면도이다.6 is a cross-sectional view of a
도 6 을 참조하면, 실시예에 따른 발광소자(100)는, 지지부재(110)와, 지지부재(110) 상에 형성되는 전도성 기판(142)과, 전도성 기판(142) 상에 형성되며 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122, 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130)을 포함할 수 있다.Referring to FIG. 6, the
지지부재(110)는 열전도성이 우수한 물질을 이용하여 형성할 수 있으며, 또한 전도성 물질로 형성할 수 있는데, 금속 물질 또는 전도성 세라믹을 이용하여 형성할 수 있다. 지지부재(110)는 단일층으로 형성될 수 있고, 이중 구조 또는 그 이상의 다중 구조로 형성될 수 있다.The
즉, 지지부재(110)는 금속, 예를 들어 Au, Ni, W, Mo, Cu, Al, Ta, Ag, Pt, Cr중에서 선택된 어느 하나로 형성하거나 둘 이상의 합금으로 형성할 수 있으며, 서로 다른 둘 이상의 물질을 적층하여 형성할 수 있다. 또한 지지부재(110)는 Si, Ge, GaAs, ZnO, SiC, SiGe, GaN, Ga2O3 와 같은 캐리어 웨이퍼로 구현될 수 있다.That is, the
이와 같은 지지부재(110)는 발광소자(100)에서 발생하는 열의 방출을 용이하게 하여 발광소자(100)의 열적 안정성을 향상시킬 수 있다.The
도 7 은 실시예에 따른 발광소자(100)의 단면도이다.7 is a cross-sectional view of a
도 7 을 참조하면, 실시예에 따른 발광소자(100)는, 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122, 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130), 및 제1 발광 구조물(120)과 제2 발광 구조물(130) 사이에 형성된 중간층(150)을 포함할 수 있다. Referring to FIG. 7, the
중간층(150)은 소정의 두께를 가지며 제1 발광 구조물(120)과 제2 발광 구조물(130)을 격리할 수 있다. 한편, 도 7 에 도시된 바와 같이 중간층(150)의 일 영역이 제거되고 상기 영역을 통해 제1 전극(144)이 제2 반도체층(126)에 접하게 형성될 수 있다.The
중간층(150)은 예컨대 도핑되지 아니한 언도프드 반도체층일 수 있다. 따라서 중간층(150)은 p 형 도펀트, 또는 n 형 도펀트가 도핑되지 아니하여 낮은 전기 전도성을 가질 수 있다. 한편, 상기와 같은 도펀트가 도핑되지 아니한 것을 제외하고 제1 발광 구조물(120), 또는 제2 발광 구조물(130)을 형성하는 각각의 반도체층과 동일한 조성 및 구조를 가질 수 있다.The
제1 발광 구조물(120)과 제2 발광 구조물(130) 사이에 중간층(150)이 형성됨에 따라서, 제1 발광 구조물(120)과 제2 발광 구조물(130) 사이의 diffusion 발생, 및 누설 전류 발생이 방지될 수 있다. As the
한편, 도 8 을 참조하면 중간층(150)은 수개의 층(151, 152, 153, 154, 155)을 포함한 복층 구조를 가질 수 있다. 도 10 에서는 수개의 층(151, 152, 153, 154, 155)이 형성되게 도시되었으나, 이에 한정하지 아니하며 적어도 2 개 이상의 층이 형성될 수 있다.Meanwhile, referring to FIG. 8, the
각각의 층(151, 152, 153, 154, 155)은 적어도 두개의 서로 상이한 밴드갭을 가질 수 있다. 예컨대, 중간층(150)은 밴드갭이 서로 상이한 수개의 층(151, 152, 153, 154, 155)이 반복하여 교대로 적층되는 구조를 가질 수 있으며, 이에 한정하지 아니한다.Each
반도체층이 성장되는 성장 기판(미도시)과 제1 반도체층(122)은 격자상수의 차이가 클 수 있다. 특히 이러한 결정결함은 성장방향에 따라 증가하는 경향을 갖는다. 중간층(150)이 서로 상이한 밴드갭을 갖는 수개의 층(151, 152, 153, 154, 155)을 포함하며, 제1 발광 구조물(120)과 제2 발광 구조물(130) 사이에 형성됨으로써, 중간층(150) 하부에서 발생한 결정결함의 전파를 차단할 수 있다. 따라서, 결정결함이 중간층(150) 상부로 전달되는 것을 억제할 수 있다. 따라서, 발광소자(100)의 신뢰성 및 발광 효율이 개선될 수 있다.A growth substrate (not shown) in which the semiconductor layer is grown and the
한편, 중간층(150)은 예컨대 GaN, InN, InGaN, AlGaN, ZnO, AlO, AlZnO, InZnO, InO, InAlZnO. AlInO 을 포함하는 반도체층을 포함할 수 있으며, 각각의 층은 다층구조를 형성하는 층 중 가장 밴드갭이 작은 층과 가장 밴드갭이 작은 층이 접하도록 배치될 수 있다.Meanwhile, the
예컨대, AlN 의 조성이 높을수록 밴드갭이 커지고 InN 의 조성이 높을수록 밴드갭이 작아지므로, InN 을 포함하는 층의 밴드갭이 가장 낮고, AlN 을 포함하는 층의 밴드갭이 가장 크게 형성될 수 있다. 따라서, 가장 밴드갭이 큰 AlN 을 포함하는 층과 가장 밴드갭이 작은 InN 를 포함하는 층이 접하게 형성될 수 있다.For example, the higher the composition of AlN, the larger the bandgap, and the higher the composition of InN, the smaller the bandgap, so that the bandgap of the layer containing InN is the lowest and the bandgap of the layer containing AlN can be the largest. have. Therefore, the layer containing AlN having the largest band gap and the layer containing InN having the smallest band gap can be formed in contact with each other.
한편, 격자 상수가 작은 AlN 을 포함하는 층은 인장 응력(tensile stress)을 발생하며, 격자 상수가 큰 InN 을 포함하는 층은 압축 응력(compress stress)을 발생할 수 있다. 따라서, AlN 을 포함한 층과 InN 을 포함한 층이 교대로 적층될 경우 층간의 응력을 완화시킬 수 있다. On the other hand, the layer containing AlN having a small lattice constant generates tensile stress, and the layer containing InN having a large lattice constant may generate compressive stress. Therefore, when layers including AlN and layers including InN are alternately stacked, stress between layers can be alleviated.
중간층(150)은 반사율을 갖는 반사물질을 포함할 수 있다. 한편, 각각의 층(151, 152, 153, 154, 155)은 적어도 두개의 서로 상이한 굴절율을 가질 수 있다. 중간층(150)이 적어도 두개의 상이한 굴절율을 갖는 수개의 층(151, 152, 153, 154, 155)을 포함함으로써 중간층(150)은 반사율을 갖는 DBR (Distributed Bragg Reflector) 층으로 기능할 수 있다. The
중간층(150)이 반사율을 가짐으로써, 제1 및 제2 발광 구조물(120, 130)에서 생성된 광이 중간층(150)에 의해 반사될 수 있다. 따라서, 제1 발광 구조물(120)에서 생성된 광은 제2 발광 구조물(130)을 통과하지 않고 반사되어 측방향으로 진행할 수 있다. 한편, 제2 발광 구조물(130)에서 생성된 광은 제1 발광 구조물(120)을 통과하지 않고 반사되어 상방향으로 진행할 수 있다. 따라서, 발광소자(100)의 광 손실이 줄어들며, 측방향 발광이 가능해질 수 있다.Since the
도 9 및 도 10 은 실시예에 따른 발광소자(100)를 나타낸 단면도이다.9 and 10 are cross-sectional views showing a
도 9 를 참조하면, 실시예에 따른 발광소자(100)는, 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122, 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130)을 포함하며, 제1 및 제2 발광 구조물(120, 130)의 측면의 적어도 일 영역에는 제1 요철부(160)가 형성될 수 있다. 9, the
제1 요철부(160)는 제1, 및 제2 발광 구조물(120, 130)의 측면의 적어도 일 영역에 형성될 수 있으며, 수개의 영역 또는 전체 영역에 형성될 수도 있고, 이에 한정하지 아니한다. 제1 요철부(160)는 제1, 및 제2 발광 구조물(120, 130)의 측면의 적어도 일 영역에 대해 에칭을 수행함으로써 형성될 수 있으며, 이에 한정하지 아니한다. The first
한편, 상기 에칭 과정은 습식 및/또는 건식 에칭 공정을 포함할 수 있고, 이에 한정하지 아니한다. Meanwhile, the etching process may include a wet and / or dry etching process, but is not limited thereto.
상기 에칭 과정은 PEC(photo electro chemical), 또는 KOH 용액과 같은 식각액을 사용한 습식 식각 과정을 통해서 형성될 수 있다. The etching process may be formed through a wet etching process using an etchant such as photo electrochemical (PEC) or KOH solution.
에칭 과정을 거침에 따라서, 제1, 및 제2 발광 구조물(120, 130)의 측면에는 제1 요철부(160)가 형성되며, 그 높이는 0.1 um 내지 3 um 로 형성될 수 있다. 제1 요철부(160)는 랜덤한 크기로 불규칙하게 형성되거나, 또는 원하는 형상 및 배열을 갖도록 형성될 수 있으며, 이에 대해 한정하지는 아니한다. 제1 요철부(160)는 평탄하지 않은 면으로서, 텍스쳐(texture) 패턴, 요철 패턴, 평탄하지 않는 패턴(uneven pattern) 중 적어도 하나를 포함할 수 있다.As the etching process is performed, first
또한, 제1 요철부(160)의 형상은 원기둥, 다각기둥, 원뿔, 다각뿔, 원뿔대, 다각뿔대 등 다양한 형상을 갖도록 형성될 수 있으며, 바람직하게는 뿔 형상을 포함한다.In addition, the shape of the first concave-
제1 요철부(160)는 제1, 및 제2 활성층(124, 134)으로부터 생성된 빛이 제1, 및 제2 발광 구조물(120, 130)의 측면에서 전반사되어 재흡수되거나 산란되는 것을 방지하는 광 추출 구조를 형성한다. 즉, 제1 요철부(160)는 제1, 및 제2 활성층(124, 134)으로부터 생성된 빛이 제1, 및 제2 발광 구조물(120, 130)의 측면에 입사할 때 임계각 이하의 입사각을 형성할 수 있다.The first
제1 요철부(160)가 제1, 및 제2 발광 구조물(120, 130)의 측면에 형성됨에 따라서 제1, 및 제2 활성층(124, 134)으로부터 생성된 빛이 제1, 및 제2 발광 구조물(120, 130)의 측면에서 전반사되어 재흡수되거나 산란되는 것이 방지될 수 있으므로, 발광소자(100)의 광 추출 효율의 향상에 기여할 수 있다.As the first
한편, 도 10 에 도시된 바와 같이 제1, 및 제2 발광 구조물(120, 130)의 측면이 경사각을 갖게 형성될 수 있다. 제1, 및 제2 발광 구조물(120, 130)의 측면이 경사각을 갖게 형성됨에 따라서, 제1, 및 제2 발광 구조물(120, 130)의 측면에 대해 에칭 공정을 수행하여 제21요철부(160)을 형성하기 용이할 수 있다. 아울러, 제1, 및 제2 발광 구조물(120, 130)의 측면을 통과하여 진행하는 광이 측방향을 포함한 다양한 방향으로 진행함으로써 발광소자(100)의 배광 패턴이 개선될 수 있다.Meanwhile, as illustrated in FIG. 10, side surfaces of the first and second
한편, 상기 경사각은 지나치게 크거나 작을 경우 발광소자(100)의 크기 대비 제1 및 제2 활성층(124, 134)의 크기 비율이 작아져서 발광소자(100)의 발광 효율이 작아지므로, 상기 제1 경사각은 50° 내지 90°일 수 있다.On the other hand, when the inclination angle is too large or too small, the ratio of the size of the first and second
한편, 제1, 및 제2 발광 구조물(120, 130)의 성장면은 비극성, 또는 반극성 결정면일 수 있다. 예컨대, 제1, 및 제2 발광 구조물(120, 130)을 형성하는 GaN 결정의 C-면{0001}이 제1, 및 제2 발광 구조물(120, 130)의 측면에 형성될 수 있으며, 따라서 Ga-face, 또는 N-face 가 제1, 및 제2 발광 구조물(120, 130)의 측면에 형성될 수 있다.Meanwhile, the growth surfaces of the first and second
즉, 제1, 및 제2 발광 구조물(120, 130)의 성장면이 비극성 또는 반극성 결정면일 경우 Ga-face 또는 N-face가 제1, 및 제2 발광 구조물(120, 130)의 측면에 형성될 수 있다. Ga-face 및 N-face는 습식 식각 공정을 통해서 용이하게 식각될 수 있으므로, 제1, 및 제2 발광 구조물(120, 130)의 측면은 습식 식각 공정을 통해서 요철부(160)가 형성될 수 있다. 아울러, 한편, 제1, 및 제2 발광 구조물(120, 130)의 성장면이 비극성, 또는 반극성 결정면으로 형성됨으로써, 압전 분극(piezoelectric polariziton), 및 압전 분극에 의한 정전기장이 약화되어 제1 및 제2 활성층(132, 134)에서 전자와 정공의 재결합 확률이 증가하며 발광소자(100)의 발광 효율이 개선될 수 있다.That is, when the growth surfaces of the first and second
도 11 은 실시예에 따른 발광소자의 단면도이다.11 is a cross-sectional view of a light emitting device according to the embodiment.
도 11 을 참조하면, 실시예에 따른 발광소자(100)는, 전도성 기판(142)과, 전도성 기판(142) 상에 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122, 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130)을 포함하며, 전도성 기판(142)과 제2 전극(146)이 연결되고, 제2 전극(146)과 제1 및 제2 발광 구조물(120, 130) 사이에 제1 절연층(148)이 형성되며, 제1 전극(144)과 제2 발광 구조물(130) 사이에 제2 절연층(149)이 형성될 수 있다.Referring to FIG. 11, the
전도성 기판(142)과 제2 전극(146)은 서로 연결되게 형성될 수 있으며, 예컨대 연속적으로 형성될 수 있다. The
한편, 전도성 기판(142)과 제2 전극(146)을 연결하도록 전도성 기판(142)과 제2 전극(146) 사이에 전기 전도성을 갖는 연결전극(147)이 형성될 수 있으며, 이에 한정하지 아니한다. 연결전극(147)은 제1 및 제2 발광 구조물(120, 130) 측면에 형성될 수 있으며, 이에 한정하지 아니한다.Meanwhile, a
제1 절연층(148)은 연결전극(147)과 제1 및 제2 발광 구조물(120, 130)의 측부 사이에 형성되어 연결전극(147), 전도성 기판(142) 및 제3 전극(146)과 제1 및 제2 발광 구조물(120, 130)이 불필요하게 쇼트되는 것을 방지할 수 있다.The first insulating
한편, 전도성 기판(142)과 제2 전극(146)이 서로 연결될 수 있도록, 전도성 기판(142)은 측방향으로 연장될 수 있다.Meanwhile, the
제2 절연층(149)은 제2 발광 구조물(130)의 측벽에 형성되어 제1 전극(144)과 제2 발광 구조물(130)이 불필요하게 쇼트되는 것을 방지할 수 있다.The second
즉, 제2 절연층(149)은 상술한 메사 에칭된 제2 발광 구조물(130)의 측벽에 형성될 수 있다.That is, the second insulating
제1 및 제2 절연층(148, 149)은 전기 절연성을 갖는 재질, 예컨대 SiO2, SiOx, SiOxNy, Si3N4, Al2O3, TiOx, TiO2, Ti, Al, Cr 중 어느 하나를 포함할 수 있으며, 이에 한정하지 아니한다.The first and second insulating
도 12 는 실시예에 따른 발광소자의 단면도이다.12 is a cross-sectional view of a light emitting device according to the embodiment.
도 12 를 참조하면, 실시예에 따른 발광소자(100)는, 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122, 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130)을 포함하며, 제2 및 제3 전극(144, 146) 은 다층 구조를 가질 수 있다.Referring to FIG. 12, the
이하에서는 제2 전극(146)에 대해 기술하나, 제2 전극(146) 뿐 아니라, 제1 전극(144)에 대해서도 적용될 수 있음은 자명하다.Hereinafter, although the
도 12 를 참조하면, 제2 전극(146)은 접합층(146a), 반사층(146b) 및 보호층(146c)을 포함하여 구성될 수 있다. 또한, 후술하는 바와 같이 발광소자 패키지(미도시) 제작시 와이어가 연결될 수 있도록 와이어 본딩층(146d)을 더 포함할 수 있다.Referring to FIG. 12, the
반사층(146b)은 은 합금(Ag alloy)을 포함할 수 있다.The
반사층(146b)이 반사도가 높은 은(Ag)을 포함함으로써 제2 전극(146)의 반사도가 향상되고 발광소자(100)의 발광 효율이 개선될 수 있다. 또한, 은 합금으로 형성됨으로써, 제2 전극(146)을 열처리하는 경우의 Vf가 증가하는 점, 및 접촉 전위차 등에 의해서 Galvanic 부식 등이 발생하는 점을 방지할 수 있다. Since the
한편, 예컨대 제4 반도체층(136)이 n 형 반도체층으로 형성되고 반사층(146b)이 단순 은으로 형성된 경우 제2 전극(146)과 제4 반도체층(136)이 오믹 접촉을 형성하기 어려울 수 있다. 그러나, 반사층(146b)이 은 합금을 포함함에 따라서 은에 의한 높은 반사도를 확보함과 동시에 제3 반도체층(136)과 제1 제2 전극(146)이 오믹 접촉을 형성할 수 있다. On the other hand, when the
한편, 은 합금(Ag alloy)은 은(Ag)과 Cu, Re, Bi, Al, Zn, W, Sn, In 및 Ni 중 적어도 어느 하나를 포함하여 형성할 수 있으며, 이에 한정하지 아니한다. 한편, 은 합금은 100 ? 내지 700? 에서 alloy 를 수행함으로써 형성될 수 있다.Meanwhile, the silver alloy may include silver (Ag) and at least one of Cu, Re, Bi, Al, Zn, W, Sn, In, and Ni, but is not limited thereto. On the other hand, silver alloy is 100? To 700? It can be formed by performing an alloy in.
한편, 은(Ag)은 50 wt % 이상 함유될 수 있으며, 이에 한정하지 아니한다.On the other hand, silver (Ag) may contain 50 wt% or more, but is not limited thereto.
접합층(146a)은 Cr, Ti, V, Ta 및 Al 중 적어도 어느 하나로 형성될 수 있는데, 제2 전극(146)과 제3 반도체층(136) 간의 부착력을 향상시키고, 열처리시 반사층(146b)에 포함된 은의 과도한 확산 및 이동을 억제한다. 또한, 보호층(146c)은 Cr, Ti, Ni, Pd, Pt, W, Co, 및 Cu 중 적어도 어느 하나로 형성될 수 있는데, 외부 산소의 과다 주입과 은 입자의 과도한 외부 확산을 억제하여, 은의 집괴 및 공공현상을 막아줄 수 있다.The
한편, 접합층(146a), 반사층(146b), 및 보호층(146c)은 순차적으로 증착되거나, 또는 동시에 형성할 수도 있으며, 형성 후 어닐링 공정을 수행할 수 있고 이에 한정하지 아니한다. 한편, 접합층(146a), 반사층(146b) 까지만 순차적으로 증착하거나 동시에 형성될 수 있고, 이에 한정하지 아니한다. 한편, 접합층(146a), 및 반사층(146b)이 동시에 형성되고 alloy 되는 경우 하나의 층 (AgxMyAz (1≥ x ≥0.5) )으로 형성될 수 있다.Meanwhile, the
이와 같이 구성되는 제2 전극(146)은 열처리를 수행하면, 제2 전극(146)은 제4 반도체층(136)에 낮은 접촉 저항과 강한 접착력을 가지고 본딩될 수 있다.When the
또한, 열처리에 의한 Galvanic 부식 등이 발생하지 않고, 열처리에 의한 과도한 은 입자의 확산은 접합층(146a)과 보호층(146c)에 의해 방지되므로, 제2 전극(146)은 은 특유의 높은 광 반사도 특성을 유지할 수 있다.In addition, galvanic corrosion due to heat treatment does not occur, and excessive diffusion of silver particles by heat treatment is prevented by the
한편, 와이어 본딩층(146d)은 발광소자(100)가 발광소자패키지(미도시)에 장착되는 경우, 외부의 전원을 인가하기 위해 연결되는 와이어가 본딩 되도록 형성될 수 있다. 한편, 와이어 본딩층(146d)은 예컨대 금 등을 포함할 수 있으며, 이에 한정하지 아니한다.Meanwhile, when the
한편, 제2 및 제3 전극(144, 146) 중 적어도 하나는 패드 전극일 수 있다.Meanwhile, at least one of the second and
도 13 및 도 14 는 실시예에 따른 발광소자(100)의 단면도이다.13 and 14 are cross-sectional views of the
도 13 을 참조하면, 실시예에 따른 발광소자는, 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122, 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130)을 포함하며, 제2 발광 구조물(130) 상에 투광성 전극층(170)이 형성될 수 있다.Referring to FIG. 13, the light emitting device according to the embodiment may include a first active layer formed between the
투광성 전극층(170)은 IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO 등의 투광성 전도성 물질을 포함할 수 있으며, 이에 한정하지 아니한다. The
제2 발광 구조물(130) 상에 투광성 전극층(170)이 형성됨으로써, 전류 스프레딩이 개선될 수 있다. 따라서, 제2 발광 구조물(130)에 제공되는 전류가 고루 확산되어 제2 활성층(134)에서 전자와 정공 사이의 재결합율이 증가할 수 있다.By forming the
한편, 도 14 에 도시된 바와 같이 투광성 전극층(170)의 적어도 일 영역이 제거되어 제4 반도체층(136)이 노출되고 제4 반도체층(136)과 제2 전극(146)이 서로 접하게 형성될 수 있으며, 이에 한정하지 아니한다.Meanwhile, as illustrated in FIG. 14, at least one region of the
이때, 제4 반도체층(136)과 제2 전극(146)은 쇼트키 접합을 형성할 수 있다. 이때, 제2 전극(146)을 형성하는 금속 재질은 제4 반도체층(136)보다 높은 일함수를 가질 수 있다. 제4 반도체층(136)과 제2 전극(146)이 쇼트키 접합을 형성함에 따라서, 제2 전극(146)을 통해 공급되는 전류가 제2 전극(146) 하부에 집중되지 않고 투광성 전극층(170)을 통해 흐르게 되어 전류 스프레딩이 개선될 수 있다. In this case, the
도 15 는 실시예에 따른 발광소자(100)의 단면도이다.15 is a cross-sectional view of a
도 15 를 참조하면, 실시예에 따른 발광소자(100)는, 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130)을 포함하며, 제2 발광 구조물(130) 상에 수개의 투광성 구조물(172), 및 투광성 구조물(172) 상에 투광성 전극층(170)이 형성될 수 있다.Referring to FIG. 15, the
투광성 구조물(172)은 투광성을 갖는 수개의 구조물이 제 4 반도체층(136) 상에 배열되게 형성될 수 있다. 투광성 구조물(172)은 예컨대 Al2O3, SiO2, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO 등의 재질을 포함할 수 있으며, 이에 한정하지 아니한다.The light transmissive structure 172 may be formed such that several structures having light transmissivity are arranged on the
투광성 구조물(172)은, 예컨대 소정의 크기를 갖는 수개의 입자가 제4 반도체층(136) 상에 산포되거나, 또는 소정의 두께 및 거칠기를 갖는 층이 제4 반도체층(!36) 상에 형성됨으로써 형성될 수 있으며, 이에 한정하지 아니한다. 한편, 투광성 구조물(172)은 소정의 패턴을 갖게 배치되거나, 또는 랜덤하게 산포될 수 있으며, 이에 한정하지 아니한다. The translucent structure 172 is formed by, for example, several particles having a predetermined size scattered on the
한편, 도 15 에 도시된 바와 같이 투광성 구조물(172) 상에 투광성 전극층(170)이 형성될 수 있다. 투광성 구조물(172) 상에 투광성 전극층(170)이 형성됨으로써 전류 스프레딩이 개선되고, 투광성 구조물(172)이 제4 반도체층(136)으로부터 이탈하거나 또는 투광성 구조물(172)이 손상되는 것이 방지될 수 있다. Meanwhile, as illustrated in FIG. 15, the
제4 반도체층(136) 상에 수개의 투광성 구조물(172)이 형성됨으로써, 제4 반도체층(136) 상에는 소정의 거칠기를 갖는 제2 요철부(174)가 형성될 수 있다. By forming several translucent structures 172 on the
제2 요철부(174)는 규칙적인 형상 및 배열을 갖도록 형성될 수 있으며, 불규칙한 형상 및 배열을 갖도록 형성될 수도 있고, 이에 대해 한정하지는 않는다. 제2 요철부(174)는 평탄하지 않는 상면으로서, 랜덤한 형상의 수개의 요철이 배열되거나 소정의 패턴을 형성하여 텍스쳐(texture) 패턴, 요철 패턴, 평탄하지 않는 패턴(uneven pattern) 중 적어도 하나를 포함할 수 있고, 이에 한정하지 아니한다.The second
제2 요철부(174)는 측 단면이 원기둥, 다각기둥, 원뿔, 다각뿔, 원뿔대, 다각뿔대 등 다양한 형상을 갖도록 형성될 수 있으며, 바람직하게 뿔 형상을 포함한다.The second concave-
제2 요철부(174)는 제1, 및 제2 활성층(124, 134)으로부터 생성된 빛이 제2 발광 구조물(130)의 상면에서 전반사되어 재흡수되거나 산란되는 것을 방지하는 광 추출 구조를 형성한다. 즉, 제2 요철부(174)는 제1, 및 제2 활성층(124, 134)으로부터 생성된 빛이 제2 발광 구조물(130)의 상면에 입사할 때 임계각 이하의 입사각을 형성할 수 있다.The second
제2 요철부(174)가 제2 발광 구조물(130)의 상면에 형성됨에 따라서 제1, 및 제2 활성층(124, 134)으로부터 생성된 빛이 제2 발광 구조물(130)의 상면에서 에서 전반사되어 재흡수되거나 산란되는 것이 방지될 수 있으므로, 발광소자(100)의 광 추출 효율의 향상에 기여할 수 있다.As the second
도 16 은 실시예에 따른 발광소자의 단면도이다.16 is a cross-sectional view of a light emitting device according to the embodiment.
도 16 을 참조하면, 실시예에 따른 발광소자(100)는, 제1 반도체층(122), 제2 반도체층(126), 및 제1 및 제2 반도체층(122, 126) 사이에 형성되는 제1 활성층(124)을 포함하는 제1 발광 구조물(120)과, 제1 발광 구조물(120) 상에 형성되며 제3 반도체층(132), 제4 반도체층(136), 및 제3 및 제4 반도체층(132, 136) 사이에 형성되는 제2 활성층(134)을 포함하는 제2 발광 구조물(130)을 포함하며, 제1 및 제2 발광 구조물(120, 130)은 각각 전자 제한층(EBL : Electron Blocking Layer)(128, 138)을 포함할 수 있다.Referring to FIG. 16, the
예컨대, 도 16 에 도시된 바와 같이 제1 발광 구조물(120)은 제1 전자 제한층(128)을 포함하며, 제2 발광 구조물(130)은 제2 전자 제한층(138)을 포함할 수 있다.For example, as illustrated in FIG. 16, the first
제1, 및 제2 전자 제한층(128, 138)은 제1 및 제2 활성층(124, 134)보다 상대적으로 큰 밴드갭을 가짐으로써, 제1 및 제3 반도체층(122, 132)으로부터 주입된 전자가 제1 및 제2 활성층(124, 134)에서 재결합되지 않고 제2, 및 제4 반도체층(126, 136)으로 주입되는 현상을 방지할 수 있다. 이에 따라 제1 및 제2 활성층(124, 134)에서 전자와 정공의 재결합 확률을 높이고 누설전류를 방지할 수 있다.The first and second electron confinement layers 128 and 138 have relatively larger bandgaps than the first and second
한편, 상술한 제1 및 제2 전자 제한층(128, 138)은 제1 및 제2 활성층(124, 134)에 포함된 장벽층의 밴드갭보다 큰 밴드갭을 가질 수 있으며, 예컨대 p 형 AlGaN 과 같은 Al 을 포함한 반도체층으로 형성될 수 있고, 이에 한정하지 아니한다.Meanwhile, the above-described first and second
한편, 제1, 및 제2 전자 제한층(128,138)은 제1 반도체층(122)과 제2 반도체층(126) 사이, 및 제3 반도체층(132)과 제4 반도체층(136) 사이에 형성될 수 있다. 도 16 에서는 제2 반도체층(126)과 제1 활성층(124) 사이에 제1 전자 제한층(128)이 형성되며, 제4 반도체층(136)과 제2 활성층(134) 사이에 제2 전자 제한층(138)이 형성되었으나, 이에 한정하지 아니한다. 즉, 도 17 에 도시된 바와 같이 제1 반도체층(122)과 제1 활성층(124) 사이에 제1 전자 제한층(128)이 형성되며, 제3 반도체층(132)과 제2 활성층(134) 사이에 제2 전자 제한층(138)이 형성될 수 있으며, 이에 한정하지 아니한다.Meanwhile, the first and second
도 18 은 실시예에 따른 발광소자의 단면도이며, 도 19 는 도 18 의 B 영역을 확대 도시한 확대 단면도이고, 도 20 및 도 21 은 실시예에 따른 발광소자의 에너지 밴드 다이어그램을 나타낸 도면이다.18 is a cross-sectional view of a light emitting device according to the embodiment, FIG. 19 is an enlarged cross-sectional view showing a region B of FIG. 18, and FIGS. 20 and 21 are diagrams showing energy band diagrams of the light emitting device according to the embodiment.
도 18 을 참조하면, 발광소자(100)의 제2 활성층(134)은 다중 양자우물 구조를 가질 수 있다. 예컨대, 제2 활성층(134)은 제1 내지 제3 우물층(Q1, Q2, Q3) 및 제1 내지 제3 장벽층(B1, B2. B3)을 포함할 수 있다. Referring to FIG. 18, the second
이하에서는 제2 활성층(134)의 다중 양자우물 구조에 관해 설명하나, 제1 활성층(124) 또한 다중 양자우물 구조를 가질 수 있으며, 하기 설명은 제1 활성층(124)에 대해서도 동일하다.Hereinafter, the multi-quantum well structure of the second
제1 내지 제3 우물층(Q1, Q2, Q3) 및 제1 내지 제3 장벽층(B1, B2, B3)은 도 21 에 도시된 바와 같이 서로 교대로 적층되는 구조를 가질 수 있다. The first to third well layers Q1, Q2, and Q3 and the first to third barrier layers B1, B2, and B3 may have a structure in which they are alternately stacked as shown in FIG. 21.
한편, 도 19 에서는 각각 제1 내지 제3 우물층(Q1, Q2, Q3) 및 제1 내지 제3 장벽층(B1, B2, B3)이 형성되고 제1 내지 제3 장벽층(B1, B2, B3)과 제1 내지 제3 우물층(Q1, Q2, Q3)이 교대로 적층되게 형성되도록 도시되었으나, 이에 한정하지 아니하며, 우물층(Q1, Q2, Q3) 및 장벽층(B1, B2, B3)은 임의의 수를 갖도록 형성될 수 있으며, 배치 또한 임의의 배치를 가질 수 있다. 아울러, 상술한 바와 같이 각각의 우물층(Q1, Q2, Q3), 및 각각의 장벽층(B1, B2, B3)을 형성하는 재질의 조성비 및 밴드갭, 및 두께는 서로 상이할 수 있으며, 도 19 에 도시된 바와 같이 한정하지 아니한다. Meanwhile, in FIG. 19, the first to third well layers Q1, Q2, and Q3 and the first to third barrier layers B1, B2, and B3 are formed, respectively, and the first to third barrier layers B1, B2, B3) and the first to third well layers Q1, Q2, and Q3 are alternately formed, but are not limited thereto, and the well layers Q1, Q2, and Q3 and the barrier layers B1, B2, and B3 may be alternately formed. ) May be formed to have any number, and the arrangement may also have any arrangement. In addition, as described above, the composition ratios, band gaps, and thicknesses of the materials forming the respective well layers Q1, Q2, and Q3, and the respective barrier layers B1, B2, and B3 may be different from each other. It is not limited as shown in 19.
한편, 도 20 내지 도 21 을 참조하면, 제3 우물층(Q3)의 밴드갭은 제1 및 제2 우물층(Q1, Q2)의 밴드갭보다 크게 형성될 수 있다. 20 to 21, the band gap of the third well layer Q3 may be larger than the band gaps of the first and second well layers Q1 and Q2.
제2 활성층(134)에 정공을 제공하는 제4 반도체층(136)에 인접한 제3 우물층(Q3)의 밴드갭이 제1, 및 제2 우물층(Q1, Q2)의 밴드갭에 비해서 크게 형성됨에 따라서, 정공의 이동이 용이해질 수 있다. 이에 따라서, 제1, 및 제2 우물층(Q1, Q2)으로 정공이 주입되는 효율 및 전체적인 정공 주입 효율이 증대될 수 있다.The band gap of the third well layer Q3 adjacent to the
아울러, 제3 우물층(Q3)의 밴드갭은 제1 및 제2 우물층(Q1, Q2)보다 크고 장벽층(B1, B2, B3)보다 작으므로, 밴드갭이 큰 장벽층(B1, B2, B3) 및 제2 반도체층(126)과 밴드갭이 작은 우물층(Q1, Q2, Q3) 사이의 밴드갭 차이로 인한 층간 응력 발생을 완화시킴으로써, 발광소자(100)의 신뢰성을 더욱 향상시킬 수 있다.In addition, since the band gap of the third well layer Q3 is larger than the first and second well layers Q1 and Q2 and smaller than the barrier layers B1, B2 and B3, the barrier layers B1 and B2 having a large band gap are provided. , B3) and the
한편, 상술한 바와 같이, 우물층(Q1, Q2, Q3)은 InxAlyGa1 -x- yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 가질 수 있다. 우물층(Q1, Q2, Q3)의 In 함유량이 높을수록 밴드갭은 작아지며, 반대로 우물층(Q1, Q2, Q3)의 In 함율량이 작을수록 우물층(Q1, Q2, Q3)의 밴드갭은 커질 수 있다.On the other hand, in as described above, the well layer (Q1, Q2, Q3) is In x Al y Ga 1 -x- y N (0≤x≤1, 0 ≤y≤1, 0≤x + y≤1) It may have a composition formula. The higher the In content of the well layers Q1, Q2, and Q3, the smaller the band gap. On the contrary, the smaller the In content of the well layers Q1, Q2, and Q3, the smaller the band gap of the well layers Q1, Q2, and Q3. Can be large.
예컨대, 제3 우물층(Q3)의 In 함유량은 제1, 및 제2 우물층(Q1, Q2)의 In 함유량의 90% 내지 99% 일 수 있다. In 함유량이 90% 미만인 경우, 제3 우물층(Q3)의 밴드갭이 제1, 및 제2 우물층(Q1, Q2)의 격자상수 차이가 커져, 오히려 결정성이 저하된다. 또한, In 함유량이 99%이상 인 경우에는 제1, 및 제2 우물층(Q1, Q2)과 큰 차이가 없어서, 정공 주입 및 경정성 향상에 큰 영향을 주지 못한다. 상기 비율은 몰비, 부피비, 질량비 중 어느 하나일 수 있으며, 이에 한정하지 아니한다.For example, the In content of the third well layer Q3 may be 90% to 99% of the In content of the first and second well layers Q1 and Q2. When the In content is less than 90%, the difference in lattice constant between the first and second well layers Q1 and Q2 becomes larger in the band gap of the third well layer Q3, and the crystallinity is lowered. In addition, when In content is 99% or more, there is no big difference with 1st and 2nd well layers Q1 and Q2, and it does not have a big influence on hole injection and hardening improvement. The ratio may be any one of a molar ratio, a volume ratio, and a mass ratio, but is not limited thereto.
한편, 반도체층에는 반도체층 간의 격자상수 차이 및 배향성에 의한 응력이 발생하여 생기는 압전분극(piezoelectric polariziton)이 발생할 수 있다. 발광소자를 형성하는 반도체 재료는 큰 값의 압전계수를 가지므로 작은 변형(strain)에도 매우 큰 분극을 초래할 수 있다. 두 개의 분극으로 유발된 정전기장(electric field)은 양자우물 구조의 에너지 밴드 구조를 변화시켜 이에 따른 전자와 정공의 분포를 왜곡시키게 된다. 이러한 효과를 양자 구속 스타크 효과(quantum confined stark effect, QCSE)라고 하는데 이는 전자와 정공의 재결합으로 빛을 방생시키는 발광소자에 있어서 낮은 내부양자효율을 유발하고 발광 스펙트럼의 적색 편이(red shift) 등 발광소자의 전기적, 광학적 특성에 악영향을 끼칠 수 있다.On the other hand, the piezoelectric polariziton generated by the stress due to the lattice constant difference and the orientation between the semiconductor layers may occur in the semiconductor layer. The semiconductor material forming the light emitting element has a large value of the piezoelectric coefficient and thus can cause very large polarization even at small strains. The electric field caused by the two polarizations changes the energy band structure of the quantum well structure, thereby distorting the distribution of electrons and holes. This effect is called the quantum confined stark effect (QCSE), which causes low internal quantum efficiency in light emitting devices that generate light by recombination of electrons and holes, and emits light such as red shift in the emission spectrum. It may adversely affect the electrical and optical characteristics of the device.
상술한 바와 같이, 우물층(Q1, Q2, Q3)은 InxAlyGa1 -x- yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖고, 장벽층(B1, B2, B3)은 InaAlbGa1 -a- bN (0≤a≤1, 0 ≤b≤1, 0≤a+b≤1)의 조성식을 가질 수 있다. InN 의 격자상수가 GaN 보다 크고, 우물층(Q1, Q2, Q3)에 포함된 In 함량이 커질수록 우물층(Q1, Q2, Q3)의 격자상수가 커져서 장벽층(B1, B2, B3)과 우물층(Q1, Q2, Q3) 사이의 격자상수 차이가 증가하고 따라서 층 간의 strain 이 더욱 크게 발생하게 된다. 이러한 strain 에 의해서 상술한 바와 같은 분극 효과가 더욱 증대되어 내부 전기장이 강화되고, 이에 따라서 밴드가 전기장에 따라서 휘어서 뾰족한 형태의 triangle potential 우물이 생기며, 이러한 triangle potential 우물에 전자나 홀이 집중되는 형상이 발생할 수 있다. 따라서 전자와 홀의 재결합율이 저하될 수 있다. As it described above, the composition formula of the well layer (Q1, Q2, Q3) is In x Al y Ga 1 -x- y N (0≤x≤1, 0 ≤y≤1, 0≤x + y≤1) The barrier layers B1, B2, and B3 may have a composition formula of In a Al b Ga 1 -a- b N (0≤a≤1, 0≤b≤1, 0≤a + b≤1). . The lattice constant of InN is larger than GaN, and as the In content included in the well layers Q1, Q2, and Q3 increases, the lattice constant of the well layers Q1, Q2, and Q3 increases, so that the barrier layers B1, B2, and B3 The difference in lattice constant between the well layers Q1, Q2, and Q3 increases, which results in more strain between the layers. Due to this strain, the polarization effect as described above is further increased to strengthen the internal electric field. Accordingly, the band bends according to the electric field, resulting in a pointed triangle potential well, and the shape where electrons or holes are concentrated in the triangle potential well. May occur. Therefore, the recombination rate of electrons and holes may decrease.
실시예에 따라서, 제3 우물층(Q3)의 In 함량이 감소하여 격자상수가 작아짐에 따라서, 장벽층(B1, B2, B3)과 제3 우물층(Q3) 사이의 격자상수 차이가 작아질 수 있다. 따라서, 상술한 triangle potential 우물의 발생이 감소할 수 있으며, 따라서 전자와 홀의 재결합율이 증가할 수 있고, 발광소자(100)의 발광 효율이 개선될 수 있다.According to an embodiment, as the In content of the third well layer Q3 decreases to decrease the lattice constant, the lattice constant difference between the barrier layers B1, B2 and B3 and the third well layer Q3 may decrease. Can be. Therefore, the generation of the above-described triangle potential wells can be reduced, thus the recombination rate of electrons and holes can be increased, and the luminous efficiency of the
아울러, 제4 반도체층(126)에 인접한 제3 우물층(Q3)의 밴드갭이 크게 형성되고, 높은 전위 장벽을 가짐으로써, 제2 반도체층(126)에서 제공되는 캐리어(예컨대 정공)에 대해서 저항성을 가짐으로써 정공의 경로 확산을 가져올 수 있다. 정공의 경로 확산을 통해 제2 활성층(134)의 면적에 걸쳐 더욱 넓은 범위에서 전자와 정공의 재결합이 발생하여 전자와 정공의 결합률을 향상시킬 수 있고, 따라서 발광소자(100)의 발광 효율이 향상될 수 있다.In addition, the band gap of the third well layer Q3 adjacent to the
한편, 반도체층이 성장되는 성장 기판(미도시)과 성장 기판(미도시)상에 형성되는 제1 발광 구조물(120)간의 격자 상수 차이에 기인하는 결정결함은 성장방향에 따라 증가하는 경향이 있으므로, 성장 기판(미도시)으로부터 가장 이격된 위치에 형성된 제4 반도체층(136)이 가장 큰 결정결함을 가질 수 있다. 정공이동도(hole mobility)가 전자이동도(electron mobility)보다 낮다는 사실을 감안하면, 제4 반도체층(136)의 결정성 저하로 인한 정공 주입효율의 저하는 발광소자(100)의 발광 효율을 저하시킬 수 있다.On the other hand, the crystal defects due to the lattice constant difference between the growth substrate (not shown) on which the semiconductor layer is grown and the first
그러나, 실시예와 같이 제2 활성층(134)의 제3 우물층(Q3)의 밴드갭이 크게 형성됨으로써 결정결함의 전파를 차단할 수 있으므로, 제4 반도체층(136)의 결정결함이 개선될 수 있고, 발광소자(100)의 발광 효율이 개선될 수 있다. However, as in the embodiment, since the band gap of the third well layer Q3 of the second
한편, 도 21 에 도시된 바와 같이, 제1 내지 제3 우물층(Q1, Q2, Q3)의 밴드갭은 순차적으로 크게 형성될 수 있다Meanwhile, as illustrated in FIG. 21, the band gaps of the first to third well layers Q1, Q2, and Q3 may be formed to be large in sequence.
즉, 제1 내지 제3 우물층(Q1, Q2, Q3)에 포함된 In의 함유량은 제1 우물층(Q1)에서 제3 우물층(Q3)으로 갈수록 순차적으로 적게 형성될 수 있다.That is, the content of In included in the first to third well layers Q1, Q2, and Q3 may be sequentially decreased from the first well layer Q1 to the third well layer Q3.
정공을 주입하는 제4 반도체층(136)에 인접할수록 우물층(Q1, Q2, Q3)이 더욱 큰 밴드갭을 갖게 형성됨에 따라서, 제1 내지 제3 우물층(Q1, Q2, Q3)의 정공 주입 효율이 향상될 수 있으며, 따라서 발광소자(100)의 발광 효율이 개선될 수 있다.The holes of the first to third well layers Q1, Q2, and Q3 are formed as the well layers Q1, Q2, and Q3 have larger band gaps as they are adjacent to the
또한, 제1 우물층(Q1)으로부터 제3 우물층(Q3)으로 순차적으로 밴드갭이 커짐에 따라서, 우물층(Q1, Q2, Q3)과 장벽층(B1, B2, B3) 및 제3, 제4 반도체층(132, 134) 사이의 격자상수 차이가 완화되어 triangle potential 우물의 발생이 감소할 수 있고, 따라서 전자와 홀의 재결합율이 증가할 수 있고, 발광소자(100)의 발광 효율이 개선될 수 있다.In addition, as the band gaps are sequentially increased from the first well layer Q1 to the third well layer Q3, the well layers Q1, Q2, and Q3, the barrier layers B1, B2, and B3, and the third, The difference in the lattice constant between the fourth semiconductor layers 132 and 134 is alleviated, thereby reducing the occurrence of the triangle potential well, thus increasing the recombination rate of electrons and holes, and improving the luminous efficiency of the
한편, 제1 활성층(124)의 우물층(미도시)의 두께와, 제2 활성층(134)의 제1 내지 제3 우물층(Q1, Q2, Q3)의 두께 및 밴드갭 크기는 서로 상이할 수 있다.On the other hand, the thickness of the well layer (not shown) of the first
예컨대, 우물층내에서 발생하는 빛의 에너지 준위 공식은 하기와 같다.For example, the energy level formula of light generated in the well layer is as follows.
이때, L 은 우물층의 두께(d1, d2)에 대응한다. 따라서, 제1 내지 제3 우물층(Q1, Q2, Q3)의 두께가 두꺼워질수록 제1 내지 제3 우물층(Q1, Q2, Q3)에서 발생하는 빛의 에너지 준위는 낮아지게 된다. At this time, L corresponds to the thicknesses d1 and d2 of the well layer. Therefore, as the thicknesses of the first to third well layers Q1, Q2 and Q3 become thicker, the energy level of light generated in the first to third well layers Q1, Q2 and Q3 becomes lower.
제1 활성층(124)의 우물층(미도시)의 두께와, 제2 활성층의 제1 내지 제3 우물층(Q1, Q2, Q3)의 두께가 서로 상이하게 형성됨으로써, 제1 발광 구조물(120)과 제2 발광 구조물(130)이 서로 상이한 파장의 광을 생성할 수 있다. 예컨대, 제1 발광 구조물(120)은 청색광을 생성하고, 제2 발광 구조물(130)은 녹색광을 생성할 수 있다. 따라서, 발광소자(100)는 다색 발광이 가능하며, 다색광의 중첩을 통해 형광체(미도시)와 같은 별도의 광촉매를 사용하지 않고 백색광과 같은 소정의 광을 생성할 수 있다.The thickness of the well layer (not shown) of the first
도 22 는 실시예에 따른 발광소자의 단면도이다.22 is a cross-sectional view of a light emitting device according to the embodiment.
도를 참조하면, 전도성 기판(142)과 제1 발광 구조물(120) 사이에는 전류 제한층(180)(CBL : Current Blocking Layer)이 배치될 수 있다. Referring to FIG. 3, a current blocking layer 180 (CBL) may be disposed between the
전류 제한층(180)은 전기 절연성을 갖는 재질, 예컨대 전도성 기판(142)보다 전기 전도성이 낮은 재질, 및 제1 반도체층(122)과 쇼트키 접촉을 형성하는 재질 중 적어도 하나를 이용하여 형성될 수 있으며, 예를 들어, Si3N4, Al2O3, TiOx, TiO2, Ti, Al, Cr 중 적어도 하나를 포함할 수 있다.The current limiting
전도성 기판(142)과 제1 발광구조물(120) 사이에 전류 제한층(180)이 배치됨으로써, 전류 군집현상이 방지될 수 있다. 한편, 전류 제한층(180)은 복수개일 수 있으며, 전류 제한층(180) 중 적어도 하나는 제3 반도체층(132) 상에 형성될 수 있는 제1 전극(144)과 수직방향으로 적어도 일 영역이 중첩되게 배치될 수 있다.Since the current limiting
전류 제한층(180)은 예컨대 전도성 기판(142)의 적어도 일 영역에 홈을 형성하고 상기 홈 영역에 배치되게 형성될 수 있으며, 이에 한정하지 아니한다.For example, the current limiting
도 23 은 실시예에 따른 발광소자의 단면도이다.23 is a cross-sectional view of a light emitting device according to the embodiment.
도 23 을 참조하면, 발광 구조물(142)의 외측 영역과 전도성 기판(142) 사이에는 채널층(182)이 형성될 수 있다. Referring to FIG. 23, a
채널층(182)은 발광 소자의 둘레 영역이 되는 채널 영역에 배치될 수 있다. 채널층(182)은 예컨대 전도성 기판(142)의 적어도 일 영역에 홈을 형성하고 상기 홈 영역에 배치될 수 있다.The
채널층(182)은 제1 반도체층(122)의 하면 둘레에 루프 형상, 고리 형상, 또는 프레임 형상의 패턴으로 형성될 수 있다. 채널층(182)은 연속적인 패턴, 또는 불연속적인 패턴 형상을 포함할 수 있으며, 또는 제조 과정에서 채널 영역으로 조사되는 레이저의 경로 상에 형성될 수 있다.The
채널층(182)은 산화물, 질화물, 또는 절연층의 재질 중에서 선택될 수 있으며, 예컨대 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), SiO2, SiOx, SiOxNy, Si3N4, Al2O3, TiO2 등에서 선택적으로 형성될 수 있다.The
채널층(182)은 발광소자(100)를 소정의 방법으로 분리하는 경우 제1 및 제2 발광 구조물(120, 130)이 손상되는 것을 방지할 수 있다. 예컨대, 채널층(182)은 전도성 기판(142)을 각각의 소자단위로 분리하는 경우 제1 및 제2 발광 구조물(120, 130)이 손상되는 것을 방지할 수 있다.The
도 24 및 도 25 는 실시예에 따른 발광소자(100)를 포함한 조명 시스템(200)의 회로도를 나타낸 개념도이다.24 and 25 are conceptual views illustrating a circuit diagram of an
도 24 및 도 25 를 참조하면, 실시예에 따른 발광소자(100)를 포함한 조명 시스템(200)은 적어도 하나의 발광소자(100)를 포함하며, 각각의 발광소자(100)가 직렬 연결되게 구성될 수 있다.24 and 25, the
각각의 발광소자(100)는 기판(미도시) 상에 소정의 회로 패턴을 통해 연결되어 발광소자 어레이를 형성할 수 있다. 이때, 발광소자(100)는 예컨대 후술하는 발광소자 패키지(500)에 실장되고 상기 발광소자 패키지(500)가 기판(미도시) 상에 실장되게 구성되거나, 또는 기판(미도시) 상에 발광소자(100)가 실장되는 (COB : Chip on Board) 형태로 구성될 수 있으며, 이에 한정하지 아니한다.Each
아울러, 실시예에 따른 발광소자(100)를 포함한 조명 시스템(200)은 예컨대 램프, 가로등, 백라이트 유닛 등과 같은 조명 장치를 포함할 수 있으며, 이에 한정하지 아니한다.In addition, the
실시예에 따른 발광소자(100)는 AC 전원의 역전압 및 정전압 phase 에서 각각 광을 생성할 수 있는 제1 발광 구조물(120) 및 제2 발광 구조물(130)을 포함하므로, 실시예에 따른 조명 시스템(200)에 AC 전원이 연결된 경우, 발광소자(100)는 역전압 및 정전압 phase 모두에 대해 발광할 수 있으므로, 역전압 인가와 정전압 인가의 phase 전환에 따른 조명 시스템(200)의 깜박임 현상이 방지될 수 있다.The
또한, 각각의 발광소자(100)는 역전압 및 정전압 phase 에서 모두 구동할 수 있고, 각각의 경우에 해당하는 전류 패스가 형성되므로, 예컨대 도 24 및 도 25 에 도시된 바와 같이 수개의 발광소자(100)가 AC 전원에 대해 직렬 연결되게 구성될 수 있다. 따라서, 수개의 발광소자(100)의 연결이 용이해지며 조명 시스템(200)의 출력 향상 및 출력 조절이 가능해질 수 있다.In addition, each light emitting
도 26 내지 도 28 을 실시예에 따른 발광소자 패키지를 나타낸 사시도 및 단면도이다.26 to 28 are a perspective view and a cross-sectional view showing a light emitting device package according to the embodiment.
도 26 내지 도 28 을 참조하면, 발광소자 패키지(500)는 캐비티(520)가 형성된 몸체(510), 몸체(510)에 실장되는 제1 및 제2 리드 프레임(540, 550)과, 제1 및 제2 리드 프레임(540, 550)과 전기적으로 연결되는 발광소자(530), 및 발광소자(530)를 덮도록 캐비티(520)에 충진되는 수지층(미도시)를 포함할 수 있다. 26 to 28, the light emitting
몸체(510)는 폴리프탈아미드(PPA:Polyphthalamide)와 같은 수지 재질, 실리콘(Si), 알루미늄(Al), 알루미늄 나이트라이드(AlN), 액정폴리머(PSG, photo sensitive glass), 폴리아미드9T(PA9T), 신지오택틱폴리스티렌(SPS), 금속 재질, 사파이어(Al2O3), 베릴륨 옥사이드(BeO), 인쇄회로기판(PCB, Printed Circuit Board) 중 적어도 하나로 형성될 수 있다. 몸체(510)는 사출 성형, 에칭 공정 등에 의해 형성될 수 있으나 이에 대해 한정하지는 않는다. The
몸체(510)의 내면은 경사면이 형성될 수 있다. 이러한 경사면의 각도에 따라 발광소자(530)에서 방출되는 광의 반사각이 달라질 수 있으며, 이에 따라 외부로 방출되는 광의 지향각을 조절할 수 있다. The inner surface of the
광의 지향각이 줄어들수록 발광소자(530)에서 외부로 방출되는 광의 집중성은 증가하고, 반대로 광의 지향각이 클수록 발광소자(530)에서 외부로 방출되는 광의 집중성은 감소한다.Concentration of light emitted to the outside from the
한편, 몸체(510)에 형성되는 캐비티(520)를 위에서 바라본 형상은 원형, 사각형, 다각형, 타원형 등의 형상일 수 있으며, 모서리가 곡선인 형상일 수도 있으나 이에 한정되는 것은 아니다.The shape of the
발광소자(530)는 제1 리드 프레임(540) 상에 실장되며, 예를 들어, 적색, 녹색, 청색, 백색 등의 빛을 방출하는 발광소자 또는 자외선을 방출하는 UV(Ultra Violet) 발광소자일 수 있으나, 이에 대해 한정하지는 않는다. 또한, 발광소자(530)는 한 개 이상 실장될 수 있다.The
또한, 발광소자(530)는 그 전기 단자들이 모두 상부 면에 형성된 수평형 타입(Horizontal type)이거나, 또는 상, 하부 면에 형성된 수직형 타입(Vertical type), 또는 플립 칩(flip chip) 모두에 적용 가능하다.The
한편, 실시예에 따른 발광소자(530)는 제1 및 제2 발광 구조물(미도시)을 포함하며, 제1 및 제2 발광 구조물(미도시)는 각각 역방향 바이어스 및 순방향 바이어스에서 구동할 수 있다. 따라서, 실시예에 따른 발광소자 패키지(500)는 교류 전원에서 역방향 바이어스 및 순방향 바이어스에서 모두 발광할 수 있으므로, 발광 효율이 개선될 수 있다. Meanwhile, the
아울러, 교류 전원에서 별도의 ESD 소자가 필요하지 않으므로, 발광소자 패키지(500) 내에 ESD 소자에 의한 광 손실이 방지될 수 있다.In addition, since a separate ESD device is not required in the AC power source, light loss by the ESD device in the light emitting
수지층(미도시)은 발광소자(530)를 덮도록 캐비티(520)에 충진될 수 있다.The resin layer (not shown) may be filled in the
수지층(미도시)은 실리콘, 에폭시, 및 기타 수지 재질로 형성될 수 있으며, 캐비티(520) 내에 충진한 후, 이를 자외선 또는 열 경화하는 방식으로 형성될 수 있다.The resin layer (not shown) may be formed of silicon, epoxy, and other resin materials, and may be formed by filling the
또한 수지층(미도시)은 형광체를 포함할 수 있으며, 형광체는 발광소자(530)에서 방출되는 광의 파장에 종류가 선택되어 발광소자 패키지(500)가 백색광을 구현하도록 할 수 있다. In addition, the resin layer (not shown) may include a phosphor, and the kind of the phosphor may be selected by the wavelength of the light emitted from the
이러한 형광체는 발광소자(530)에서 방출되는 광의 파장에 따라 청색 발광 형광체, 청록색 발광 형광체, 녹색 발광 형광체, 황녹색 발광 형광체, 황색 발광 형광체, 황적색 발광 형광체, 오렌지색 발광 형광체, 및 적색 발광 형광체중 하나가 적용될 수 있다. The phosphor may be one of a blue light emitting phosphor, a blue light emitting phosphor, a green light emitting phosphor, a sulfur green light emitting phosphor, a yellow light emitting phosphor, a yellow red light emitting phosphor, an orange light emitting phosphor, and a red light emitting phosphor depending on the wavelength of light emitted from the
즉, 형광체는 발광소자(530)에서 방출되는 제1 빛을 가지는 광에 의해 여기 되어 제2 빛을 생성할 수 있다. 예를 들어, 발광소자(530)가 청색 발광 다이오드이고 형광체가 황색 형광체인 경우, 황색 형광체는 청색 빛에 의해 여기되어 황색 빛을 방출할 수 있으며, 청색 발광 다이오드에서 발생한 청색 빛 및 청색 빛에 의해 여기 되어 발생한 황색 빛이 혼색됨에 따라 발광소자 패키지(500)는 백색 빛을 제공할 수 있다. That is, the phosphor may be excited by the light having the first light emitted from the
이와 유사하게, 발광소자(530)가 녹색 발광 다이오드인 경우는 magenta 형광체 또는 청색과 적색의 형광체를 혼용하는 경우, 발광소자(530)가 적색 발광 다이오드인 경우는 Cyan형광체 또는 청색과 녹색 형광체를 혼용하는 경우를 예로 들 수 있다.Similarly, when the
이러한 형광체는 YAG계, TAG계, 황화물계, 실리케이트계, 알루미네이트계, 질화물계, 카바이드계, 니트리도실리케이트계, 붕산염계, 불화물계, 인산염계 등의 공지된 형광체일 수 있다.Such a fluorescent material may be a known fluorescent material such as a YAG, TAG, sulfide, silicate, aluminate, nitride, carbide, nitridosilicate, borate, fluoride or phosphate.
제1 및 제2 리드 프레임(540, 550)은 금속 재질, 예를 들어, 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P), 알루미늄(Al), 인듐(In), 팔라듐(Pd), 코발트(Co), 실리콘(Si), 게르마늄(Ge), 하프늄(Hf), 루테늄(Ru), 철(Fe) 중에서 하나 이상의 물질 또는 합금을 포함할 수 있다. 또한, 제1 및 제2 리드 프레임(540, 550)은 단층 또는 다층 구조를 가지도록 형성될 수 있으며, 이에 대해 한정하지는 않는다.The first and second lead frames 540 and 550 may be formed of a metal material such as titanium, copper, nickel, gold, chromium, tantalum, (Pt), tin (Sn), silver (Ag), phosphorus (P), aluminum (Al), indium (In), palladium (Pd), cobalt (Co), silicon (Si), germanium , Hafnium (Hf), ruthenium (Ru), and iron (Fe). Also, the first and second lead frames 540 and 550 may be formed to have a single layer or a multilayer structure, but the present invention is not limited thereto.
제1 제2 리드 프레임(540, 550)은 서로 이격되어 서로 전기적으로 분리된다. 발광소자(530)는 제1 및 제2 리드 프레임(540, 550)상에 실장되며, 제1 및 제2 리드 프레임(540, 550)은 발광소자(530)와 직접 접촉하거나 또는 솔더링 부재(미도시)와 같은 전도성을 갖는 재료를 통해서 전기적으로 연결될 수 있다. 또한, 발광소자(530)는 와이어 본딩을 통해 제1 및 제2 리드 프레임(540, 550)과 전기적으로 연결될 수 있으며, 이에 한정하지 아니한다. 따라서 제1 및 제2 리드 프레임(540, 550)에 전원이 연결되면 발광소자(530)에 전원이 인가될 수 있다. 한편, 수개의 리드 프레임(미도시)이 몸체(510)내에 실장되고 각각의 리드 프레임(미도시)이 발광소자(530)와 전기적으로 연결될 수 있으며, 이에 한정하지 아니한다.The first and second lead frames 540 and 550 are separated from each other and electrically separated from each other. The
한편, 도 28 을 참조하면, 실시예에 따른 발광소자 패키지(500)는 광학 시트(580)를 포함할 수 있으며, 광학 시트(580)는 베이스부(582) 및 프리즘 패턴(584)을 포함할 수 있다.28, the light emitting
베이스부(582)는 프리즘 패턴(584)를 형성하기 위한 지지체로서 열적 안정성이 우수하고 투명한 재질로 이루어진 것으로, 예를 들어 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리프로필렌, 폴리에틸렌, 폴리스틸렌, 및 폴리에폭시로 이루어진 군에서 선택된 어느 하나로 이루어질 수 있으나 이에 한정하지 않는다.The
또한, 베이스부(582)는 형광체(미도시)를 포함할 수 있다. 일 예로 베이스부(582)를 형성하는 재질에 형광체(미도시)를 골고루 분산시킨 상태에서 이를 경화하여 베이스부(582)를 형성할 수 있다. 이와 같이 베이스부(582)를 형성하는 경우는 형광체(미도시)는 베이스부(582) 전체에 균일하게 분포될 수 있다. In addition, the
한편, 베이스부(582) 상에는 광을 굴절하고, 집광하는 입체 형상의 프리즘 패턴(584)이 형성될 수 있다. 프리즘 패턴(584)을 구성하는 물질은 아크릴 레진일 수 있으나, 이에 한정되지 않는다.On the other hand, a three-
프리즘 패턴(584)은 베이스부(582)의 일 면에서 일 방향을 따라 상호 인접하여 평행하게 배열된 복수의 선형 프리즘을 포함하며, 선형 프리즘의 축 방향에 대한 수직 단면은 삼각형일 수 있다.The
프리즘 패턴(584)은 광을 집광하는 효과가 있기 때문에, 발광소자 패키지(500)에 광학 시트(580)를 부착하는 경우는 광의 직진성이 향상되어 발광소자 패키지(500)의 광의 휘도가 향상될 수 있다.Since the
한편, 프리즘 패턴(584)에는 형광체(미도시)가 포함될 수 있다.On the other hand, the
형광체(미도시)는 분산된 상태로 프리즘 패턴(584)을 형성하는, 예를 들면 아크릴 레진과 혼합하여 페이스트 또는 슬러리 상태로 만든 후, 프리즘 패턴(584)을 형성함으로써 프리즘 패턴(584) 내에 균일하게 포함될 수 있다.The phosphor (not shown) is uniformly formed in the
이와 같이 프리즘 패턴(584)에 형광체(미도시)가 포함되는 경우는 발광소자 패키지(500)의 광의 균일도 및 분포도가 향상됨은 물론, 프리즘 패턴(584)에 의한 광의 집광효과 외에 형광체(미도시)에 의한 광의 분산효과가 있기 때문에 발광소자 패키지(500)의 지향각을 향상시킬 수 있다.As such, when the phosphor (not shown) is included in the
실시 예에 따른 발광소자 패키지(500)는 복수개가 기판 상에 어레이되며, 발광소자 패키지(500)의 광 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트 등이 배치될 수 있다. 이러한 발광소자 패키지, 기판, 광학 부재는 라이트 유닛으로 기능할 수 있다. 또 다른 실시 예는 상술한 실시 예들에 기재된 발광소자 또는 발광소자 패키지를 포함하는 표시 장치, 지시 장치, 조명 시스템으로 구현될 수 있으며, 예를 들어, 조명 시스템은 램프, 가로등을 포함할 수 있다. A plurality of light emitting device packages 500 according to the embodiment may be arranged on a substrate, and a light guide plate, a prism sheet, a diffusion sheet, or the like, which is an optical member, may be disposed on an optical path of the light emitting
도 29 는 실시예에 따른 발광소자 패키지를 포함하는 조명장치를 도시한 사시도이며, 도 30 은 도 29 의 조명장치의 C-C' 단면을 도시한 단면도이다.29 is a perspective view illustrating a lighting device including a light emitting device package according to an embodiment, and FIG. 30 is a cross-sectional view illustrating a C-C 'cross section of the lighting device of FIG. 29.
도 29 및 도 30 을 참조하면, 조명장치(600)는 몸체(610), 몸체(610)와 체결되는 커버(630) 및 몸체(610)의 양단에 위치하는 마감캡(650)을 포함할 수 있다.29 and 30, the
몸체(610)의 하부면에는 발광소자 모듈(640)이 체결되며, 몸체(610)는 발광소자 패키지(644)에서 발생된 열이 몸체(610)의 상부면을 통해 외부로 방출할 수 있도록 전도성 및 열발산 효과가 우수한 금속재질로 형성될 수 있다.A light emitting
발광소자 패키지(644)는 PCB(642) 상에 다색, 다열로 실장되어 어레이를 이룰 수 있으며, 동일한 간격으로 실장되거나 또는 필요에 따라서 다양한 이격 거리를 가지고 실장될 수 있어 밝기 등을 조절할 수 있다. 이러한 PCB(642)로 MPPCB(Metal Core PCB) 또는 FR4 재질의 PCB 등을 사용할 수 있다.The light emitting
한편, 실시예에 따른 발광소자 패키지(644)는 발광소자(미도시)를 포함하며,발광소자(미도시)는 제1 및 제2 발광 구조물(미도시)을 포함하고, 제1 및 제2 발광 구조물(미도시)은 각각 역방향 바이어스 및 순방향 바이어스에서 구동할 수 있다. 따라서, 실시예에 따른 조명장치(600)는 교류 전원에서 역방향 바이어스 및 순방향 바이어스에서 모두 발광할 수 있으므로, 깜박임 현상이 해소되고 발광 효율이 개선될 수 있다. On the other hand, the light emitting
커버(630)는 몸체(610)의 하부면을 감싸도록 원형의 형태로 형성될 수 있으나, 이에 한정되지 않음은 물론이다.The
커버(630)는 내부의 발광소자 모듈(640)을 외부의 이물질 등으로부터 보호한다. 또한, 커버(630)는 발광소자 패키지(644)에서 발생한 광의 눈부심을 방지하고, 외부로 광을 균일하게 방출할 수 있도록 확산입자를 포함할 수 있으며, 또한 커버(630)의 내면 및 외면 중 적어도 어느 한 면에는 프리즘 패턴 등이 형성될 수 있다. 또한 커버(630)의 내면 및 외면 중 적어도 어느 한 면에는 형광체가 도포될 수도 있다. The
한편, 발광소자 패키지(644)에서 발생한 광은 커버(630)를 통해 외부로 방출되므로 커버(630)는 광 투과율이 우수하여야 하며, 발광소자 패키지(644)에서 발생한 열에 견딜 수 있도록 충분한 내열성을 구비하고 있어야 하는바, 커버(630)는 폴리에틸렌 테레프탈레이트(Polyethylen Terephthalate; PET), 폴리카보네이트(Polycarbonate; PC) 또는 폴리메틸 메타크릴레이트(Polymethyl Methacrylate; PMMA) 등을 포함하는 재질로 형성되는 것이 바람직하다.On the other hand, since the light generated from the light emitting
마감캡(650)은 몸체(610)의 양단에 위치하며 전원장치(미도시)를 밀폐하는 용도로 사용될 수 있다. 또한 마감캡(650)에는 전원핀(652)이 형성되어 있어, 실시예에 따른 조명장치(600)는 기존의 형광등을 제거한 단자에 별도의 장치 없이 곧바로 사용할 수 있게 된다.The finishing
도 31 은 실시예에 따른 발광소자를 포함하는 액정표시장치의 분해 사시도이다.31 is an exploded perspective view of a liquid crystal display including the light emitting device according to the embodiment.
도 31 은 에지-라이트 방식으로, 액정표시장치(700)는 액정표시패널(710)과 액정표시패널(710)로 빛을 제공하기 위한 백라이트 유닛(770)을 포함할 수 있다.31 is an edge-light method, the
액정표시패널(710)은 백라이트 유닛(770)으로부터 제공되는 광을 이용하여 화상을 표시할 수 있다. 액정표시패널(710)은 액정을 사이에 두고 서로 대향하는 컬러 필터 기판(712) 및 박막 트랜지스터 기판(714)을 포함할 수 있다.The liquid
컬러 필터 기판(712)은 액정표시패널(710)을 통해 디스플레이되는 화상의 색을 구현할 수 있다.The
박막 트랜지스터 기판(714)은 구동 필름(717)을 통해 다수의 회로부품이 실장되는 인쇄회로 기판(718)과 전기적으로 접속되어 있다. 박막 트랜지스터 기판(714)은 인쇄회로 기판(718)으로부터 제공되는 구동 신호에 응답하여 인쇄회로 기판(718)으로부터 제공되는 구동 전압을 액정에 인가할 수 있다.The thin film transistor substrate 714 is electrically connected to a printed
박막 트랜지스터 기판(714)은 유리나 플라스틱 등과 같은 투명한 재질의 다른 기판상에 박막으로 형성된 박막 트랜지스터 및 화소 전극을 포함할 수 있다. The thin film transistor substrate 714 may include a thin film transistor and a pixel electrode formed as a thin film on another substrate of a transparent material such as glass or plastic.
백라이트 유닛(770)은 빛을 출력하는 발광소자 모듈(720), 발광소자 모듈(720)로부터 제공되는 빛을 면광원 형태로 변경시켜 액정표시패널(710)로 제공하는 도광판(730), 도광판(730)으로부터 제공된 빛의 휘도 분포를 균일하게 하고 수직 입사성을 향상시키는 다수의 필름(752, 766, 764) 및 도광판(730)의 후방으로 방출되는 빛을 도광판(730)으로 반사시키는 반사 시트(740)로 구성된다.The
발광소자 모듈(720)은 복수의 발광소자 패키지(724)와 복수의 발광소자 패키지(724)가 실장되어 어레이를 이룰 수 있도록 PCB기판(722)을 포함할 수 있다.The light emitting device module 720 may include a PCB substrate 722 for mounting a plurality of light emitting device packages 724 and a plurality of light emitting device packages 724 to form an array.
한편, 실시예에 따른 백라이트 유닛(770)은 발광소자(미도시)를 포함하며,발광소자(미도시)는 제1 및 제2 발광 구조물(미도시)을 포함하고, 제1 및 제2 발광 구조물(미도시)은 각각 역방향 바이어스 및 순방향 바이어스에서 구동할 수 있다. 따라서, 실시예에 따른 백라이트 유닛(770)는 교류 전원에서 역방향 바이어스 및 순방향 바이어스에서 모두 발광할 수 있으므로, 깜박임 현상이 해소되고 발광 효율이 개선될 수 있다. On the other hand, the
한편, 백라이트 유닛(770)은 도광판(730)으로부터 입사되는 빛을 액정 표시 패널(710) 방향으로 확산시키는 확산필름(766)과, 확산된 빛을 집광하여 수직 입사성을 향상시키는 프리즘필름(750)으로 구성될 수 있으며, 프리즘필름(750)를 보호하기 위한 보호필름(764)을 포함할 수 있다.Meanwhile, the
도 32 는 실시예에 따른 발광소자를 포함하는 액정표시장치의 분해 사시도이다. 다만, 도 31 에서 도시하고 설명한 부분에 대해서는 반복하여 상세히 설명하지 않는다.32 is an exploded perspective view of a liquid crystal display including the light emitting device according to the embodiment. However, the parts shown and described in FIG. 31 will not be repeatedly described in detail.
도 32 는 직하 방식으로, 액정표시장치(800)는 액정표시패널(810)과 액정표시패널(810)로 빛을 제공하기 위한 백라이트 유닛(870)을 포함할 수 있다.32 is a direct view, the liquid
액정표시패널(810)은 도 31 에서 설명한 바와 동일하므로, 상세한 설명은 생략한다.Since the liquid crystal display panel 810 is the same as that described with reference to FIG. 31, a detailed description thereof will be omitted.
백라이트 유닛(870)은 복수의 발광소자 모듈(823), 반사시트(824), 발광소자 모듈(823)과 반사시트(824)가 수납되는 하부 섀시(830), 발광소자 모듈(823)의 상부에 배치되는 확산판(840) 및 다수의 광학필름(860)을 포함할 수 있다.The
발광소자 모듈(823) 복수의 발광소자 패키지(822)와 복수의 발광소자 패키지(822)가 실장되어 어레이를 이룰 수 있도록 PCB기판(821)을 포함할 수 있다.LED Module 823 A plurality of light emitting device packages 822 and a plurality of light emitting device packages 822 may be mounted to include a
한편, 실시예에 따른 백라이트 유닛(870)은 발광소자(미도시)를 포함하며,발광소자(미도시)는 제1 및 제2 발광 구조물(미도시)을 포함하고, 제1 및 제2 발광 구조물(미도시)은 각각 역방향 바이어스 및 순방향 바이어스에서 구동할 수 있다. 따라서, 실시예에 따른 백라이트 유닛(870)는 교류 전원에서 역방향 바이어스 및 순방향 바이어스에서 모두 발광할 수 있으므로, 깜박임 현상이 해소되고 발광 효율이 개선될 수 있다. On the other hand, the
반사 시트(824)는 발광소자 패키지(822)에서 발생한 빛을 액정표시패널(810)이 위치한 방향으로 반사시켜 빛의 이용 효율을 향상시킨다.The
한편, 발광소자 모듈(823)에서 발생한 빛은 확산판(840)에 입사하며, 확산판(840)의 상부에는 광학 필름(860)이 배치된다. 광학 필름(860)은 확산 필름(866), 프리즘필름(850) 및 보호필름(864)를 포함하여 구성될 수 있다.Light generated in the light emitting
한편, 실시예에 따른 발광소자는 상기한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.Meanwhile, the light emitting device according to the embodiment is not limited to the configuration and method of the embodiments described above, but the embodiments may be modified so that all or some of the embodiments may be selectively And may be configured in combination.
또한, 이상에서는 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, while the preferred embodiments have been shown and described, the present invention is not limited to the specific embodiments described above, and the present invention is not limited to the specific embodiments described above, and the present invention may be used in the art without departing from the gist of the invention as claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
100 : 발광소자 120 : 제1 발광 구조물
122: 제1 반도체층 124 : 제1 활성층
126 : 제2 반도체층 130 : 제2 발광 구조물
132 : 제3 반도체층 134 : 제2 활성층
136 : 제4 반도체층 142 : 전도성 기판
144 : 제1 전극 146 : 제2 전극100
122: first semiconductor layer 124: first active layer
126: second semiconductor layer 130: second light emitting structure
132: third semiconductor layer 134: second active layer
136: fourth semiconductor layer 142: conductive substrate
144: first electrode 146: second electrode
Claims (16)
상기 전도성 기판 상에 제1 반도체층, 제2 반도체층, 및 상기 제1 및 제2 반도체층 사이에 형성되는 제1 활성층을 포함하는 제1 발광 구조물;
상기 제1 발광 구조물 상에 형성되며 제3 반도체층, 제4 반도체층, 및 제3 및 제4 반도체층 사이에 형성되는 제2 활성층을 포함하는 제2 발광 구조물;
상기 제2 및 상기 제3 반도체층과 함께 전기적으로 연결되는 제1 전극; 및
상기 제4 반도체층과 전기적으로 연결되는 제2 전극;을 포함하며,
상기 제1 반도체층은 상기 전도성 기판과 전기적으로 연결되고,
상기 제1 및 제3 반도체층은 제1 도전형으로 도핑되며,
상기 제2 및 제4 반도체층은 제2 도전형으로 도핑되는 발광소자.Conductive substrate;
A first light emitting structure including a first semiconductor layer, a second semiconductor layer, and a first active layer formed between the first and second semiconductor layers on the conductive substrate;
A second light emitting structure on the first light emitting structure and including a third semiconductor layer, a fourth semiconductor layer, and a second active layer formed between the third and fourth semiconductor layers;
A first electrode electrically connected with the second and third semiconductor layers; And
And a second electrode electrically connected to the fourth semiconductor layer.
The first semiconductor layer is electrically connected to the conductive substrate,
The first and third semiconductor layers are doped with a first conductivity type,
And the second and fourth semiconductor layers are doped with a second conductivity type.
상기 전도성 기판과 상기 제2 전극은 상호 전기적으로 연결되어,
상기 제1 발광 구조물과 상기 제2 발광 구조물은,
서로 역병렬 구조로 연결되는 발광소자.The method of claim 1,
The conductive substrate and the second electrode are electrically connected to each other,
The first light emitting structure and the second light emitting structure,
Light emitting devices connected in parallel to each other in a parallel structure.
상기 제1 도전형은 n 형인 발광소자.The method of claim 1,
The first conductivity type is n-type light emitting device.
상기 제1 내지 제4 반도체층은,
질화물계 반도체를 포함하는 발광소자. The method of claim 1,
The first to fourth semiconductor layer,
A light emitting device comprising a nitride semiconductor.
상기 제1 내지 제4 반도체층은,
산화아연계 반도체를 포함하는 발광소자. The method of claim 1,
The first to fourth semiconductor layer,
A light emitting device comprising a zinc oxide semiconductor.
상기 전도성 기판은,
다층 구조를 갖는 발광소자.The method of claim 1,
The conductive substrate,
Light emitting device having a multilayer structure.
상기 전도성 기판은,
오믹층, 반사층, 및 접합층 중 적어도 하나를 포함하는 발광소자.The method of claim 1,
The conductive substrate,
A light emitting device comprising at least one of an ohmic layer, a reflective layer, and a bonding layer.
상기 제2 발광 구조물이 제1 메사 에칭되어 상기 제3 반도체층의 상면의 적어도 일 영역이 노출되며,
상기 제1 전극은 상기 제3 반도체층의 노출된 영역 상에 형성되는 발광소자.The method of claim 1,
The second light emitting structure is first mesa etched to expose at least one region of the upper surface of the third semiconductor layer,
The first electrode is formed on the exposed region of the third semiconductor layer.
상기 제2 전극은,
상기 제4 반도체층의 상부에 형성되는 발광소자.The method of claim 1,
Wherein the second electrode comprises:
The light emitting device formed on the fourth semiconductor layer.
상기 제2 전극과 상기 전도성 기판을 전기적으로 연결하는 연결전극;을 더 포함하고,
상기 연결전극은 상기 제1, 및 제2 발광 구조물의 측면에 형성되는 발광소자.The method of claim 1,
And a connection electrode electrically connecting the second electrode and the conductive substrate.
The connection electrode is formed on the side of the first and second light emitting structure.
상기 연결전극과 상기 제1, 및 제2 발광구조물 사이에 제1 절연층을 더 포함하는 발광소자. The method of claim 10,
And a first insulating layer between the connection electrode and the first and second light emitting structures.
상기 전도성 기판과 상기 제1 반도체층 사이에 형성된 전류 제한층;을 더 포함하는 발광소자.The method of claim 1,
And a current limiting layer formed between the conductive substrate and the first semiconductor layer.
상기 전류 제한층은,
상기 제1 전극과 수직적으로 적어도 일 영역 중첩되는 발광소자.The method of claim 12,
The current limiting layer,
The light emitting device overlapping at least one region perpendicular to the first electrode.
상기 전도성 지지기판의 외측에 형성된 채널층;을 더 포함하는 발광소자.The method of claim 1,
And a channel layer formed on the outer side of the conductive support substrate.
상기 전도성 기판 상에 제1 도전형의 제1 반도체층 및 제2도전형의 제2 반도체층을 포함하는 제1 발광 구조물;
상기 제1 발광 구조물 상에 제1 도전형의 제3 반도체층 및 제2 도전형의 제4 반도체층을 포함하는 제2 발광 구조물;
상기 제4 반도체층과 전기적으로 연결되는 제1전극;
상기 제2 반도체층 및 상기 제3 반도체층을 전기적으로 연결하는 제2 전극을 포함하고,
상기 제1 전극과 상기 전도성 기판은 교류전원의 제1단에 연결되고,
상기 제2 전극은 상기 교류전원의 제2단에 연결되며,
상기 교류전원의 제1 바이어스시 상기 제1 발광 구조물 내에 제1 전류 패스가 형성되어 제1 광을 생성하고,
상기 교류전원의 제2 바이어스시 상기 제2 발광 구조물 내에 제2 전류 패스가 형성되어 제2 광을 생성하며,
상기 제1 바이어스와 상기 제2 바이어스는 극성이 서로 반대인 발광소자.Conductive substrate;
A first light emitting structure including a first semiconductor layer of a first conductivity type and a second semiconductor layer of a second conductivity type on the conductive substrate;
A second light emitting structure including a third semiconductor layer of a first conductivity type and a fourth semiconductor layer of a second conductivity type on the first light emitting structure;
A first electrode electrically connected to the fourth semiconductor layer;
A second electrode electrically connecting the second semiconductor layer and the third semiconductor layer;
The first electrode and the conductive substrate are connected to a first end of an AC power source,
The second electrode is connected to the second end of the AC power source,
A first current path is formed in the first light emitting structure during the first bias of the AC power source to generate first light,
A second current path is formed in the second light emitting structure during the second bias of the AC power source to generate second light;
The light emitting device of which the first bias and the second bias have opposite polarities.
상기 제1 발광구조물과 상기 제2 발광구조물의 측벽에 연결전극;을 더 포함하고,
상기 연결전극은 상기 전도성 기판과 상기 제1 전극을 전기적으로 연결하는 발광소자.
16. The method of claim 15,
A connection electrode on sidewalls of the first light emitting structure and the second light emitting structure;
The connection electrode is a light emitting device for electrically connecting the conductive substrate and the first electrode.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110102995A KR20130039353A (en) | 2011-10-10 | 2011-10-10 | Light emitting device |
US13/434,397 US9070613B2 (en) | 2011-09-07 | 2012-03-29 | Light emitting device |
TW101111355A TWI543393B (en) | 2011-09-07 | 2012-03-30 | Illuminating device and its lighting system |
EP12162487.8A EP2568503B1 (en) | 2011-09-07 | 2012-03-30 | Light emitting device comprising two stacked LEDs |
CN201210125520.6A CN102983129B (en) | 2011-09-07 | 2012-04-25 | Luminescent device |
JP2012103969A JP6000625B2 (en) | 2011-09-07 | 2012-04-27 | Light emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110102995A KR20130039353A (en) | 2011-10-10 | 2011-10-10 | Light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130039353A true KR20130039353A (en) | 2013-04-22 |
Family
ID=48439544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110102995A KR20130039353A (en) | 2011-09-07 | 2011-10-10 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20130039353A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160074336A (en) * | 2014-12-18 | 2016-06-28 | 엘지전자 주식회사 | Display device using semiconductor light emitting device |
-
2011
- 2011-10-10 KR KR1020110102995A patent/KR20130039353A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160074336A (en) * | 2014-12-18 | 2016-06-28 | 엘지전자 주식회사 | Display device using semiconductor light emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6000625B2 (en) | Light emitting element | |
TWI460888B (en) | Illuminating device | |
KR101925915B1 (en) | Light emitting device | |
US8669560B2 (en) | Light-emitting device, light-emitting device package and lighting system | |
CN103107260B (en) | light emitting device | |
KR20130067821A (en) | Light emitting device | |
KR101877396B1 (en) | Light emitting device | |
JP6385680B2 (en) | Light emitting element | |
US8405093B2 (en) | Light emitting device | |
KR102035180B1 (en) | Light emitting device | |
KR20130043708A (en) | Light emitting device | |
KR20120133836A (en) | Light emitting device | |
KR20130064156A (en) | Light emitting device | |
KR20130062770A (en) | Light emitting device | |
KR20120110831A (en) | Light emitting device | |
KR101865405B1 (en) | Light emitting device | |
KR101907618B1 (en) | Light emitting device | |
KR20130039353A (en) | Light emitting device | |
KR20130040009A (en) | Light emitting device package | |
KR102218719B1 (en) | Light emitting device | |
KR101855064B1 (en) | Light emitting device | |
KR20130013968A (en) | Light emitting device | |
KR20130039168A (en) | Light emitting device | |
KR20130020863A (en) | Light emitting device | |
KR20130025452A (en) | Light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20111010 |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |