KR102779713B1 - Electrode for secondary battery and method for preparing the same - Google Patents
Electrode for secondary battery and method for preparing the same Download PDFInfo
- Publication number
- KR102779713B1 KR102779713B1 KR1020200099225A KR20200099225A KR102779713B1 KR 102779713 B1 KR102779713 B1 KR 102779713B1 KR 1020200099225 A KR1020200099225 A KR 1020200099225A KR 20200099225 A KR20200099225 A KR 20200099225A KR 102779713 B1 KR102779713 B1 KR 102779713B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- active material
- residual stress
- secondary battery
- current collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000007772 electrode material Substances 0.000 claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 claims abstract description 37
- 239000003792 electrolyte Substances 0.000 claims abstract description 31
- 238000001035 drying Methods 0.000 claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 238000005096 rolling process Methods 0.000 claims description 12
- 238000002441 X-ray diffraction Methods 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 8
- 239000002002 slurry Substances 0.000 claims description 5
- 238000007654 immersion Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 2
- 230000035882 stress Effects 0.000 description 55
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- 238000005470 impregnation Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- -1 polyphenylene Polymers 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000010294 electrolyte impregnation Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 전극집전체; 및 상기 전극집전체 상에 형성되며, 전극활물질을 함유하는전극합제층을 포함하는 이차전지용 전극에 있어서, 상기 전극을 전해액에 함침시킨 후 측정된 전극집전체 또는 전극활물질의 잔류응력에 대하여, 상기 함침된 전극을 건조한 후 측정된 전극집전체 또는 전극활물질의 잔류응력의 감소율은 15% 이하인 이차전지용 전극에 관한 것이다. 본 발명에 따르면, 특히, 고밀도 전극의 박리가 발생하지 않는 한계 밀도를 전지 생산 이전의 전극 공정 단계에서 확인하여 양산시 리스크를 감소시킬 수 있는 효과가 있다. The present invention relates to an electrode for a secondary battery, comprising: an electrode current collector; and an electrode composite layer formed on the electrode current collector and containing an electrode active material, wherein a rate of reduction in the residual stress of the electrode current collector or the electrode active material measured after immersing the electrode in an electrolyte is 15% or less, relative to the residual stress of the electrode current collector or the electrode active material measured after drying the impregnated electrode. According to the present invention, in particular, there is an effect of reducing the risk during mass production by confirming the limit density at which peeling of a high-density electrode does not occur at the electrode process stage prior to battery production.
Description
본 발명은 이차전지용 전극 및 이의 제조방법에 관한 것으로, 보다 상세하게는 전극의 박리 발생을 현저하게 저감할 수 있는 전극 및 이의 제조방법에 관한 것이다. The present invention relates to an electrode for a secondary battery and a method for manufacturing the same, and more specifically, to an electrode capable of significantly reducing the occurrence of electrode peeling and a method for manufacturing the same.
제품 군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기차량(EV, Electric Vehicle) 또는 하이브리드 차량(HEV, Hybrid Electric Vehicle) 등에 보편적으로 응용되고 있다. 이러한 이차전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다. 이러한 이차전지에 포함되는 전극은 전극 집전체 상에 전극 활물질을 접착 코팅하여 구성 된다. 이러한 전극 집전체에 전극 활물질 코팅 시 전극 활물질의 접착력은 배터리 셀의 제조 공정성이나 배터리 셀의 성능에 영향을 주는 주요한 인자인 바, 제조 공정 중에는 이러한 전극 집전체 상에 전극 활물질의 접착 코팅 시 전극 활물질의 접착력을 측정하는 공정이 요구된다.Secondary batteries, which have high applicability according to product group and electrical characteristics such as high energy density, are widely used not only in portable devices but also in electric vehicles (EV) or hybrid electric vehicles (HEV) that are driven by an electric drive source. These secondary batteries are receiving attention as a new energy source for improving environment friendliness and energy efficiency in that they can drastically reduce the use of fossil fuels and do not generate any by-products from energy use at all. The electrodes included in these secondary batteries are configured by adhesively coating electrode active materials on electrode current collectors. When coating the electrode active materials on the electrode current collectors, the adhesive strength of the electrode active materials is a major factor affecting the manufacturing process of the battery cell or the performance of the battery cell. Therefore, during the manufacturing process, a process of measuring the adhesive strength of the electrode active materials when adhesively coating the electrode active materials on the electrode current collectors is required.
종래 전극 접착력 측정장치는 이러한 전극 활물질의 접착력을 측정하기 위해 90도 박리시험(JIS K6854-1:1999)을 통해, 전극 집전체로부터 전극 활물질을 벗겨내어 박리 강도(Peel Strength)를 측정하는 방식의 구조의 장치를 이용하며, 이를 통하여 전극집전체와 전극활물질 사이의 접착력을 측정하여 이를 박리 강도와 정량적으로 비교하였다. 이러한 전극 접착력 측정장치는 측정된 박리 강도의 수치로서 전극 접착력 기준을 선정하게 된다.Conventional electrode adhesion measuring devices measure the adhesive strength of such electrode active materials by peeling the electrode active material from the electrode current collector through a 90-degree peel test (JIS K6854-1:1999), thereby measuring the adhesive strength between the electrode current collector and the electrode active material and quantitatively comparing it with the peel strength. Such electrode adhesion measuring devices select the electrode adhesion standard based on the measured peel strength value.
그러나, 전극 활물질은 대부분 전극 집전체로부터 벗겨지는 경우보다 절단이나 펀칭 등에 따라 전극 집전체로부터 탈리되는 경우도 빈번하게 발생하고, 특히, 고밀도의 전극이 요구되는 최근에는 압연 밀도에 따른 접착력 편차가 매우 작기 때문에, 고밀도의 전극에서 접착력 만으로 박리 여부를 판단하기 어려운 문제가 있다. 따라서, 전지 제조 수율을 높이기 위해 박리 현상을 보다 정확하게 평가할 수 있는 방안의 모색이 요구되는 실정이다.However, electrode active materials are more frequently detached from the electrode collector by cutting or punching than by being peeled off from the electrode collector. In particular, in recent years when high-density electrodes are required, the difference in adhesive strength according to rolling density is very small, so it is difficult to determine whether or not there is peeling in high-density electrodes based on adhesive strength alone. Therefore, there is a need to find a method to more accurately evaluate the peeling phenomenon in order to increase the battery manufacturing yield.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 박리 발생 여부를 완제품 생산 이전에 전극 제조 단계에서 미리 예측하고, 이를 적용하여 박리 현상을 저감할 수 있는 이차전지용 전극의 제조방법 및 이에 따른 이차전지용 전극을 제공하고자 한다.The present invention has been made to solve the above problems, and aims to provide a method for manufacturing an electrode for a secondary battery, which can predict whether or not peeling will occur in advance at the electrode manufacturing stage prior to the production of a finished product, and apply the prediction to reduce the peeling phenomenon, and a secondary battery electrode according to the method.
본 발명의 일 측면에 따르면, 전극집전체; 및 상기 전극집전체 상에 형성되며, 전극활물질을 함유하는 전극합제층을 포함하는 이차전지용 전극에 있어서, 상기 전극을 전해액에 함침시킨 후 측정된 전극집전체 또는 전극활물질의 잔류응력에 대하여, 상기 함침된 전극을 건조한 후 측정된 전극집전체 또는 전극활물질의 잔류응력의 감소율은 15% 이하인 이차전지용 전극이 제공된다. According to one aspect of the present invention, in an electrode for a secondary battery, including an electrode current collector; and an electrode composite layer formed on the electrode current collector and containing an electrode active material, a reduction rate of a residual stress of the electrode current collector or electrode active material measured after impregnating the electrode in an electrolyte solution is 15% or less, compared to a residual stress of the electrode current collector or electrode active material measured after drying the impregnated electrode, is provided.
상기 잔류응력은 X-선 회절(X-ray diffraction)분석을 이용하여, 전극집전체의 (131)면 또는 전극활물질의 (112)면 및 (002)면 중 어느 하나에 대하여 측정된 것일 수 있다.The above residual stress may be measured using X-ray diffraction analysis for either the (131) plane of the electrode collector or the (112) plane and (002) plane of the electrode active material.
상기 전극의 전극밀도는 1.9g/cc 미만일 수 있다.The electrode density of the above electrode may be less than 1.9 g/cc.
본 발명의 다른 측면에 따르면, 전극집전체 상에 전극활물질 및 바인더를 포함하는 슬러리를 도포하고 건조하여 전극을 제조하는 단계; 상기 전극을 압연하는 단계; 상기 압연된 전극을 전해액에 함침하고, 전극집전체 또는 전극활물질의 잔류응력을 측정하는 단계; 및 상기 전해액에 함침된 전극을 건조하고, 전극집전체 또는 전극활물질의 잔류응력을 측정하는 단계를 포함하는 이차전지용 전극의 제조방법이 제공된다. According to another aspect of the present invention, a method for manufacturing an electrode for a secondary battery is provided, including the steps of: applying a slurry containing an electrode active material and a binder on an electrode collector and drying the slurry to manufacture an electrode; rolling the electrode; impregnating the rolled electrode with an electrolyte and measuring residual stress of the electrode collector or the electrode active material; and drying the electrode impregnated with the electrolyte and measuring residual stress of the electrode collector or the electrode active material.
상기 전해액에 함침 후 측정된 전극의 전극집전체 또는 전극활물질의 잔류응력에 대하여, 상기 함침된 전극을 건조한 후 측정된 전극집전체 또는 전극활물질의 잔류응력의 감소율은 15% 이하일 수 있다.With respect to the residual stress of the electrode collector or electrode active material of the electrode measured after impregnation in the above electrolyte, the reduction rate of the residual stress of the electrode collector or electrode active material measured after drying the impregnated electrode may be 15% or less.
상기 압연된 전극을 전해액에 함침하는 단계는 25 내지 100℃의 온도범위에서 1 내지 24시간 동안 수행될 수 있다.The step of impregnating the above rolled electrode with an electrolyte can be performed at a temperature range of 25 to 100°C for 1 to 24 hours.
상기 잔류응력은 X-선 회절(X-ray diffraction)분석을 이용하여, 전극집전체의 (131)면 또는 전극활물질의 (112)면 및 (002)면 중 어느 하나에 대하여 측정될 수 있다.The above residual stress can be measured using X-ray diffraction analysis for either the (131) plane of the electrode collector or the (112) plane and (002) plane of the electrode active material.
전극 박리 현상을 접착력만으로 정량화하는 것은 전극 밀도가 특정 수준 이하인 경우로 제한되므로, 평가 지표로 활용하기 어려운 점이 있으며, 보다 높은 에너지 밀도를 요구하는 전극 설계 측면에서 박리와 같은 불량 인자에 의한 손실을 사전에 방지할 수 있는 평가법 및 이를 활용하여 제조된 전극의 중요도는 점차 증가할 것으로 예상된다. 본 발명에 따르면, 특히, 고밀도 전극에서 박리가 발생하지 않는 한계 밀도를 전지 생산 이전의 전극 공정 단계에서 확인하여 양산 시 리스크(risk)를 감소시킬 수 있는 효과가 있다.Quantifying the electrode peeling phenomenon using only adhesive strength is limited to cases where the electrode density is below a certain level, so it is difficult to utilize it as an evaluation index. In terms of electrode design that requires higher energy density, the importance of an evaluation method that can prevent loss due to defective factors such as peeling in advance and an electrode manufactured using the same is expected to gradually increase. According to the present invention, in particular, there is an effect of reducing risk during mass production by confirming the limit density at which peeling does not occur in a high-density electrode at the electrode process stage prior to battery production.
이하, 다양한 실시예를 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described with reference to various examples. However, the embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
본 발명은 이차전지용 전극 및 이의 제조방법에 관한 것이다. 고용량의 리튬 이차전지를 구현하기 위해서는 고밀도의 전극 제조가 필수적이다. 하지만 고밀도의 전극을 제조하기 위해 압연 밀도가 높아짐에 따라, 전극활물질층이 금속인 전극집전체로부터 탈리되는 문제가 발생한다. 이는 전지 성능의 열화뿐 아니라 양산성 저하로 연결되기 때문에 전극 제조 단계에서 박리 여부를 정확하게 평가하는 것은 양산 리스크 감소 측면에서 매우 효과적이다.The present invention relates to an electrode for a secondary battery and a method for manufacturing the same. In order to realize a high-capacity lithium secondary battery, it is essential to manufacture a high-density electrode. However, as the rolling density increases to manufacture a high-density electrode, a problem occurs in which the electrode active material layer is detached from the electrode current collector, which is a metal. Since this leads not only to a deterioration in battery performance but also to a decrease in mass productivity, accurately assessing whether or not there is detachment at the electrode manufacturing stage is very effective in terms of reducing mass production risk.
종래에는 박리 강도를 정량적으로 평가하는 방법으로 반제품 상태의 전극의 접착력을 측정하였으나, 압연 밀도에 따른 접착력 편차는 매우 작기 때문에 고밀도 전극의 박리 여부를 판단하기에 부적합하며, 또한, 전해액에 의한 스웰링(Swelling), 잔류응력 해소 및 충방전시 부피 변화 등으로부터 비롯된 전지 내부의 구조적 요인과도 연관 짓기 어렵다. 이에, 본 발명자들은 에이징(Aging) 공정을 모사하여 전극을 고온에서 전해액에 함침시킨 후 건조시킨 전극의 접착력을 측정하면 박리가 발생하지 않는 한계 밀도를 전지 생산 이전의 전극 공정 단계에서 확인할 수 있고 이에 따라, 양산 리스크를 감소시킬 수 있음에 착안하여 본 발명을 완성하기에 이르렀다. In the past, the adhesive strength of a semi-finished electrode was measured as a method of quantitatively evaluating peel strength, but since the deviation in adhesive strength according to the rolling density is very small, it is not suitable for determining whether or not a high-density electrode peels. In addition, it is difficult to correlate it with structural factors inside the battery resulting from swelling due to the electrolyte, relief of residual stress, and volume change during charge and discharge. Accordingly, the inventors of the present invention have perfected the idea that by measuring the adhesive strength of an electrode that is immersed in an electrolyte at a high temperature by simulating the aging process and then dried, the critical density at which peeling does not occur can be confirmed at the electrode process stage prior to battery production, thereby reducing mass production risk.
본 발명의 일 측면에 따르면, 전극집전체; 및 상기 전극집전체 상에 형성되며, 전극활물질을 함유하는전극합제층을 포함하는 이차전지용 전극에 있어서, 상기 전극을 전해액에 함침시킨 후 측정된 전극집전체 또는 전극활물질의 잔류응력에 대하여, 상기 함침된 전극을 건조한 후 측정된 전극집전체 또는 전극활물질의 잔류응력의 감소율은 15% 이하인 이차전지용 전극이 제공된다. According to one aspect of the present invention, in an electrode for a secondary battery, including an electrode current collector; and an electrode composite layer formed on the electrode current collector and containing an electrode active material, the electrode current collector or electrode active material measured after impregnating the electrode in an electrolyte has a reduction rate of 15% or less in the residual stress of the electrode current collector or electrode active material measured after drying the impregnated electrode.
잔류응력은 물체에 외력이 가해지지 않았음에도 불구하고, 물체 내부에 잔존하는 응력이다. 잔류응력은 가공되거나 열처리된 물체의 내부에 생성된 응력으로, 물체의 처리 이력에 따라 인장 응력 또는 압축 응력이 물체에 잔존할 수 있다. 이러한 잔류응력은 물체를 파괴시키거나 손상시키는 원인이 될 수도 있다. 본 발명에서는 에이징 공정을 모사하여, 상기 압연된 전극을 전해액에 함침하는 단계를 포함하고, 함침 전후의 전극의 잔류응력을 측정하여, 박리가 발생하지 않는 한계 밀도를 전지 생산 이전의 전극 공정 단계에서 확인할 수 있도록 하였다. 보다 상세하게, 일반적으로 양극 및 음극과 분리막으로 구성된 Jelly roll(J/R) 등의 전극조립체가 형성되고 난 뒤, 셀 내에 전해액을 주액하고 충분히 습윤시켜주는 과정이 에이징 공정이며, 이 과정에서 특히, 음극의 경우 공극(pore) 내 용매 침투에 의한 스웰링(Swelling) 현상으로 일정 두께만큼 증가하게 되고, 이 과정에서 소재가 가지고 있던 잔류 응력이 해소되나, 해소되는 정도가 심할 경우 박리 현상으로 나타난다. 본 발명에 따르면 에이징 공정을 모사하여 셀조립 및 전극조립체 제작 이전 단계에서 박리 여부를 확인할 수 있기 때문에, 전극 제조 단계에서 박리 여부를 정확하게 평가하여, 양산 리스크를 크게 감소할 수 있다.Residual stress is a stress that remains inside an object even though no external force is applied to the object. Residual stress is a stress generated inside a processed or heat-treated object, and depending on the processing history of the object, tensile stress or compressive stress may remain in the object. This residual stress may cause destruction or damage to the object. In the present invention, by simulating the aging process, a step of impregnating the rolled electrode with an electrolyte is included, and the residual stress of the electrode before and after impregnation is measured so that the limit density at which peeling does not occur can be confirmed at the electrode process stage prior to battery production. More specifically, after an electrode assembly such as a jelly roll (J/R) consisting of a cathode and anode and a separator is formed, the aging process is a process of injecting an electrolyte into the cell and sufficiently wetting it. In this process, in particular, in the case of the cathode, the swelling phenomenon due to solvent penetration into the pores increases the thickness by a certain amount, and in this process, the residual stress that the material had is relieved, but if the degree of relief is severe, it appears as a peeling phenomenon. According to the present invention, since the presence of peeling can be confirmed at a stage prior to cell assembly and electrode assembly manufacturing by simulating the aging process, the presence of peeling can be accurately evaluated at the electrode manufacturing stage, thereby significantly reducing mass production risk.
이에 따라, 상기 전극을 전해액에 함침시킨 후 측정된 전극집전체 또는 전극활물질의 잔류응력에 대하여, 상기 함침된 전극을 건조한 후 측정된 전극집전체 또는 전극활물질의 잔류응력의 감소율은 15% 이하인 것이 바람직하다. 잔류 응력의 감소율이 15%를 초과하는 경우, 높은 에너지 상태로 인하여 전극이 주름지거나 박리 현상이 발생할 수 있으며, 전극집전체와 전극합제층 사이의 접착력 또한 저하될 수 있다.Accordingly, it is preferable that the reduction rate of the residual stress of the electrode collector or electrode active material measured after impregnating the electrode in the electrolyte is 15% or less, as compared to the residual stress of the electrode collector or electrode active material measured after drying the impregnated electrode. If the reduction rate of the residual stress exceeds 15%, the electrode may wrinkle or peel off due to the high energy state, and the adhesive strength between the electrode collector and the electrode composite layer may also be reduced.
상기 잔류응력을 측정하는 단계는 X-선 회절(X-ray diffraction)분석을 이용하여 수행될 수 있다. 전극 제조 공정 중 압연 시 발생하는 압력에 의해 전극에 잔류하는 응력이 존재하며, 밀도가 높을수록 잔류 응력의 세기가 증가하는 것을 X-선 회절 분석을 통해 확인할 수 있다. 즉, 이와 같이 높은 에너지 상태는 전지 내부로 함침된 전해액이 바인더 입자를 습윤시키면서, 전극이 주름지거나 들뜨는 박리 현상으로 나타나게 되므로, 따라서, 전극의 잔류응력 측정을 통하여 전극의 박리 여부를 예측할 수 있다.The step of measuring the above residual stress can be performed using X-ray diffraction analysis. It can be confirmed through X-ray diffraction analysis that there is residual stress in the electrode due to the pressure generated during rolling during the electrode manufacturing process, and that the intensity of the residual stress increases as the density increases. That is, since such a high energy state appears as a peeling phenomenon in which the electrode wrinkles or lifts as the electrolyte impregnated inside the battery wets the binder particles, it is possible to predict whether the electrode peels by measuring the residual stress of the electrode.
한편, 상기 잔류응력은 전극집전체 또는 전극활물질의 결정면 중 적어도 하나에서 측정될 수 있다. 특별하게 한정하는 것은 아니나, 상기 잔류응력은 X-선 회절(X-ray diffraction)분석을 이용하여, 전극집전체의 인가된 응력(stress)에 해당하는 전극집전체의 (131)면 또는 전극활물질에 인가된 응력 및 변형율(strain)에 해당하는 전극활물질의 (112)면 및 (002)면 중 어느 하나에 대하여 측정될 수 있다. 예를 들어, 음극에 있어서, 음극활물질로 천연 흑연과 인조 흑연을 사용하는 경우의 차이는 있으나, 박리가 발생하는 전극의 전극활물질인 흑연의 (112)면에 대하여, 83.6도를 기준으로 XRD 측정 결과, 잔류응력이 0.3MPa 이상, 흑연의 (002)면의 반가폭(FWHM) 값을 기준으로 변형률이 0.18 이상일 때 박리가 발생함을 확인하였다.Meanwhile, the residual stress can be measured on at least one of the crystal planes of the electrode current collector or the electrode active material. Although not particularly limited, the residual stress can be measured using X-ray diffraction analysis for either the (131) plane of the electrode current collector corresponding to the applied stress of the electrode current collector, or the (112) plane and (002) plane of the electrode active material corresponding to the applied stress and strain to the electrode active material. For example, in the negative electrode, although there is a difference in the cases where natural graphite and artificial graphite are used as the negative active material, it was confirmed that peeling occurred when the residual stress was 0.3 MPa or more and the strain was 0.18 or more based on the half width at half maximum (FWHM) value of the (002) plane of the graphite for the (112) plane of the electrode, which is the electrode active material of the electrode where peeling occurs, as a result of XRD measurement at 83.6 degrees.
한편, 본 발명의 전극의 압연밀도는 1.9.0g/cc 미만인 것이 바람직하고, 1.6g/cc 내지 1.8g/cc인 것이 보다 바람직하다. 즉, 고밀도의 전극에 대하여 박리 여부를 평가하고, 이에 따라, 박리 현상을 방지할 수 있는 전극을 제공할 수 있다. Meanwhile, the rolling density of the electrode of the present invention is preferably less than 1.9.0 g/cc, and more preferably 1.6 g/cc to 1.8 g/cc. That is, it is possible to evaluate whether or not a high-density electrode is delaminated, and accordingly, provide an electrode capable of preventing the delamination phenomenon.
본 발명에 따른 전극은 특별하게 한정되지 않으나, 음극인 것이 보다 바람직하며, 음극의 구성 및 제조방법은 특별하게 한정되지 않는다. 예를 들어, 음극 집전체로는 구리, 스테인레스강, 니켈 재질의 박판을 사용할 수 있으며, 망상 또는 메시 모양 등의 다공체를 사용할 수도 있고, 산화를 방지하기 위하여 내산화성의 금속 또는 합금 피막으로 피복될 수도 있다.The electrode according to the present invention is not particularly limited, but is more preferably a cathode, and the composition and manufacturing method of the cathode are not particularly limited. For example, a thin plate made of copper, stainless steel, or nickel may be used as the cathode current collector, and a porous body such as a mesh or reticulated body may be used, and may be coated with an oxidation-resistant metal or alloy film to prevent oxidation.
또한, 음극합체층에 포함되는 음극 활물질은 통상적으로 사용되는 음극 활물질을 포함할 수 있으며, 음극 활물질로는 탄소계 재료, 실리콘, 실리콘 산화물, 실리콘계 합금, 실리콘-탄소계 재료 복합체, 주석, 주석계 합금, 주석-탄소 복합체, 금속 산화물 또는 그 조합을 사용할 수 있으며, 리튬 금속 및/또는 리튬 금속 합금을 포함할 수 있다.In addition, the negative electrode active material included in the negative electrode composite layer may include a commonly used negative electrode active material, and as the negative electrode active material, a carbon-based material, silicon, silicon oxide, silicon-based alloy, silicon-carbon-based material composite, tin, tin-based alloy, tin-carbon composite, metal oxide or a combination thereof may be used, and may include lithium metal and/or lithium metal alloy.
음극합제층에는 필요에 따라, 도전재가 추가로 포함되어 있을 수 있다. 상기 도전재로는 본 발명의 이차 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙 등의 카본계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The negative electrode composite layer may additionally contain a conductive material, if necessary. The conductive material is not particularly limited as long as it does not cause a chemical change in the secondary battery of the present invention and has conductivity. For example, graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, and lamp black; conductive fibers such as carbon fibers or metal fibers; fluorinated carbon; metal powders such as aluminum or nickel powder; conductive whiskey such as zinc oxide or potassium titanate; conductive metal oxides such as titanium oxide; conductive materials such as polyphenylene derivatives, etc. can be used.
또한, 음극합제층에는 상기 활물질과 도전재 등의 결합력을 향상시키기 위해 바인더를 포함할 수 있으며, 상기 바인더는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔터폴리머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무 및 다양한 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다.In addition, the negative electrode composite layer may include a binder to improve the bonding strength between the active material and the conductive material, and the binder may include, but is not limited to, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluororubber, and various copolymers.
전해액은 전해액 및 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매를 사용할 수 있고, 통상적으로 사용되는 전해액이면 모두 사용이 가능하다. 예를 들어, 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 플루오로 에틸렌카보네이트(FEC), 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 사용될 수 있다.The electrolyte is composed of an electrolyte and a lithium salt. A non-aqueous organic solvent can be used as the electrolyte, and any commonly used electrolyte can be used. For example, any one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methylpropyl carbonate, dipropyl carbonate, fluoroethylene carbonate (FEC), dimethyl sulfuroxide, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, and tetrahydrofuran, or a mixture of two or more thereof, can be used.
본 발명의 다른 측면에 따르면, 전극집전체 상에 전극활물질 및 바인더를 포함하는 슬러리를 도포하고 건조하여 전극을 제조하는 단계; 상기 전극을 압연하는 단계; 상기 압연된 전극을 전해액에 함침하고, 전극집전체 또는 전극활물질의 잔류응력을 측정하는 단계; 및 상기 전해액에 함침된 전극을 건조하고, 전극집전체 또는 전극활물질의 잔류응력을 측정하는 단계를 포함하는 이차전지용 전극의 제조방법이 제공된다. According to another aspect of the present invention, a method for manufacturing an electrode for a secondary battery is provided, including the steps of: applying a slurry containing an electrode active material and a binder on an electrode collector and drying the slurry to manufacture an electrode; rolling the electrode; impregnating the rolled electrode with an electrolyte and measuring residual stress of the electrode collector or the electrode active material; and drying the electrode impregnated with the electrolyte and measuring residual stress of the electrode collector or the electrode active material.
상술한 바와 같이, 본 발명에서는 에이징 공정을 모사하여, 상기 압연된 전극을 전해액에 함침하는 단계를 포함하고, 함침 전 후의 전극의 잔류응력을 측정하여, 박리가 발생하지 않는 한계 밀도를 전지 생산 이전의 전극 공정 단계에서 확인할 수 있도록 하였으며, 잔류응력을 측정하는 단계는 X-선 회절(X-ray diffraction)분석을 이용하여 수행될 수 있고, 전극을 전해액에 함침시킨 후 측정된 전극집전체 또는 전극활물질의 잔류응력에 대하여, 상기 함침된 전극을 건조한 후 측정된 전극집전체 또는 전극활물질의 잔류응력의 감소율은 15% 이하인 것이 바람직하다. 잔류 응력의 감소율이 15%를 초과하는 경우, 높은 에너지 상태로 인하여 전극이 주름지거나 박리 현상이 발생할 수 있으며, 전극집전체와 전극합제층 사이의 접착력 또한 저하될 수 있다.As described above, the present invention includes a step of immersing the rolled electrode in an electrolyte by simulating the aging process, and measures the residual stress of the electrode before and after the impregnation, so that the limit density at which peeling does not occur can be confirmed at the electrode process stage prior to battery production, and the step of measuring the residual stress can be performed using X-ray diffraction analysis, and it is preferable that the reduction rate of the residual stress of the electrode collector or electrode active material measured after drying the impregnated electrode is 15% or less with respect to the residual stress of the electrode collector or electrode active material measured after immersing the electrode in the electrolyte. When the reduction rate of the residual stress exceeds 15%, the electrode may wrinkle or peeling may occur due to a high energy state, and the adhesive strength between the electrode collector and the electrode composite layer may also be reduced.
한편, 압연된 전극을 전해액에 함침하는 단계는 25 내지 100℃의 온도범위에서 수행될 수 있고, 60 내지 100℃의 온도범위에서 수행되는 것이 보다 바람직하다. 25℃미만일 경우, 응력이 해소되기까지 함침 시간을 증가시켜야 하고, 100℃ 초과일 경우 단시간 내 응력이 전부 해소되어 밀도에 따른 변별력이 낮아질 수 있다.Meanwhile, the step of impregnating the rolled electrode with the electrolyte can be performed at a temperature range of 25 to 100°C, and is more preferably performed at a temperature range of 60 to 100°C. If it is less than 25°C, the impregnation time must be increased until the stress is relieved, and if it is more than 100°C, the stress is completely relieved within a short period of time, which may lower the discrimination power according to the density.
전극을 전해액에 함침하는 단계는 1 내지 24시간 동안 수행될 수 있고, 10 내지 20시간 동안 수행되는 것이 보다 바람직하다. 1시간 미만일 경우, 전해액이 충분히 함침되지 않아 구조 내 잔류응력이 해소되지 않을 수 있고, 24시간 초과인 경우, 밀도에 따른 변별력이 낮아질 수 있다.The step of impregnating the electrode with the electrolyte can be performed for 1 to 24 hours, and is more preferably performed for 10 to 20 hours. If it is less than 1 hour, the electrolyte may not be sufficiently impregnated, and residual stress within the structure may not be relieved, and if it exceeds 24 hours, discrimination according to density may be reduced.
이하, 본 발명을 실시예를 들어 보다 구체적으로 설명한다. 이하의 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described more specifically with reference to examples. The following examples are intended to more specifically explain the present invention, but the present invention is not limited thereto.
실시예Example
음극의 제조Manufacturing of cathode
음극활물질로 인조흑연 및 천연흑연을 혼합하여 사용하고, 바인더로 스티렌-부타디엔고무(SBR)와 0.6wt% 내지 1.5wt%의 카르복시메틸셀룰로오스(CMC)를 물에 분산시킨 수계 바인더를 사용하여 음극슬러리를 제조하고, 이를 구리 포일에 도포 및 건조하였다.A negative electrode slurry was prepared by using a mixture of artificial graphite and natural graphite as a negative electrode active material and an aqueous binder containing styrene-butadiene rubber (SBR) and 0.6 wt% to 1.5 wt% of carboxymethyl cellulose (CMC) dispersed in water as a binder, which was then applied to a copper foil and dried.
상기 구리 포일을 표 1에 나타낸 것과 같이 압연밀도를 제어하여, 압연을 수행하고, 40℃의 온도의 PC 전해액에서 20시간 함침하였으며, 함침전과 함침후의 잔류응력 및 잔류응력 감소율을 측정하여 표 1에 나타내었다. The above copper foil was rolled by controlling the rolling density as shown in Table 1, and impregnated in a PC electrolyte at a temperature of 40°C for 20 hours. The residual stress and the residual stress reduction rate before and after impregnation were measured, and are shown in Table 1.
한편, 잔류 응력의 측정은 다음의 방법에 의해 수행하였다. 상기 실시예 1 내지 3과 비교예 1 및 2의 전극에 대하여 XRD를 분석을 수행하였다. 보다 상세하게, 시료를 틸팅(tilting) 하면서 여러 각도에서의 시료면에 대한 결정의 회절 정도를 측정하고(φ-scan), 특정의 2theta 범위에서 XRD 측정을 통해 다른 결정 방향을 가진 면들의 면간거리를 측정한 후, 를 플롯(plot)하여 잔류응력 값을 계산하였다. 구리 포일의 131면, 89.9도를 기준으로 측정하였다.Meanwhile, the measurement of residual stress was performed by the following method. XRD analysis was performed on the electrodes of Examples 1 to 3 and Comparative Examples 1 and 2. More specifically, the degree of crystal diffraction for the sample plane at various angles was measured while tilting the sample (φ-scan), and the interplanar distance of planes with different crystal directions was measured through XRD measurement in a specific 2theta range, The residual stress value was calculated by plotting the 131-surface, 89.9-degree copper foil as a reference.
(MPa)residual stress
(MPa)
표 1에 나타난 것과 같이, 실시예 1 내지 3은 전해액 함침 전후, 잔류응력 감소율이 15%이하로서, 구리포일과 음극합제층의 박리가 발생하지 않았다. 반면, 비교예 1 및 2 에서처럼 잔류응력 감소율이 15%를 초과하는 경우에는 박리가 발생하는 것을 확인하였다.As shown in Table 1, in Examples 1 to 3, the residual stress reduction rate was 15% or less before and after electrolyte impregnation, so that no peeling occurred between the copper foil and the cathode composite layer. On the other hand, in Comparative Examples 1 and 2, when the residual stress reduction rate exceeded 15%, peeling was confirmed to occur.
즉, 압연에 의해 이종 물질이 증착될 때, 응력(stress)이 발생하고 물질의 성질에 따라 일부 응력은 내부에 잔류하지만, 초과하는 경우 변형(strain)으로 나타난다. 전극의 경우, 활물질이 갖는 잔류 응력과 기재(foil)가 갖는 잔류 응력이 각각 존재하며, 용매나 열 등의 외부 조건에 의해 잔류 응력이 완화될 수 있다. 압연 밀도가 증가할수록 접착력 차이는 유사하나 잔류 응력의 크기는 증가한다는 상관관계를 바탕으로 본 실험을 수행하였으며, 전해액 내 함침시켜 전극 내 잔류 응력을 해소시켜주었을 때, 접착력 측정 시 표준 편차가 크게 증가하기 시작하는 압연 밀도에서 박리가 발생한다는 결과를 얻었다. 이는 접착력만으로 박리 여부를 예측하는 방식보다 정확할 수 있으며, 전극 제작 이후 후공정에서 발생할 수 있는 손실을 저감할 수 있는 효과가 있다.That is, when a heterogeneous material is deposited by rolling, stress occurs and some of the stress remains internally depending on the properties of the material, but if it exceeds it appears as strain. In the case of an electrode, there are residual stresses of the active material and residual stresses of the substrate (foil), and the residual stress can be relieved by external conditions such as solvents or heat. This experiment was conducted based on the correlation that as the rolling density increases, the difference in adhesive strength is similar but the size of the residual stress increases, and it was found that when the residual stress inside the electrode was relieved by impregnation in an electrolyte, peeling occurred at the rolling density at which the standard deviation in the adhesive strength measurement began to significantly increase. This can be more accurate than the method of predicting peeling using adhesive strength alone, and can reduce the loss that may occur in the post-process after electrode manufacturing.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and it will be apparent to those skilled in the art that various modifications and variations are possible within a scope that does not depart from the technical spirit of the present invention described in the claims.
Claims (8)
상기 전극을 전해액에 함침시킨 후 측정된 전극집전체 또는 전극활물질의 잔류응력에 대하여,
상기 함침된 전극을 건조한 후 측정된 전극집전체 또는 전극활물질의 잔류응력의 감소율은 15% 이하인 이차전지용 전극.
An electrode for a secondary battery comprising an electrode current collector; and an electrode composite layer formed on the electrode current collector and containing an electrode active material,
Regarding the residual stress of the electrode current collector or electrode active material measured after immersing the above electrode in the electrolyte,
An electrode for a secondary battery, wherein the reduction rate of the residual stress of the electrode current collector or electrode active material measured after drying the impregnated electrode is 15% or less.
상기 잔류응력은 X-선 회절(X-ray diffraction)분석을 이용하여, 전극집전체의 (131)면 또는 전극활물질의 (112)면 및 (002)면 중 어느 하나에 대하여 측정되는 이차전지용 전극.
In the first paragraph,
An electrode for a secondary battery, wherein the above residual stress is measured using X-ray diffraction analysis for either the (131) plane of the electrode current collector or the (112) plane and (002) plane of the electrode active material.
상기 전극의 전극밀도는 1.9g/cc 미만인 것을 특징으로 하는 이차전지용 전극.
In the first paragraph,
An electrode for a secondary battery, characterized in that the electrode density of the above electrode is less than 1.9 g/cc.
상기 전극은 음극인 이차전지용 전극.
In any one of claims 1 to 3,
The above electrode is a negative electrode for a secondary battery.
상기 전극을 압연하는 단계;
상기 압연된 전극을 전해액에 함침하고, 전극집전체 또는 전극활물질의 잔류응력을 측정하는 단계; 및
상기 전해액에 함침된 전극을 건조하고, 전극집전체 또는 전극활물질의 잔류응력을 측정하는 단계를 포함하는 이차전지용 전극의 제조방법.
A step of manufacturing an electrode by applying a slurry containing an electrode active material and a binder on an electrode collector and drying it;
A step of rolling the above electrode;
A step of immersing the above rolled electrode in an electrolyte and measuring the residual stress of the electrode collector or electrode active material; and
A method for manufacturing an electrode for a secondary battery, comprising the steps of drying an electrode impregnated in the above electrolyte and measuring the residual stress of an electrode collector or an electrode active material.
상기 전해액에 함침 후 측정된 전극의 전극집전체 또는 전극활물질의 잔류응력에 대하여,
상기 전해액에 함침된 전극을 건조한 후 측정된 전극집전체 또는 전극활물질의 잔류응력의 감소율은 15% 이하인 이차전지용 전극의 제조방법.
In paragraph 5,
Regarding the residual stress of the electrode collector or electrode active material of the electrode measured after immersion in the above electrolyte,
A method for manufacturing an electrode for a secondary battery, wherein the reduction rate of the residual stress of an electrode current collector or electrode active material measured after drying an electrode impregnated in the above electrolyte is 15% or less.
상기 압연된 전극을 전해액에 함침하는 단계는 25 내지 100℃의 온도범위에서 1 내지 24시간 동안 수행되는 이차전지용 전극의 제조방법.
In paragraph 5,
A method for manufacturing an electrode for a secondary battery, wherein the step of impregnating the rolled electrode with an electrolyte is performed at a temperature range of 25 to 100°C for 1 to 24 hours.
상기 잔류응력은 X-선 회절(X-ray diffraction)분석을 이용하여, 전극집전체의 (131)면 또는 전극활물질의 (112)면 및 (002)면 중 어느 하나에 대하여 측정되는 이차전지용 전극의 제조방법.
In paragraph 5,
A method for manufacturing an electrode for a secondary battery, wherein the above residual stress is measured using X-ray diffraction analysis for either the (131) plane of the electrode current collector or the (112) plane and (002) plane of the electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200099225A KR102779713B1 (en) | 2020-08-07 | 2020-08-07 | Electrode for secondary battery and method for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200099225A KR102779713B1 (en) | 2020-08-07 | 2020-08-07 | Electrode for secondary battery and method for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220018745A KR20220018745A (en) | 2022-02-15 |
KR102779713B1 true KR102779713B1 (en) | 2025-03-12 |
Family
ID=80325419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200099225A Active KR102779713B1 (en) | 2020-08-07 | 2020-08-07 | Electrode for secondary battery and method for preparing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102779713B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102498916B1 (en) | 2022-02-14 | 2023-02-09 | 주식회사 엘지에너지솔루션 | Battery cell and battery module including the same |
KR20240100300A (en) * | 2022-12-22 | 2024-07-01 | 주식회사 엘지에너지솔루션 | Method for manufacturing negative electrode currentor, negative electrode currentor, negative electrode, electrode assembly and secondary battery comprising the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5463817B2 (en) | 2009-09-16 | 2014-04-09 | 日産自動車株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102433032B1 (en) * | 2017-07-31 | 2022-08-16 | 에스케이넥실리스 주식회사 | Copper foil free from generation of wrinkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same |
KR102442856B1 (en) * | 2018-07-27 | 2022-09-14 | 주식회사 엘지화학 | Method for evaluating dispersibility of particle in film |
-
2020
- 2020-08-07 KR KR1020200099225A patent/KR102779713B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5463817B2 (en) | 2009-09-16 | 2014-04-09 | 日産自動車株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20220018745A (en) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2573387C2 (en) | Electrode foil, current tap, electrode and element for electric energy accumulation with their usage | |
US8470476B2 (en) | Lithium ion battery | |
EP2197069A1 (en) | Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery | |
KR20190083304A (en) | A method of pre-lithiating anode and Anode manufactured therefrom | |
EP3654421B1 (en) | A battery | |
KR20140137660A (en) | Electrode for secondary battery and secondary battery comprising the same | |
EP3683874B1 (en) | A battery | |
JPH11162470A (en) | Aluminum foil for current collector, its manufacture current collector, secondary battery and electric double layer capacitor | |
KR20200142340A (en) | Secondary battery with improved high-temperature properties | |
KR102756676B1 (en) | Anode Having Double Active Material Layers, Method of Preparing the Same, and Secondary Battery Comprising the Same | |
JP2011192610A (en) | Lithium ion battery | |
KR20180080512A (en) | Electrolytic Copper Foil with Optimized Peak Roughness, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same | |
KR102779713B1 (en) | Electrode for secondary battery and method for preparing the same | |
KR102367371B1 (en) | Anode and Lithium Secondary Battery Comprising the Same | |
EP3483952B1 (en) | Electrode for lithium-ion secondary battery | |
CA2507399C (en) | Method for producing drawn coated metals and use of said metals in the form of a current differentiator for electrochemical components | |
KR20200071622A (en) | Lithium secondary battery and manufacturing method thereof | |
KR102149874B1 (en) | Method for measuring degree of impregnation of electrolyte in secondary battery | |
JP2008198408A (en) | Nonaqueous electrolyte secondary battery | |
WO2014003034A1 (en) | Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries | |
EP3879598B1 (en) | Electrode for lithium ion secondary battery, and lithium ion secondary battery | |
EP4113658A1 (en) | Method for manufacturing electrode for lithium secondary battery | |
KR101762477B1 (en) | Negative electrode slurry and secondary battery prepared therefrom | |
KR102116279B1 (en) | Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode and manufacturing method of ultracapacitor | |
KR20210021916A (en) | Electrode for secondary battery and lithium secondary battery comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20200807 |
|
PN2301 | Change of applicant |
Patent event date: 20211125 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20230411 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20200807 Comment text: Patent Application |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20250127 |
|
PG1601 | Publication of registration |