KR20020052680A - Method of manufacturing a transistor in a semiconductor device - Google Patents
Method of manufacturing a transistor in a semiconductor device Download PDFInfo
- Publication number
- KR20020052680A KR20020052680A KR1020000082106A KR20000082106A KR20020052680A KR 20020052680 A KR20020052680 A KR 20020052680A KR 1020000082106 A KR1020000082106 A KR 1020000082106A KR 20000082106 A KR20000082106 A KR 20000082106A KR 20020052680 A KR20020052680 A KR 20020052680A
- Authority
- KR
- South Korea
- Prior art keywords
- thickness
- oxide film
- spacer
- etching
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 150000004767 nitrides Chemical class 0.000 claims abstract description 28
- 125000006850 spacer group Chemical group 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 20
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 238000005530 etching Methods 0.000 claims description 31
- 239000012535 impurity Substances 0.000 claims description 24
- 238000005468 ion implantation Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 14
- 229920005591 polysilicon Polymers 0.000 abstract description 14
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0212—Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/021—Manufacture or treatment using multiple gate spacer layers, e.g. bilayered sidewall spacers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
본 발명은 반도체 소자의 트랜지스터 제조 방법에 관한 것으로, 특히 게이트 전극 및 소오스/드레인 상에 실리사이드층을 형성하여 저항을 낮추어 전기적 특성을 향상시킬 수 있는 반도체 소자의 트랜지스터 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a transistor of a semiconductor device, and more particularly to a method of manufacturing a transistor of a semiconductor device that can improve the electrical properties by forming a silicide layer on the gate electrode and the source / drain to lower the resistance.
최근 들어, 디자인 룰이 0.15㎛이하인 반도체 소자의 트랜지스터에서 채널 길이가 짧아짐에 따라 소오스/드레인을 게이트 전극 쪽은 저농도로 형성하고, 나머지 부분은 고농도로 형성하는 LDD 구조로 형성한다. 이러한 구조의 소오스/드레인을 형성하기 위해서는 게이트 전극의 측벽에 게이트 스페이서를 형성해야 한다. 또한, 게이트 전극 및 소오소/드레인의 저항을 줄이기 위하여 표면에 실리사이드층을 형성한다.In recent years, as the channel length becomes shorter in the transistor of a semiconductor device having a design rule of 0.15 μm or less, the source / drain is formed in the LDD structure in which the gate electrode is formed at a low concentration and the remaining portions are formed at a high concentration. In order to form the source / drain of this structure, a gate spacer must be formed on the sidewall of the gate electrode. In addition, a silicide layer is formed on the surface in order to reduce the resistance of the gate electrode and the source / drain.
도 1a를 참조하면, 반도체 기판(1) 상에 게이트 산화막(2) 및 폴리실리콘층(3)을 순차적으로 형성한 후 게이트 전극 마스크를 식각 마스크로 하는 식각 공정으로 폴리실리콘층(3) 및 게이트 산화막(2)을 패터닝한다. 이후 LDD 구조의 소오스/드레인을 형성하기 위하여 저농도 불순물 이온 주입 공정을 실시해 저농도 불순물 영역(4a)을 형성한다. 다시 전체 상부에 HLD 산화막(5) 및 질화막(6a)을 순차적으로 형성한다.Referring to FIG. 1A, after the gate oxide layer 2 and the polysilicon layer 3 are sequentially formed on the semiconductor substrate 1, the polysilicon layer 3 and the gate may be formed by an etching process using the gate electrode mask as an etching mask. The oxide film 2 is patterned. Thereafter, a low concentration impurity ion implantation process is performed to form a source / drain of LDD structure to form a low concentration impurity region 4a. Again, the HLD oxide film 5 and the nitride film 6a are sequentially formed on the whole.
이때, HLD 산화막(5)은 140 내지 160Å의 두께로 형성하며, 이상적으로는 150Å의 두께로 형성한다. 또한, 질화막(6a)은 450 내지 550Å의 두께로 형성하며, 이상적으로는 500Å의 두께로 형성한다.At this time, the HLD oxide film 5 is formed to a thickness of 140 to 160Å, ideally formed to a thickness of 150Å. Further, the nitride film 6a is formed to a thickness of 450 to 550 mm 3, and ideally formed to a thickness of 500 mm 3.
도 1b를 참조하면, 질화막(6a)을 전면 식각하여 폴리실리콘층(3)의 측벽에 스페이서 형태로 형성한다.Referring to FIG. 1B, the nitride film 6a is etched entirely to form a spacer on the sidewall of the polysilicon layer 3.
도 1c를 참조하면, BOE를 이용한 식각 공정으로 HLD 산화막(5)의 노출된 부분을 제거하여 질화막(6a)과 함께 이루어진 게이트 스페이서(6)를 형성한다. 이때, 게이트 스페이서(6)의 끝부분(A)에서는 HLD 산화막(5)의 과도 식각(Over etch)이 발생한다.Referring to FIG. 1C, an exposed portion of the HLD oxide film 5 is removed by an etching process using BOE to form a gate spacer 6 formed together with the nitride film 6a. At this time, an over etch of the HLD oxide film 5 occurs at the end A of the gate spacer 6.
일반적으로, BOE 식각 공정의 장점으로는 HLD 산화막(5) 식각시 반도체 기판(1)의 표면 손상을 방지할 수 있다. 그러나, BOE 식각 공정은 반도체 기판(1)의 표면 손상 없이 HLD 산화막(5)을 제거할 수 있지만, 동시에 잔류하는 HLD 산화막(5)이 게이트 스페이서(6) 하부 끝부분(A)에서 과도 식각으로 인하여 일부분이 식각된다.In general, an advantage of the BOE etching process may prevent surface damage of the semiconductor substrate 1 when the HLD oxide layer 5 is etched. However, the BOE etching process can remove the HLD oxide film 5 without damaging the surface of the semiconductor substrate 1, but at the same time, the remaining HLD oxide film 5 is excessively etched at the lower end A of the gate spacer 6. Part is etched.
도 1d를 참조하면, 고농도 불순물 이온 주입 공정으로 고농도 불순물 영역(4b)을 형성한 후 이온 주입된 불순물을 활성화시키기 위하여 열처리를 실시해 LDD 구조의 소오스/드레인(4)을 형성한다. 이후 실리사이드 공정을 실시하여 폴리실리콘층(3) 및 소오스/드레인(4) 상에 실리사이드층(7)을 형성한다.Referring to FIG. 1D, after forming the high concentration impurity region 4b by the high concentration impurity ion implantation process, heat treatment is performed to activate the ion implanted impurities to form the source / drain 4 of the LDD structure. Thereafter, the silicide process is performed to form the silicide layer 7 on the polysilicon layer 3 and the source / drain 4.
실리사이드층(7)은 폴리실리콘층(3) 및 소오스/드레인(4)의 접촉 저항을 낮추기 위하여 형성한다. 그런데, 도 1c의 공정에서 과도 식각에 의해 게이트 스페이서(6) 하부의 HLD 산화막(5) 일부분이 식각되어 실리사이드층(7)이 그 식각된 부분까지 침투하여 형성된다. 이렇게 실리사이드층(7)이 폴리실리콘층(3) 쪽으로 침투하여 형성하게 되면, 침투 정도에 따라서 여러 가지 문제를 발생시킬 수 있다. 즉,게이트 스페이서(6) 하부에 형성된 실리사이드층(7)에 의해 접합 누설 전류(Junction leakage)가 발생할 수 있으며, 또한 소자의 전기적 특성이 저하되어 불량을 유발할 수 있다.The silicide layer 7 is formed to lower the contact resistance of the polysilicon layer 3 and the source / drain 4. However, in the process of FIG. 1C, a portion of the HLD oxide film 5 under the gate spacer 6 is etched by the excessive etching, and the silicide layer 7 penetrates to the etched portion. When the silicide layer 7 penetrates toward the polysilicon layer 3, various problems may occur depending on the degree of penetration. That is, junction leakage may occur due to the silicide layer 7 formed under the gate spacer 6, and the electrical characteristics of the device may be degraded to cause defects.
따라서, 본 발명은 상기의 문제점을 해결하기 위하여 예상되는 HLD 산화막의 과도 식각량 만큼 게이트 스페이서를 정상보다 두껍게 형성한 후 HLD 산화막을 식각하여 정상적인 형태로 형성함으로써 후속 공정에서 실리사이드층이 게이트 전극인 폴리실리콘층으로 침투하는 것을 방지하여 접합 누설 전류가 발생하는 것을 방지하고 소자의 동작을 안정화하여 전기적 특성을 향상시킬 수 있는 반도체 소자의 트랜지스터 제조 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention is to solve the above problems by forming the gate spacer thicker than normal by the excessive etching amount of the HLD oxide film expected, and then etching the HLD oxide film to form a normal shape, so that the silicide layer is a gate electrode in a subsequent process. It is an object of the present invention to provide a method for manufacturing a transistor of a semiconductor device that can prevent penetration of the silicon layer to prevent the occurrence of junction leakage current and to stabilize the operation of the device to improve electrical characteristics.
도 1a 내지 도 1d는 종래의 반도체 소자의 트랜지스터 제조 방법을 설명하기 위하여 도시한 소자의 단면도.1A to 1D are cross-sectional views of a device for explaining the transistor manufacturing method of a conventional semiconductor device.
도 2a 내지 도 2e는 본 발명에 따른 반도체 소자의 트랜지스터 제조 방법을 설명하기 위하여 순차적으로 도시한 소자의 단면도.2A to 2E are cross-sectional views of devices sequentially shown in order to explain a transistor manufacturing method of a semiconductor device according to the present invention.
<도면의 주요 부분에 대한 부호 설명><Description of the symbols for the main parts of the drawings>
1, 11 : 반도체 기판2, 12 : 게이트 산화막1, 11: semiconductor substrate 2, 12: gate oxide film
3, 13 : 폴리실리콘층4a, 14a : 저농도 불순물 영역3, 13: polysilicon layer 4a, 14a: low concentration impurity region
4b, 14b : 고농도 불순물 영역4, 14 : 소오스/드레인4b and 14b: high concentration impurity regions 4 and 14 source / drain
5, 15 : HLD 산화막6a, 16a : 질화막5, 15: HLD oxide film 6a, 16a: nitride film
6, 16 : 게이트 스페이서7, 17 : 실리사이드층6, 16 gate spacers 7, 17 silicide layer
본 발명에 따른 반도체 소자의 트랜지스터 제조 방법은 게이트 전극이 형성된 반도체 기판에 1차 불순물 이온 주입으로 저농도 불순물 영역을 형성한 후 전체 상부에 산화막 및 질화막을 순차적으로 형성하는 단계, 질화막을 1차 전면 식각하여 제 1 두께의 스페이서 형태로 형성하는 단계, 산화막의 노출된 부분을 식각하여 제거하는 단계, 스페이서 형태의 질화막을 2차 전면 식각하여 목표 두께로 형성해 산화막과 함께 이루어지는 게이트 스페이서를 형성하는 단계, 저농도 불순물 영역의 노출된 부분에 2차 불순물 이온 주입을 실시하여 고농도 불순물 영역을 형성한후 이온 주입된 불순물을 열처리로 활성화시켜 소오스/드레인을 형성하는 단계 및 게이트 전극 및 소오스/드레인 상에 실리사이드층을 형성하는 단계로 이루어진다.In the method of manufacturing a transistor of a semiconductor device according to the present invention, after forming a low concentration impurity region in a semiconductor substrate on which a gate electrode is formed by primary impurity ion implantation, an oxide film and a nitride film are sequentially formed on the entire upper portion, and the nitride film is firstly etched first. Forming a spacer having a first thickness, etching and removing the exposed portion of the oxide film, etching the spacer-type nitride film to form a target thickness by secondary etching, and forming a gate spacer formed together with the oxide film, and having a low concentration. Second impurity ion implantation is performed on the exposed portion of the impurity region to form a high concentration impurity region, and then ion implanted impurities are activated by heat treatment to form a source / drain and a silicide layer on the gate electrode and the source / drain. Forming step.
산화막은 HLD 산화막으로 형성하되 140 내지 160Å의 두께로 형성하며, 이상적으로는 150Å의 두께로 형성한다. 질화막은 450 내지 550Å의 두께로 형성하며, 이상적으로는 500Å의 두께로 형성한다. 질화막의 제 1 두께는 목표 두께보다 약 150Å정도 더 두껍게 한다. 산화막의 식각은 BOE를 사용하여 실시하며, 게이트 스페이서의 하부에서 약 150Å정도의 과도 식각이 발생하도록 한다.The oxide film is formed of an HLD oxide film, but is formed to a thickness of 140 to 160Å, ideally formed to a thickness of 150Å. The nitride film is formed to a thickness of 450 to 550 GPa, ideally, to a thickness of 500 GPa. The first thickness of the nitride film is made about 150 mm thicker than the target thickness. Etching of the oxide film is performed using BOE, so that over etching of about 150 GPa occurs at the bottom of the gate spacer.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail.
도 2a 내지 도 2e는 본 발명에 따른 반도체 소자의 트랜지스터 제조 방법을 설명하기 위하여 순차적으로 도시한 소자의 단면도이다.2A through 2E are cross-sectional views of devices sequentially illustrated to explain a method of manufacturing a transistor of a semiconductor device according to the present invention.
도 2a를 참조하면, 반도체 기판(11) 상에 게이트 산화막(12) 및 폴리실리콘층(13)을 순차적으로 형성한 후 게이트 전극 마스크를 식각 마스크로 하는 식각 공정으로 폴리실리콘층(13) 및 게이트 산화막(12)을 패터닝한다. 이후 LDD 구조의 소오스/드레인을 형성하기 위하여 저농도 불순물 이온 주입 공정을 실시해 저농도 불순물 영역(14a)을 형성한다. 다시 전체 상부에 HLD 산화막(15) 및 질화막(16a)을 순차적으로 형성한다.Referring to FIG. 2A, after the gate oxide layer 12 and the polysilicon layer 13 are sequentially formed on the semiconductor substrate 11, the polysilicon layer 13 and the gate may be formed by an etching process using the gate electrode mask as an etching mask. The oxide film 12 is patterned. Thereafter, a low concentration impurity ion implantation process is performed to form a source / drain of LDD structure to form a low concentration impurity region 14a. Again, the HLD oxide film 15 and the nitride film 16a are sequentially formed on the whole.
이때, HLD 산화막(15)은 140 내지 160Å의 두께로 형성하며, 이상적으로는 150Å의 두께로 형성한다. 또한, 질화막(16a)은 450 내지 550Å의 두께로 형성하며, 이상적으로는 500Å의 두께로 형성한다.At this time, the HLD oxide film 15 is formed to a thickness of 140 to 160Å, ideally formed to a thickness of 150Å. Further, the nitride film 16a is formed to a thickness of 450 to 550 mm 3, and ideally formed to a thickness of 500 mm 3.
도 2b를 참조하면, 질화막(16a)을 1차 전면 식각하여 폴리실리콘층(13)의 측벽에 스페이서 형태로 형성한다.Referring to FIG. 2B, the nitride film 16a is first etched to form a spacer on the sidewall of the polysilicon layer 13.
이때, 질화막(16a)은 후속 공정에서 HLD 산화막(15)이 과도 식각될 것을 고려하여 정상 두께보다 두껍게 스페이서 형태로 형성하며, 이상적으로는 약 150Å정도 더 두껍게 형성한다.In this case, the nitride film 16a is formed in a spacer shape thicker than the normal thickness in consideration of the excessive etching of the HLD oxide film 15 in a subsequent process, and ideally, is formed to be about 150 GPa thicker.
도 2c를 참조하면, BOE를 이용한 식각 공정으로 HLD 산화막(15)의 노출된 부분을 제거하여 질화막(16a)과 함께 게이트 스페이서(16)를 형성한다. 이때, 게이트 스페이서(16)의 끝부분(B)에서는 HLD 산화막(15)의 과도 식각(Over etch)이 발생한다. 그러나, HLD 산화막(15)의 과도 식각을 고려하여 그에 상응하는 두께로 스페이서 형태의 질화막(16a)을 형성하였기 때문에, 결국 HLD 산화막(15)에 과도 식각이 발생함으로써 HLD 산화막(15)은 목표 형태로 형성된다. 다시 말해, HLD 산화막(15)의 과도 식각은 피할 수 없기 때문에 질화막(16a)을 미리 두껍게 형성한 후 과도 식각을 이용하여 목표 형태의 HLD 산화막(15)을 형성하는 것이다.Referring to FIG. 2C, the gate spacer 16 is formed together with the nitride layer 16a by removing the exposed portion of the HLD oxide layer 15 by an etching process using BOE. In this case, overetch of the HLD oxide layer 15 occurs at the end portion B of the gate spacer 16. However, since the nitride film 16a in the form of a spacer is formed in consideration of the excessive etching of the HLD oxide film 15, the HLD oxide film 15 is formed in the target shape by the excessive etching of the HLD oxide film 15. Is formed. In other words, since excessive etching of the HLD oxide film 15 cannot be avoided, the nitride film 16a is formed thick in advance, and then the HLD oxide film 15 having the target shape is formed by using the transient etching.
도 2d를 참조하면, 2차 전면 식각을 실시하여 질화막(16a)을 목표 두께로 형성한다. 이로써, 질화막(16a)의 하부 가장 자리와 HLD 산화막(15)의 끝부분이 서로 일치하는 게이트 스페이서(16)가 형성된다. 고농도 불순물 이온 주입 공정으로 고농도 불순물 영역(14b)을 형성한 후 이온 주입된 불순물을 활성화시키기 위하여 열처리를 실시해 LDD 구조의 소오스/드레인(14)을 형성한다.Referring to FIG. 2D, the second entire surface is etched to form the nitride film 16a to a target thickness. As a result, a gate spacer 16 in which the lower edge of the nitride film 16a and the end of the HLD oxide film 15 coincide with each other are formed. After forming the high concentration impurity region 14b by the high concentration impurity ion implantation process, heat treatment is performed to activate the ion implanted impurities to form the source / drain 14 of the LDD structure.
여기서, 2차 전면 식각 공정은 실시하지 않아도 된다. 하지만, 2차 전면 식각 공정을 실시하지 않고 게이트 스페이서(16)를 두껍게 형성하면 그만큼 소오스/드레인(14) 영역을 차지하여 접합 영역이 좁아지므로 2차 전면 식각 공정을 실시하는 것이 바람직하다.In this case, the second front side etching process may not be performed. However, if the gate spacers 16 are formed thick without performing the secondary front side etching process, it is preferable to perform the second front side etching process because they occupy the source / drain 14 region and the junction region becomes narrower.
도 2e를 참조하면, 실리사이드 공정을 실시하여 폴리실리콘층(13) 및 소오스/드레인(14) 상에 실리사이드층(17)을 형성한다.Referring to FIG. 2E, a silicide process is performed to form the silicide layer 17 on the polysilicon layer 13 and the source / drain 14.
실리사이드층(17)은 폴리실리콘층(13) 및 소오스/드레인(14)의 접촉 저항을 낮추기 위하여 형성한다. 본 발명에서는 과도 식각이 발생하여도 질화막(16a)의 두께를 조절하여 HLD 산화막(15)을 목표 형태로 형성함으로써 실리사이드층(17)의 소정의 영역에만 형성할 수 있다. 따라서, 실리사이드층(17)이 폴리실리콘층(13) 쪽으로 침투하는 것을 방지하여 접합 누설 전류(Junction leakage) 발생을 억제하여 소자의 전기적 특성이 저하되는 것을 방지할 수 있다.The silicide layer 17 is formed to lower the contact resistance between the polysilicon layer 13 and the source / drain 14. In the present invention, even when excessive etching occurs, the thickness of the nitride film 16a may be adjusted to form the HLD oxide film 15 in a target shape, thereby forming only a predetermined region of the silicide layer 17. Therefore, the silicide layer 17 may be prevented from penetrating into the polysilicon layer 13 to suppress the occurrence of junction leakage, thereby preventing the electrical characteristics of the device from being lowered.
상술한 바와 같이, 본 발명은 게이트 스페이서를 형성하기 위한 질화막의 두께를 조절하여 HLD 산화막을 정상적인 형태로 형성함으로써 실리사이드층이 게이트 전극 쪽으로 측면 성장하여 침투하는 것을 방지해 누설 전류 패스를 차단하고 소자의 동작은 안정화하여 트랜지스터의 전기적 특성을 향상시키는 효과가 있다.As described above, the present invention controls the thickness of the nitride film for forming the gate spacer to form the HLD oxide film in a normal shape, thereby preventing the silicide layer from growing laterally and penetrating toward the gate electrode, thereby blocking the leakage current path. The operation is stabilized to improve the electrical characteristics of the transistor.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000082106A KR100642420B1 (en) | 2000-12-26 | 2000-12-26 | Method of manufacturing transistor of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000082106A KR100642420B1 (en) | 2000-12-26 | 2000-12-26 | Method of manufacturing transistor of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020052680A true KR20020052680A (en) | 2002-07-04 |
KR100642420B1 KR100642420B1 (en) | 2006-11-03 |
Family
ID=27686063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000082106A Expired - Fee Related KR100642420B1 (en) | 2000-12-26 | 2000-12-26 | Method of manufacturing transistor of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100642420B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100407999B1 (en) * | 2001-12-26 | 2003-12-01 | 주식회사 하이닉스반도체 | Method for fabricating of semiconductor device |
KR20040005482A (en) * | 2002-07-10 | 2004-01-16 | 주식회사 하이닉스반도체 | Method of manufacturing a transistor in a semiconductor device |
US7364987B2 (en) | 2004-01-19 | 2008-04-29 | Samsung Electronics Co., Ltd. | Method for manufacturing semiconductor device |
-
2000
- 2000-12-26 KR KR1020000082106A patent/KR100642420B1/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100407999B1 (en) * | 2001-12-26 | 2003-12-01 | 주식회사 하이닉스반도체 | Method for fabricating of semiconductor device |
KR20040005482A (en) * | 2002-07-10 | 2004-01-16 | 주식회사 하이닉스반도체 | Method of manufacturing a transistor in a semiconductor device |
US7364987B2 (en) | 2004-01-19 | 2008-04-29 | Samsung Electronics Co., Ltd. | Method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
KR100642420B1 (en) | 2006-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100396895B1 (en) | Method of fabricating semiconductor device having L-type spacer | |
US20090011561A1 (en) | Method of fabricating high-voltage mos having doubled-diffused drain | |
US6187645B1 (en) | Method for manufacturing semiconductor device capable of preventing gate-to-drain capacitance and eliminating birds beak formation | |
KR100446309B1 (en) | Method of fabricating semiconductor device having L-type spacer | |
US6008100A (en) | Metal-oxide semiconductor field effect transistor device fabrication process | |
US5401678A (en) | Transistor and method for fabricating the same | |
KR100642420B1 (en) | Method of manufacturing transistor of semiconductor device | |
US20010044191A1 (en) | Method for manufacturing semiconductor device | |
KR19990042916A (en) | Manufacturing method of semiconductor device | |
US7575989B2 (en) | Method of manufacturing a transistor of a semiconductor device | |
KR100257074B1 (en) | Mosfet and method for manufacturing the same | |
KR100467812B1 (en) | Semiconductor device and fabrication method thereof | |
US6936517B2 (en) | Method for fabricating transistor of semiconductor device | |
KR19990011414A (en) | Manufacturing method of semiconductor device | |
KR100274979B1 (en) | Contact formation method in semiconductor device | |
KR0146275B1 (en) | Method for manufacturing mosfet | |
KR960012262B1 (en) | Mos transistor manufacturing method | |
KR20020015820A (en) | Method for forming contact hole | |
KR100215856B1 (en) | Manufacturing method of MOSFET | |
KR100365750B1 (en) | Self-aligned contact formation method of semiconductor device | |
KR100226261B1 (en) | Method of manufacturing semiconductor device | |
KR100421899B1 (en) | Method for fabricating semiconductor device | |
KR101004813B1 (en) | Transistor manufacturing method | |
KR19980057072A (en) | Method for manufacturing field effect transistor of semiconductor device | |
KR20010063773A (en) | A method for forming a transistor of a semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20001226 |
|
PG1501 | Laying open of application | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20041006 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20050201 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20001226 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060410 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20060921 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20061027 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20061026 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20090921 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20100924 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20110923 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20120924 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20120924 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130916 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20130916 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140917 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20140917 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150923 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20150923 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160926 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20160926 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170920 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20170920 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20180918 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20180918 Start annual number: 13 End annual number: 13 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20210807 |