[go: up one dir, main page]

KR20100085869A - 전지 충전기 및 그 작동 방법 - Google Patents

전지 충전기 및 그 작동 방법 Download PDF

Info

Publication number
KR20100085869A
KR20100085869A KR1020100005080A KR20100005080A KR20100085869A KR 20100085869 A KR20100085869 A KR 20100085869A KR 1020100005080 A KR1020100005080 A KR 1020100005080A KR 20100005080 A KR20100005080 A KR 20100005080A KR 20100085869 A KR20100085869 A KR 20100085869A
Authority
KR
South Korea
Prior art keywords
time interval
battery charger
current
voltage
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020100005080A
Other languages
English (en)
Inventor
데잔 슈라이버 헤르
Original Assignee
세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 filed Critical 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지
Publication of KR20100085869A publication Critical patent/KR20100085869A/ko
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC
    • H02M5/04Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters
    • H02M5/22Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/225Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode comprising two stages of AC-AC conversion, e.g. having a high frequency intermediate link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC
    • H02M5/04Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters
    • H02M5/22Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Secondary Cells (AREA)

Abstract

전지 충전기(2)는 1차 권선(14a)이 클럭 스위치(16)를 통해 AC 전압(UN)을 위한 2극 입력(4)에 연결되고, 2차 권선(14b)이 전지(10)를 위한 2극 출력(8)을 갖는 정류기(20)에 플라이백 컨버터(flyback converter) 형태로 연결되는 RF 저장 변압기(12); 2극 입력(4)에서 전류(IN)와 전압(UN)을 검출하는 측정 유닛(22); 및 전류(IN) 및 전압(UN)의 함수로서 클럭 스위치(16)를 작동시키는 제어기(24)를 포함한다.
전지 충전기(2)를 작동시키는 방법의 경우에, 제어기(24)는 클럭 스위치(16)를 제1 시간 간격(ΔT1) 동안 연속적으로 온(ON) 상태로 스위칭하고, 클럭 스위치(16)를 제2 시간 간격(ΔT2) 동안 연속적으로 오프(OFF) 상태로 스위칭하며, 여기에서 전류(IN)가 스케일링 계수와 전압(UN)의 곱의 순간값에 상응하는 한계값(I0)까지 상승할 때 제1 시간 간격(ΔT1)이 종료되고, 제1 시간 간격(ΔT1)과 제2 시간 간격(ΔT2)의 전체 지속 시간이 RF 저장 변압기(12)의 허용 가능 작동 주파수(fa)의 하나의 간격의 주기 지속 시간에 상응하도록 제2 시간 간격(ΔT2)이 충분히 길게 선택된다.

Description

전지 충전기 및 그 작동 방법{BATTERY CHARGER AND METHOD FOR ITS OPERATION}
본 발명은 전지 충전기(battery charger) 및 그 작동 방법에 관한 것이다.
전기 동력식 승객 차량의 개념은 전원 전력 공급 시스템으로부터 또는 다시 말해서 "플러그 소켓으로부터" 구동 전지를 충전하기 위한 전기 에너지를 끌어오는 원리에 기초하고 있다. 이는 전지 충전기를 필요로 한다. 플러그 소켓으로부터 끌어낼 수 있는 개인 가정에서 이용 가능한 정상 전력은 요즘에 표준인 바와 같이 16A 퓨즈에 의해 보호되는 약 3.5 kW이다. 전지 충전기에 대한 요건은 전지 충전기가 전원 전압으로부터 사인파형 전원 전류를 끌어내며 또한 전지가 충전기에 의해 예를 들어 절연 변압기에 의해 전원으로부터 갈바닉 절연(galvanic isolation)이 되어야 하는 것이다.
전술한 요건을 충족시키는 최신 전지 충전기의 기본 설계가 도 7에 도시되어 있다. 공지된 전지 충전기(300)의 입력(4)은 공급 시스템(6)에 연결되며, 또한 그 출력(8)은 전지(10)에 연결된다. 이 경우에, 공급 시스템(6) 내의 전원 전압(UN)은 50 내지 60 Hz의 전원 주파수에서 100 내지 250 V의 범위 내에 있다. 전지(10)의 전지 전압(UB)은 예를 들어 250V와 450V 사이의 넓은 전압 범위 내에 있으며, 또한 전지 충전 상태에 따라 달라진다.
전지 충전기(300)에서, 입력(4)은 역률 교정기(power factor corrector: PFC)(점증식 컨버터: step-up converter)(312)에 전원 공급하는 제1 정류기(310)에 연결된다. PFC(312)는 인덕턴스(L1)를 갖는 인덕터(313), 단락형 스위치(315) 및 프리휠링 다이오드(317)를 포함한다. PFC(312)는 중간 회로 커패시터(314)를 예를 들어 380V인 일정하게 조절된 중간 회로 전압(UZ)으로 충전시킨다.
중간 회로 커패시터(314) 뒤에는 H 브리지 형태이고, 중간 주파수 내지 고주파수로 클러킹(clocking)되며 또한 규제된 중간 주파수 내지 고주파수 전압(UW)을 출력에서 생성하는 인버터(316)가 위치된다. 전압(UW)은 작고 가볍게 제조될 수 있는 RF 변압기(318)의 1차측 또는 1차 권선에 전원 공급한다. RF 변압기(318)는 RF 변압기(318)의 2차측 또는 2차 권선으로의 송전에 의해 전압(UN)을 전지 전압(UB)에 정합시킨다. 동시에, RF 변압기(318)는 공급 시스템(6)으로부터 전지(10)의 갈바닉 절연(galvanic isolation) 및 전지 충전기(300)의 1차측으로부터 2차측의 갈바닉 절연을 제공한다. RF 변압기(318)의 2차측 뒤에는 인덕턴스(L2)를 갖는 인덕터(322)를 통해 출력(8)에 연결된 제2 정류기(20)가 위치된다.
이 경우에, 전지 전압(UB)은 인버터(316)에 의해 구현된 정교한 펄스 프로세스, 특히 펄스폭 변조(pulse-width modulation: PWM)에 의해 조절된다.
그러므로, 전지 충전기(300)는 특히 입력(4)에서 공급 시스템(6)으로부터의 사인파형 전원 전류(IN)를 끌어내는 것과 관련하여 전술된 주요 요건을 만족시킨다.
제어 불가능한 또는 과도한 커패시터 충전 전류(예를 들어 전지 충전기(300)가 온 상태로 스위칭될 때의 수용 불가능하게 높은 유입 전류)를 피하기 위해, 정류기(310)는 도 8에 도시된 바와 같은 다이오드 브리지 형태가 아니라 사이리스터(thyristor)를 구비한 제어된 하프 브리지 형태인 것이 공지되어 있다.
전지 충전기(300)는 교과서적 개념에 따라 설계되는 데, 전체 4 개의 컨버터, 특히 정류기(310), PFC(312), 인버터(316) 및 정류기(20)가 서로 직렬 연결된다. 전체적으로 복수의 반도체 스위치 및 수동형 구성요소가 사용된다. 에너지 흐름 방향은 공급 시스템(6)으로부터 전지(10)의 방향으로 제한되며, 에너지를 전원으로 피드백하는 것은 불가능하다.
본 발명의 목적은 개선된 전지 충전기 및 그에 대한 적절한 작동 방법을 제시하는 것이다.
장치와 관련하여, 상기 목적은 특허청구범위 제1항에 따른 전지 충전기에 의해 달성된다. 전지 충전기는 1차 권선과 2차 권선을 구비하는 무선주파수(radio-frequency: RF) 저장 변압기를 포함한다. 1차 권선은 클럭 스위치를 통해 2극 입력에 연결된다. 이 경우에, 클럭 스위치는 양방향 스위치이며, 다시 말해서 전류는 클럭 스위치를 통해 양방향으로 흐를 수 있다. 작동 시에, 전지 충전기에는 예를 들어 공급 전압 시스템으로부터 AC 전압이 공급된다. RF 저장 변압기의 2차 권선은 플라이백 컨버터(flyback converter) 형태로 정류기의 입력에 연결되며, 특히 플라이백 컨버터 형태로 다이오드 정류기에 연결된다. 정류기는 그 출력 측부 상에 2극 출력을 가지며, 또한 2극 출력에는 작동 시에 충전되는 전지가 연결될 수 있다. 전지 충전기는 또한 입력에서 전류와 전압의 순간 전원값들을 검출하는 측정 유닛을 포함하며, 다시 말해 측정 유닛은 공급 전압 시스템에 연결될 때의 순간 전원 시스템 전압 및 전지 충전기 내로 흐르는 상응하는 전류를 검출한다.
또한, 전지 충전기는 측정 유닛에 의해 측정된 전류값 및 전압값의 함수로서 클럭 스위치를 작동시키는 제어기를 포함하며, 다시 말해서 제어기는 클럭 스위치를 온 상태 또는 오프 상태로 스위칭한다. 이 경우에 오프 상태로의 스위칭은 입력으로 1차 권선으로의 전류 흐름이 차단되는 것을 의미한다. RF 저장 변압기는 입력과 직면하는 1차측와 출력과 직면하는 전지 충전기의 2차측 사이에 갈바닉 절연을 제공한다.
이 경우에 본 발명은 공지된 전지 충전기가 입력의 지점으로부터 특성 전압(impressed voltage)을 구비하는 부하를 나타내는 중간 회로 커패시터를 포함한다는 공지된 정보 및 고려 사항에 기초한다. 연결되는 전압 시스템은 영향력있는 전압 공급원을 나타내므로, 입력과 중간 회로 커패시터 사이에 제1 인덕터가 사용되어야 한다. 동일한 이유로, 입력 회로 커패시터와 출력, 즉 전지 사이에 추가 인덕터가 사용되어야 한다.
갈바닉 절연 때문에, RF 변압기는 전지 충전기 내에 유지되어야 한다. 그러나, RF 변압기는 전압 시스템으로부터 흐르는 최대 가능 전류 및 최대 전지 충전 전류에 대해 설계되어야 하는 1차 권선 및 2차 권선을 이미 포함한다. 본 발명에 따라, 전술된 인덕턴스 또는 인덕터를 제공하기 위해, RF 변압기의 권선도 또한 이제 사용될 수 있다. 다시 말해서, 변압기의 권선은 변압기 작용에 대한 그들의 실제 목적에 더하여 전압 시스템 및 전지 뿐만 아니라 입력 및 출력에 연관된 인덕터로서 이중 기능을 수행한다.
수동형 구성요소의 개수는 공지된 전지 충전기 내에서의 개수보다 작게 의도된다. 이를 위해, 중간 회로 커패시터가 회로로부터 제거되면, 본 발명에 따른 충전기는 더 작고 더 가볍게 될 것이지만 커패시터형 에너지 저장 능력을 더이상 갖지 않을 것이다. 그런 다음, 전압 시스템으로부터 끌어내는 전력은 임의의 커패시터형 중간 저장 없이 전지로 직접 전달되어야 한다.
그러므로, 본 발명에 따라, 입력 정류기, 점증식 컨버터, 중간 회로 커패시터 및 인버터가 단일 유닛으로 대체된다. 이는 공급 시스템으로부터의 입력 전압 또는 전류가 RF 변압기의 1차 권선의 형태인 인덕터로서 인덕턴스(L1)로 클럭 스위치를 통해 직접 송전되기 때문이다. 이는 에너지를 RF 변압기의 2차 권선 형태인 인덕터(L2)로 송전한다. 인덕턴스(L1 및 L2)는 1차 권선 및 2차 권선 형태로 밀접하게 커플링되며 공기 간극을 구비하는 자석 코어 상에 감겨진다. 이런 방식으로, 그들은 RF 변압기를 형성하며, 동시에 1차측와 2차측 사이에 갈바닉 절연을 제공한다.
본 발명에 따른 전지 충전기는 이제 그 클럭 스위치에 대하여 가변 길이인 스위칭 주기를 이용하여 제어기에 의해 작동된다. 구체적으로, 제어기는 1차측에 연관된 제1 시간 간격을 가지며, 제1 시간 간격 동안에 클럭 스위치가 폐쇄된다. 클럭 스위치는 2차측에 연관된 제2 시간 간격에 개방된다. 전기 변수는, 구체적으로 전지 충전기의 1차측 및 2차측 상의 각각의 전류는, 각각의 스위칭 시점의 지속 시간에 의해 규제된다.
무엇보다도 작동 시에, 제어기는 전원 전압의 시간 프로파일을 결정한다. 그러나, 전원 전압의 곡선 형상을 이와 동일 위상인 전류값에 대한 한계 곡선 상으로 매핑하기 위해, 제어기는 고정되도록 선택되어야 하는 스케일링 계수(scaling factor)에 대한 임의의 설계를 이용한다. 또한, 이러한 한계 곡선은 다른 방식으로, 예를 들어 전원 전압과 소정 진폭의 사인파형 패턴의 영교차점(zero-crossing)을 결정함으로써 결정될 수 있다.
각각의 제1 시간 간격의 시작 시에 클럭 스위치는 온 상태로 스위칭되며, 1차 권선이 인덕터로서 작용하기 때문에 전지 충전기 내로 실제로 흐르며 점차 상승하는 전류가 측정된다. 전원 전류가 한계 곡선의 순간값에 상응하는 한계값에 도달할 때, 클럭 스위치는 개방된다. 제1 시간 간격이 종료되고, 제2 시간 간격이 시작된다.
플라이백 컨버터의 기능성 때문에, 변압기 내에 저장된 에너지가 전지로 흐르는 상태에서, 이러한 시점까지는 전류가 2차 권선을 통해 흐르지 않는다. 그러므로, 1차 권선 내에 이미 흐르고 있는 전류는 RF 변압기 내에서 2차 권선으로 송전되며, 이는 에너지가 전지로 통과되는 것을 의미한다. 제2 시간 간격은 스위칭 주기, 다시 말해서 제1 시간 간격과 제2 시간 간격의 합이 RF 변압기의 최대 허용 가능 작동 주파수에 상응하도록 선택된다. 이 경우, 연속적인 스위칭 주기의 지속 시간은 항상 변화할 수 있는바, 그 이유는 특히 제1 시간 간격 내에서 전류에서의 한계값까지의 상승은 상이한 시점에 대해 지속되기 때문이다.
다시 말해서, 공급원으로부터 가져와서 1차측 상의 인덕턴스 내에 저장된 에너지는 스위칭 주기의 제1 부분에서 송전된다. 에너지는 2차측의 인덕턴스로부터 스위칭 주기의 제2 부분 내의 부하로 전달된다. RF 변압기 내의 1차측 상의 인덕턴스와 2차측 상의 인덕턴스 사이에서 에너지는 교환되고 그리고/또는 내부적으로 분리된다.
두 개의 대안이 가능하며, 제1 대안에서, RF 변압기 내에 저장되거나 또는 스위칭 주기의 제1 부분에서 RF 변압기 내로 공급되는 모든 에너지는 스위칭 주기의 제2 부분에서 전지로 전달된다. 그런 다음, RF 변압기는 스위칭 주기의 다음의 제1 부분에서 또다시 에너지로 충전된다. 제2 대안에서, 저장된 에너지의 오직 일부만이 스위칭 주기의 제2 부분에서 전지로 전달된다. 그런 다음, 추가 에너지가 스위칭 주기의 다음의 제1 부분에서 RF 변압기 내로 추가로 공급된다.
그러므로, 본 발명에 따른 전지 충전기는 전술된 요건을 만족시키지만, 그렇게 하기 위해 더 작은 개수의 회로 구성요소를 필요로 한다. 특히, 본 발명에 따른 전지 충전기에서 수동형 구성요소의 개수는 상당히 감소된다. 컨버터 전력을 위해 설계되어야 하는 중간 회로 커패시터는 필요하지 않다. 전원 전력은 중간 저장 없이 전지로 직접 전달된다. 전원 전압은 양방향 스위치를 통해 인덕턴스(L1)에 직접 링크된다. 본 발명에 따른 복수의 전지 충전기의 출력은 충전되는 전지에 대해 병렬로 작동될 수 있으며, 이런 경우에 각각의 충전기는 이러한 각각의 전지 충전기가 공급할 수 있는 만큼의 전력을 전지 내로 공급한다.
인덕턴스(L1 및 L2)는 1차측 및 2차측의 갈바닉 절연을 위한 RF 변압기를 함께 형성하도록 서로 밀접하게 커플링되며 단일 자석 코어 상에 감겨진다. 동시에, RF 변압기는 또한 1차측 및 2차측에 대한 인덕터이다. RF 변압기와 관련하여, 전원 전압과 1차 권선 당 시간(time per primary winding)의 곱은 출력 전압과 2차 권선 당 시간(T2)의 곱과 같다. 1차 권선에 대한 입력 전압(U1(t)), 2차 권선으로부터의 출력 전압(U2(t)), T0로부터 T1까지의 제1 시간 간격과 T1으로부터 T2까지의 제2 시간 간격, 및 1차측 상의 권선수 N1과 2차측 상의 권선수 N2인 경우에,
Figure pat00001
이다.
다시 말해서, 스위칭 주기당 RF 저장 커패시터 내에서의 전압 x 권선 당 초(seconds per winding)의 합은 0과 같다. 전지 충전기는 2 사분면 작동(two-quadrant operation)에 대해 적절하며, 다시 말해서 입력으로부터 출력까지의 전력 흐름에 대해 적절하며, 다시 말해서 공급 전압 시스템으로부터 전지까지의 전력 흐름에 대해 적절하다.
본 발명의 하나의 유리한 실시예에서, 프리휠링 브랜치는 RF 저장 변압기의 1차 권선에 연결되고 연관된다. 프리휠링 브랜치는 제어기에 의해 작동될 수 있는 프리휠링 스위치를 포함한다. 프리휠링 브랜치는 프리휠링 스위치에 의해 폐쇄되거나 개방될 수 있다. 프리휠링 브랜치가 개방될 때, 프리휠링 브랜치는 전지 충전기 내에서 조금도 효과가 없다. 프리휠링 브랜치가 폐쇄될 때, 전압 시스템으로부터 이미 끌어내서 RF 변압기에 저장된 에너지는 RF 변압기에 유지될 수 있으며, RF 변압기의 1차 권선 내에 흐르는 전류는 클럭 스위치가 개방된 후에 계속해서 흐를 수 있다. 에너지가 전지 상으로 통과될 필요는 없다. 예를 들어 전지가 완전히 충전되었지만 전지 충전기가 여전히 작동 상태일 때 이러한 것이 유용하다.
또 다른 바람직한 실시예에서, 상응하는 프리휠링 브랜치는 RF 저장 변압기의 2차 권선에 택일적으로 또는 추가적으로 연결된다. 그런 다음 흐르고 있는 전류는 2차 권선을 통해 계속해서 흐른다. 그러므로, 에너지는 RF 변압기 내에 마찬가지로 보유된다.
또 다른 유리한 실시예에서, RF 저장 변압기의 2차 권선에 대한 프리휠링 브랜치는 2차측 상에 배열된 정류기 내에 또한 통합될 수 있다. 어느 경우에도, 정류기는 2차 권선의 두 단부를 연결하는 토폴로지(topology)를 항상 갖는다. 그러므로, 적절한 스위칭 가능 구성요소의 설치에 의한 높은 수준의 복잡성 없이 프리휠링 브랜치가 제공될 수 있다.
이러한 것은 정류기가 다이오드 정류기이며 정류기의 브랜치 중 적어도 두 개의 브랜치가 제어기에 의해 작동되는 단락형 프리휠링 스위치(short-circuiting freewheeling switch)를 갖는 프리휠링 브랜치를 각각 형성하는 경우에 특히 쉽게 달성될 수 있다.
그러므로, 다이오드 중 적어도 두 개의 다이오드는 프리휠링 브랜치에 연관된다. 그런 다음, 단락될 수 있는 병렬 연결된 바이패스 브랜치가 다이오드에 추가될 수 있으며, 그로 인해 다이오드의 반대 방향으로 전류가 흐르게 된다. 다이오드 반응을 포함하는 적절한 반응을 갖는 하나의 구성요소는 IGBT이다. 그러므로, 다이오드 정류기 내의 적어도 두 개의 다이오드는 특히 유리한 방식으로 IGBT로 각각 대체된다. 그러므로, 이런 경우에, 바이패스 브랜치는 제어기에 의해 작동될 수 있는 단락형 바이패스 스위치를 항상 포함한다. 그러므로, 수정된 형태의 다이오드 정류기는 두 가지 임무, 구체적으로 변압된 전류의 정류 및 요구될 경우에서의 프리휠링 특성을 수행한다.
다이오드 정류기 내의 모든 다이오드가 단락형 바이패스 스위치(정확하게는 전술된 바와 같은 적절한 개량)를 각각 가지면, 이는 인버터로 귀결된다. 다시 말해서, 정류기는 그런 다음 자체적으로 택일적으로 작동될 수 있는 인버터로 대체된다. 그런 다음, 전지로부터 방출된 에너지 또는 전류는 인버터에 의해 인버팅(inverting)될 수 있으며, RF 저장 변압기로 다시 전달될 수 있다. 어느 경우에도, 전지 충전기의 1차측은 4 사분면 작동에 대해 이미 적절하며, 그 결과로서 전체 회로는 4 사분면 작동에 대해 적절하다. 그러므로, 에너지는 마찬가지로 전지로부터 전압 시스템으로 피드백될 수 있다. 이러한 것은 집합적 에너지 저장소로서 공급 시스템에 연결된 많은 수의 전기 동력식 승객 차량을 사용할 수 있는 전력 회사(utility company)에 대해 중요하다.
한편, 예를 들어 태양 전지판에 의해 또는 어딘가 다른 방식으로 개개의 승객 차량 내에 생성된 에너지를 전원 공급 내로 집합적으로 공급하는 것이 또한 가능할 것이다.
또 다른 유리한 실시예에서, 전지 충전기는 절연 스위치를 또한 포함하며, 절연 스위치는 입력으로부터 출력을 절연시키고 제어기에 의해 마찬가지로 동작될 수 있다. 이 경우에 절연 스위치는 예를 들어 전지 충전기의 나머지로부터 출력을 절연시킬 수 있다. 적절한 절연 스위치에 의해 입력을 갖는 전지 충전기로부터 또는 입력을 갖는 전지 충전기의 적어도 일부분으로부터 그리고 그에 따라 공급 시스템으로부터 전지가 절연되게 된다.
이 경우에, 마찬가지로, 하나의 특히 바람직한 실시예에서, 절연 스위치는 출력에 최근접한 전지 충전기 구성요소이므로 절연 스위치는 정류기 내에 통합된다. 예를 들어, 다이오드 정류기인 경우에, 두 개의 브랜치는 각각 방해될 수 있다. 예를 들어, 후방을 맞대는 방식(back-to-back)으로 직렬 연결된 두 개의 IGBT가 각각의 브랜치 내에 제공될 수 있다.
이러한 방법과 관련하여, 본 발명의 목적은 이미 설명된 장점과 함께 이미 전술된 바와 같은 전지 충전기의 작동을 위한 방법에 의해 달성된다. 그러므로, 이러한 전지 충전기 내의 제어기는 클럭 스위치를 온 상태 및 오프 상태로 계속적으로 스위칭한다. 클럭 스위치는 제1 시간 간격 동안에 온 상태로 스위칭되며, 전류가 한계값까지 상승할 때 제1 시간 간격이 종료된다. 이러한 한계값은 측정 전압과 스케일링 계수의 곱으로 이루어진 순간값이다. 그런 다음, 제1 시간 간격과 제2 시간 간격의 전체 지속 시간이 RF 저장 변압기의 허용 가능한 작동 주파수들의 하나의 간격의 주기 지속 시간에 상응하도록 제2 시간 간격이 선택된다. 다시 말해서, RF 변압기는 대체로 단일 작동 주파수에 대해서 뿐만 아니라 예를 들어 16 kHz와 25 kHz 사이의 작동 주파수들의 간격에 대해서도 허용 가능하다. 이러한 간격은 연관된 주기 지속 시간들의 간격에 연관된다. 그러므로, 제1 시간 간격 및 제2 시간 간격의 합이 이제 방금 언급된 허용 가능한 간격 내에 있는 주기 지속 시간을 야기하도록 제1 시간 간격 및 제2 시간 간격이 선택된다.
다시 말해서, 제1 시간 간격의 선택은 전류의 포락선이 전압의 시간 프로파일을 단순히 스케일링하는 곡선을 야기하는 것을 의미하며, 다시 말해서 전류는 전압과 동일 위상이다. 이는 임의의 나머지 리플 전압을 제외하고는 균일한 전류가, 다시 말해서 대체로 사인파형 전류가, 전압 시스템의 입력에서 끌어내지며, 전지 충전기의 역률이 1이라는 것을 의미한다.
또 다른 바람직한 실시예에서, 스케일링 계수는 전압의 최대값과 입력에서의 최대 공칭 전류 레벨로부터 (예를 들어 제어기에 의해) 결정된다. 그러므로, 입력에서 흐르는 전류에 대한 한계 곡선이 결정되며, 이러한 한계 곡선은 최대값으로서 최대 공칭 전류를 가지며 따라서 실제로 흐르는 전류를 초과할 수 없다. 그러므로, 컷오프(cut-off)를 제공하는 최대 전류 한계와 달리, 전지 충전기의 전원 전류는 실체로서의 한계 곡선에 의해 축소(scaledown)되므로 전지 충전기의 전원 전류는 항상 사인파형이다.
또 다른 바람직한 실시예에서, RF 변압기의 1차측 또는 2차측은 제1 시간 간격 및/또는 제2 시간 간격 이내의 제3 시간 간격 동안에 프리휠링 모드로 작동된다. 예를 들어, 전술된 프리휠링 브랜치는 이러한 목적을 위해 적절하다. 이는 전원 전압으로부터 (또는 에너지 흐름이 반대 방향일 때 전지로부터) 이미 끌어낸 에너지가 전지로 또는 공급 시스템으로 통과될 필요 없이, 그 에너지를 RF 저장 변압기 내, 정확하게는 인덕터로서 작용하는 RF 변압기의 권선들 내에 저장하기 위한 전술된 선택 사항을 야기한다.
본 발명에 따른 전지 충전기는 전술된 요건을 만족시키지만, 그렇게 하기 위해 더 작은 개수의 회로 구성요소를 필요로 한다. 특히, 본 발명에 따른 전지 충전기에서 수동형 구성요소의 개수는 상당히 감소된다. 컨버터 전력을 위해 설계되어야 하는 중간 회로 커패시터는 필요하지 않다. 전원 전력은 중간 저장 없이 전지로 직접 전달된다. 전원 전압은 양방향 스위치를 통해 인덕턴스(L1)에 직접 링크된다. 본 발명에 따른 복수의 전지 충전기의 출력은 충전되는 전지에 대해 병렬로 작동될 수 있으며, 이런 경우에 각각의 충전기는 이러한 각각의 전지 충전기가 공급할 수 있는 만큼의 전력을 전지 내로 공급한다.
도 1은 본 발명에 따른 전지 충전기를 도시한다.
도 2a는 도 1에 도시된 클럭 스위치의 실시예를 도시하고, 도 2b는 도 1에 도시된 정류기의 실시예를 도시한다.
도 3a는 도 1에 도시된 변압기와 전지 사이의 부분적인 에너지 송전으로부터의 다양한 전기적 변수의 시간 프로파일을 도시하고, 도 3b는 도 1에 도시된 변압기와 전지 사이의 완전한 에너지 송전으로부터의 다양한 전기적 변수의 시간 프로파일을 도시한다.
도 4는 도 1에 도시된 추가 전기적 변수의 시간 프로파일을 도시한다.
도 5a 및 도 5b는 2차측와 1차측 상에 다양한 프리휠링 브랜치를 갖는 대안적인 전지 충전기를 도시한다.
도 6은 출력에 대한 절연 스위치를 갖는 대안적인 전지 충전기를 도시한다.
도 7은 종래 기술에 따른 전지 충전기를 도시한다.
본 발명의 추가적인 설명을 위해, 각각의 경우에 개략적인 개요의 형태로 도시된 도면 내의 예시적인 실시예가 참조된다.
도 1은 입력(4)과 출력(8)을 갖는 전지 충전기(2)를 도시하며, 입력(4)을 통해 전지 충전기(2)는 UN=230V인 전원 전압을 갖는 공급 전압 시스템(6)에 연결되며, 또한 전지 전압(UB)을 갖는 전지(10)가 출력(8)에 연결된다. 전지 충전기(2)는 RF 절연 변압기(12)를 필수적으로 포함하며, 또한 RF 절연 변압기(12)의 1차 권선(14a)은 인덕턴스(L1)를 가지며 또한 스위치(16)를 통해 입력(4)에 연결된다. 2차 권선(14b)은 인덕턴스(L2)를 가지며 정류기(20)의 입력(18a)에 연결된다. 정류기(20)의 출력(18b)은 출력(8)에 연결되며, 또한 출력(8)에는 전지 전압(UB)이 존재한다.
전지 충전기(2)는 측정 유닛(22)을 가지며, 또한 이 측정 유닛(22)은 입력(4)에서 전지 충전기(2)로 흐르는 전원 전류(IN) 뿐만 아니라 입력(4)에 인가된 전원 전압(UN)을 검출한다. 측정 유닛(22)은 스위치(16)를 작동시키는 제어기(24)에 연결된다. 스위치(16)는 양방향 스위치이며, 다시 말해서 스위치(16)가 폐쇄 상태에 있을 때 스위치(16)는 양인 전원 전류 및 음인 전원 전류(IN)를, 다시 말해서 화살표(26)에 의해 표시된 두 개의 흐름 방향으로 통과시킨다. 변압기(12) 내의 권선(14a 및 14b)은 공통 자석 코어 상에 감겨지며, 공통 자석 코어는 도시되지 않았지만 공통 자석 코어는 공기 간극을 갖고 있고, 그 결과 인덕턴스(L1 및 L2)는 서로 밀접하게 커플링된다. RF 변압기(12)는 전지 충전기(2)의 1차측(28a)와 2차측(28b) 사이에 갈바닉 절연을 나타낸다. RF 변압기(12)는 RF 저장 변압기이며 플라이백 컨버터(flyback converter)의 형태로 정류기(20)에 연결된다. 그러므로, RF 변압기(12)에서 전류는 오직 1차 권선(14a) 또는 2차 권선(14b) 내에만 흐를 수 있다.
도 1은 또한 1차측(28a) 및/또는 2차측(28b)의 또 다른 개량예를 도시한다. 제어기(24)에 의해 온 상태로 스위칭될 수 있는 프리휠링 브랜치(40) 또는 프리휠링 네트워크(38)는 1차 권선(14a) 또는 2차 권선(14b)을 통해 각각 단락(short-circuiting)될 수 있다. 그 다음, 관련 권선에 저장된 에너지가 전력 공급 시스템(6)으로 또는 각각의 나머지 권선 또는 전지(10)로 다시 방출될 필요 없이, 이러한 관련 권선에 저장된 에너지는 프리휠링 브랜치(40)를 폐쇄시킴으로써 1차측 또는 2차측 내에 저장될 수 있다.
전지 충전기의 또 다른 대안적 실시예는 제어기(24)에 의해 스위칭될 수 있으며, 예를 들어 정류기(20)로부터의 하류(downstream)에 배열된 절연 스위치(44)를 포함한다. 절연 스위치(44)는 전지(10)를 분리시키기 위해 사용되며, 또한 2차측(28b)의 회로 내에서 어딘가 다른 적절한 지점에 배열될 수 있다.
도시되지 않은 하나의 대안적인 실시예에서, 본 발명에 따른 복수의 장치 또는 그 장치의 일부분, 즉 각각의 연관된 클럭 스위치(16)을 갖는 적어도 RF 변압기(12)가 단일 공급 시스템(6)과 단일 전지(10) 사이에 병렬 연결된다.
도 2a는 스위치(16), 절연 스위치(44) 또는 프리휠링 브랜치(40)용 스위치의 하나의 구체적인 실시예를 도시하며, 이들은 양방향으로 스위칭될 수 있으며, 다시 말해서 직렬 연결된 두 개의 RBIGBT(30)로 구성된다.
도 2b는 하나의 브랜치 요소(19a 내지 19d)마다 다이오드(D1 내지 D4)를 각각 하나씩 구비한 다이오드 정류기로서 정류기(20)의 개량예를 도시한다. 작동 시에, 상응하는 전류, 예를 들어 ID1이 각각의 다이오드를 통해 흐른다.
도 3a는 시간(t/밀리초)에 따라 도시된 전지 충전기(2)의 작동 시의 다양한 전기적 변수를 도시한다. 도면은 50 Hz 전원 전압 UN의 20 밀리초인 완전한 진동 주기를 도시하며, 이러한 진동 주기는 -220 V 내지 +220 V 사이에서 사인파형으로 진동한다. 측정 유닛(22)은 이러한 전압의 시간 프로파일을 검출하고 이를 제어기(24)로 전송하며, 제어기(24)는 스케일링 계수(34)를 이용하여 전원 전압(UN)의 시간 프로파일을 한계 전류(IG)의 사인파형 곡선으로 스케일링한다. 이 경우에, 스케일링 계수(34)는 한계 전류(IG)의 최대값(Imax)이 각각의 경우에 ±16A가 되도록 정의된다.
시간 T0에서, 제어기(24)는 이제 클럭 스위치(16)를 폐쇄하기 시작하며, 측정 유닛(22)를 이용하여 전류 레벨(IN)의 프로파일을 따라간다. 전류 레벨(IN)이 시간 간격 (ΔT1=T1-T0) 이후의 시간 T1인 경우인 한계 전류(IG)의 값에 도달하자 마자, 제어기(24)는 스위치(16)를 다시 온 상태로 스위칭한다. 그러므로, 이 경우에 한계 전류(IG)의 순간값은 전류(IN)에 대한 한계값(I0)을 형성한다. 그런 다음, 제어기(24)는 시간 T2까지 스위치(16)가 폐쇄된 상태를 유지하게 한다. 본 실시예에서, 시간 간격(T2-T1)의 길이는 일정하도록 선택된다. 시간 간격 (ΔT2=T2-T1) 이후의 시간 T2에서, 스위치(16)는 다시 폐쇄되며, 제어기(24)는 전류(IN)가 한계 전류(IG)와 동일한 때를 또다시 관찰하며, 이에 응답하여 제어기(24)는 갱신된 간격(ΔT1) 이후에 스위치(16)를 또다시 개방한다. 이러한 시간 간격(ΔT1)은 대체로 이전의 시간 간격(ΔT1)과 동일하지 않다. 그런 다음, 비록 이러한 시간 간격(ΔT2)는 항상 동일한 지속 시간이지만, 스위치(16)는 시간 간격(ΔT2) 동안 또다시 폐쇄 상태를 유지한다.
그러므로, 스위치가 개방 상태를 유지하는 간격(ΔT1)은 전원 전류(IN)가 한계 전류(IG)에 도달하는 때에 따라 달라지며, 따라서 가변적이다. 각각의 경우에 두 개의 계속되는 간격(ΔT1 및 ΔT2)의 합은 클럭 스위치(16)의 스위칭 주기를 나타내며, 이는 RF 변압기(12)의 작동 주파수의 주기 지속 시간을 나타낸다. 도 3a로부터 알 수 있는 바와 같이, 전원 전압(UN)의 절반 사이클 동안에 RF 변압기(12)는 독자적으로 상이한 작동 주파수에서 연속적으로 작동된다.
결과적인 작동 주파수가 RF 변압기(12)의 허용 가능 범위 내에 있도록 시간 간격(ΔT2)이 선택된다. 도 3a에 도시된 바와 같은 전원 전압(UN)의 제1 양의 절반 사이클 동안에 도 3a에 마찬가지로 도시되어 있는 다이오드(D1)를 통한 전류(ID1)가 나타난다. 이들 전류들은 시간 간격(ΔT2) 동안, 다시 말해 스위치(16)가 개방 상태일 때 각각 흐른다. 이 경우에 다이오드 전류는 바로 전지 전류(IB)를 형성하므로, 전지(10)는 전류(ID1)의 상응적으로 생성된 전류 펄스에 의해 충전된다. 도 3a에 도시된 제2 절반 사이클에서 도 1에 도시된 바와 같은 회로 내에서의 전류 방향이 반전되며, 그 결과 이제는 전류(ID2)가 다이오드(D2)를 통해 흐른다.
그러므로, 각각의 제1 시간 간격(ΔT1) 동안에, 전력은 공급 시스템(6)으로부터 끌어내고 1차 권선(14a) 내에 저장되며, 상응적으로 저장된 전력은 시간 간격(ΔT1) 동안에 (도시되지 않은 자석 코어를 통해 또는 자석 코어의 공기 간격을 통해) 2차 권선(14b)을 통해 전지(10)로 전달된다. 예를 들어, 시간(ΔT2)은 일정하며, 100 μs이다.
또한 알 수 있는 바와 같이, 전원 전압(UN)과 전원 전류(IN) 사이의 역률(power factor) 또는 그 포락선(envelope)은 cosφ=1 또는 λ=1이다. 포락선은 한계 전류(IG)와 일치한다.
도 3a에서, 각각의 시간 간격(ΔT2)에서 RF 변압기(12)로부터 항상 에너지를 끌어내지는 않으며, 단지 부분적인 에너지 전달만이 발생한다. 그러므로, 전류 곡선(ID1, ID2)은 각각의 간격의 종점에서 0으로 떨어지지 않지만 컷오프(cutoff)된다. 그러므로, 시간 간격(ΔT1)에서, 1차 권선(14a) 내로 흐르는 전류도 또한 0에서 시작하지 않고 좀 더 높은 전류 레벨에서 끼어들게 된다.
반대로, 도 3b는 RF 변압기(12)가 각각의 시간 간격(ΔT2)에서 전지(10)로 완전히 방전되어 있는 상황을 도시한다. 전류 곡선(ID1, ID2)은 각각의 시간 간격(ΔT2)에서 0으로 떨어진다. 그러므로, 전류(IN)의 충전 곡선도 또한 각각의 간격(ΔT1)에서 0에서 시작한다.
클럭 스위치(16)를 구비한 RF 변압기(12)가 전술한 바와 같이 병렬 연결될 때, 추가적인 유리한 제어 방법이 가능하다. N 개의 변압기가 병렬 연결될 때, 개개의 클럭 스위치(16)는 예를 들어 360˚/N의 위상 오프셋으로 작동된다. 전지에서, 이는 도 3a 및 도 3b의 전류 곡선보다 상당히 평탄한 전류 곡선을 갖는 전지 전류(IB)를 유도하는데, 왜냐하면 개개의 RF 변압기에 의해 생성된 전류는 상응하는 위상 오프셋과 중첩되기 때문이다.
도 4는 전지의 충전 전력 PL과 함께 도 3a 및 도 3b에 도시된 충전 전류(ID1 및 ID2)를 또다시 도시한다. 전지 충전 전력은 전류(ID1 또는 ID2)와 전지 전압(UB) 또는 대략 2차 권선(14b)의 출력 전압의 곱에 상당하며, 전원 주파수의 두 배로 맥동(pulse)된다. 피크 전력값은 평균값의 두 배이다.
도 2와는 대조적으로, 도 5a 및 도 5b는 스위치(16)가 두 개의 직렬 연결된 IGBT(36)에 의해 제공된 실시예를 도시한다. 그러나, 특히 2차측(14b) 상에서, 정류기 내의 다이오드(D3 및 D4)는 IGBT(36)로 각각 대체된다. 다시 말해서, IGBT(36)는 온 상태로 스위칭될 수 있는 바이패스 스위치와 함께 다이오드(D3)를 통합하고 그에 따라 프리휠링 스위치(37)를 형성하며, 따라서 다이오드(D3)의 차단 효과를 정교하게 상쇄시키는 것이 가능하다. 그러므로, 다이오드(D3)를 포함하는 정류기(20)의 이러한 브랜치는 프리휠링 브랜치(40)를 형성한다. 그러므로, 2차 권선(14b)에 대해, 이는 다이오드에 의해 형성된 프리휠링 네트워크(38) 또는 프리휠링 브랜치 및 다이오드(D3 및 D4)의 위치에서 상응적으로 온 상태로 스위칭되는 IGBT(36)를 야기한다. 그러므로, 클럭 주기(ΔT2) 동안에, 권선(14b)의 전류가 프리휠링 네트워크(38)를 통해 흐르므로, 인덕터로서 작용하는 권선(14b) 내에 저장된 에너지가 유지될 수 있다.
도 5b는 다이오드(D1 및 D2)가 IGBT(36)로 대체된 정류기(20)의 또 다른 개량을 도시한다. 이는 권선(14b)에 대한 상이한 전류 방향에 대해 두 개의 상이한 프리휠링 네트워크(38)을 야기한다.
모든 경우에, 적절한 시점에서 프리휠링 네트워크(38)를 온 상태로 스위칭하기 위해, IGBT(36)는 제어기(24)에 의해 중앙집중식으로 상응하는 방식으로 작동된다. 상응하여 구체적으로 설계된 프리휠링 브랜치(40) 및 프리휠링 스위치(37)는 1차측(28a) 상에서 알 수 있다.
도 6은 전지 충전기(2)의 또 다른 실시예를 도시하며, 그 실시예에서 전지(10)를 전지 충전기(2)로부터 완전히 절연시키기 위해 차단 IGBT(36)도 또한 정류기(20) 내에서 다이오드(D3 및 D4) 대신에 IGBT와 직렬 연결되어 있으며, 그 결과로서 이 경우에는 조금도 전류가 흐를 수 없다. 따라서, 도 6에서 정류기(20)의 하부 절반이 완전하게 차단될 수 있다. 그러므로, 이 경우에 다이오드(D3)의 브랜치 내에 있는 두 개의 IGBT(36)는 절연 스위치(44)로서 작용한다. 하부 IGBT(36)는 정류기 작동에 대해 온 상태로 각각 스위칭된다.
도 6에서, 다이오드(D1 및 D2)도 또한 IGBT(36)로 대체된다. 이로 인해 정류기(20)는 인버터(42)로서 작동될 수 있다. 그러므로, 에너지는 전지(10)로부터 공급 시스템(6)으로 이송된다.
2: 전지 충전기 4: 입력
6: 공급 시스템 8: 출력
10: 전지 12: RF 변압기
14a, 14b: 권선 16: 클럭 스위치
18a: 입력 18b: 출력
19a 내지 19d: 브랜치 요소 20: 정류기
22: 측정 유닛 24: 제어기
26: 화살표 28a: 1차측
28b: 2차측 30: RBIGBT
34: 스케일링 계수 36: IGBT
37: 프리휠링 스위치 38: 프리휠링 네트워크
40: 프리휠링 브랜치 42: 인버터
44: 절연 스위치 300: 전지 충전기
310: 정류기 312: PFC
313: 인덕터 314: 중간 회로 커패시터
315: 단락형 스위치 316: 인버터
317: 프리휠링 다이오드 318: RF 변압기
322: 인덕터
UZ: 중간 회로 전압 UW: 전압
UB: 전지 전압 UN: 전원 전압
IN: 전원 전류 t: 시간
IG: 한계 전류 D1 내지 D4: 다이오드
ID1 및 ID2: 전류 PL: 충전 전력
fa: 작동 주파수 L1 및 L2: 인덕턴스
Imax: 최대 전류 ΔT1 내지 ΔT3: 시간 간격
I0: 한계값 IB: 전지 전류

Claims (10)

  1. 전지 충전기(2)에 있어서,
    1차 권선(14a)이 클럭 스위치(16)를 통해 AC 전압(UN)을 위한 2극 입력(4)에 연결되고, 2차 권선(14b)이 전지(10)를 위한 2극 출력(8)을 갖는 정류기(20)에 플라이백 컨버터(flyback converter) 형태로 연결되는 RF 저장 변압기(12);
    2극 입력(4)에서 전류(IN)와 전압(UN)을 검출하는 측정 유닛(22); 및
    전류(IN) 및 전압(UN)의 함수로서 클럭 스위치(16)를 작동시키는 제어기(24)를 포함하는 것을 특징으로 하는 전지 충전기.
  2. 제1항에 있어서, 1차 권선(14a)에 연관되고, 제어기(24)에 의해 작동되는 단락형 프리휠링 스위치(37)를 구비하는 프리휠링 브랜치(40)를 포함하는 것을 특징으로 하는 전지 충전기.
  3. 제1항 또는 제2항에 있어서, 2차 권선(14b)에 연관되고, 제어기(24)에 의해 작동되는 단락형 프리휠링 스위치(37)를 구비하는 프리휠링 브랜치(40)를 포함하는 것을 특징으로 하는 전지 충전기.
  4. 제3항에 있어서, 상기 프리휠링 브랜치는 다이오드 정류기 내에 통합되는 것을 특징으로 하는 전지 충전기.
  5. 제4항에 있어서, 상기 정류기(20)는 다이오드 정류기이고, 상기 정류기(20)의 브랜치 요소(19a 내지 19d) 중 적어도 두 개의 브랜치 요소는 각각 제어기(24)에 의해 작동되는 단락형 프리휠링 스위치(37)를 구비하는 프리휠링 브랜치(40)를 형성하는 것을 특징으로 하는 전지 충전기.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 제어기(24)에 의해 작동되고, 상기 2극 입력(4)으로부터 상기 2극 출력(8)을 절연시키는 절연 스위치(44)를 포함하는 것을 특징으로 하는 전지 충전기.
  7. 제6항에 있어서, 상기 절연 스위치(44)는 정류기(20) 내에 포함되는 것을 특징으로 하는 전지 충전기.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 전지 충전기(2)를 작동시키는 방법에 있어서,
    제어기(24)는 클럭 스위치(16)를 제1 시간 간격(ΔT1) 동안 연속적으로 온(ON) 상태로 스위칭하고, 클럭 스위치(16)를 제2 시간 간격(ΔT2) 동안 연속적으로 오프(OFF) 상태로 스위칭하며, 여기에서 전류(IN)가 스케일링 계수(34)와 전압(UN)의 곱의 순간값에 상응하는 한계값(I0)까지 상승할 때 제1 시간 간격(ΔT1)이 종료되고, 제1 시간 간격(ΔT1)과 제2 시간 간격(ΔT2)의 전체 지속 시간이 RF 저장 변압기(12)의 허용 가능 작동 주파수(fa)의 하나의 간격의 주기 지속 시간에 상응하도록 제2 시간 간격(ΔT2)이 충분히 길게 선택되는 것을 특징으로 하는 전지 충전기 작동 방법.
  9. 제8항에 있어서, 상기 스케일링 계수(34)는 전압(UN)의 최대값 및 2극 입력(4)에서 흐르는 최대 공칭 전류 레벨(Imax)로부터 결정되는 것을 특징으로 하는 전지 충전기 작동 방법.
  10. 제8항 또는 제9항에 있어서, 1차 권선(14a) 또는 2차 권선(14b)은 제1 시간 간격(ΔT1) 및/또는 제2 시간 간격(ΔT2) 이내의 제3 시간 간격(ΔT3) 동안 프리휠링 브랜치(40)를 이용하여 프리휠링 모드에서 작동되는 것을 특징으로 하는 전지 충전기 작동 방법.
KR1020100005080A 2009-01-20 2010-01-20 전지 충전기 및 그 작동 방법 Withdrawn KR20100085869A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009000328A DE102009000328A1 (de) 2009-01-20 2009-01-20 Batterieladegerät und Verfahren zu dessen Betrieb
DE102009000328.2 2009-01-20

Publications (1)

Publication Number Publication Date
KR20100085869A true KR20100085869A (ko) 2010-07-29

Family

ID=42111582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100005080A Withdrawn KR20100085869A (ko) 2009-01-20 2010-01-20 전지 충전기 및 그 작동 방법

Country Status (6)

Country Link
US (1) US20100181963A1 (ko)
EP (1) EP2209180A1 (ko)
JP (1) JP2010200603A (ko)
KR (1) KR20100085869A (ko)
CN (1) CN101783525A (ko)
DE (1) DE102009000328A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102163797B1 (ko) * 2019-08-02 2020-10-12 현대오트론 주식회사 친환경 차량의 배터리 충전 및 방전 장치 그리고 이를 이용한 충전 및 방전 방법

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930653B2 (ja) * 2009-05-14 2012-05-16 トヨタ自動車株式会社 車両用充電装置
DE102011006160B4 (de) 2011-03-25 2017-03-30 Bayerische Motoren Werke Aktiengesellschaft Batteriesystem
CN102780259A (zh) * 2011-05-10 2012-11-14 神讯电脑(昆山)有限公司 便携式设备充电器
JP5703988B2 (ja) * 2011-06-17 2015-04-22 トヨタ自動車株式会社 受電装置、送電装置、車両、および非接触給電システム
JP5143938B1 (ja) * 2011-09-12 2013-02-13 シャープ株式会社 充電装置
KR20130039031A (ko) * 2011-10-11 2013-04-19 한국전자통신연구원 무선 전력 송신 장치, 무선 전력 수신 장치 그리고 무선 전력 송수신 장치
KR101818773B1 (ko) * 2011-10-24 2018-02-22 삼성전자주식회사 공진 방식 무선 충전 시스템용 수신 전력 변환 장치
CN103107689A (zh) * 2011-11-11 2013-05-15 台达电子企业管理(上海)有限公司 一种级联型变频器、功率单元及其旁路模块
KR101254092B1 (ko) * 2011-12-21 2013-04-12 주식회사 스파콘 신호 검출장치 및 이를 구비한 무선 전력전송장치
FR2988232B1 (fr) * 2012-03-14 2015-01-16 Renault Sa Dispositif de recharge sans contact pour batterie de vehicule automobile et procede de commande associe
US9118185B2 (en) * 2012-05-14 2015-08-25 Qualcomm Incorporated Systems and methods for high power factor charging
WO2013181985A1 (en) * 2012-06-04 2013-12-12 Shenzhen Byd Auto R&D Company Limited Transmitting device, wireless charging system comprising transmitting device and method for controlling charging process thereof
KR101988049B1 (ko) * 2012-10-05 2019-06-12 강동엽 콘덴서를 생략한 발전용 인버터
FR2997579B1 (fr) * 2012-10-31 2015-05-22 Renault Sa Systeme de charge d'une batterie de vehicule automobile
CN103887760B (zh) * 2012-12-20 2017-11-03 通用电气公司 故障保护系统和方法
KR20140097628A (ko) * 2013-01-28 2014-08-07 삼성에스디아이 주식회사 배터리 온도 제어 시스템 및 그 제어 방법
CN104582101A (zh) * 2013-10-18 2015-04-29 凹凸电子(武汉)有限公司 光源驱动电路、控制提供给光源的电能的控制器及方法
CN103580259B (zh) * 2013-11-20 2016-06-22 华为技术有限公司 供电电路
EP3080903B1 (en) * 2013-12-10 2020-12-02 Edge Electrons Limited Improved high frequency series ac voltage regulator
JP6219706B2 (ja) * 2013-12-19 2017-10-25 ルネサスエレクトロニクス株式会社 電源回路
TWI506946B (zh) * 2014-03-13 2015-11-01 Nat Univ Tsing Hua 能量回收裝置
CN106160522A (zh) * 2015-04-22 2016-11-23 南京理工大学 一种无桥结构的反激功率因数校正pfc变换器
CN104795865B (zh) * 2015-04-27 2017-05-31 南通理工学院 一种蓄电池快充电控制器及控制方法
DE102015116995A1 (de) * 2015-10-06 2017-04-06 Infineon Technologies Austria Ag Schaltung zur Leistungsfaktorkorrektur und Verfahren zum Betrieb
GB2552777B (en) * 2016-07-21 2022-06-08 Petalite Ltd A battery charging system and method
JP6690609B2 (ja) * 2017-04-06 2020-04-28 株式会社村田製作所 磁界発生回路
US10759287B2 (en) 2017-10-13 2020-09-01 Ossiaco Inc. Electric vehicle battery charger
US11418125B2 (en) * 2019-10-25 2022-08-16 The Research Foundation For The State University Of New York Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages
TWI772215B (zh) * 2021-04-08 2022-07-21 通嘉科技股份有限公司 應用於返馳式電源轉換器的控制器的效率追蹤方法
TWI792532B (zh) * 2021-09-03 2023-02-11 行政院原子能委員會核能研究所 抑制湧浪電流之保護控制方法及其保護控制系統
EP4148962A1 (en) * 2021-09-13 2023-03-15 Infineon Technologies Austria AG Method of operating a power converter, control circuit, and power converter
US12119665B1 (en) 2023-11-13 2024-10-15 One Energetics LLC Magnetic impulse battery charger and methods of use

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1663155C3 (de) * 1967-02-18 1979-06-21 Era Elektronik-Regelautomatik Gmbh & Co Kg, 4800 Bielefeld Schaltungsanordnung zur Beeinflussung des Schaltvorganges beim Schalten einer induktiven Last
DE3009359A1 (de) * 1980-03-12 1981-09-17 Deutsche Automobilgesellschaft Mbh, 3000 Hannover Ladegeraet
JPH0260467A (ja) * 1988-08-24 1990-02-28 Meidensha Corp 整流装置
JP2761538B2 (ja) * 1988-11-04 1998-06-04 日本電信電話株式会社 無停電電源装置
FR2693321B1 (fr) * 1992-07-03 1994-07-29 Renault Chargeur de batterie.
JPH0865904A (ja) * 1994-06-06 1996-03-08 Nippondenso Co Ltd 電気自動車用充電装置
JPH0888908A (ja) * 1994-09-14 1996-04-02 Hitachi Ltd 電気車用充電装置
US5570279A (en) * 1994-09-21 1996-10-29 The Research And Development Institute, Inc. At Montana State University PWM converters for three phase AC power control and AC to DC conversion
JPH0934564A (ja) * 1995-07-18 1997-02-07 Chiyoda:Kk 入力波形追従型交流電源装置
ATE257056T1 (de) * 1999-09-03 2004-01-15 Ewm Hightec Welding Gmbh Schweiss- oder plasmaschneidgerät und verfahren zum betreiben eines schweiss- oder plasmaschneidgerätes
US20040130299A1 (en) * 2001-08-03 2004-07-08 Linear Technology Corporation Circuits and techniques for capacitor charging circuits
JP2003230279A (ja) * 2002-01-31 2003-08-15 Nippon Telegr & Teleph Corp <Ntt> 交流‐直流電力変換装置
CN1578052B (zh) * 2003-07-09 2010-04-28 三美电机株式会社 Ac适配器及其充电方法
US7280376B2 (en) * 2004-10-15 2007-10-09 Dell Products L.P. Primary side voltage sense for AC/DC power supplies capable of compensation for a voltage drop in the secondary
US7560902B2 (en) * 2004-12-10 2009-07-14 Xantrex International Duty cycle controller for high power factor battery charger
US7787262B2 (en) * 2005-05-09 2010-08-31 Allegro Microsystems, Inc. Capacitor charging methods and apparatus
JP5007966B2 (ja) * 2005-05-30 2012-08-22 大平電子株式会社 Ac−dcコンバータ
US7738266B2 (en) * 2006-05-26 2010-06-15 Cambridge Semiconductor Limited Forward power converter controllers
DE102006025975B4 (de) * 2006-06-02 2008-08-28 Siemens Ag Österreich Wechselrichterschaltung und Verfahren zum Betreiben der Wechselrichterschaltung
CN101013850B (zh) * 2006-12-21 2010-04-21 中国科学院电工研究所 采用蓄电池供电的高压电容器高频恒流充电电源
JP4413236B2 (ja) * 2007-02-16 2010-02-10 セイコーエプソン株式会社 受電制御装置、送電制御装置、無接点電力伝送システム、受電装置、送電装置および電子機器
US8040704B2 (en) * 2007-06-30 2011-10-18 Cuks, Llc Integrated magnetics switching converter with zero inductor and output ripple currents and lossless switching
US8228025B2 (en) * 2007-11-09 2012-07-24 City University Of Hong Kong Electronic control method for a planar inductive battery charging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102163797B1 (ko) * 2019-08-02 2020-10-12 현대오트론 주식회사 친환경 차량의 배터리 충전 및 방전 장치 그리고 이를 이용한 충전 및 방전 방법

Also Published As

Publication number Publication date
JP2010200603A (ja) 2010-09-09
US20100181963A1 (en) 2010-07-22
EP2209180A1 (de) 2010-07-21
CN101783525A (zh) 2010-07-21
DE102009000328A1 (de) 2010-07-22

Similar Documents

Publication Publication Date Title
KR20100085869A (ko) 전지 충전기 및 그 작동 방법
JP6052554B2 (ja) 電気エネルギーをdc発電機から2本の電力線を有するacグリッドに供給する電力インバータ
KR101241221B1 (ko) 마일드 하이브리드 차량용 충전 장치
KR101249422B1 (ko) 직렬-접속된 에너지 저장소들의 전하들을 균등화하기 위한장치 및 방법
KR101628133B1 (ko) 펄스폭 변조 공진 컨버터 및 이를 이용한 차량용 충전기
EP1219000B1 (en) Control of series-resonant inductive pickups
CN108141055B (zh) 在不使用互耦信息或者无线反馈的情况下的无线电能传输系统的发送器侧控制
CN102823104B (zh) 用于电池的充电均衡系统
KR20130001233A (ko) 배터리용 충전 균일화 시스템
CN101164215A (zh) 用于对能量存储器的各个串联的单元进行电荷均衡的设备和方法
US9231433B2 (en) Apparatus and method for charging an electrical energy store from an AC voltage source
US20150171755A1 (en) Switched mode power supply, inverter and string monitoring assembly comprising said type of switched mode power supply
JP2011120370A (ja) 直流―直流双方向コンバータ回路
CN107534386A (zh) 直流电压转换器
CA2853556C (en) Double-rectifier for a multi-phase contactless energy transmission system
CN103296714B (zh) 用于储能装置的充电电路以及给储能装置充电的方法
JP2567034Y2 (ja) 電池充電装置
EP2638627B1 (en) Power inverter for feeding electric energy from a dc power generator into an ac grid with two power lines
Russer et al. A bidirectional moving field inductive power transfer system for electric vehicles
US20230127892A1 (en) Magnetic resonance charging system
KR102583398B1 (ko) 스위칭 전력 변환기를 위한 예비기동 제어 회로
TW202301775A (zh) 單相與三相兼容的交流直流轉換電路及其放電控制方法
JP3579789B2 (ja) 高力率スイッチング電源装置
JP5831737B2 (ja) 双方向電力変換装置
CN204216567U (zh) 对属于混合动力电动系统的储能器进行短路保护的装置

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100120

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid