KR20040024733A - Supervisory system for WDM-PON fiber using optical circulator - Google Patents
Supervisory system for WDM-PON fiber using optical circulator Download PDFInfo
- Publication number
- KR20040024733A KR20040024733A KR1020020056163A KR20020056163A KR20040024733A KR 20040024733 A KR20040024733 A KR 20040024733A KR 1020020056163 A KR1020020056163 A KR 1020020056163A KR 20020056163 A KR20020056163 A KR 20020056163A KR 20040024733 A KR20040024733 A KR 20040024733A
- Authority
- KR
- South Korea
- Prior art keywords
- optical
- light
- monitoring
- monitoring light
- wdm
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 107
- 239000000835 fiber Substances 0.000 title 1
- 238000012544 monitoring process Methods 0.000 claims abstract description 48
- 230000008878 coupling Effects 0.000 claims abstract description 9
- 238000010168 coupling process Methods 0.000 claims abstract description 9
- 238000005859 coupling reaction Methods 0.000 claims abstract description 9
- 239000013307 optical fiber Substances 0.000 claims description 25
- 238000000926 separation method Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 abstract description 10
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000012806 monitoring device Methods 0.000 abstract description 3
- 238000000253 optical time-domain reflectometry Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/021—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
- H04J14/0212—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
본 발명의 광셔큘레이터를 이용한 WDM-PON 광선로 감시장치는 WDM-PON 시스템에서 AWG가 OLT 내에 있는 경우 AWG에 의해 파장분기 된 각 파장의 신호광이 전송되는 광선로에 OTDR 감시광을 넣어주고 각 ONU에서 반사되어 오는 감시광에 대한 신호분석 파형을 레퍼런스 신호분석 파형과 비교함으로써 광신호의 전송과 동시에 각 가입자 광선로의 물리적 상태를 모니터링할 수 있도록 하는 것으로, 파장분기된 각 파장의 신호광이 전송되는 광선로로 감시광을 순차적으로 입사시키는 광스위치 및 OLT에서 파장 분기된 신호광과 광스위치를 통해 입사되는 감시광을 결합시켜 각 ONU로 전송하고 각 광선로에서 산란 또는 반사되는 감시광을 광스위치로 전송하는 광 결합 및 분리부를 구비한다.In the WDM-PON system, when the AWG is within the OLT in the WDM-PON system, the WDM-PONN optical path monitoring device of the present invention puts the OTDR monitoring light into the optical path through which the signal light of each wavelength branched by the AWG is transmitted. By comparing the signal analysis waveform of the monitoring light reflected from the reference signal analysis waveform with the reference signal analysis waveform, it is possible to monitor the physical state of each subscriber beam simultaneously with the transmission of the optical signal. The optical switch that sequentially enters the monitoring light into the optical switch, and the signal light that has been diverged from the OLT and the monitoring light incident through the optical switch are transmitted to each ONU, and the optical light that is scattered or reflected from each optical path is transmitted to the optical switch. It has a coupling and a separating part.
Description
본 발명은 파장분할다중화방식-수동형광가입자망(WDM-PON:Wavelength Division Multiplexing-Passive Optical Network) 기반의 가입자측 광선로 감시장치에 관한 것으로, 보다 상세하게는, 광선로종단장치(OLT:Optical Line Termination)에 광서큘레이터와 광섬유 격자를 사용하여 전송로에 감시광을 삽입하여 감시광이 전송로를 따라 진행하게 하면서 산란 또는 반사되는 감시광을 분석하여 광선로 정보를 수집하고 장애 요소를 분석할 수 있도록 하는 광선로 감시장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a subscriber line optical line monitoring apparatus based on a wavelength division multiplexing-passive optical network (WDM-PON), and more particularly, to an optical line terminator (OLT: Optical Line). Using optical circulators and optical fiber gratings, the monitoring light is inserted into the transmission path so that the monitoring light travels along the transmission path. The present invention relates to a monitoring apparatus for a light beam that makes it possible.
도 1은 종래 일반적인 WDM-PON의 구성을 간략하게 나타낸 구성도이다.1 is a configuration diagram briefly showing the configuration of a conventional WDM-PON.
WDM-PON은 중앙 기지국인 광선로종단장치(OLT), 가입자측의 광망유니트 (ONU:Optical Network Unit) 및 지역 기지국인 원격노드(RN:Remote Node)의 광분배망(ODN:Optical Distribution Network)으로 이루어진다.WDM-PON is an optical distribution network (ODN) of an optical fiber termination unit (OLT), a central base station, an optical network unit (ONU) of a subscriber, and a remote node (RN) of a local base station. Is done.
WDM-PON은 가입자별 혹은 서비스별로 파장을 다중화하는 방식을 이용하여 다수의 광망유니트가 여러 개의 광링크를 통해서 광선로종단장치에 연결된다. 광선로종단장치에서는 서로 다른 여러 개의 파장을 가지는 광신호가 생성되며, 광선로종단장치와 광망유니트 사이에 위치하는 RN의 광분배망은 AWG(Arrayed Waveguide Grating)등의 수동 광소자를 이용하여 신호를 라우팅 및 다중화/역다중화하여 전송함으로써 광선로종단장치와 광망유니트를 물리적으로 연결시켜 준다.In WDM-PON, multiple optical network units are connected to optical fiber terminators through multiple optical links using multiplexing of wavelengths by subscriber or service. In the optical fiber terminator, optical signals with different wavelengths are generated, and the optical distribution network of RN located between the optical fiber terminator and the optical network unit uses a passive optical device such as an arrayed waveguide grating (AWG) to route and multiplex the signals. By demultiplexing and transmitting, physically connect the optical fiber terminator and the optical network unit.
이러한 AWG는 WGR(Waveguide Grating Router) 또는 PHASAR(Phased array)라고도 불린다.Such AWGs are also called Waveguide Grating Routers (WGRs) or Phased Arrays (PHASARs).
이때, 광분배망의 위치는 WDM-PON이 설치될 환경을 고려한 최적의 망설계에 따라 정해지는데 원격지에 위치하거나 광선로종단장치가 위치한 전화국(Central Office) 내에 위치하는 것도 가능하다.At this time, the location of the optical distribution network is determined according to the optimal network design considering the environment in which the WDM-PON is to be installed. The optical distribution network may be located at a remote site or in a central office in which an optical fiber terminator is located.
WDM-PON은 각 가입자들에게 초고속 통신 서비스를 경제적으로 제공하기 위한 방법이나 현재는 가입자 댁내 또는 근방까지 광케이블의 포설의 경제적 어려움으로 인하여 포설이 대부분 이루어지지 않은 상태이나 연구는 활발하게 이루어지고 있다.WDM-PON is a method to economically provide high-speed communication service to each subscriber. However, due to the economic difficulty of laying optical cables in or near the subscriber's home, most of the installation and research are being actively conducted.
그러나, 가입자측 망구조의 복잡성 등으로 인하여 광선로의 물리적 특성을상시 감시하는 방안에 대한 연구는 거의 이루어지지 않고 있는 실정이며, 단지 광신호가 정상적으로 수신이 되는지 여부만을 이용하여 해당 광선로의 이상여부를 파악하는 정도이다.However, due to the complexity of the subscriber-side network structure, research on the method of constantly monitoring the physical characteristics of the optical paths has been hardly carried out, and only an optical signal is normally received to determine whether the optical path is abnormal. That's enough.
따라서, 본 발명의 목적은 광선로종단장치 내에서 WDM 신호광이 파장분기되는 WDM-PON 시스템에서 별도의 감시시스템을 도입하지 않고도 용이하게 광선로종단장치와 각 광망유니트 사이의 광선로에 대한 물리적 특성을 상시 감시할 수 있도록 함으로써 시스템 구축비용을 절감하고 실시간 광선로 감시를 통해 사고 복구 시간을 단축하여 가입자계 광선로 품질을 보장하는데 있다.Accordingly, an object of the present invention is to constantly monitor the physical characteristics of the optical path between the optical fiber terminating device and each optical network unit easily without introducing a separate monitoring system in the WDM-PON system in which the WDM signal light is split in the optical fiber terminating device. By reducing the cost of system construction, and by reducing the recovery time of accidents through real-time optical fiber monitoring, it guarantees the quality of subscriber optical fiber.
도 1은 종래 일반적인 WDM-PON의 구성을 간략하게 나타낸 구성도.1 is a configuration diagram briefly showing the configuration of a conventional WDM-PON.
도 2는 본 발명에 따른 광선로 감시장치를 구비한 WDM-PON 시스템의 구성을 나타내는 구성도.2 is a configuration diagram showing the configuration of a WDM-PON system having a light path monitoring apparatus according to the present invention.
도 3은 광결합 및 분배부의 구성을 보다 상세하게 나타낸 구성도3 is a configuration diagram showing in more detail the configuration of the optical coupling and distribution unit
도 4는 본 발명의 실시예에 따라 측정된 신호분석 파형도4 is a signal analysis waveform diagram measured according to an embodiment of the present invention
위와 같은 목적을 달성하기 위한 본 발명의 광선로 감시장치는 광선로종단장치 내에서 신호광을 파장분기하여 각 광망유니트로 전송하는 WDM-PON 시스템의 광선로를 감시하기 위해 파장분기된 각 파장의 신호광이 전송되는 광선로로 감시광을 순차적으로 입사시키는 광스위치 및 광선로종단장치에서 파장 분기된 신호광과 광스위치를 통해 입사되는 감시광을 결합시켜 각 광망유니트로 전송하고 각 광선로에서 산란 또는 반사되는 감시광을 광스위치로 전송하는 광 결합 및 분리부를 구비한다.In order to achieve the above object, the optical path monitoring device according to the present invention transmits the signal light of each wavelength branched to monitor the optical path of the WDM-PON system that splits the signal light into the optical network unit in the optical fiber termination device. In the optical switch and optical path termination device that sequentially enters the monitoring light into the optical path, the optical signal branched by the wavelength and the monitoring light incident through the optical switch are combined and transmitted to each optical network unit, and the monitoring light scattered or reflected by each optical path is optically transmitted. It has an optical coupling and separation section for transmitting to the switch.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 광선로 감시장치를 구비한 WDM-PON 시스템의 구성을나타내는 구성도이다.2 is a block diagram showing the configuration of a WDM-PON system having a light path monitoring apparatus according to the present invention.
광선로종단장치(10)는 서로 다른 여러 개의 파장을 가지는 신호광을 생성하고 이를 다중화 및 역다중화한 후 각 파장의 신호광에 감시광을 결합시켜 각 광망유니트로 전송하고, 광선로종단장치(10)와 각 광망유니트 사이의 가입자 광선로에서 산란 및 반사되어 돌아오는 감시광을 분리시켜 출력한다.The optical fiber terminal device 10 generates a signal light having a plurality of different wavelengths, multiplexes and demultiplexes it, combines the monitoring light with the signal light of each wavelength, and transmits the signal light to each optical network unit, and the optical fiber terminal device 10 and each It separates and outputs the monitoring light which is scattered and reflected in the subscriber optical line between the optical network units.
이러한 광선로종단장치(10)는 레이져와 같이 특정 파장의 신호광을 생성하여 출력하는 다수의 광원(11) 및 다수의 파장으로 이루어진 신호광을 다중화 및 역다중화하는 광 다중화/역다중화부(12)를 구비한다.The optical fiber terminal device 10 includes a plurality of light sources 11 for generating and outputting a signal light having a specific wavelength, such as a laser, and an optical multiplexing / demultiplexing part 12 for multiplexing and demultiplexing a signal light having a plurality of wavelengths. do.
여기에서, 광 다중화/역다중화부(12)는 수동소자인 AWG로 이루어진다.Here, the light multiplexing / demultiplexing unit 12 is made of AWG, which is a passive element.
시간영역 광반사파 측정장치(OTDR:Optical Time Domain Reflectometer)(20)는 신호광들과 다른 파장을 갖는 OTDR 펄스를 광섬유에 입사시켜 광섬유 길이 방향의 각 점에서 반사되어 되돌아오는 광량의 거리 분포를 해석해 광섬유의 손실, 접속점까지의 거리와 접속 손실 및 접속점으로부터의 반사량, 광섬유가 파손된 경우의 파손점까지의 거리 등을 측정하는 장치이다.Optical Time Domain Reflectometer (OTDR) 20 is an optical fiber that analyzes the distance distribution of the amount of light reflected from each point in the longitudinal direction of the optical fiber by injecting an OTDR pulse having a different wavelength from the signal light into the optical fiber. Loss, the distance to the connection point and the connection loss and the amount of reflection from the connection point, the distance to the break point when the optical fiber is broken, and the like.
광스위치(30)는 광선로종단장치(10)와 각 광망유니트를 연결하는 각각의 가입자 광선로로 OTDR(20)로부터의 감시광을 순차적으로 또는 선택적으로 입사시키고 각 가입자 광선로에서 산란 및 반사된 감시광을 개별적으로 OTDR(20)로 전송한다.The optical switch 30 sequentially or selectively injects the monitoring light from the OTDR 20 into each subscriber optical line connecting the optical fiber terminal device 10 and each optical network unit, and the monitoring light scattered and reflected in each subscriber optical line. Are transmitted to the OTDR 20 individually.
광 결합 및 분리부(40)는 광 다중화/역다중화부(12)를 통한 각 파장의 신호광에 광스위치(30)에 의해 순차적으로 입사된 감시광을 감시광을 결합시켜 각 광망유니트로 전송하고 각 광망유니트로부터의 신호광과 감시광을 분리하여 신호광은광 다중화/역다중화부(12)로 전송하고 감시광은 광스위치(30)를 통해 OTDR(20)로 전송되도록 한다.The optical coupling and separating unit 40 combines the monitoring light sequentially input by the optical switch 30 to the signal light of each wavelength through the optical multiplexing / demultiplexing unit 12 and transmits the monitoring light to each optical network unit. The signal light and the monitoring light from each optical network unit are separated and transmitted to the signal multiplexing / demultiplexing unit 12 and the monitoring light is transmitted to the OTDR 20 through the optical switch 30.
도 3은 이러한 광 결합 및 분리부(40)의 구성을 보다 상세하게 나타낸 구성도이다.3 is a configuration diagram showing the configuration of the light coupling and separation unit 40 in more detail.
광 결합 및 분리부(40)는 감시광을 각 파장의 신호광이 전송되는 광전송로로 입사시켜 광서큘레이터(41) 및 광 다중화/역다중화부(12)와 광서큘레이터(41) 사이에 설치되어 입사된 후 반시계방향(CCW)으로 회전된 감시광을 해당 광망유니트로 향하도록 반사시키는 감시광 반사부(42)를 구비한다.The optical coupling and separation unit 40 is installed between the optical circulator 41 and the optical multiplexer / demultiplexer 12 and the optical circulator 41 by injecting monitoring light into an optical transmission path through which signal light of each wavelength is transmitted. And a monitoring light reflecting unit 42 for reflecting the monitoring light rotated in the counterclockwise direction (CCW) so as to be directed toward the corresponding optical network unit.
여기에서 감시광 반사부(42)는 감시광만을 반사시키는 광섬유 격자(FBG:Fiber Bragg Grating)로 이루어진다.The monitoring light reflecting unit 42 is formed of an optical fiber grating (FBG) that reflects only the monitoring light.
광망유니트(50)는 최종 사용자들에게 서비스 인터페이스를 제공하는 광통신망의 종단 장치로, 고객의 신호를 전송하는 케이블과 광시설들을 연결시켜준다.The optical network unit 50 is an end device of an optical communication network that provides a service interface to end users, and connects cables and optical facilities for transmitting a signal of a customer.
본 발명에 따른 광선로 감시장치의 동작 과정을 간략하게 설명하면, 광원(11)들로부터의 서로 다른 파장의 신호광들(λ1,λ2, …λN)이 광 다중화/역다중화부(12)에 의해 다중화 및 역다중화되어 출력되고 OTDR(20)로부터 출력되는 감시광(펄스)은 광스위치(30)에 의해 각 가입자 광선로로 순차적으로 또는 선택적으로 입사되어 신호광과 감시광이 결합된다.Briefly describing the operation of the optical path monitoring apparatus according to the present invention, the signal light (λ 1 , λ 2 , ... λ N ) of different wavelengths from the light source 11 is the light multiplexing / demultiplexing unit 12 The supervisory light (pulse) outputted by multiplexing and demultiplexing and outputting from the OTDR 20 is sequentially or selectively incident to each subscriber line by the optical switch 30 to combine the signal light and the supervisory light.
즉, 광 다중화/역다중화부(12)를 거친 각 파장의 신호광들은 광서큘레이터(41)의 제 2포트(②)로 입사된 후 제 3포트(③)로 출력된다.That is, signal light of each wavelength passing through the light multiplexer / demultiplexer 12 is incident to the second port ② of the optical circulator 41 and then output to the third port ③.
그리고, 광서큘레이터(41)의 제 1포트(①)로 입사된 감시광은 제 2포트(②)로 출력된다. 제 2포트(②)로 출력된 감시광은 광섬유 격자(42)에 의해 반사되어 제 2포트(②)로 재 입사된 후 제 3포트(③)로 출력되어 신호광과 결합되어 각 광망유니트(50)로 전송된다.The monitoring light incident on the first port ① of the optical circulator 41 is output to the second port ②. The monitoring light output from the second port (②) is reflected by the optical fiber grating 42, re-injected into the second port (②), and then output to the third port (③) to be combined with the signal light so that each optical network unit 50 Is sent).
각 광망유니트(50)로 전송되는 감시광이 전송로에서 산란 및 반사되어 전송방향과 역방향으로 즉 광서큘레이터(41)로 되돌아와 광서큘레이터(41)의 제 3포트(③)로 입사되면 이는 반시계방향으로 회전하여 제 1포트(①)로 출력되어 광스위치(30)를 지나 OTDR(20)로 전송된다.When the monitoring light transmitted to each optical network unit 50 is scattered and reflected in the transmission path, the light is returned to the optical circulator 41 in the opposite direction to the transmission direction and is incident on the third port ③ of the optical circulator 41. It is rotated counterclockwise to be output to the first port (①) and transmitted to the OTDR 20 via the optical switch 30.
도 4는 본 발명의 실시예에 따라 측정된 신호분석 파형도로써 도면에서 'a'는 광선로상의 손실로 인해 광파워가 감소한 것을 나타내며 'b'는 광선로상의 반사면을 나타낸다.4 is a signal analysis waveform diagram measured in accordance with an embodiment of the present invention, 'a' in the figure shows that the optical power is reduced due to the loss on the optical path and 'b' represents the reflective surface on the optical path.
OTDR(20)은 도 4와 같이 수신된 감시광의 신호분석 파형도와 레퍼런스 신호분석 파형도를 비교하여 각 가입자 광선로에 어느 정도의 신호손실이 발생하는지, 어느 위치에서 반사가 일어나는지 등의 이상여부를 분석함으로써 각 가입자의 광선로의 물리적 특성을 신호광 전송과 동시에 상시로 감시한다.The OTDR 20 compares the signal analysis waveform and the reference signal analysis waveform of the received monitoring light as shown in FIG. 4 to analyze whether there is an abnormality such as how much signal loss occurs in each subscriber line or at which position reflection occurs. Thus, the physical characteristics of the optical path of each subscriber are monitored at all times simultaneously with the transmission of the signal light.
이를 위해 WDM-PON 시스템을 최초 설치 후 정상적인 광선로에 대하여 본 발명을 실시하여 레퍼런스 신호분석 파형을 얻어야 한다.For this purpose, after the initial installation of the WDM-PON system, the present invention should be performed on a normal optical path to obtain a reference signal analysis waveform.
상술한 실시예에서 감시광이 각 광망유니트(50)의 수신단에 입사되면 신호광의 수신을 저하시킬 수 있으므로 필요시 각 광망유니트(50)에 감시광만을 필터링하는 필터(51)를 구비하여 광망유니트(50)의 수신단에 감시광이 입사되지 않도록 할수 있다.In the above-described embodiment, when the monitoring light is incident on the receiving end of each of the optical network units 50, the reception of the signal light may be degraded. Thus, if necessary, the optical network unit is provided with a filter 51 for filtering only the monitoring light. Surveillance light can be prevented from entering the receiving end of 50.
상술한 바와 같이, 본 발명의 광선로 감시장치는 AWG가 광선로종단장치 내에 있는 경우 AWG에 의해 파장분기 된 각 파장의 신호광이 전송되는 광선로에 OTDR 감시광을 넣어주고 각 광망유니트에서 반사되어 오는 감시광에 대한 신호분석 파형을 레퍼런스 신호분석 파형과 비교함으로써 광신호의 전송과 동시에 각 가입자 광선로의 물리적 상태를 모니터링할 수 있게 된다.As described above, the optical path monitoring device of the present invention puts OTDR monitoring light into the optical path through which the signal light of each wavelength split by the AWG is transmitted when the AWG is in the optical fiber termination device, and the monitoring is reflected from each optical network unit. By comparing the signal analysis waveform for the light with the reference signal analysis waveform, it is possible to monitor the physical state of each subscriber beam simultaneously with the transmission of the optical signal.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020056163A KR20040024733A (en) | 2002-09-16 | 2002-09-16 | Supervisory system for WDM-PON fiber using optical circulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020056163A KR20040024733A (en) | 2002-09-16 | 2002-09-16 | Supervisory system for WDM-PON fiber using optical circulator |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040024733A true KR20040024733A (en) | 2004-03-22 |
Family
ID=37327776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020056163A KR20040024733A (en) | 2002-09-16 | 2002-09-16 | Supervisory system for WDM-PON fiber using optical circulator |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040024733A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040039509A (en) * | 2002-11-01 | 2004-05-12 | 주식회사 엔엠시스템즈 | Monitoring system of optical communication network |
KR100479259B1 (en) * | 2002-10-11 | 2005-03-31 | 한국전자통신연구원 | Optical switch fault detecting method and apparatus using sequential optical pulse input |
KR100687710B1 (en) * | 2004-11-20 | 2007-02-27 | 한국전자통신연구원 | Light path monitoring method and apparatus in passive optical subscriber network system |
KR100742653B1 (en) * | 2005-08-31 | 2007-07-25 | 노베라옵틱스코리아 주식회사 | Optical path monitoring device in a bidirectional wavelength division multiplexing passive optical subscriber network using a laser immersed in an incoherent light source |
KR100768623B1 (en) * | 2006-05-12 | 2007-10-18 | 주식회사 케이티 | Automatic system for repairing optical path failure using spare optical signal in passive optical subscriber network |
KR100917562B1 (en) * | 2002-06-26 | 2009-09-21 | 주식회사 케이티 | Ray Management System |
KR100952539B1 (en) * | 2007-09-28 | 2010-04-12 | 한국전력공사 | Real-time optical cable failure monitoring device and method |
US8886036B2 (en) | 2012-12-12 | 2014-11-11 | Electronics And Telecommunications Research Institute | Optical line terminal for monitoring and controlling upstream/downstream optical signals |
US8971710B2 (en) | 2012-02-09 | 2015-03-03 | Electronics And Telecommunications Research Institute | Optical line terminal for bidirectional wavelength-division-multiplexing optical network |
-
2002
- 2002-09-16 KR KR1020020056163A patent/KR20040024733A/en not_active Application Discontinuation
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100917562B1 (en) * | 2002-06-26 | 2009-09-21 | 주식회사 케이티 | Ray Management System |
KR100479259B1 (en) * | 2002-10-11 | 2005-03-31 | 한국전자통신연구원 | Optical switch fault detecting method and apparatus using sequential optical pulse input |
KR20040039509A (en) * | 2002-11-01 | 2004-05-12 | 주식회사 엔엠시스템즈 | Monitoring system of optical communication network |
KR100687710B1 (en) * | 2004-11-20 | 2007-02-27 | 한국전자통신연구원 | Light path monitoring method and apparatus in passive optical subscriber network system |
KR100742653B1 (en) * | 2005-08-31 | 2007-07-25 | 노베라옵틱스코리아 주식회사 | Optical path monitoring device in a bidirectional wavelength division multiplexing passive optical subscriber network using a laser immersed in an incoherent light source |
KR100768623B1 (en) * | 2006-05-12 | 2007-10-18 | 주식회사 케이티 | Automatic system for repairing optical path failure using spare optical signal in passive optical subscriber network |
KR100952539B1 (en) * | 2007-09-28 | 2010-04-12 | 한국전력공사 | Real-time optical cable failure monitoring device and method |
US8971710B2 (en) | 2012-02-09 | 2015-03-03 | Electronics And Telecommunications Research Institute | Optical line terminal for bidirectional wavelength-division-multiplexing optical network |
US8886036B2 (en) | 2012-12-12 | 2014-11-11 | Electronics And Telecommunications Research Institute | Optical line terminal for monitoring and controlling upstream/downstream optical signals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100928142B1 (en) | WDM-PON Ray Monitoring System Using ODT | |
KR100971676B1 (en) | A failure detection method and detection apparatus in a passive optical subscriber network, and a passive optical subscriber network having the detection device | |
KR100687710B1 (en) | Light path monitoring method and apparatus in passive optical subscriber network system | |
KR101390043B1 (en) | Open access service model using wdm-pon | |
Yuksel et al. | Optical layer monitoring in passive optical networks (PONs): a review | |
US7542673B2 (en) | Fault localization apparatus for optical line in wavelength division multiplexed passive optical network | |
US8948589B2 (en) | Apparatus and method for testing fibers in a PON | |
US8275268B2 (en) | Optical transmission system and optical repeater | |
CN101442691B (en) | Optical cable monitoring system based on passive optical network system | |
KR100928033B1 (en) | Bidirectional Wavelength Division Multiple Passive Optical Subscriber Network | |
CN101924590A (en) | Detection system and method of fiber fault of passive optical network | |
JP2004112763A (en) | Wavelength division multiplexing passive optical network system | |
EP0720314A1 (en) | One-dimensional optical data arrays implemented within optical networks | |
KR20040024733A (en) | Supervisory system for WDM-PON fiber using optical circulator | |
US8014670B2 (en) | Method and apparatus for testing and monitoring data communications in the presence of a coupler in an optical communications network | |
KR20090124437A (en) | Fixed reflector for OTDR and light path monitoring device using the same | |
WO2013017302A1 (en) | A method and a system for physical layer monitoring in point to multipoint passive optical networks based on reflectometry systems | |
JP4383162B2 (en) | Optical branch line monitoring system | |
JP4015091B2 (en) | Optical line monitoring device | |
JPH10327104A (en) | Optical fiber fault point detector | |
KR100972035B1 (en) | Optical filtering device and optical communication system | |
KR101021408B1 (en) | Wavelength monitoring method of wavelength division multiplexing passive optical network | |
KR100768623B1 (en) | Automatic system for repairing optical path failure using spare optical signal in passive optical subscriber network | |
EP4175196B1 (en) | Method and system to implement a demarcation point be-tween a provider network and a customer network | |
KR101300771B1 (en) | Filtering apparatus for monitoring oprical network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20020916 |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |