[go: up one dir, main page]

KR20070066432A - Copper wiring formation method of semiconductor device - Google Patents

Copper wiring formation method of semiconductor device Download PDF

Info

Publication number
KR20070066432A
KR20070066432A KR1020050127601A KR20050127601A KR20070066432A KR 20070066432 A KR20070066432 A KR 20070066432A KR 1020050127601 A KR1020050127601 A KR 1020050127601A KR 20050127601 A KR20050127601 A KR 20050127601A KR 20070066432 A KR20070066432 A KR 20070066432A
Authority
KR
South Korea
Prior art keywords
copper
forming
interlayer insulating
copper wiring
dual damascene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020050127601A
Other languages
Korean (ko)
Inventor
홍은석
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020050127601A priority Critical patent/KR20070066432A/en
Publication of KR20070066432A publication Critical patent/KR20070066432A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 반도체 소자의 구리배선 형성방법에 관한 것으로서, 상, 하부 구리배선 간의 접촉저항, EM(electromigration) 및 SM(stressmigration) 등의 신뢰성을 향상시킬 수 있는 효과가 있다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a copper wiring of a semiconductor device, and has an effect of improving reliability such as contact resistance between upper and lower copper wirings, EM (electromigration), and stress (SM).

이를 위한 본 발명에 의한 반도체 소자의 구리배선 형성방법은, 반도체 기판 상에 제 1 듀얼 다마신 패턴이 형성된 제 1 층간절연막을 형성하는 단계; 상기 제 1 듀얼 다마신 패턴 내부에 제 1 구리배선을 형성하는 단계; 상기 제 1 층간절연막의 상부를 소정 두께만큼 제거하여, 상기 제 1 구리배선 상부의 양측벽을 노출시키는 단계; 상기 양측벽이 노출된 제 1 구리배선을 포함한 제 1 층간절연막 상에 구리확산 방지막을 형성하는 단계; 상기 구리확산 방지막 상에 상기 제 1 구리배선의 일부분을 노출시키는 제 2 듀얼 다마신 패턴이 형성된 제 2 층간절연막을 형성하는 단계; 및 상기 제 2 듀얼 다마신 패턴 내부에 제 2 구리 배선을 형성하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method of forming a copper wiring of a semiconductor device, the method including: forming a first interlayer insulating film having a first dual damascene pattern formed on a semiconductor substrate; Forming a first copper wiring inside the first dual damascene pattern; Removing an upper portion of the first interlayer insulating layer by a predetermined thickness to expose both sidewalls of the first copper interconnection; Forming a copper diffusion barrier layer on the first interlayer insulating layer including the first copper interconnection on which both sidewalls are exposed; Forming a second interlayer insulating film having a second dual damascene pattern exposing a portion of the first copper wiring on the copper diffusion preventing film; And forming a second copper wire inside the second dual damascene pattern.

Description

반도체 소자의 구리배선 형성방법{Method of forming copper wiring in semiconductor device}Method of forming copper wiring in semiconductor device

도 1은 종래 기술에 따른 반도체 소자의 하부 구리 금속배선과 비아 플러그 간의 정렬오차를 보여주는 사진. 1 is a photograph showing an alignment error between a lower copper metallization and a via plug of a semiconductor device according to the related art.

도 2a 내지 도 2e는 본 발명의 실시예에 따른 반도체 소자의 구리배선 형성방법을 설명하기 위한 공정별 단면도.2A through 2E are cross-sectional views illustrating processes for forming a copper wiring of a semiconductor device in accordance with an embodiment of the present invention.

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

100: 반도체 기판 101: 제 1 층간절연막100 semiconductor substrate 101 first interlayer insulating film

102: 제 1 구리배선 103: 확산방지막102: first copper wiring 103: diffusion barrier

104: 제 2 층간절연막 105: 제 1 듀얼 다마신 패턴104: second interlayer insulating film 105: first dual damascene pattern

106: 제 2 구리배선 107: 구리확산 방지막106: second copper wiring 107: copper diffusion preventing film

108: 제 3 층간절연막 109: 제 2 듀얼 다마신 패턴108: third interlayer insulating film 109: second dual damascene pattern

110: 제 3 구리배선110: third copper wiring

본 발명은 반도체 소자의 구리배선 형성방법에 관한 것으로서, 특히 상, 하부 구리배선 간의 접촉저항, EM(electromigration) 및 SM(stressmigration) 등의 신뢰성을 향상시킬 수 있는 반도체 소자의 구리배선 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a copper wiring of a semiconductor device, and more particularly, to a method for forming a copper wiring of a semiconductor device capable of improving reliability such as contact resistance between upper and lower copper wirings, EM (electromigration), and stress (SM). will be.

반도체 소자의 고집적화 및 고성능화가 요구되어감에 따라, 금속배선의 선폭이 감소하여, 저항이 증가하게 되며, 이러한 저항 증가는 금속배선 간의 RC(resistence capacitance) 딜레이(delay) 시간을 늘려 소자의 동작특성을 열화시키게 된다. As high integration and high performance of semiconductor devices are required, the line width of the metal wiring is reduced and the resistance is increased. This increase in resistance increases the operation capacitance of the device by increasing the resistance capacitance (RC) delay time between the metal wirings. Will deteriorate.

따라서, 고집적, 고성능 반도체 소자에서는 RC 딜레이 시간을 감소시키기 위하여, 알루미늄(Al) 금속배선 보다 비저항이 낮은 구리(Cu) 금속배선을 적용하게 되었다. 그러나, 구리는 현재 사용하고 있는 장비로 패터닝하는 것이 불가능하기 때문에, 절연막에 비아홀과 트렌치로 이루어진 듀얼 다마신 패턴을 형성한 후, 구리로 듀얼 다마신 패턴을 매립하는 방식으로 구리배선을 형성하고 있다.Therefore, in order to reduce the RC delay time in a highly integrated, high performance semiconductor device, a copper (Cu) metal wiring having a lower resistivity than an aluminum (Al) metal wiring is applied. However, since copper cannot be patterned with current equipment, copper wiring is formed by forming a dual damascene pattern consisting of via holes and trenches in the insulating film and then filling the dual damascene pattern with copper. .

반도체 소자의 구리배선 형성을 위한 듀얼 다마신 패턴은, 비아홀을 먼저 형성하고, 트렌치를 나중에 형성하는 비아 퍼스트 스킴 등의 다양한 공정 방식을 수행하여 형성될 수 있다.The dual damascene pattern for forming copper wirings of the semiconductor device may be formed by performing various process methods such as via first scheme to form via holes first and trenches later.

한편, 이러한 듀얼 다마신 패턴을 형성하는 데는, 비아홀과 트렌치를 정확하게 정렬시키는 것이 매우 중요하지만, 아무리 정확하게 비아홀과 트렌치를 정렬시킨다해도 정렬오차가 발생할 수 밖에 없다. On the other hand, in forming the dual damascene pattern, it is very important to accurately align the via holes and trenches, but no matter how precisely the via holes and trenches are aligned, an alignment error may occur.

도 1은 종래 기술에 따른 반도체 소자의 하부 구리 금속배선과 비아 플러그 간의 정렬오차를 보여주는 사진이다. 1 is a photograph showing an alignment error between a lower copper metallization and a via plug of a semiconductor device according to the related art.

도 1에 도시한 바와 같이, 하부 금속배선과 그 상부에 형성되는 비아 플러그간에 정렬 오차가 발생하게 되면, 기생 펜스(fence, F)가 발생하게 된다. 기생 펜스(F)가 발생되면, 비아 플러그와 하부 금속배선 간의 접촉면적이 감소된다.As shown in FIG. 1, when an alignment error occurs between the lower metal wiring and the via plug formed on the upper portion, a parasitic fence (Fence) F is generated. When the parasitic fence F is generated, the contact area between the via plug and the lower metal wiring is reduced.

이러한 현상은, 0.09㎛ 이하의 공정기술에서 비아홀의 지름이 0.16㎛정도 일 경우, 정렬 오차가 30㎚만 발생하더라도, 하부 금속배선과 비아홀과의 접촉반경이 0.13㎛로 감소하게 되기 때문에, 접촉 저항이 증가하여 공정의 신뢰성 및 소자의 전기적 특성이 저하되는 문제점이 발생된다. This phenomenon is caused by the fact that the contact radius between the lower metal wiring and the via hole is reduced to 0.13 μm when the via hole diameter is about 0.16 μm in the process technology of 0.09 μm or less. This increases the problem that the reliability of the process and the electrical characteristics of the device is degraded.

따라서, 본 발명은 상기 문제점을 해결하기 위하여 이루어진 것으로, 본 발명의 목적은, 기생 펜스의 발생을 방지함으로써, 구리배선 공정에서의 상, 하부 배선간의 접촉시 발생하는 접촉저항, EM 및 SM 등의 신뢰성을 개선할 수 있는 반도체 소자의 구리배선 형성방법을 제공하는 데 있다. Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to prevent the occurrence of parasitic fence, and thus, the contact resistance, EM and SM, etc. generated during contact between upper and lower wirings in a copper wiring process. The present invention provides a method for forming a copper wiring of a semiconductor device that can improve reliability.

상기 목적을 달성하기 위한 본 발명에 의한 반도체 소자의 구리배선 형성방법은, 반도체 기판 상에 제 1 듀얼 다마신 패턴이 형성된 제 1 층간절연막을 형성하는 단계; 상기 제 1 듀얼 다마신 패턴 내부에 제 1 구리배선을 형성하는 단계; 상기 제 1 층간절연막의 상부를 소정 두께만큼 제거하여, 상기 제 1 구리배선 상부의 양측벽을 노출시키는 단계; 상기 양측벽이 노출된 제 1 구리배선을 포함한 제 1 층간절연막 상에 구리확산 방지막을 형성하는 단계; 상기 구리확산 방지막 상에 상기 제 1 구리배선의 일부분을 노출시키는 제 2 듀얼 다마신 패턴이 형성된 제 2 층간절연막을 형성하는 단계; 및 상기 제 2 듀얼 다마신 패턴 내부에 제 2 구리 배선을 형성하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method for forming a copper wiring of a semiconductor device, the method including: forming a first interlayer insulating film having a first dual damascene pattern formed on a semiconductor substrate; Forming a first copper wiring inside the first dual damascene pattern; Removing an upper portion of the first interlayer insulating layer by a predetermined thickness to expose both sidewalls of the first copper interconnection; Forming a copper diffusion barrier layer on the first interlayer insulating layer including the first copper interconnection on which both sidewalls are exposed; Forming a second interlayer insulating film having a second dual damascene pattern exposing a portion of the first copper wiring on the copper diffusion preventing film; And forming a second copper wire inside the second dual damascene pattern.

또한, 상기 제 1 층간절연막의 식각공정은, 50 내지 1500Å의 두께만큼 수행하는 것을 특징으로 한다.In addition, the etching process of the first interlayer insulating film is characterized in that the thickness of 50 to 1500Å.

또한, 상기 제 1 층간절연막의 식각공정은, BOE를 식각제로 사용하여 수행하는 것을 특징으로 한다.In addition, the etching process of the first interlayer dielectric layer is performed using BOE as an etchant.

그리고, 상기 구리확산 방지막을 형성하는 단계는, 상기 양측벽이 노출된 제 1 구리배선을 포함한 제 1 층간절연막 상에 구리확산 방지막을 형성하는 단계; 및 상기 구리확산 방지막을 CMP하여, 상기 제 1 구리배선의 상부에 구리확산 방지막이 소정두께만큼 남도록 하는 단계를 포함하는 것을 특징으로 한다.The forming of the copper diffusion barrier layer may include forming a copper diffusion barrier layer on the first interlayer insulating layer including the first copper wires on which both sidewalls are exposed; And CMPing the copper diffusion preventing film so that the copper diffusion preventing film remains on the upper portion of the first copper wiring by a predetermined thickness.

또한, 상기 구리확산 방지막은, 500 내지 4000Å의 두께로 형성하는 것을 특징으로 하는 한다.The copper diffusion preventing film may be formed to a thickness of 500 to 4000 kPa.

또한, 상기 제 1 구리배선 상에 남는 구리확산 방지막의 두께는 200 내지 1000Å인 것을 특징으로 한다.In addition, the thickness of the copper diffusion preventing film remaining on the first copper wiring is characterized in that 200 to 1000Å.

또한, 상기 제 1 및 제 2 층간절연막은 PE-TEOS, USG 및 FSG로 구성된 군으로부터 선택되는 어느 하나로 형성하는 것을 특징으로 한다.The first and second interlayer insulating films may be formed of any one selected from the group consisting of PE-TEOS, USG, and FSG.

또한, 상기 구리확산방지막은, SiN 또는 SiC를 이용하여 형성하는 것을 특징으로 한다.In addition, the copper diffusion prevention film is characterized in that it is formed using SiN or SiC.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명하기로 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2e는 본 발명의 실시예에 따른 반도체 소자의 구리배선 형성방법을 설명하기 위한 공정별 단면도이다.2A through 2E are cross-sectional views illustrating processes for forming a copper wiring of a semiconductor device according to an exemplary embodiment of the present invention.

도 2a에 도시한 바와 같이, 먼저, 반도체 기판(100)을 제공하고, 상기 반도체 기판(100) 상에, 제 1 층간절연막(101)을 형성한다. 이어서, 상기 제 1 층간절연막(101)에 트렌치(도시안됨)를 형성한 후, 상기 트렌치에 구리막을 매립하여, 제 1 구리배선(102)을 형성한다. 이때, 제 1 구리배선(102)의 구리성분이 제 1 층간절연막(101)으로 확산되는 것을 방지하기 위하여, 제 1 구리배선(102)과 제 1 층간절연막(101)의 사이에 장벽금속층(barrier metal layer: 도시안됨)을 형성할 수도 있다. As shown in FIG. 2A, first, a semiconductor substrate 100 is provided, and a first interlayer insulating film 101 is formed on the semiconductor substrate 100. Subsequently, after forming a trench (not shown) in the first interlayer insulating film 101, a copper film is embedded in the trench to form a first copper wiring 102. At this time, a barrier metal layer (barrier) between the first copper wiring 102 and the first interlayer insulating film 101 in order to prevent the copper component of the first copper wiring 102 from being diffused into the first interlayer insulating film 101. metal layer (not shown).

이어서, 상기 제 1 구리배선(102)이 형성된 제 1 층간절연막(101) 상에 확산방지막(103) 및 제 2 층간절연막(104)을 차례로 증착한다. 상기 확산방지막(103)은 SiN 또는 SiC를 이용하여, 300 내지 1000Å 정도의 두께로 증착하고, 상기 제 1 및 제 2 층간절연막(101, 104)은 PE-TEOS, USG 및 FSG등의 SiO2 또는 SiO2에 국부적으로 불소 및 수소 등이 결합된 막을 이용하여, 6000 내지 18000Å 정도의 두께로 증 착하는 것이 바람직하다. 계속해서, 상기 확산방지막(103) 및 제 2 층간절연막(104)에 듀얼 다마신 공정을 수행하여, 상기 제 2 층간절연막(104) 내에, 비아홀 및 트렌치로 이루어진 제 1 듀얼 다마신 패턴(105)을 형성한다.Subsequently, a diffusion barrier film 103 and a second interlayer insulating film 104 are sequentially deposited on the first interlayer insulating film 101 on which the first copper wiring 102 is formed. The diffusion barrier 103 is deposited using a SiN or SiC to a thickness of about 300 to 1000 Å, and the first and second interlayer insulating films 101 and 104 are formed of SiO 2 such as PE-TEOS, USG, and FSG. It is preferable to deposit using a film in which fluorine, hydrogen, or the like is locally bonded to SiO 2 to a thickness of about 6000 to 18000 Pa. Subsequently, a dual damascene process is performed on the diffusion barrier film 103 and the second interlayer insulating film 104 to form a first dual damascene pattern 105 formed of via holes and trenches in the second interlayer insulating film 104. To form.

다음으로, 상기 제 1 듀얼 다마신 패턴(105)을 포함한 전체 상부에 장벽금속층(도시안됨)을 형성하고, 제 1 듀얼 다마신 패턴(105) 내부의 장벽금속층 상에 금속 시드층(도시안됨)을 형성한다. Next, a barrier metal layer (not shown) is formed on the whole including the first dual damascene pattern 105, and a metal seed layer (not shown) is formed on the barrier metal layer inside the first dual damascene pattern 105. To form.

그 후에, 상기 금속 시드층 상에, 상기 제 1 듀얼 다마신 패턴(105)을 매립하도록 구리막을 형성한 후, 상기 제 2 층간절연막(104)이 노출될 때까지, 구리막을 CMP(chemical mechanical polishing)하여, 상기 제 1 듀얼 다마신 패턴(105)를 매립하는 제 2 구리배선(106)을 형성한다.Thereafter, a copper film is formed on the metal seed layer so as to fill the first dual damascene pattern 105, and then the copper film is chemically polished until the second interlayer insulating film 104 is exposed. ) To form a second copper wiring 106 to fill the first dual damascene pattern 105.

다음으로, 도 2b에 도시한 바와 같이, 상기 제 2 층간절연막(104)의 상부를 소정 두께만큼 식각하여, 제 2 구리배선(106) 상부의 양측벽을 노출시킨다.Next, as shown in FIG. 2B, the upper portion of the second interlayer insulating layer 104 is etched by a predetermined thickness to expose both sidewalls of the upper portion of the second copper wiring 106.

상기 제 2 층간절연막(104)의 식각공정은, BOE(Buffered Oxide Etchant)와 같은 식각제를 사용하여 습식 식각공정으로 진행할 수 있으며, 상기 제 2 층간절연막(104)의 식각두께는 50 내지 1500Å 정도의 두께로 조절하는 바람직하다. 여기서, 제 2 구리배선(106)을 이루고 있는 구리는 BOE 수용액에 대해 강한 식각저항을 가지고 있는 특성이 있으므로, 상기 식각공정에 의해 제거되지 않는다.The etching process of the second interlayer insulating film 104 may be performed by a wet etching process using an etchant such as BOE (Buffered Oxide Etchant), and the etching thickness of the second interlayer insulating film 104 is about 50 to 1500Å. It is preferable to adjust the thickness. Here, the copper constituting the second copper wiring 106 has a characteristic of having a strong etching resistance with respect to the BOE aqueous solution, and thus is not removed by the etching process.

그런 다음, 도 2c에 도시한 바와 같이, 그 상부의 양측벽이 노출된 제 2 구리배선(106)를 포함하는 제 2 층간절연막(104) 상에 구리확산 방지막(107)을 증착한다. 상기 구리확산 방지막(107)은 500 내지 4000Å 정도의 두께로 증착하는 것이 바람직하다. Then, as shown in FIG. 2C, a copper diffusion preventing film 107 is deposited on the second interlayer insulating film 104 including the second copper wiring 106 with exposed both side walls thereon. The copper diffusion barrier 107 is preferably deposited to a thickness of about 500 to 4000 kPa.

이어서, 도 2d에 도시한 바와 같이, 상기 구리확산 방지막(107)의 상부를 CMP하여, 상기 제 2 구리배선(106) 상에 상기 구리확산 방지막(107)이 소정두께만큼 남도록 한다. 이때, 상기 제 2 구리배선(106) 상에 남는 구리확산 방지막(107)의 두께는 200 내지 1000Å 정도가 되도록 하는 것이 바람직하다.Subsequently, as shown in FIG. 2D, the upper portion of the copper diffusion preventing film 107 is CMP so that the copper diffusion preventing film 107 remains on the second copper wiring 106 by a predetermined thickness. At this time, the thickness of the copper diffusion preventing film 107 remaining on the second copper wiring 106 is preferably 200 to about 1000 kPa.

다음으로, 도 2e에 도시한 바와 같이, 상기 구리확산 방지막(107) 상에 제 3 층간절연막(108)을 증착한 후, 상기 제 3 층간절연막(108) 및 구리확산 방지막(107)에 듀얼 다마신 공정을 수행하여, 상기 제 3 층간절연막(108) 내에, 비아홀 및 트렌치로 이루어진 제 2 듀얼 다마신 패턴(109)을 형성한다. 그 후에, 상기 제 2 듀얼 다마신 패턴(109)의 내부에 구리막을 매립하여 제 3 구리배선(110)을 형성한다.Next, as shown in FIG. 2E, after the third interlayer insulating film 108 is deposited on the copper diffusion preventing film 107, the third interlayer insulating film 108 and the copper diffusion preventing film 107 are duplexed. The drinking process is performed to form a second dual damascene pattern 109 formed of a via hole and a trench in the third interlayer insulating layer 108. Thereafter, a third copper wiring 110 is formed by burying a copper film in the second dual damascene pattern 109.

상술한 바와 같이, 본 발명에서는, 제 2 구리배선(106)을 형성한 후, 상기 제 2 층간절연막(104) 상부를 소정두께만큼 습식각하여, 상기 제 2 구리배선(106)의 상부의 양측벽을 노출시키고, 상기 양측벽이 노출된 제 2 구리배선(106)을 포함한, 제 2 층간절연막(104) 상부에 구리확산 방지막(107)을 증착함으로써, 제 2 듀얼 다마신 패턴(109) 형성을 위한 듀얼 다마신 공정시, 제 2 구리배선(106) 측벽의 구리확산 방지막(107)이 충분히 식각되도록 할 수 있다. 따라서, 도면에 도시한 바와 같이, 상기 제 2 듀얼다마신 패턴(109)의 비아홀과 그 하부의 제 2 구리배선(106) 간에 정렬 오차가 발생되더라도, 제 3 구리배선(110)과 제 2 구리배선(107) 사이에 펜스가 형성되거나, 접촉 면적이 감소되는 것을 방지할 수 있다. As described above, in the present invention, after forming the second copper wiring 106, the upper portion of the second interlayer insulating film 104 is wet-etched by a predetermined thickness, so that both sides of the upper portion of the second copper wiring 106 are formed. A second dual damascene pattern 109 is formed by depositing a copper diffusion barrier 107 over the second interlayer insulating film 104, including the second copper interconnect 106 with exposed walls and both side walls. During the dual damascene process, the copper diffusion barrier 107 of the sidewalls of the second copper wiring 106 may be sufficiently etched. Therefore, as shown in the figure, even if an alignment error occurs between the via hole of the second dual damascene pattern 109 and the second copper wiring 106 below, the third copper wiring 110 and the second copper. It is possible to prevent the fence from being formed between the wirings 107 or to reduce the contact area.

이상의 본 발명은 상기에 기술된 실시예들에 의해 한정되지 않고, 당업자들에 의해 다양한 변형 및 변경을 가져올 수 있으며, 이는 첨부된 특허청구범위에서 정의되는 본 발명의 취지와 범위에 포함되는 것으로 보아야 할 것이다.The present invention is not limited to the above-described embodiments, but can be variously modified and changed by those skilled in the art, which should be regarded as included in the spirit and scope of the present invention as defined in the appended claims. something to do.

앞에서 설명한 바와 같이, 본 발명에 따른 반도체 소자의 구리배선 형성방법에 의하면, 하부 구리배선 양측의 층간절연막을 소정두께만큼 식각하여, 상기 하부 구리배선 상부의 양측벽을 노출시킨 후, 상기 양측벽이 노출된 하부 구리배선을 포함한, 상기 층간절연막의 상부에 구리확산 방지막을 증착함으로써, 상부 구리배선을 형성하기 위한 듀얼 다마신 공정시, 상부 구리배선의 비아홀과 하부 구리배선 간에 정렬 오차가 발생되더라도, 하부 구리배선 측벽의 구리확산 방지막이 충분히 식각될 수 있으므로, 상부 구리배선과 하부 구리배선 사이에 펜스가 형성되거나, 접촉 면적이 감소되는 것을 방지할 수 있다. As described above, according to the method for forming copper wirings of the semiconductor device according to the present invention, the interlayer insulating films on both sides of the lower copper wirings are etched by a predetermined thickness to expose both side walls of the upper upper copper wirings, By depositing a copper diffusion barrier on the interlayer insulating film, including the exposed lower copper wiring, even if alignment errors occur between the via hole of the upper copper wiring and the lower copper wiring during the dual damascene process for forming the upper copper wiring, Since the copper diffusion prevention film of the lower copper wiring sidewall can be sufficiently etched, it is possible to prevent a fence from being formed between the upper copper wiring and the lower copper wiring, or to reduce the contact area.

따라서, 상, 하부 배선이 서로 접촉할 때, 발생하는 접촉저항, EM 및 SM 등의 신뢰성을 향상시킬 수 있는 효과가 있다. Therefore, when the upper and lower wirings come into contact with each other, there is an effect of improving the reliability of contact resistance, EM and SM, etc. generated.

Claims (8)

반도체 기판 상에 제 1 듀얼 다마신 패턴이 형성된 제 1 층간절연막을 형성하는 단계;Forming a first interlayer insulating film having a first dual damascene pattern formed on the semiconductor substrate; 상기 제 1 듀얼 다마신 패턴 내부에 제 1 구리배선을 형성하는 단계;Forming a first copper wiring inside the first dual damascene pattern; 상기 제 1 층간절연막의 상부를 소정 두께만큼 제거하여, 상기 제 1 구리배선 상부의 양측벽을 노출시키는 단계;Removing an upper portion of the first interlayer insulating layer by a predetermined thickness to expose both sidewalls of the first copper interconnection; 상기 양측벽이 노출된 제 1 구리배선을 포함한 제 1 층간절연막 상에 구리확산 방지막을 형성하는 단계;Forming a copper diffusion barrier layer on the first interlayer insulating layer including the first copper interconnection on which both sidewalls are exposed; 상기 구리확산 방지막 상에 상기 제 1 구리배선의 일부분을 노출시키는 제 2 듀얼 다마신 패턴이 형성된 제 2 층간절연막을 형성하는 단계; 및Forming a second interlayer insulating film having a second dual damascene pattern exposing a portion of the first copper wiring on the copper diffusion preventing film; And 상기 제 2 듀얼 다마신 패턴 내부에 제 2 구리 배선을 형성하는 단계를 포함하는 반도체 소자의 구리배선 형성방법.Forming a second copper wiring inside the second dual damascene pattern. 제 1 항에 있어서, The method of claim 1, 상기 제 1 층간절연막의 식각공정은, 50 내지 1500Å의 두께만큼 수행하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The etching process of the first interlayer insulating film, the copper wiring forming method of a semiconductor device, characterized in that performed by a thickness of 50 to 1500Å. 제 1 항에 있어서, The method of claim 1, 상기 제 1 층간절연막의 식각공정은, BOE를 식각제로 사용하여 수행하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The etching process of the first interlayer dielectric layer is performed using BOE as an etchant. 제 1 항에 있어서, The method of claim 1, 상기 구리확산 방지막을 형성하는 단계는,Forming the copper diffusion preventing film, 상기 양측벽이 노출된 제 1 구리배선을 포함한 제 1 층간절연막 상에 구리확산 방지막을 형성하는 단계; 및Forming a copper diffusion barrier layer on the first interlayer insulating layer including the first copper interconnection on which both sidewalls are exposed; And 상기 구리확산 방지막을 CMP하여, 상기 제 1 구리배선의 상부에 구리확산 방지막이 소정두께만큼 남도록 하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.And CMP the copper diffusion preventing film so that the copper diffusion preventing film remains on the first copper wiring by a predetermined thickness. 제 4 항에 있어서, The method of claim 4, wherein 상기 구리확산 방지막은, 500 내지 4000Å의 두께로 형성하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The copper diffusion preventing film is formed with a thickness of 500 to 4000 kPa. 제 4 항에 있어서, The method of claim 4, wherein 상기 제 1 구리배선 상에 남는 구리확산 방지막의 두께는 200 내지 1000Å인 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The thickness of the copper diffusion prevention film remaining on the first copper wiring is a copper wiring forming method of a semiconductor device, characterized in that 200 to 1000Å. 제 1 항에 있어서, The method of claim 1, 상기 제 1 및 제 2 층간절연막은 PE-TEOS, USG 및 FSG로 구성된 군으로부터 선택되는 어느 하나로 형성하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.And the first and second interlayer insulating films are formed of any one selected from the group consisting of PE-TEOS, USG, and FSG. 제 1 항에 있어서, The method of claim 1, 상기 구리확산방지막은, SiN 또는 SiC를 이용하여 형성하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The copper diffusion preventing film is formed by using SiN or SiC copper wiring forming method of a semiconductor device.
KR1020050127601A 2005-12-22 2005-12-22 Copper wiring formation method of semiconductor device Ceased KR20070066432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050127601A KR20070066432A (en) 2005-12-22 2005-12-22 Copper wiring formation method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050127601A KR20070066432A (en) 2005-12-22 2005-12-22 Copper wiring formation method of semiconductor device

Publications (1)

Publication Number Publication Date
KR20070066432A true KR20070066432A (en) 2007-06-27

Family

ID=38365491

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050127601A Ceased KR20070066432A (en) 2005-12-22 2005-12-22 Copper wiring formation method of semiconductor device

Country Status (1)

Country Link
KR (1) KR20070066432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446867A (en) * 2020-10-30 2022-05-06 盛合晶微半导体(江阴)有限公司 Copper electrode structure and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050006470A (en) * 2003-07-09 2005-01-17 매그나칩 반도체 유한회사 Method for forming a metal line in semiconductor device
KR20050079541A (en) * 2004-02-06 2005-08-10 매그나칩 반도체 유한회사 Method of forming a metal wiring in a semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050006470A (en) * 2003-07-09 2005-01-17 매그나칩 반도체 유한회사 Method for forming a metal line in semiconductor device
KR20050079541A (en) * 2004-02-06 2005-08-10 매그나칩 반도체 유한회사 Method of forming a metal wiring in a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446867A (en) * 2020-10-30 2022-05-06 盛合晶微半导体(江阴)有限公司 Copper electrode structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8765604B2 (en) Interconnection structure for an integrated circuit
US20170110369A1 (en) Electronic device and method for producing same
JP2010258213A (en) Semiconductor device and manufacturing method of semiconductor device
KR100799077B1 (en) Metal wiring and its formation method
KR100818108B1 (en) Multi-layer metallization method of semiconductor device using damascene process
US20020127849A1 (en) Method of manufacturing dual damascene structure
JP2006114724A (en) Semiconductor device and manufacturing method thereof
KR100739975B1 (en) Manufacturing Method of Semiconductor Device
CN113594133B (en) Semiconductor structure and method for forming the same
KR20070066432A (en) Copper wiring formation method of semiconductor device
KR100703559B1 (en) Semiconductor device having a dual damascene structure and method of manufacturing the same
KR100691105B1 (en) Copper wiring formation method using dual damascene process
KR100954685B1 (en) Metal wiring formation method of semiconductor device
KR100835423B1 (en) Dual damascene pattern formation method in semiconductor manufacturing process
KR100789612B1 (en) How to Form Metal Wiring
KR100835421B1 (en) Metal wiring formation method of semiconductor device
KR100857989B1 (en) Metal line formation method of semiconductor device
KR101069167B1 (en) Metal wiring formation method of semiconductor device
KR100497776B1 (en) Multi-layer fabrication technique for semiconductor device
KR20100036008A (en) Method for forming metal wiring of semiconductor device
KR100249389B1 (en) Method of fabricating via hole
KR100755112B1 (en) Inductor manufacturing method of semiconductor device
KR100628222B1 (en) Copper damascene formation method
KR20030058261A (en) Method for forming metal wire using dual damascene process
KR100815944B1 (en) Method for forming copper wiring layer used for semiconductor device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20051222

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20101220

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20051222

Comment text: Patent Application

PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20120320

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20121017

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20120320

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I