KR20030084809A - Method for fabricating hybrid porous media for wastewater treatment - Google Patents
Method for fabricating hybrid porous media for wastewater treatment Download PDFInfo
- Publication number
- KR20030084809A KR20030084809A KR1020030065334A KR20030065334A KR20030084809A KR 20030084809 A KR20030084809 A KR 20030084809A KR 1020030065334 A KR1020030065334 A KR 1020030065334A KR 20030065334 A KR20030065334 A KR 20030065334A KR 20030084809 A KR20030084809 A KR 20030084809A
- Authority
- KR
- South Korea
- Prior art keywords
- carrier
- organic
- epoxy
- wastewater treatment
- inorganic hybrid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/108—Immobilising gels, polymers or the like
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/06—Aerobic processes using submerged filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/107—Inorganic materials, e.g. sand, silicates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/109—Characterized by the shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
본 발명은 오 ·폐수 처리용 유-무기 hybrid 다공체 제조 방법에 관한 것으로, 본 발명에 의하면The present invention relates to a method for producing an organic-inorganic hybrid porous body for wastewater treatment.
(1) 알루미노-실리케이트계(activa) 천연 원료 분말을 피브이에이(PVA) 결합재로 하여 과립화(granulation) 하는 단계(1) Granulation of alumino-silicate based raw material powder as PVA binder
(2) 과립의 원료와 피브이씨 솔, 에폭시(epoxy), 피브이에이 수용액(PVA aq.)과의 혼합 단계(2) Mixing step of raw material of granule with FBC brush, epoxy and FVA solution (PVA aq.)
(3) 결합다리(Bonding bridge)를 형성한 피브이에이를 용해시켜 기공을 형성하는 단계(3) dissolving the fives that form the bonding bridge to form pores
위 세 단계로 이루어지는 유-무기 hybrid형 오·폐수 처리용 미생물 고정화 담체 제조 방법이 제공된다.Provided are a method for preparing an organic-inorganic hybrid type microorganism-immobilized carrier for treatment of wastewater consisting of the above three steps.
미생물 고정화 담체 제조는 무기물 activa(이하 알루미노-실리케이트라 한다) 천연원료 입자를 피브이에이로 표면을 코팅시켜 수십 또한 수백개가 코팅에 의해 결합다리를 형성케 해 과립화 시킨 후 과립과 유기물(피브이씨, 에폭시)을 혼합하고 압출, 저온 열처리하여 원통형 또는 튜브형 담체를 제조함으로써 유기물중에 피브이에이 코팅물을 용해시켜 기공을 형성하게 하여 피브이씨와 에폭시는 결합강도를 부여하게 하는 것이다.The microbial immobilization carrier is produced by coating the surface of inorganic activa (hereinafter referred to as alumino-silicate) natural raw material particles with FVA, and dozens or hundreds of them form a bonding bridge by coating to granulate the granules VBC and epoxy) are mixed, extruded, and low-temperature heat-treated to prepare a cylindrical or tubular carrier to dissolve the FV coating in an organic material to form pores so that the FVC and epoxy impart bonding strength.
제조된 유-무기 hybrid형 미생물 고정화 담체는 오염물질 제거 효율이 우수할 뿐만 아니라 장기적으로 담체 내부에 미생물이 고농도로 증식하게 됨으로 오·폐수의 유량/농도 부하변동에도 안정적이다. 또한 기존의 세라믹 담체는 900℃ 이상의 고온소성에 의해 제조 단가가 매우 높은 단점이 있으나 본 발명에서는 열가소성 수지를 사용하여 200℃ 미만에서 저온 열처리함으로써 제조 단가를 크게 낮출 수 있고, 또한 제조공정을 단순화 시킬 수 있는 방법이다.The prepared organic-inorganic hybrid microorganism immobilization carrier is not only excellent in removing pollutants, but also stable in flow rate / concentration load fluctuations of wastewater due to high growth of microorganisms in the carrier in the long term. In addition, the conventional ceramic carrier has a disadvantage in that the manufacturing cost is very high due to high temperature firing of 900 ℃ or more in the present invention by using a thermoplastic resin at low temperature heat treatment below 200 ℃ can greatly reduce the manufacturing cost, and also simplify the manufacturing process That's how it can be.
따라서 본 발명에 의해 제조된 유-무기 hybrid형 미생물 고정화 담체를 오 ·폐수 처리용 바이오 필터에 적용 할 경우 바이오매스 조절이 용이하였고, 오·폐수 처리도 고효율로 하는 것이 가능하게 되었다.Therefore, when the organic-inorganic hybrid type microorganism immobilization carrier prepared by the present invention is applied to a biofilter for wastewater treatment, it is easy to control biomass, and it is possible to make wastewater treatment highly efficient.
Description
본 발명은 하·폐수처리용 담체 제조방법과 이에 의해 제조된 담체에 관한 것으로서, 보다 상세하게는 생물 친화성이 크고 기공율이 높은 담체를 생산할 수 있게 함으로써, 오·폐수 오염을 고효율로 처리하면서, 바이오매스 조절을 용이하게 하는 오염처리용 담체 제조방법과 이에 의해 제조된 담체에 관한 것이다.The present invention relates to a method for producing a wastewater treatment carrier and a carrier produced by the same, and more specifically, to enable the production of a carrier having a high biocompatibility and a high porosity, while treating wastewater pollution with high efficiency, The present invention relates to a method for preparing a carrier for contamination treatment that facilitates biomass control and a carrier prepared thereby.
기존에는 하수 및 폐수의 처리에 사용 되는 담체는 천연 재료, 활성탄, 세라믹 소재 및 합성수지와 같은 인공 재료가 주원료로서 사용되는데, 천연 재료를 주원료로 사용하는 경우에는 미생물이 서식하기 좋은 환경과 영양물질을 제공하는 반면 제조공정 상에서 결합재로 유기물을 사용하므로 이 유기물의 분해 및 900℃ 이상의 기공제어 등의 문제를 일으키기 쉽다. 또한 세라믹 소재를 주 원료로 사용하는 경우에는 다공성과 물성의 상충성에 한계가 있다.Conventionally, the carriers used for the treatment of sewage and waste water are made of natural materials such as natural materials, activated carbon, ceramic materials, and synthetic resins as the main raw materials. When using natural materials as the main raw materials, the environment and nutrients are good for microorganisms. On the other hand, since the organic material is used as a binder in the manufacturing process, problems such as decomposition of the organic material and pore control of 900 ° C or more are likely to occur. In addition, when the ceramic material is used as the main raw material, there is a limit in the tradeoff between porosity and physical properties.
예를 들어, 대한민국 공개특허공보 제 97-26382 호는 주물공장에서 발생하는 미립 분진인 폐 주물사를 주원료로 하고 톱밥 및 제올라이트 등을 첨가하여 고온의 소결공정을 통해 담체를 제조하는 방법을 제시하고 있는데, 소결온도가 900 내지 1,000℃이고, 소결온도 유지시간이 0.5 내지 10시간 정도를 필요로 하기때문에, 원료비는 저렴하나 제조 시 고에너지 비용이 소요된다는 단점을 가지며, 균일한 규격의 제품을 대량 생산할 수 없는 문제점을 갖고 있다For example, Korean Laid-Open Patent Publication No. 97-26382 proposes a method for manufacturing a carrier through a high-temperature sintering process by using waste foundry sand, which is a fine dust generated in a foundry, as a main raw material, and adding sawdust and zeolite. Since the sintering temperature is 900 to 1,000 ° C. and the sintering temperature holding time is about 0.5 to 10 hours, the raw material cost is low, but the high energy cost is required during manufacturing. Have a problem
이에 본 발명의 목적은 상기 단점들을 극복하기 위하여 alumino-silicate계 무기물과 열가소성 수지원료를 주성분으로 하는 슬러리를 성형하여 200℃ 미만의 저온에서 열처리 한 후 수 처리하여 고기공성, 고효율성 미생물 담체를 제조하는 방법을 제공하려는데 있다.Accordingly, an object of the present invention is to prepare a slurry having alumino-silicate inorganic material and a thermoplastic water support material as a main component in order to overcome the above disadvantages, and then heat treatment at a low temperature of less than 200 ℃ to produce a high porosity, high efficiency microbial carrier. I'm trying to provide a way.
상기와 같은 목적을 달성하기 위해 본 발명은The present invention to achieve the above object
(1) alumino-silicate원료에 피브이에이를 스프레이 드라이어를 이용하여 코팅하는 단계(1) coating aluminium-silicate raw material with a spray dryer
(2) coating된 원료와 Plastisol, 에폭시, 피브이에이 aq.의 혼합 단계(2) mixing step of coated raw material and Plastisol, epoxy, FV aq.
(3) 코팅된 피브이에이를 용해시켜 다공성을 이루는 단계로 이루어지는 원통형 및 중공형 오·폐수처리용 고정상 미생물 담체 제조 방법으로 고정상 미생물 담체를 제조하였다.(3) A fixed-phase microbial carrier was prepared by the method of preparing a fixed-phase microbial carrier for cylindrical and hollow wastewater treatment, which comprises the steps of dissolving the coated fives.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 무기물에는 Alumino-Silicate계의 원료를 사용하였는데 좀 더 구체적으로 기술하면 고령토, 점토, 제올라이트, Alumina, Silica-gel을 들 수 있다. 이때 입자크기는 담체의 비표면적을 고려하여 100∼325mesh sieve를 통과한 원료를 사용하였다.In the inorganic material of the present invention, Alumino-Silicate-based raw materials were used. More specifically, kaolin, clay, zeolite, Alumina, and Silica-gel may be mentioned. At this time, the particle size was used to pass the 100 ~ 325 mesh sieve in consideration of the specific surface area of the carrier.
상기에 사용된 alumino-silicate계 원료 분말을 피브이에이와 함께 혼합하여 코팅시킨 후 spray dryer(분무건조)를 사용하여 결합다리(bonding bridge)를 만든 후 코팅입자와 코팅입자가 결합하게 하여 과립화함으로써 기공율을 극대화 시켰다. 일반적으로 분무건조는 여러개의 입자를 구형의 하나의 입자로 만들어 성형성을 향상시키기 위해 과립으로 만들지만, 본 발명에서는 피브이에이가 성형성의 향상보다 미세 분말과 분말을 수십~수백개 혼합하는 과정에서 결합다리(bonding bridge)를 형성함으로써 과립화가 되어 다시 피브이씨 솔과 에폭시를 사용하여 결합하고 피브이에이를 혼합하여 기공화 시킬 때 담체의 기공율을 향상시키기 위함이다.After mixing and coating the alumino-silicate raw material powder used in the above with the fV A and then using a spray dryer (spray drying) to make a bonding bridge (bonding bridge) and then the coating particles and the coating particles to be granulated By maximizing the porosity. In general, the spray drying is made of granules to improve the moldability by making a plurality of particles into a single spherical particle, but in the present invention, the process of mixing the fine powder and the powder dozens to hundreds more than the improvement of the moldability This is to improve the porosity of the carrier when it is granulated by forming a bonding bridge at and is bonded again using a fibC soll and an epoxy, and the fib is mixed and poreized.
열가소성 수지는 분말상의 무기물들을 상호 결합시키는 역할을 하며 본 발명에서는 여러 가지 열가소성 수지 중 폴리비닐클로라이드(피브이씨)와 에폭시를 사용하였다. 이때 열가소성 수지 반응 및 경화속도를 조절하기 위해 안정제 및 경화제를 0 내지 10%의 중량범위로 사용하는 데, 본 발명에서는 피브이씨 솔에는 경화제는 첨가하지 않았고, 안정제로서 Zn-octade-canoate와 Ca-octadecanoate만을 첨가하고 에폭시에는 경화제를 첨가하였다. 또한 기공형성제로 피브이에이도 첨가하였는데 피브이에이는 증류수에 포화상태까지 녹여 수용액 상태로 사용하였다.The thermoplastic resin serves to bind the powdery inorganic materials to each other, and in the present invention, polyvinyl chloride (FIB) and epoxy among various thermoplastic resins are used. In this case, in order to control the thermoplastic resin reaction and curing rate, a stabilizer and a curing agent are used in a weight range of 0 to 10%. In the present invention, a curing agent is not added to the PV brush, and Zn-octade-canoate and Ca are used as stabilizers. Only -octadecanoate was added and the curing agent was added to the epoxy. In addition, as a pore forming agent, FV A was also added.
열가소성 수지, 피브이에이 aq. 및 안정제(경화제)를 교반기에 넣고 동시에 교반시켰다. 이때 에폭시는 10 내지 40 중량%, 피브이씨는 20 내지 60 중량% 피브이에이 aq.는 20 내지 60 중량%의 중량비로 사용하는 것이 바람직하다. 충분히 교반이 된 후 과립의 Alumino-Silicate계의 원료를 첨가 하여 재 교반하였다. 이때 알루미노-실리케이트계 무기질 : 결합제 & 기공형성제 = 60 ~ 95 : 40 ~ 5의 중량비로 사용하는 것이 바람직하다. 사용되는 무기질 소재는 입자간의 공극을 통해 무수한 기공을 제공하여 미생물에 대한 친화성을 증가시키며, 담체의 비중을 결정하는데 중요한 역할을 한다. 무기질 소재를 5 중량% 미만으로 사용하면, 경제적 측면 및 미생물 친화성 측면의 효과가 미미해진다. 결합제가 5 중량% 미만으로 사용되면, 활성 담지 물질(무기물)중 일부가 물에 풀려나가게 되고 40중량%를 초과하여 사용되면 담체의 제조가 어려울 뿐만 아니라 담체의 기공율, 비표면적등에 영향을 주어 담체의 흡착력이나 미생물 부착능력이 저하하는 문제점이 있다.Thermoplastic resins, fV aq. And a stabilizer (curing agent) were put into a stirrer and stirred at the same time. In this case, it is preferable to use 10 to 40% by weight of epoxy, 20 to 60% by weight of FBC, and 20 to 60% by weight of FV aq. After sufficient stirring, the raw material of Alumino-Silicate granules was added and stirred again. At this time, it is preferable to use the alumino-silicate-based inorganic: binder & pore-forming agent = 60 ~ 95: 40 ~ 5 by weight. The inorganic material used provides numerous pores through the pores between particles to increase the affinity for microorganisms and plays an important role in determining the specific gravity of the carrier. If the inorganic material is used at less than 5% by weight, the effect on economic and microbial affinity is negligible. When the binder is used in an amount less than 5% by weight, some of the active support material (inorganic material) is released in water, and when used in excess of 40% by weight, it is difficult to prepare the carrier and affects the porosity, specific surface area, etc. of the carrier. There is a problem in that the adsorption capacity and adhesion ability of microorganisms decreases.
이와 같이 제조된 슬러리로 압출기 및 과립장치를 이용하여 원기둥과 구형태로 성형한다. 이때 원기둥과 구형 입자 형태로 성형시키는데 직경은 2~30mm범위이내인 것이 바람직한데, 2mm이하가 되면 상용성이 떨어지게 되며, 30mm보다 크게 되면 압출성형하기가 어렵고, 비표면적이 줄어들며 성능 또한 감소되어 비경제적이었다.The slurry thus prepared is molded into cylinders and spheres by using an extruder and a granulator. At this time, it is preferable to mold in the form of cylinders and spherical particles, the diameter of which is preferably within the range of 2 ~ 30mm, less than 2mm is less compatible, and larger than 30mm is difficult to extrude, and the specific surface area is reduced and performance is also reduced It was economical.
이와 같이 원기둥과 구형입자 형태로 된 성형체를 200℃이하에서 열처리하여 미생물 고정화 담체를 제조한다. 이때 내부에 큰 기공이 생기는 경우도 있는데 이를 중공형태라 하겠다. 열처리 조건은 결합제의 특성을 고려 200℃이하에서 1분~1시간동안 열처리하여 경화시켰다. 이 단계에서 원료들과 결합제 사이에서 경화 반응이 진행됨을 알 수 있다. 열처리된 시료를 상온이 될 때까지 공랭시킨 후 증류수에 넣고 6시간동안 끓였다. 이 단계에서는 과립화 된 입자에서의 피브이에이, 수용액 상태로 넣은 피브이에이가 빠져나와 기공이 형성하게 되었다.In this way, the molded article in the form of a cylinder and a spherical particle is heat-treated at 200 ° C. or less to prepare a microorganism immobilization carrier. At this time, there may be a large pore inside the hollow form. Heat treatment conditions were hardened by heat treatment for 1 minute to 1 hour at 200 ℃ or less considering the properties of the binder. In this step it can be seen that the curing reaction proceeds between the raw materials and the binder. The heat treated sample was cooled to room temperature and then placed in distilled water and boiled for 6 hours. In this step, the fVA in the granulated particles and the FVA in the aqueous solution are released to form pores.
끓인 담체를 건조기에 넣어 24시간 동안 건조시키면 유-무기 hybrid형 미생물 고정화 담체를 만들 수 있다.Put the boiled carrier in the dryer and dried for 24 hours to create an organic-inorganic hybrid type microorganism immobilization carrier.
[실시예 1]Example 1
유기혼합물(피브이씨 sol 70g, 에폭시 25g, 피브이에이 aq. 40g 및 안정제(경화제)) 100g에 알루미나 과립 150g을 넣고 상기와 같은 방식으로 실험하였다. 이때 담체 특성은 겉보기 기공을 65%, 흡수율 87%, 겉보기 비중 2.1, 부피비중 0.8이었다.150 g of alumina granules were put into 100 g of the organic mixture (70 g of fibC sol, 25 g of epoxy, 40 g of aq. Aq. And a stabilizer (curing agent)) and tested in the same manner as described above. At this time, the carrier properties were apparent porosity 65%, absorption 87%, apparent specific gravity 2.1, volume specific weight 0.8.
[실시예 2]Example 2
피브이씨 sol 70g, 에폭시 50g, 피브이에이 aq. 100g, 안정제(결화제)의 혼합물 100g 에 점토 과립 50g을 넣고 발명의 구성 및 작용과 같은 방식으로 실험 하였다. 이때 담체 특성은 겉보기 기공율 51%, 흡수율 61%, 겉보기 비중 1.7, 부피비중 0.8이었다.5g sol 70g, 50g epoxy, 5g aq. 50 g of clay granules were added to 100 g of the mixture of the stabilizer (tabletizer) and 100 g. The carrier properties were apparent porosity 51%, water absorption 61%, apparent specific gravity 1.7, volume specific volume 0.8.
[실시예 2]로 제조된 시료가 생물학적으로 안정한가를 실험해 본 결과 제작된 담체는 대부분이 COD 성분으로 구성이 되어있고, 실험결과 1g의 피브이씨담체당 800~900mg의 COD 성분을 함유하고 있는 것으로 파악되었다. 담체의 용출특성을 조사해보니 0.756 mgCOD/g-org. media/day로 조사되었다. 이는 기존 제품인 세라믹 담체의 용출량인 0.21 mgCOD/g-org. media/day에 비해 3.5배 이상 향상되었고, 또한 Bio-filter 공정의 무산소조에 2kg을 충전하였을 경우, 총 용출속도는1,512mgCOD/day로 훨씬 더 우수한 filter 특성을 나타내었다.As a result of experimenting whether the sample prepared in Example 2 is biologically stable, most of the prepared carriers consisted of COD components, and the test results contained 800-900 mg of COD components per 1 g of F. seed carrier. It was found to be. The elution characteristics of the carrier were determined to be 0.756 mgCOD / g-org. media / day. This is 0.21 mgCOD / g-org. It was improved by more than 3.5 times compared to media / day, and when 2kg was filled in the anoxic tank of the Bio-filter process, the total dissolution rate was 1,512mgCOD / day, which showed much better filter characteristics.
본 발명에 의해 제조된 유-무기 hybrid형 원통 또는 구형 담체는 미생물의 부착상태가 고분자 담체에 비하여 우수하고 미생물막의 두께가 세라믹 담체처럼 얇을 뿐 아니라 미생물의 증식에 대하여 물리·화학적으로 안정하다. 또한, 장기적으로 원통 또는 구형 담체의 내부에 미생물이 고농도로 증식하게 됨으로 오·폐수의 농도 부하변동에도 안정적이며 오염물질 제거효율이 우수할 뿐만 아니라, 여과조에 설치하여 사용하는 경우에는 슬러지 팽화에 의한 핀 플록의 유출을 막아 최종 방류수의 수질을 보다 개선시킬 수 있으며, 기존의 담체들보다 훨씬 고농도로 미생물을 유지·증식할 수 있어 고농도 유기성 폐수 또는 난분해성 폐수처리에도 적용 가능하다.The organic-inorganic hybrid cylindrical or spherical carrier prepared by the present invention has excellent adhesion state of the microorganisms compared to the polymer carrier, the thickness of the microbial membrane is as thin as the ceramic carrier, and is physically and chemically stable against the growth of the microorganisms. In addition, microorganisms grow in high concentrations in cylinders or spherical carriers over a long period of time, which is stable against fluctuations in load concentrations of wastewater and is excellent in removing pollutants, and when used in filtration tanks, By preventing the outflow of the pin floc can improve the quality of the final effluent water, and can maintain and multiply the microorganisms at a much higher concentration than conventional carriers, it is also applicable to high concentration organic wastewater or hardly degradable wastewater treatment.
나아가 저온열처리와 공정의 단축으로 인한 비용절감의 효과도 크게 기대된다.Furthermore, the cost savings from low temperature heat treatment and shortening of the process are expected.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030065334A KR20030084809A (en) | 2003-09-19 | 2003-09-19 | Method for fabricating hybrid porous media for wastewater treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030065334A KR20030084809A (en) | 2003-09-19 | 2003-09-19 | Method for fabricating hybrid porous media for wastewater treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030084809A true KR20030084809A (en) | 2003-11-01 |
Family
ID=32388759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030065334A KR20030084809A (en) | 2003-09-19 | 2003-09-19 | Method for fabricating hybrid porous media for wastewater treatment |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030084809A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101104867B1 (en) * | 2009-08-17 | 2012-01-17 | 주식회사 신진금고 | Safe deposit system and how to use it |
KR101310127B1 (en) * | 2011-10-12 | 2013-09-23 | 광주과학기술원 | Pure granular mesoporous silica and fabrication method thereof using organic binder |
KR101340353B1 (en) * | 2013-09-03 | 2013-12-11 | 주식회사 두현이엔씨 | Sewage treatment facility using biofilter with purification waterweed |
WO2014112660A1 (en) * | 2013-01-16 | 2014-07-24 | 광주과학기술원 | Granular mesoporous silica comprising inorganic bonding agent and method for producing same |
-
2003
- 2003-09-19 KR KR1020030065334A patent/KR20030084809A/en active Search and Examination
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101104867B1 (en) * | 2009-08-17 | 2012-01-17 | 주식회사 신진금고 | Safe deposit system and how to use it |
KR101310127B1 (en) * | 2011-10-12 | 2013-09-23 | 광주과학기술원 | Pure granular mesoporous silica and fabrication method thereof using organic binder |
WO2014112660A1 (en) * | 2013-01-16 | 2014-07-24 | 광주과학기술원 | Granular mesoporous silica comprising inorganic bonding agent and method for producing same |
KR101340353B1 (en) * | 2013-09-03 | 2013-12-11 | 주식회사 두현이엔씨 | Sewage treatment facility using biofilter with purification waterweed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103041695B (en) | Functional microbe embedded slow-release composite filling material and preparation method thereof | |
KR101031114B1 (en) | Fluidized Bed Binding Microbial Carrier Enhancing Initial Microbial Adhesion and Activity and Its Preparation Method | |
CN1868919A (en) | Suspension microorganism carrier and its preparation method | |
CN105819565A (en) | Composite biofilm carrier for sewage treatment and preparation method thereof | |
CN103951044B (en) | A kind of non-sintered rapid biofilm biologic packing material and preparation method thereof | |
KR100282211B1 (en) | A method of producing for microbial support by low temperature-calcining for biological wastewater treatment | |
JPH0871414A (en) | Fluid treating agent composition | |
US6133004A (en) | Bioreactor carrier gel prepared from a crosslinked N-vinylcarboxamide resin | |
CN103382098B (en) | Light biological carrier for water treatment, and preparation method and application of light biological carrier | |
KR20200022126A (en) | Ceramic Bio Media Having Adsorption Of Nitrogen And Phosphorous And Manufacturing Method Of The Same | |
CN111229021A (en) | A hollow cylindrical slow-release biological filler | |
KR100434613B1 (en) | Multi-porous ceramic carrier for fixing microorganism on inner/outer surface thereof | |
KR20030084809A (en) | Method for fabricating hybrid porous media for wastewater treatment | |
CN107970881B (en) | A kind of organic waste water treatment functionalized filler and preparation method thereof | |
KR102432539B1 (en) | Media for Water Treatment Using Zeolite and Preparation Method thereof | |
JP2559592B2 (en) | Wastewater treatment biofilm carrier | |
KR100282212B1 (en) | A preparation method of microbial media units for biological wastewater treatment | |
JPH08141589A (en) | Ceramics porous element and treatment of waste water using the same | |
CN110964713A (en) | Preparation method of immobilized microorganism particles for removing ammonia nitrogen from black and odorous water | |
KR100310877B1 (en) | Ceramic Carrier and its Manufacturing Method | |
KR101492833B1 (en) | Media For Wastewater Treatment Using Sewage Sludge And Manufacturing Method Thereof | |
KR100348159B1 (en) | A method of manufacturing egg shell type media for biological wastewater treatment and offensive odor removal | |
KR100336820B1 (en) | A method for manufacturing fixed tubular type biocarrier and a fixed biocarrier for biological wastewater treatment and offensive odor gas removal manufactured using the method | |
CN212142121U (en) | Hollow columnar slow-release biological filler | |
KR100481973B1 (en) | Organic and Inorganic Hybrid Media for Microbe Immobilization and Its Producing Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20030919 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20050511 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20050729 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20050511 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
PJ0201 | Trial against decision of rejection |
Patent event date: 20050829 Comment text: Request for Trial against Decision on Refusal Patent event code: PJ02012R01D Patent event date: 20050729 Comment text: Decision to Refuse Application Patent event code: PJ02011S01I Appeal kind category: Appeal against decision to decline refusal Decision date: 20060628 Appeal identifier: 2005101005838 Request date: 20050829 |
|
PB0901 | Examination by re-examination before a trial |
Comment text: Amendment to Specification, etc. Patent event date: 20050829 Patent event code: PB09011R02I Comment text: Request for Trial against Decision on Refusal Patent event date: 20050829 Patent event code: PB09011R01I |
|
E801 | Decision on dismissal of amendment | ||
PE0801 | Dismissal of amendment |
Patent event code: PE08012E01D Comment text: Decision on Dismissal of Amendment Patent event date: 20051107 Patent event code: PE08011R01I Comment text: Amendment to Specification, etc. Patent event date: 20050829 |
|
B601 | Maintenance of original decision after re-examination before a trial | ||
PB0601 | Maintenance of original decision after re-examination before a trial | ||
J301 | Trial decision |
Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20050829 Effective date: 20060628 |
|
PJ1301 | Trial decision |
Patent event code: PJ13011S01D Patent event date: 20060629 Comment text: Trial Decision on Objection to Decision on Refusal Appeal kind category: Appeal against decision to decline refusal Request date: 20050829 Decision date: 20060628 Appeal identifier: 2005101005838 |