KR100336820B1 - A method for manufacturing fixed tubular type biocarrier and a fixed biocarrier for biological wastewater treatment and offensive odor gas removal manufactured using the method - Google Patents
A method for manufacturing fixed tubular type biocarrier and a fixed biocarrier for biological wastewater treatment and offensive odor gas removal manufactured using the method Download PDFInfo
- Publication number
- KR100336820B1 KR100336820B1 KR1020000001461A KR20000001461A KR100336820B1 KR 100336820 B1 KR100336820 B1 KR 100336820B1 KR 1020000001461 A KR1020000001461 A KR 1020000001461A KR 20000001461 A KR20000001461 A KR 20000001461A KR 100336820 B1 KR100336820 B1 KR 100336820B1
- Authority
- KR
- South Korea
- Prior art keywords
- adhesive
- carrier
- inorganic material
- tubular
- biocarrier
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 42
- 239000011147 inorganic material Substances 0.000 claims abstract description 42
- 239000000853 adhesive Substances 0.000 claims abstract description 31
- 230000001070 adhesive effect Effects 0.000 claims abstract description 31
- 230000000813 microbial effect Effects 0.000 claims abstract description 29
- 238000010304 firing Methods 0.000 claims abstract description 20
- 239000011248 coating agent Substances 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 claims abstract description 11
- 239000011247 coating layer Substances 0.000 claims abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 50
- 229910021536 Zeolite Inorganic materials 0.000 claims description 20
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 20
- 239000010457 zeolite Substances 0.000 claims description 20
- 239000002893 slag Substances 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000005909 Kieselgur Substances 0.000 claims description 16
- 229920003023 plastic Polymers 0.000 claims description 14
- 239000004033 plastic Substances 0.000 claims description 14
- 239000002956 ash Substances 0.000 claims description 11
- 239000000571 coke Substances 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 11
- -1 ongyo earth Substances 0.000 claims description 10
- 238000009628 steelmaking Methods 0.000 claims description 9
- 229920005749 polyurethane resin Polymers 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- 239000005995 Aluminium silicate Substances 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 235000019738 Limestone Nutrition 0.000 claims description 6
- 235000012211 aluminium silicate Nutrition 0.000 claims description 6
- 239000010433 feldspar Substances 0.000 claims description 6
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000006028 limestone Substances 0.000 claims description 6
- 239000000454 talc Substances 0.000 claims description 6
- 229910052623 talc Inorganic materials 0.000 claims description 6
- 239000010455 vermiculite Substances 0.000 claims description 6
- 229910052902 vermiculite Inorganic materials 0.000 claims description 6
- 235000019354 vermiculite Nutrition 0.000 claims description 6
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 239000001099 ammonium carbonate Substances 0.000 claims description 4
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 2
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 229920000178 Acrylic resin Polymers 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229920000620 organic polymer Polymers 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 235000019353 potassium silicate Nutrition 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims 2
- 239000002861 polymer material Substances 0.000 claims 1
- 239000002023 wood Substances 0.000 claims 1
- 244000005700 microbiome Species 0.000 abstract description 29
- 230000000694 effects Effects 0.000 abstract description 7
- 239000000356 contaminant Substances 0.000 abstract description 6
- 239000002351 wastewater Substances 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 235000019645 odor Nutrition 0.000 description 11
- 239000010802 sludge Substances 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 238000005273 aeration Methods 0.000 description 10
- 239000000969 carrier Substances 0.000 description 10
- 238000011049 filling Methods 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000004927 clay Substances 0.000 description 5
- 239000003292 glue Substances 0.000 description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- 239000010902 straw Substances 0.000 description 5
- 239000004846 water-soluble epoxy resin Substances 0.000 description 5
- 239000012855 volatile organic compound Substances 0.000 description 4
- 239000011149 active material Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000206761 Bacillariophyta Species 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/109—Characterized by the shape
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/06—Aerobic processes using submerged filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/107—Inorganic materials, e.g. sand, silicates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/108—Immobilising gels, polymers or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
본 발명은 튜브형 오/폐수처리 및 악취 제거용 고정상 미생물 담체 제조 방법 및 이로부터 제조된 미생물 담체에 관한 것으로, 본 발명에 의하면,The present invention relates to a method for preparing a fixed-phase microbial carrier for tubular wastewater treatment and odor removal and a microbial carrier prepared therefrom.
(1)튜브형 지지체에 활성무기재료를 접착제를 이용하여 코팅하는 단계; 및(1) coating the active inorganic material on the tubular support using an adhesive; And
(2)상기 접착제가 경화되도록 소성하는 단계;로 이루어지는 튜브형 오/폐수처리 및 악취가스 제거용 고정상 미생물 담체를 제조하는 방법이 제공된다.(2) firing the adhesive to cure; there is provided a method for producing a fixed-bed microorganism carrier for tubular wastewater treatment and odor gas removal consisting of.
본 발명에 의하면, 외표면적이 넓은 튜브형 지지체를 사용함으로써 피복층 내/외 표면에 미생물 서식 공간을 증가시켜 오염원의 제거 효율을 높일 수 있으며, 따라서 오/폐수처리 및 악취제거용 바이오 필터에서도 고활성을 나타낼 수 있다.According to the present invention, by using a tubular support having a wide outer surface area, the microbial habitat space can be increased on the inner and outer surfaces of the coating layer to increase the removal efficiency of the contaminant. Therefore, high activity is also achieved in the wastewater treatment and odor removal biofilters. Can be represented.
Description
본 발명은 튜브형 오/폐수처리 및 악취가스 제거용 고정상 미생물 담체 제조 방법 및 이로부터 제조된 고정상 미생물 담체에 관한 것으로, 보다 상세하게는 튜브형 지지체를 사용함으로써 지지체의 외표면적을 넓혀 오/폐수 및 악취가스를 생물학적 방법으로 제거하는 효율을 개선시킨 생물막 부착용 튜브형 미생물 담체를 제조하는 방법 및 이로부터 제조된 고정상 미생물 담체에 관한 것이다.The present invention relates to a method for producing a fixed-phase microbial carrier for tubular wastewater / wastewater treatment and odor gas removal, and a fixed-phase microbial carrier prepared therefrom. More specifically, the use of a tubular support increases the outer surface area of the support for wastewater / odor and odors. The present invention relates to a method for producing a tubular microbial carrier for attaching a biofilm, and to a fixed-phase microbial carrier prepared therefrom.
일반적으로 생물학적으로 오/폐수를 처리하는 방법에는 크게 활성슬러지 공법과 생물막 공법으로 나눌 수 있으며, 최근에는 고효율/고성능 운전이 가능한 생물막 공법에 대하여 대부분의 연구가 진행되고 있는 실정이다.In general, biologically treated wastewater / wastewater can be largely divided into activated sludge method and biofilm method. Recently, most researches have been conducted on biofilm method capable of high efficiency / high performance operation.
상기 생물막 공법은 미생물이 담체에 고농도로 부착되어 있어 오염물질에 대한 제거효율이 우수하며, 담체내에 저증식 속도 미생물을 보존할 수 있다. 또한 안정된 생태계와 미소동물의 적절한 분포를 가지게 하며, 슬러지 팽화현상을 방지할 수 있고 고/저농도 부하에도 모두 안정한 제거효율을 보인다. 그리고 슬러지 발생량이 적으며 반응기를 소형화할 수 있다.The biofilm method has a high concentration of microorganisms attached to the carrier to remove contaminants and can preserve low growth rate microorganisms in the carrier. In addition, it has a stable distribution of ecosystems and micro-animals, prevents sludge swelling, and shows stable removal efficiency even at high / low concentration loads. And the sludge generation amount is small and the reactor can be miniaturized.
이러한 생물막 공법에 사용되는 고정상 미생물 담체를 재질에 따라 나누면, 고분자계, 세라믹계 또는 활성탄계 담체로 대별된다. 상기 고분자계 담체는 값이 싸고 원하는 모양으로 제조가 가능하여 편리하지만, 그 자체로는 비표면적이 작고 물리/화학적으로 불안정하며 고정화된 미생물의 탈리가 빈번하게 발생할 뿐만 아니라, 슬러지 발생량이 많다.When the fixed-phase microbial carrier used in such a biofilm method is divided according to the material, it is roughly classified into a polymer-based, ceramic-based or activated carbon-based carrier. The polymer carrier is inexpensive and convenient to be manufactured in a desired shape, but in itself, the specific surface area is small and physical / chemically unstable, and the detachment of immobilized microorganisms frequently occurs, as well as a large amount of sludge generation.
이에 반해 활성탄이나 세라믹계 무기재료 담체는 비표면적이 크고 물리/화학적으로 안정하며 미생물막이 얇게 형성되고 슬러지 발생량이 작은 잇점이 있는데 반하여, 담체를 원하는 모양으로 성형하기 힘들고 고온소성에 의해 제조되어야 하므로 제조 단가가 높은 단점이 있다. 또한 제조시 고온소성으로 인한 담체 표면의 흡착성질을 잃어버리는 문제점이 있다.On the other hand, activated carbon or ceramic-based inorganic material carriers have advantages of large specific surface area, physical / chemical stability, thin microbial film formation, and small sludge generation amount, whereas the carriers are difficult to be molded into a desired shape and manufactured by high temperature firing. There is a disadvantage that the unit price is high. In addition, there is a problem that loses the adsorptive properties of the surface of the carrier due to high temperature firing during manufacturing.
이에 대한민국 특허공개 제97-54729호에서는 폴리에틸렌을 브러쉬상으로 만든 고정상 미생물 담체를 개시하고 있으며, 대한민국 특허공개 제95-1251호에서는폴리에틸렌을 망상구조로 제조한 고정상 미생물 담체를 개시하고 있으나, 이들 방법은 미생물의 탈리가 심하고 슬러지 발생량이 많다는 성능상의 효율이 저감되는 문제가 있다.Accordingly, Korean Patent Publication No. 97-54729 discloses a fixed-phase microbial carrier made of polyethylene in a brush shape, and Korean Patent Publication No. 95-1251 discloses a fixed-phase microbial carrier made of polyethylene in a network structure. Silver has a problem that the efficiency of the desorption of the microorganism is severe and the sludge generation amount is reduced.
또한 대한민국 특허공개 제 98-64937호 및 제98-64939호에서는 부직포나 스폰지 등의 미생물 접촉재를 사용할 경우 미생물이 탈리되어 방류되는 것을 줄이기 위해 피라미드형 또는 다이아몬드형의 중첩된 뼈대구조를 만들어 탈리되는 미생물이 바깥쪽의 뼈대에 다시 부착되는 방식을 제시하였으나, 고분자계 담체가 갖는 한계를 벗어나지 못하였다.In addition, in Korean Patent Laid-Open Publication Nos. 98-64937 and 98-64939, when using microbial contact materials such as nonwoven fabrics or sponges, a pyramidal or diamond-shaped superimposed skeleton structure is removed to reduce the microorganisms from being released. Although the microorganisms were reattached to the outer skeleton, they were not able to escape the limitations of the polymer carrier.
또한 분쇄한 폐비닐에 석분, 활성탄, 여과사등의 부재료를 혼합/분쇄/소성하여 C형 다이가 장착된 압출기로 압출/냉각시켜 만든 미생물 접촉여재를 대한민국 특허공개 제94-6932호에서 소개하고 있으나, 폐비닐의 함량이 50%이상으로 고분자 성질이 강하며 단위 부피당 비표면적이 작아 성능이 떨어지는 단점을 가지고 있다.In addition, Korean Patent Publication No. 94-6932 introduces microbial contact media made by mixing / crushing / firing subsidiary materials such as stone powder, activated carbon, and filtered sand into extruded and cooled extruders equipped with a C-type die. However, the content of waste vinyl is 50% or more, the polymer properties are strong, and the specific surface area per unit volume has a disadvantage of poor performance.
이뿐만 아니라 대한민국 특허공개 제95-17825호, 제96-28966호, 제97-6249호에 개시된 세라믹계 담체는 소성 온도가 높아 경제성이 떨어지고, 원하는 모양과 크기로 제조하기 힘들며, 대한민국 특허공개 제98-9145호에 개시된 폴리우레탄폼, 다공질 세라믹스등의 담체를 이용하여 혐기조에서 생물을 탈취하는 방법은 오수처리장치의 혐기조 상단에 담체를 띄운 형태로 한정된다.In addition, the ceramic carriers disclosed in Korean Patent Publication Nos. 95-17825, 96-28966, and 97-6249 have a low firing temperature and are economically inferior, and are difficult to manufacture in a desired shape and size. The method of deodorizing organisms in an anaerobic tank using a carrier such as polyurethane foam, porous ceramics, etc. disclosed in 98-9145 is limited to a form in which a carrier is floated on top of an anaerobic tank of a sewage treatment apparatus.
이에 본 발명자들은 2성분이상의 무기재료를 복합 사용하고 저온소성시킴으로써 기존의 플라스틱계나 세라믹계 담체들보다 활성이 높은 오/폐수 처리용 저온 소성된 점토계 고정상 미생물 담체를 제조하는 방법 및 이로부터 제조된 고정화 담체를 대한민국 특허출원 제99-18219호로서 기출원한 바 있다. 그러나 상기 방법은 사용되는 접착제가 비싸므로 제조 단가가 기존의 플라스틱계보다 훨씬 높은 문제가 있다. 또한 고농도 혹은 난분해성 폐수나 악취가스를 제거하는 효율이 떨어진다.Accordingly, the present inventors have prepared a low-temperature calcined clay-based fixed-phase microorganism carrier for treating wastewater / wastewater having a higher activity than conventional plastic-based or ceramic-based carriers by using two-component inorganic materials and low temperature firing. The immobilized carrier has been previously filed as Korean Patent Application No. 99-18219. However, the method has a problem that the manufacturing cost is much higher than conventional plastics because the adhesive used is expensive. In addition, the efficiency of removing high concentration or hardly degradable wastewater or odor gas is inferior.
이에 본 발명의 목적은 고활성 고정상 미생물 담체를 경제적으로 제조하는 방법을 제공하려는데 있다.Accordingly, an object of the present invention is to provide a method for economically preparing a highly active stationary phase microbial carrier.
본 발명의 다른 목적은 고농도 혹은 난분해성 폐수내에서 오염 물질의 제거 효율이 높은 담체를 제공하려는데 있다.Another object of the present invention is to provide a carrier having high efficiency of removing contaminants in a high concentration or hardly degradable wastewater.
본 발명의 또다른 목적은 악취가스 제거용 바이오필터로 사용가능한 담체를 제공하려는데 있다.It is another object of the present invention to provide a carrier usable as a biofilter for removing odor gas.
도 1은 원형/다각형, 오픈 타입, 내부 십자형 혹은 일자형등 본 발명에서 지지체로 사용되는 튜브형태의 여러가지 구조를 도시한 단면도이다.1 is a cross-sectional view showing various structures of a tube shape used as a support in the present invention, such as round / polygonal, open type, internal cross or straight.
본 발명의 일견지에 의하면,According to one aspect of the invention,
(1)튜브형 지지체에 활성무기재료를 접착제를 이용하여 코팅하는 단계; 및(1) coating the active inorganic material on the tubular support using an adhesive; And
(2)상기 접착제가 경화되도록 소성하는 단계;로 이루어지는 튜브형 오/폐수처리 및 악취가스 제거용 고정상 미생물 담체 제조 방법이 제공된다.(2) firing the adhesive to cure; there is provided a method for producing a fixed-bed microorganism carrier for tubular wastewater treatment and odor gas removal consisting of.
본 발명의 제2견지에 의하면,According to the second aspect of the present invention,
상기 제1견지의 방법에 의하여 제조된 고정상 미생물 담체가 제공된다.There is provided a stationary microorganism carrier prepared by the method of the first aspect.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에서는 외표면적이 넓은 튜브형 지지체를 사용하여 미생물 담체를 제조함으로써 보다 고활성 미생물 담체를 제조할 수 있다.In the present invention, a highly active microbial carrier can be produced by preparing a microbial carrier using a tubular support having a wide outer surface area.
본 발명에서 사용한 지지체는 플라스틱, 섬유 및 금속으로 제조된 원통형 튜브, 다각형 튜브, 오픈 타입 튜브 혹은 내부를 나눈 튜브 형태를 사용한다. 이중 가장 실용적이고 효율이 우수한 지지체는 도 1(a)에 도시한 원통형 형태를 띠는 것이다.The support used in the present invention uses a cylindrical tube, a polygonal tube, an open type tube, or a divided tube made of plastic, fiber, and metal. The most practical and efficient support is the cylindrical shape shown in Fig. 1 (a).
이러한 간단한 형태의 원통형 튜브의 직경(D)은 5~20mm가 적당하며 그 이상은 표면적이 줄어 들어 바람직하지 않다. 또한 기타 다각형 타입의 튜브형 지지체의 경우에도 그 크기가 5∼20mm인 것이 바람직하다. 20mm이상에서는 튜브형태뿐만 아니라 그물형과 링형 지지체와의 조합으로 제작하면서 지지체 내부의 구조물간에 간격을 두고 잘 분산시키면 외표면적이 높으면서 슬러지 막힘 현상이 없다.The diameter (D) of the cylindrical tube of such a simple form is suitably 5 to 20 mm, and more preferably, the surface area is reduced. Also in the case of other polygonal tubular supports, the size is preferably 5 to 20 mm. At 20mm or more, if it is manufactured in combination with a mesh-type and ring-shaped support as well as a tube shape, and well dispersed at intervals between the structures inside the support, the outer surface area is high and there is no sludge clogging phenomenon.
일례로 상기 원통형 튜브에서는 길이(L)이 반경(R=1/2D)보다 커야 한다( L>1/2D). 그 예로 직경 7mm, 길이 8mm인 그래뉼 담체와 튜브형 담체의 외표면적을 비교해보면, 다음 식과 같다.For example, in the cylindrical tube, the length L should be larger than the radius R = 1 / 2D (L> 1 / 2D). For example, the outer surface area of the granular carrier and the tubular carrier having a diameter of 7 mm and a length of 8 mm can be compared.
상기 계산 결과로부터 알 수 있듯이, 원통형 튜브 담체의 표면적은 그래뉼 담체에 비하여 약40%정도 넓은 것을 알 수 있다. 이는 튜브 형태가 사각형인 경우에도 그 표면적이 약40%정도 증가하며, 삼각형인 경우는 약30%증가하는 것을 알 수 있다.As can be seen from the calculation result, it can be seen that the surface area of the cylindrical tube carrier is about 40% wider than that of the granule carrier. It can be seen that even when the tube shape is rectangular, the surface area is increased by about 40%, and the triangle is increased by about 30%.
또다른 예로 길이와 직경이 같은 경우(L=D)에 상기식에 의하면 외표면적은 30%이상 증가한다. 이같은 외표면적의 증가로 인해 오염물질 제거 효율이 개선되며, 아울러 튜브형 담체의 내면은 유체의 전단력이 약하므로 저부착성 미생물이나 고등 미생물의 좋은 서식처가 된다.In another example, when the length and diameter are the same (L = D), the outer surface area is increased by 30% or more. The increase in the external surface area improves the removal efficiency of the contaminants, and the inner surface of the tubular carrier is a good habitat for low-adhesion microorganisms or higher microorganisms because the shear force of the fluid is weak.
이때 튜브형 내부를 나누어놓은 것이 상기 원통형 혹은 다각형 형태보다 외표면적이 훨씬 크다. 그러나 그 크기가 작으면 내부면의 코팅이 잘 되지 않으므로 내부가 나뉜 형태를 사용할 때는 그 직경이 20mm이상인 것을 사용하는 것이 좋다. 이같은 형태의 튜브형 지지체는 고분자 압출기를 사용하면 대량 제조가능하다.At this time, the inner surface of the tubular partition is much larger than the cylindrical or polygonal shape. However, if the size is small, the coating on the inner surface is not good, so when using the divided form, it is better to use the diameter of 20mm or more. Tubular supports of this type can be manufactured in large quantities using polymer extruders.
또한 지지체로서 튜브형대신 비표면적과 미생물 보유능력이 큰 링형, 그물형, 펜스형 혹은 빗형등을 사용하면 오염물질 제거효율이 보다 개선된다.나아가 기존의 충진탑등에 사용되는 복잡한 고분자 수지, 예를 들어 Pall ring류, Saddle형등도 사용가능하다.In addition, the use of ring, mesh, fence, or comb, which has a large surface area and microbial retention capacity, as a support, improves the removal efficiency of contaminants. In addition, complex polymer resins used in conventional packing towers, for example, Pall rings and saddles are also available.
상기와 같은 지지체에 접착제를 매개로 하여 활성무기재료 분말을 코팅한다.The active inorganic material powder is coated on the support as above through an adhesive.
상기 활성 무기재료는 분말상의 점토류, 제강 슬래그, 분코크스, 활성탄, 화산재, 연소재로 이루어진 그룹으로부터 선택된 2종 이상의 무기재료를 사용할 수 있으며, 여기서 점토류로는 제올라이트, 질석, 석회석, 규조토, 고령토, 옹기토, 장석, 차지토, 활석등을 들 수 있다. 이때 상기 재료들은 100mesh이상으로 사용하는 것이 본 발명의 방법에 의해 제조하기에 바람직하다.The active inorganic material may be two or more inorganic materials selected from the group consisting of powdery clay, steel slag, powdered coke, activated carbon, volcanic ash, and combustion materials, wherein the clays include zeolite, vermiculite, limestone, diatomaceous earth, Kaolin, Onggi, Feldspar, Charged Earth and Talc. At this time, it is preferable to use the materials of 100mesh or more to prepare by the method of the present invention.
이중에서도 제올라이트, 제강 슬래그의 주 활성 물질에 코크스 및 활성탄중 1종 이상을 첨가하고, 여기에 임의로 화산재, 소각재, 질석, 석회석, 규조토, 고령토, 옹기토, 장석, 차지토, 활석등의 기타 활성 물질을 첨가하여 제조한 담체가 우수한 성능을 갖는다.Among them, at least one of coke and activated carbon is added to the main active materials of zeolite and steel slag, and optionally, other activities such as volcanic ash, incineration ash, vermiculite, limestone, diatomaceous earth, kaolin, ong soil, feldspar, charge clay, talc, etc. Carriers prepared by the addition of materials have excellent performance.
이중에서 제올라이트는 암모니아에 대한 이온교환능력이 뛰어난 물질로서 중량%로 20∼80%를 사용하는 것이 바람직하며, 30∼70%를 사용하는 것이 보다 바람직하다. 이때 20%이하에서는 순간적인 암모니아 쇼크 부하에 대한 완충 능력이 떨어지며, 80%이상에서는 유기물 제거능력이 떨어지는등 담체성능의 저하를 가져온다.Among them, zeolite is preferably a material having excellent ion exchange ability against ammonia, 20 to 80% by weight, more preferably 30 to 70%. At this time, the buffering capacity against instantaneous ammonia shock load drops below 20%, and the ability to remove organic matters falls below 80%, resulting in a decrease in carrier performance.
상기 제강 슬래그는 철 함량이 25% 정도이므로 철이 미생물의 호흡 작용을 증진함으로써 호기성 미생물의 활성을 증진하는 역할을 하며, 미생물 담체 제조시 담체의 강도를 증가시킬 수 있다. 그리고 제강 슬래그는 Pb, Cr등과 같은 중금속에대한 흡착능력이 있고 CaO의 부분 용출에 의한 인의 제거가 가능하며, Mg이온의 용출에 따른 미생물의 활성을 기대할 수 있다.Since the steelmaking slag has an iron content of about 25%, iron plays a role of enhancing the activity of aerobic microorganisms by promoting the respiratory action of microorganisms, and may increase the strength of the carrier when preparing a microbial carrier. Steelmaking slag has the ability to adsorb heavy metals such as Pb, Cr, etc., it is possible to remove phosphorus by partial elution of CaO, and microbial activity can be expected by the elution of Mg ion.
상기 제강 슬래그는 중량%로 10∼60%로 사용되는 것이 바람직하며, 15∼40%를 사용하는 것이 보다 바람직하다. 이때 10%이하에서는 첨가량이 적어 상기한 바와 같은 효과를 적절하게 얻을 수 없으며, 60%이상에서는 과량 사용을 인한 담체성능 향상을 기대할 수 없다.The steelmaking slag is preferably used in an amount of 10 to 60% by weight, more preferably 15 to 40%. At this time, the addition amount is less than 10% can not adequately obtain the effects as described above, and at 60% or more can not be expected to improve the carrier performance due to the excessive use.
또한 코크스의 경우에는 활성탄에 비하여 비표면적은 작지만 충분한 오염물질 흡착 능력을 보유하고 있으며, 유입원수 부재시 카본 공급원으로서의 역할도 겸할 수 있다. 이에 반하여 활성탄은 비표면적이 크고, 물리/화학적으로 안정하며 미생물막이 얇게 형성되고 슬러지 발생량이 작은 잇점이 있다.In addition, coke has a small specific surface area compared to activated carbon, but has sufficient capacity to adsorb contaminants, and can also serve as a carbon source in the absence of influent water. On the other hand, activated carbon has advantages of large specific surface area, physical / chemical stability, thin microbial film formation and small sludge generation amount.
본 발명의 방법에는 코크스와 활성탄중 1종 이상을 첨가할 수 있으며, 그 사용량은 중량%로 5∼50%이하를 사용하는 것이 바람직하며, 5∼30%를 사용하는 것이 보다 바람직하다. 이때 5%이하에서는 첨가량이 너무 작아 제조된 결과 담체가 개선된 성능을 보이지 못하며, 50%이상에서는 과량 첨가에 의한 담체성능 향상을 기대하기 어렵다.In the method of the present invention, one or more kinds of coke and activated carbon may be added, and the amount of use thereof is preferably 5 to 50% or less, and more preferably 5 to 30% by weight. At this time, the addition amount is too small at 5% or less, and as a result, the carrier does not show the improved performance, and at 50% or more, it is difficult to expect the carrier performance improvement by the excessive addition.
기타 활성 물질중 화산재 혹은 소각재는 카본 공급원으로서 미생물이 이들 카본을 분해하여 미생물을 증식하고 이산화탄소 형태로 제거된다. 또한 규조토는 규조가 퇴적하여 형성된 광물로서 가볍고 산소와 미생물에 친화적이면서 비교적 넓은 비표면적에서도 기공의 크기가 커서 미생물의 흡착/생장에 유리하다. 나머지 물질들은 미생물에 Mg, Si, Fe와 같은 무기 영양분을 공급하는 공급원으로서 사용된다.Among other active substances, volcanic ash or incineration ash is a carbon source, which microorganisms break down these carbons to multiply the microorganisms and remove them in the form of carbon dioxide. In addition, diatomaceous earth is a mineral formed by the deposition of diatoms, which is light, friendly to oxygen and microorganisms, and has a large pore size at a relatively large specific surface area, which is advantageous for adsorption / growth of microorganisms. The remaining materials are used as sources to supply microorganisms with inorganic nutrients such as Mg, Si and Fe.
이들 기타 활성 물질이 첨가되는 경우에는 활성무기재료 전체 총중량을 기준으로 30%이하, 보다 바람직하게는 5∼15%를 첨가하는 것이 좋다. 이때 30%이상에서는 미생물 담체로서의 성능개선효과가 없다.When these other active substances are added, it is preferable to add 30% or less, more preferably 5 to 15% based on the total weight of the active inorganic material. At this time, more than 30% does not improve the performance as a microbial carrier.
상기한 바에 따르면, 활성무기재료는 중량%로According to the above, the active inorganic material is
(a)제올라이트 20∼80%, (b)제강 슬래그 10∼60% 및 (c)코크스 및 활성탄으로 이루어지는 그룹으로부터 선택된 1종 이상 5∼50%에, (d)그 잔부로서 화산재, 소각재, 질석, 석회석, 규조토, 고령토, 옹기토, 장석, 차지토, 활석등으로부터 선택된 최소 1종 30%이하를 첨가하여 이루어지는 것이 바람직하다.(a) 20 to 80% of zeolite, (b) 10 to 60% of steelmaking slag, and (c) at least one of 5 to 50% selected from the group consisting of coke and activated carbon, and (d) volcanic ash, incineration ash, vermiculite as its balance. It is preferable to add at least 30% or less selected from limestone, diatomaceous earth, kaolin, onggi earth, feldspar, charge earth, talc and the like.
보다 바람직하게는 활성무기재료가 중량%로 (a)제올라이트 30∼70%, (b)제강 슬래그 15∼40% 및 (c)코크스 및 활성탄으로 이루어지는 그룹으로부터 선택된 1종 이상 5∼30%에, (d)그 잔부로서 화산재, 소각재, 질석, 석회석, 규조토, 고령토, 옹기토, 장석, 차지토, 활석등으로부터 선택된 최소 1종 5∼15%를 첨가하여 이루어지는 것이다.More preferably, the active inorganic material comprises at least one selected from the group consisting of (a) 30 to 70% zeolite, (b) steel slag 15 to 40% and (c) coke and activated carbon in weight%, (d) The remainder is added by adding at least 5 to 15% of at least one selected from volcanic ash, incineration ash, vermiculite, limestone, diatomaceous earth, kaolin, onggi soil, feldspar, charge clay and talc.
또한 상기 접착제는 폴리우레탄 수지, 에폭시 수지, 페놀 수지 및 아크릴 수지등의 고분자 유기 접착제, 실리카졸, 물유리 및 세라믹 접착제등의 무기 접착제를 단독으로 혹은 혼합하여 슬러리 상태로 사용할 수 있다.In addition, the adhesive may be used in the form of a slurry alone or mixed with inorganic adhesives such as polymer organic adhesives such as polyurethane resins, epoxy resins, phenol resins and acrylic resins, silica sol, water glass and ceramic adhesives.
이때 상기 지지체에 대한 접착제와 활성무기재료 분말의 적용 순서는 지지체상에 접착제와 무기재료 분말을 순차적으로 코팅한 후 소성할 수도 있고 접착제와 무기재료 분말을 혼합한 후 슬러리 상태로 지지체에 코팅할 수도 있다. 상기 소성 횟수는 1회 소성뿐만 아니라 지지체와 접착제간의 결합력을 높이기 위해서 2회이상 소성할 수도 있다. 또한 이때 코팅 두께는 각각 5mm이하로 제조되는 것이 성능 및 경제성면에서 유리하다.In this case, the application order of the adhesive and the active inorganic material powder to the support may be coated after the coating of the adhesive and the inorganic material powder on the support in sequence, or may be coated on the support in a slurry state after mixing the adhesive and the inorganic material powder. have. The firing frequency may be fired two or more times to increase the bonding force between the support and the adhesive as well as the firing once. In this case, the coating thickness is 5 mm or less, respectively, is advantageous in terms of performance and economics.
또한 활성무기재료와 접착제를 혼합하여 슬러리 상태로 코팅할 때는 활성무기재료 대 접착제를 60~95:40~5의 중량비로 사용하는 것이 바람직하다. 이때 접착제의 양이 5%미만으로 사용하면, 상기 무기재료의 일부가 물에 풀려나가며, 40%를 초과하면 담체의 흡착력이나 미생물 부착능력에 악영향을 미칠 뿐만 아니라 접착제의 과다 사용으로 인하여 담체 재료비가 비싼 문제가 있다.In addition, when coating the slurry by mixing the active inorganic material and the adhesive, it is preferable to use the active inorganic material to the adhesive in a weight ratio of 60 to 95:40 to 5. At this time, if the amount of the adhesive is less than 5%, a part of the inorganic material is released in water, and if the amount exceeds 40%, the carrier material cost is increased due to the excessive use of the adhesive as well as adversely affecting the adsorption capacity of the carrier or the ability to adhere to microorganisms. There is an expensive problem.
이때 소성 조건은 400℃이하에서 10분∼10시간동안 소성하는 것이 바람직하며, 이때에는 유기 및 무기 접착제를 혼합한 다음 소성하여도 좋다. 또한 무기 접착제의 경우에는 1200℃에서 10분이상 고온 소성하여도 바람직한 결과를 얻을 수 있다. 상기 온도 및 시간 범위는 접착제를 경화시키고, 용매를 휘발시키는데 필요한 범위이다.At this time, the firing conditions are preferably baked for 10 minutes to 10 hours at 400 ℃ or less, in which case the organic and inorganic adhesive may be mixed and then fired. In the case of the inorganic adhesive, even if it is calcined at a high temperature of 10 minutes or more at 1200 ° C, preferable results can be obtained. The temperature and time ranges are those necessary to cure the adhesive and to volatilize the solvent.
또한 상기 활성무기재료를 그대로 소성하더라도 활성물질의 미세기공에 의한 충분한 비표면적으로 미생물을 고농도로 유지할 수 있으나, 활성무기재료에 기공조절제 거래기공 생성으로 인한 미생물 담체 성능을 조금 더 향상시킬 수 있다.In addition, even when the active inorganic material is fired as it is, microorganisms can be maintained at a high concentration with sufficient specific surface area due to the micropores of the active material, but the microorganism carrier performance due to the generation of pore regulators and pores in the active inorganic material can be further improved.
상기 기공조절제는 암모늄 카보네이트, 암모늄 나이트레이트등의 무기염류, 에틸렌글리콜, 셀룰로오즈, 녹말등의 유기 고분자 물질, 혹은 파우더 타입의 분쇄된 톱밥을 들 수 있다. 또한 그 사용량은 상기 활성무기재료와 접착제 혼합물의 전체 중량을 기준으로 30%이하를 사용하는 것이 좋다. 30%를 초과하면, 강도가 불량할 뿐만 아니라 경제적인 면에서도 부적절하다.The pore regulator may include inorganic salts such as ammonium carbonate, ammonium nitrate, organic polymer such as ethylene glycol, cellulose, starch, or powdered sawdust. In addition, the amount is preferably 30% or less based on the total weight of the active inorganic material and the adhesive mixture. If it exceeds 30%, not only the strength is poor, but also economically inadequate.
이렇게 제조된 미생물 담체는 기존의 구형이나 그래뉼 타입의 담체에 비해 훨씬 많은 비표면적과 미생물 보유능력을 가지고 있다.The microbial carrier thus prepared has much more specific surface area and microbial retention capacity than the conventional spherical or granular carrier.
그리고 튜브형 담체 안쪽면에 유체흐름에 대한 영향이 적은 관계로 비교적 부착능력이 떨어지는 미생물, 고등미생물등이 서식할 수 있을 뿐만 아니라 기존의 성형 담체보다 소량의 활성무기재료와 접착제를 사용하면서 외표면적은 큰 잇점이 있다.In addition, due to the low influence of fluid flow on the inner surface of the tubular carrier, microorganisms and microorganisms having relatively low adhesion ability can be inhabited, and the outer surface area is reduced by using a smaller amount of active inorganic materials and adhesives than conventional molded carriers. There is a big advantage.
상기 담체는 그대로 충진된 베드 타입으로 충진하거나 혹은 새장같은 케이지(cage)에 100부피%미만으로 넣고 정화조나 오/폐수 처리장에 투입할 수 있다. 나아가 고농도 유기성 폐수나 난분해성 폐수를 처리하기에 효과적이며, 휘발성유기 화합물(VOC), 혹은 황화수소 및 암모니아와 같은 악취 가스를 제거하는 바이오필터로도 적용가능하다.The carrier may be filled in a bed type filled as it is, or put in a cage such as a cage at less than 100% by volume, and may be added to a septic tank or wastewater treatment plant. Furthermore, it is effective for treating high concentration organic wastewater or hardly degradable wastewater, and is applicable to volatile organic compounds (VOC) or biofilters that remove odorous gases such as hydrogen sulfide and ammonia.
이하, 실시예를 통하여 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
<실시예 1-합성 폐수 처리>Example 1 Synthetic Wastewater Treatment
발명예 1Inventive Example 1
직경이 7mm이고 길이가 8mm인 튜브형 플라스틱 빨대에 먼저 폴리우레탄수지로 코팅한 후 제올라이트 60중량%, 제강 슬래그 20중량%, 활성탄 10중량%, 규조토 10중량%(100mesh이상의 분말상)로된 혼합활성물질을 뿌려 1mm내외의 두께로 코팅하였다. 그런 다음 80℃에서 20분간 경화시켰다.A tubular plastic straw with a diameter of 7 mm and a length of 8 mm was first coated with a polyurethane resin, followed by 60% by weight of zeolite, 20% by weight of steel slag, 10% by weight of activated carbon, and 10% by weight of diatomaceous earth (powder form of 100mesh or more). Sprayed and coated to a thickness of about 1mm. Then cured for 20 minutes at 80 ℃.
상기 담체를 1900cm3폭기조 반응기(상향류 고정층 반응기[충진된 베드 타입])내에 30부피% 충진한 다음, 합성폐수(COD 250ppm, NH4 +-N 25ppm)를 5시간동안 체류시켰다. 이때 COD제거율은 96%였으며, 질산화율은 84%였다.The carrier was charged with 30% by volume in a 1900 cm 3 aeration tank reactor (upflow fixed bed reactor [filled bed type]), and then the synthetic wastewater (COD 250 ppm, NH 4 + -N 25 ppm) was held for 5 hours. The COD removal rate was 96% and the nitrification rate was 84%.
발명예 2Inventive Example 2
2차 소성을 120℃에서 20분간 수행한 것을 제외하고는 발명예 1과 동일한 방법으로 담체를 제조하였다. COD제거율 및 질산화율을 측정한 결과, 각각 97%, 85%였다.A carrier was prepared in the same manner as in Example 1 except that the secondary firing was performed at 120 ° C. for 20 minutes. The COD removal rate and nitrification rate were measured and found to be 97% and 85%, respectively.
발명예 3Inventive Example 3
합성 폐수에 4시간동안 체류시킨 것을 제외하고는 발명예 1과 동일한 방법을 수행하였다. 4시간후 측정한 COD제거율은 94%, 질산화율은 81%였다.The same method as in Inventive Example 1 was conducted except that the mixture was kept in synthetic wastewater for 4 hours. After 4 hours, the COD removal rate was 94% and the nitrification rate was 81%.
발명예 4Inventive Example 4
합성 폐수에 3시간동안 체류시킨 것을 제외하고는 발명예 3과 동일한 방법을 수행하였다. 3시간후 측정된 COD제거율은 87%, 질산화율은 72%였다.The same method as in Inventive Example 3 was conducted except that the mixture was kept in synthetic wastewater for 3 hours. After 3 hours, the COD removal rate was 87% and nitrification rate was 72%.
발명예 5Inventive Example 5
접착제로 실리카졸을 사용하고, 120℃에서 30분간 소성한 것을 제외하고는 발명예 1과 동일한 방법을 수행한 다음 COD제거율과 질산화율을 측정한 결과 각각 95%, 87%였다.Silica sol was used as the adhesive, and the same method as inventive example 1 was performed except that the sol was calcined at 120 ° C. for 30 minutes, and the COD removal rate and nitrification rate were 95% and 87%, respectively.
발명예 6Inventive Example 6
합성폐수(COD 300ppm, NH4 +-N 30ppm)내에서 6시간동안 체류시킨 것을 제외하고는 상기 발명예 1과 동일한 방법을 수행하였다. 6시간후 측정된 COD제거율은 93%, 질산화율은 79%였다.The same method as in Inventive Example 1 was carried out except that the mixture was kept in synthetic wastewater (COD 300ppm, NH 4 + -N 30ppm) for 6 hours. After 6 hours, the COD removal rate was 93% and the nitrification rate was 79%.
발명예 7Inventive Example 7
제올라이트 50중량%, 제강 슬래그 30중량%, 규조토 10중량% 및 활성탄 10중량%로 사용한 것을 제외하고는 발명예 1과 동일한 방법을 수행한 다음 COD 제거율과 질산화율을 측정한 결과, 각각 95%, 85%였다.Except for using 50% zeolite, 30% steelmaking slag, 10% by weight of diatomaceous earth and 10% by weight of activated carbon, the same method as inventive example 1 was carried out, and then the COD removal rate and nitrification rate were measured. Was%.
발명예 8Inventive Example 8
제올라이트 50중량%, 제강 슬래그 25중량%, 코크스 15중량%, 활성탄 5중량% 및 규조토 5중량%를 사용하고 120℃에서 20분간 소성한 것을 제외하고는 발명예 1과 동일한 방법을 수행한 다음 COD 제거율과 질산화율을 측정한 결과, 각각 97%, 86%였다.The same procedure as in Inventive Example 1 was carried out except that 50 wt% zeolite, 25 wt% steelmaking slag, 15 wt% coke, 5 wt% activated carbon, and 5 wt% diatomaceous earth were baked at 120 ° C. for 20 minutes. The removal rate and nitrification rate were measured to be 97% and 86%, respectively.
<비교예 1>Comparative Example 1
폴리우레탄 다공성 스폰지 담체를 이용하여 발명예 1에 기재된 폭기조에서 실험한 결과, COD 제거율과 질산화율은 각각 89%, 75%였다.In the aeration tank described in Inventive Example 1 using a polyurethane porous sponge carrier, the COD removal rate and nitrification rate were 89% and 75%, respectively.
<비교예 2>Comparative Example 2
실시예 1에서 사용한 활성담지 물질 조성을 사용하여 직경 7mm이고 길이 8mm인 그래뉼 타입의 담체를 제조한 다음 발명예 1과 동일한 실험을 반복한 결과, COD제거율은 92%였으며, 질산화율은 80%였다.Using the active support material composition used in Example 1 to prepare a granule-type carrier having a diameter of 7 mm and a length of 8 mm, the same experiment as in Example 1 was repeated. The COD removal rate was 92% and the nitrification rate was 80%.
<비교예 3>Comparative Example 3
상기 실시예 1에서 사용한 활성무기재료를 이용하여 직경이 8∼9mm인 구형 타입의 담체를 제조한 다음 발명예 1과 동일한 실험을 반복한 결과, COD 제거율은 93%였으며, 질산화율은 81%였다.A spherical carrier having a diameter of 8 to 9 mm was prepared using the active inorganic material used in Example 1, and the same experiment as in Example 1 was repeated. The COD removal rate was 93% and the nitrification rate was 81%.
<비교예 4><Comparative Example 4>
활성무기재료로서 제올라이트 10중량% 및 활성탄 90중량%를 사용한 것을 제외하고는 발명예 1과 동일한 실험을 반복한 결과, COD 제거율은 93%였으며, 질산화율은 80%였다.The same experiment as inventive example 1 was repeated except that 10 wt% zeolite and 90 wt% activated carbon were used as the active inorganic material. As a result, the COD removal rate was 93% and the nitrification rate was 80%.
<비교예 5>Comparative Example 5
활성무기재료로서 제올라이트 100중량%를 사용한 것을 제외하고는 발명예 1과 동일한 실험을 반복한 결과, COD 제거율은 91%였으며, 질산화율은 85%였다.The same experiment as in Example 1 was repeated except that 100 wt% of zeolite was used as the active inorganic material. The COD removal rate was 91% and the nitrification rate was 85%.
이들을 조성, 충진율, 담체 형태 및 처리효율을 대비하기 위하여 정리하면 하기표 1과 같다.These are summarized in Table 1 below in order to prepare the composition, filling rate, carrier form and treatment efficiency.
상기표 1a 및 1b에서 보듯이, 본 발명의 방법에 의해 튜브형 담체를 지지체로 사용하여 합성 폐수를 4시간 처리한 경우(발명예 3)와 본 발명과 동일한 활성무기재료 조성을 사용하긴 하였으나, 지지체, 특히 튜브형 지지체를 별도로 사용하지 않고 합성 폐수를 5시간 처리한 경우(비교예 2 및 3)의 처리 효율이 유사하므로 본 발명에 의해 제조된 담체가 보다 고활성이라는 것을 확인할 수 있다.As shown in Tables 1a and 1b, the same active inorganic material composition as in the present invention was used when the synthetic wastewater was treated for 4 hours by using the tubular carrier as a support by the method of the present invention (Invention Example 3), but the support, In particular, since the treatment efficiency is similar when the synthetic wastewater is treated for 5 hours without using the tubular support separately (Comparative Examples 2 and 3), it can be confirmed that the carrier prepared by the present invention is more active.
이는 또한 COD 250ppm, NH4 +-N 25ppm의 합성 폐수를 5시간동안 합성 폐수를 처리한 비교예 2 및 3이 활성무기재료로서 COD 300ppm, NH4 +-N 30ppm의 보다 난분해성 합성 폐수를 6시간 처리하는 경우(발명예 6)과 그 처리 결과가 유사한 것으로부터도 뒷받침되는 것이다.In addition, COD 250ppm, NH 4 + -N 25ppm synthetic wastewater treated with synthetic wastewater for 5 hours, Comparative Examples 2 and 3 are active inorganic materials COD 300ppm, NH 4 + -N 30ppm more difficult to decompose synthetic wastewater 6 It is also supported by the fact that the time processing (Invention Example 6) and the processing result are similar.
나아가 활성무기재료로서 본 발명의 조성 범위를 벗어나는 경우(비교예 4 및 5)에서는 COD 제거율 및 질산화율이 모두 불량함을 확인할 수 있었다.Further, when the active inorganic material is outside the composition range of the present invention (Comparative Examples 4 and 5), it was confirmed that both the COD removal rate and the nitrification rate were poor.
<실시예 2-고농도 난분해성 폐수 처리>Example 2-Highly Concentrated Hardly Degradable Wastewater Treatment
발명예 9Inventive Example 9
담체를 60부피% 충진하고, 고농도 난분해성 폐수(COD 1200ppm[난분해성 COD=350ppm], NH4 +-N 150ppm, CN-5ppm)에 10시간동안 체류시킨 것을 제외하고는 발명예 1과 동일한 방법을 반복하였다. 10시간후 측정된 COD제거율은 84%, 질산화율은 67%였다.The same method as inventive example 1, except that the carrier was filled with 60% by volume and kept in high concentration hardly degradable wastewater (COD 1200ppm [hardly decomposable COD = 350ppm], NH 4 + -N 150ppm, CN - 5ppm) for 10 hours. Was repeated. After 10 hours, the COD removal rate was 84% and the nitrification rate was 67%.
발명예 10Inventive Example 10
상기 발명예 8에서 제조한 담체를 사용하여 발명예 9와 동일한 실험을 한 결과, 측정된 COD 제거율은 86%, 질산화율은 67%이었다.As a result of the same experiment as that of Example 9 using the carrier prepared in Example 8, the measured COD removal rate was 86%, and the nitrification rate was 67%.
<비교예 6>Comparative Example 6
상기 비교예 2에서 제조한 그래뉼 타입 담체를 이용하여 발명예 9와 동일한 실험을 한 결과, COD 제거율은 75%였으며, 질산화율은 53%였다.Using the granule-type carrier prepared in Comparative Example 2, the same experiment as in Example 9 showed that the COD removal rate was 75% and the nitrification rate was 53%.
이들을 조성, 충진율, 담체 형태 및 처리효율을 대비하기 위하여 정리하면하기표 2와 같다.These are summarized in Table 2 in order to prepare the composition, filling rate, carrier form and treatment efficiency.
상기표 2에서 보듯이, 본 발명의 방법에 의해 제조된 담체가 고활성 난분해성 폐수에 대한 처리 효율이 훨씬 우수함을 확인할 수 있었다.As shown in Table 2, it was confirmed that the carrier prepared by the method of the present invention is much better treatment efficiency for high activity hardly degradable wastewater.
<실시예 3-악취가스 처리>Example 3 Odor Gas Treatment
발명예 11Inventive Example 11
상기 발명예 2에서 만든 담체를 이용하여 120mm x 1000mm 크기의 컬럼형 반응기에 50부피% 충진한 다음 황화수소 가스 20ppm을 5 L/min로 흘리고 그 제거율을 계산한 결과, 99%였다.50 vol.% Of a 120 mm × 1000 mm columnar reactor was charged using the carrier prepared in Inventive Example 2, 20 ppm of hydrogen sulfide gas was flowed at 5 L / min, and the removal rate thereof was 99%.
발명예 12Inventive Example 12
상기 발명예 5에서 만든 담체를 70% 충진하고 암모니아 가스 20ppm을 10 L/min로 흘린 것을 제외하고는 발명예 8과 동일한 실험을 반복한 결과, 제거율은99%였다.The same experiment as in Example 8 was repeated except that 70% of the support prepared in Inventive Example 5 was charged and 20 ppm of ammonia gas was flowed at 10 L / min. The removal rate was 99%.
<비교예 7>Comparative Example 7
직경이 4∼6mm인 발포플라스틱(스티로폼)에 수용성 에폭시 수지를 코팅한 후, 발명예 1과 같은 성분비의 활성물질을 볼 코우터(ball coater)를 사용하여 코팅하였다.After coating a water-soluble epoxy resin on a foamed plastic (styrofoam) having a diameter of 4 to 6mm, the active material having the same component ratio as in Inventive Example 1 was coated using a ball coater.
그런 다음 110℃에서 20분간 소성하여 경화시킨 다음 발포플라스틱이 약3/4로 찌그러진 중공볼 형태의 미생물 담체를 제조하였다. 제조된 담체의 비중은 0.6∼0.8g/cm3이었다.Then, the resultant was cured by firing at 110 ° C. for 20 minutes to prepare a microbial carrier having a hollow ball shape in which the foamed plastic was crushed to about 3/4. The specific gravity of the prepared carrier was 0.6 to 0.8 g / cm 3 .
이와 같이 제조된 담체를 상기 발명예 11 및 발명예 12와 동일 조건하에 실험한 결과, 각각의 제거율은 황화수소의 경우에는 97∼99% 그리고 암모니아의 경우에는 98∼99%이었다.The carrier thus prepared was tested under the same conditions as those of Inventive Example 11 and Inventive Example 12, and the removal rates were 97 to 99% for hydrogen sulfide and 98 to 99% for ammonia.
이들을 조성, 충진율, 담체 형태 및 처리효율을 대비하기 위하여 정리하면 하기표 3과 같다.These are summarized in Table 3 in order to prepare the composition, filling rate, carrier form and treatment efficiency.
상기표 3에서 보듯이, 지지체로서 외표면적이 보다 작은 발포 플라스틱을 사용한 경우에 악취가스 제거율은 약간 떨어지는 것을 확인할 수 있었다. 또한 이는 제거하려는 악취가스의 유량이 5ℓ/min인 경우에 실험한 결과로서, 보다 극한 상태에서는 악취가스 제거율의 차이가 현저하리라는 것을 예측할 수 있다.As shown in Table 3, when the foamed plastic having a smaller outer surface area was used as the support, it was confirmed that the odor gas removal rate was slightly decreased. In addition, as a result of the experiment when the flow rate of the malodorous gas to be removed is 5ℓ / min, it can be expected that the difference in the odor gas removal rate will be remarkable in the more extreme state.
<실시예 4-외표면적이 개선된 지지체를 사용한 경우>Example 4-Using Support with Improved External Surface Area
발명예 13Inventive Example 13
수용성 에폭시 수지를 이용하여 내부가 십자형인 튜브(20mm×25mm)에 코팅한 다음 100℃에서 15분동안 경화시키고, 담체 충진율을 50%로 증가시킨 것을 제외하고는 발명예 1과 동일한 방법을 수행한 다음, COD제거율 및 질산화율을 측정한 결과 각각 96%, 83%였다.The same method as inventive example 1 was carried out except that the coating was coated on a cross-shaped tube (20 mm × 25 mm) using a water-soluble epoxy resin and then cured at 100 ° C. for 15 minutes, and the carrier filling rate was increased to 50%. Next, as a result of measuring the COD removal rate and nitrification rate, it was 96% and 83%, respectively.
발명예 14Inventive Example 14
암모늄 카보네이트 20중량%을 활성무기재료와 혼합한 것을 제외하고는 발명예 13과 동일한 방법을 수행한 다음, 측정한 COD제거율과 질산화율은 각각 96%, 85%였다.Except that 20% by weight of ammonium carbonate was mixed with the active inorganic material, the same method as in Example 13 was carried out, and the measured COD removal rate and nitrification rate were 96% and 85%, respectively.
발명예 15Inventive Example 15
상기 발명예 13에서 제조한 담체를 컬럼형 폭기조(100mm×600mm)에 가득 충진한 다음, 3시간동안 체류시킨 것을 제외하고는 발명예 1과 동일한 방법을 수행한 다음, 측정한 COD 제거율과 질산화율은 각각 97%, 85%였다.After filling the carrier prepared in Example 13 with a column-type aeration tank (100mm × 600mm) and then staying for 3 hours, the same method as inventive example 1 was performed, and the measured COD removal rate and nitrification rate were 97% and 85%, respectively.
이들을 조성, 충진율, 담체 형태 및 처리 효율을 대비하기 위하여 정리하면, 하기표 4와 같다.To summarize these in order to prepare the composition, filling rate, carrier form and treatment efficiency, it is shown in Table 4.
상기표 4에서 보듯이, 본 발명의 방법에 의해 고정상 담체를 제조한 결과 폐수 처리 효율은 보다 개선되었으며, 보다 큰 사이즈의 폭기조를 사용한 경우(발명예 15)에서도 단시간에 보다 우수한 효율을 얻을 수 있음이 확인되므로 내부가 나뉜 튜브 형태의 지지체를 사용하는 경우에 그 외표면적의 개선으로 인하여 보다 현저한 처리 효율을 얻을 수 있음을 알 수 있다.As shown in Table 4, as a result of the production of the fixed bed carrier by the method of the present invention, the wastewater treatment efficiency is more improved, and even when a larger size aeration tank is used (invention example 15), better efficiency can be obtained in a short time. Since it is confirmed that the use of the tube-shaped support divided inside, it can be seen that due to the improvement of the outer surface area, more significant treatment efficiency can be obtained.
본 발명의 제조 방법에 의해 제조된 무기재료 피복형 미생물 담체들의 잇점은 다음과 같다.Advantages of the inorganic material-coated microbial carriers produced by the production method of the present invention are as follows.
(1)기존의 담체들보다 외표면적이 넓어 미생물이 고농도로 증식되므로 오염 물질의 제어 능력이 뛰어나 고농도 유기성 폐수 또는 난분해성 폐수처리시 적용가능하다.(1) Because the outer surface area is wider than the existing carriers, the microorganisms grow at a high concentration, so the control of pollutants is excellent, and thus it is applicable to the treatment of high concentration organic wastewater or hardly degradable wastewater.
(2)또한 재질이 미생물 친화적이고, 미생물과 점토 무기재료계와의 결합력이 개선되므로 유량/농도 부하변동에도 안정적이다.(2) The material is microorganism friendly, and the binding force between microorganisms and clay inorganic materials is improved, so it is stable to flow / concentration load fluctuations.
(3)종래 고분자 담체는 미생물이 많이 붙어 슬러지 발생량은 많은 반면 부착 강도가 약하여 농도, 유량이 변할 때 탈리하기 쉬었으나, 본 발명의 방법에 의해 제조된 담체는 미생물이 얇게 부착되면서 부착 강도는 개선되어 활성이 우수하다.(3) Conventional polymer carriers have a large amount of sludge due to a large number of microorganisms, but the adhesion strength is weak, so that it is easy to detach when the concentration and flow rate are changed. However, the carrier prepared by the method of the present invention has improved adhesion strength as the microorganisms are thinly attached. It is excellent in activity.
(4)고정형 담체의 문제점인 슬러지 막힘현상을 최소화할 수 있다.(4) The sludge clogging phenomenon which is a problem of the fixed carrier can be minimized.
(5)오/폐수 처리시, 슬러지 처리시 혹은 악취가 발생하는 화학공장 등에서 악취제거시 바이오필터로서 설치가능하다.(5) It can be installed as a biofilter for odor removal in wastewater treatment, sludge treatment, or chemical plant where odor is generated.
상기한 바에 따르면, 외표면적이 넓은 튜브형 지지체를 사용함으로써 피복층 내/외 표면에 미생물 서식 공간을 증가시켜 오/폐수 처리시 난분해성이나 고농도폐수에도 적용가능하고, VOC(휘발성 유기 화합물) 혹은 황화수소 및 암모니아와 같은 악취가스를 제거하는 바이오필터용 미생물 담체로도 적용가능하다.According to the above, by using a tubular support having a large outer surface area, the microbial habitat space is increased on the inner and outer surfaces of the coating layer, so that it is also applicable to hardly decomposable or high concentration wastewater when treating sewage / wastewater, VOC (volatile organic compound) or hydrogen sulfide It is also applicable to microbial carriers for biofilters that remove odorous gases such as ammonia.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000001461A KR100336820B1 (en) | 2000-01-13 | 2000-01-13 | A method for manufacturing fixed tubular type biocarrier and a fixed biocarrier for biological wastewater treatment and offensive odor gas removal manufactured using the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000001461A KR100336820B1 (en) | 2000-01-13 | 2000-01-13 | A method for manufacturing fixed tubular type biocarrier and a fixed biocarrier for biological wastewater treatment and offensive odor gas removal manufactured using the method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010073244A KR20010073244A (en) | 2001-08-01 |
KR100336820B1 true KR100336820B1 (en) | 2002-05-16 |
Family
ID=19638227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000001461A KR100336820B1 (en) | 2000-01-13 | 2000-01-13 | A method for manufacturing fixed tubular type biocarrier and a fixed biocarrier for biological wastewater treatment and offensive odor gas removal manufactured using the method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100336820B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020054304A (en) * | 2002-06-18 | 2002-07-06 | 주식회사 홍익환경 | The composition and process that bio-filter'carrier maintain the moisture contents continuously for removing stink and volatile organic components |
KR101221620B1 (en) * | 2012-04-20 | 2013-01-14 | 김회진 | Board for treating water and environment friendly artificial wetland in downtown area using microorganism using the same |
RU2809073C1 (en) * | 2022-11-08 | 2023-12-06 | Общество с ограниченной ответственностью "Новые Технологии-Био" | Local wastewater treatment plant and its biofilter for wastewater treatment for use in local wastewater treatment plant |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100485265B1 (en) * | 2002-05-09 | 2005-04-27 | 주식회사 에코마이스터 | a membrane filter for water treatment |
KR100464247B1 (en) * | 2002-05-28 | 2005-01-03 | 한라산업개발 주식회사 | Coated Surface Compositions of hanging Bio-contactor made of mine Tailings for Sewage and Wastewater Teratment and its coating method |
KR100872353B1 (en) * | 2008-05-28 | 2008-12-05 | 주식회사두합크린텍 | Functional media for water purification and its manufacturing method |
KR101721209B1 (en) * | 2016-10-21 | 2017-03-31 | 주식회사 행복나무 | A cerami pellet for water purification |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990073116A (en) * | 1999-05-20 | 1999-10-05 | 정명화 | A method of manufacturing for specific gravity controlled fluidizing carrier for biological wastewater treatment |
JPH11347321A (en) * | 1998-06-03 | 1999-12-21 | Denso Corp | Filter element, manufacture thereof and bath water cleaning device |
KR100282211B1 (en) * | 1999-05-20 | 2001-02-15 | 양금모 | A method of producing for microbial support by low temperature-calcining for biological wastewater treatment |
KR100282212B1 (en) * | 1999-05-20 | 2001-02-15 | 양금모 | A preparation method of microbial media units for biological wastewater treatment |
KR100282210B1 (en) * | 1999-05-20 | 2001-02-15 | 양금모 | A method of manufacturing for microbial media module having honeycomb type |
-
2000
- 2000-01-13 KR KR1020000001461A patent/KR100336820B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11347321A (en) * | 1998-06-03 | 1999-12-21 | Denso Corp | Filter element, manufacture thereof and bath water cleaning device |
KR19990073116A (en) * | 1999-05-20 | 1999-10-05 | 정명화 | A method of manufacturing for specific gravity controlled fluidizing carrier for biological wastewater treatment |
KR100282211B1 (en) * | 1999-05-20 | 2001-02-15 | 양금모 | A method of producing for microbial support by low temperature-calcining for biological wastewater treatment |
KR100282212B1 (en) * | 1999-05-20 | 2001-02-15 | 양금모 | A preparation method of microbial media units for biological wastewater treatment |
KR100282210B1 (en) * | 1999-05-20 | 2001-02-15 | 양금모 | A method of manufacturing for microbial media module having honeycomb type |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020054304A (en) * | 2002-06-18 | 2002-07-06 | 주식회사 홍익환경 | The composition and process that bio-filter'carrier maintain the moisture contents continuously for removing stink and volatile organic components |
KR101221620B1 (en) * | 2012-04-20 | 2013-01-14 | 김회진 | Board for treating water and environment friendly artificial wetland in downtown area using microorganism using the same |
RU2809073C1 (en) * | 2022-11-08 | 2023-12-06 | Общество с ограниченной ответственностью "Новые Технологии-Био" | Local wastewater treatment plant and its biofilter for wastewater treatment for use in local wastewater treatment plant |
Also Published As
Publication number | Publication date |
---|---|
KR20010073244A (en) | 2001-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Loupasaki et al. | Attached growth systems for wastewater treatment in small and rural communities: a review | |
KR100282211B1 (en) | A method of producing for microbial support by low temperature-calcining for biological wastewater treatment | |
CN108658226A (en) | A kind of complex carrier and production method promoting short distance nitration startup and stable operation | |
KR100336820B1 (en) | A method for manufacturing fixed tubular type biocarrier and a fixed biocarrier for biological wastewater treatment and offensive odor gas removal manufactured using the method | |
CN105819759B (en) | It is a kind of to be used for the unburned filler of nitrogen and phosphorus in efficient process waste water | |
GB1579623A (en) | Filtration medium for the biological treatment of waste water | |
JPH0871414A (en) | Fluid treating agent composition | |
US6936446B2 (en) | Light weight medium for growing microorganisms | |
KR100434613B1 (en) | Multi-porous ceramic carrier for fixing microorganism on inner/outer surface thereof | |
KR100348159B1 (en) | A method of manufacturing egg shell type media for biological wastewater treatment and offensive odor removal | |
KR100282212B1 (en) | A preparation method of microbial media units for biological wastewater treatment | |
KR100477204B1 (en) | A microorganism media and method thereof | |
KR100433644B1 (en) | Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same | |
KR100277017B1 (en) | Media for wastewater treatment, manufacturing method thereof and wastewater treatment method using the media | |
JP2559592B2 (en) | Wastewater treatment biofilm carrier | |
KR100312257B1 (en) | A method of manufacturing for specific gravity controlled fluidizing carriers for biological wastewater treatment | |
CZ26296A3 (en) | Floating turbulent supporting material for biotechnological processes | |
KR20210085322A (en) | Media for Water Treatment Using Zeolite and Preparation Method thereof | |
KR100425245B1 (en) | Carrier For Immobilization Of Microorganisms Based On Scoria And The Preparation Method Thereof | |
WO2005108680A1 (en) | Water control structure, concrete block for water control construction, and method of water control construction therewith | |
KR100282210B1 (en) | A method of manufacturing for microbial media module having honeycomb type | |
JP2003071493A (en) | Composition for removing nitrate nitrogen, etc., and production method therefor | |
KR100991970B1 (en) | Advanced treatment process moving bio-media | |
CN1394819A (en) | Biological active filling material for treating water and controlling sewage and waste water | |
KR20030084809A (en) | Method for fabricating hybrid porous media for wastewater treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20000113 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20010828 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20020228 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20020502 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20020503 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |