[go: up one dir, main page]

KR102753583B1 - Antigen Composition For Inducing KRAS Specific Activated T Cell - Google Patents

Antigen Composition For Inducing KRAS Specific Activated T Cell Download PDF

Info

Publication number
KR102753583B1
KR102753583B1 KR1020210154617A KR20210154617A KR102753583B1 KR 102753583 B1 KR102753583 B1 KR 102753583B1 KR 1020210154617 A KR1020210154617 A KR 1020210154617A KR 20210154617 A KR20210154617 A KR 20210154617A KR 102753583 B1 KR102753583 B1 KR 102753583B1
Authority
KR
South Korea
Prior art keywords
kras
cells
rop
epitope
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210154617A
Other languages
Korean (ko)
Other versions
KR20230068628A (en
Inventor
이왕준
문현종
임선기
조형래
Original Assignee
의료법인 명지의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 의료법인 명지의료재단 filed Critical 의료법인 명지의료재단
Priority to KR1020210154617A priority Critical patent/KR102753583B1/en
Priority to PCT/KR2022/016547 priority patent/WO2023085657A1/en
Publication of KR20230068628A publication Critical patent/KR20230068628A/en
Priority to KR1020240130362A priority patent/KR20240148770A/en
Priority to KR1020240130365A priority patent/KR20240145449A/en
Priority to KR1020240130363A priority patent/KR20240150729A/en
Priority to KR1020240130364A priority patent/KR20240144081A/en
Application granted granted Critical
Publication of KR102753583B1 publication Critical patent/KR102753583B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/40Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
    • A61K40/41Vertebrate antigens
    • A61K40/42Cancer antigens
    • A61K40/4244Enzymes
    • A61K40/4253GTPases, e.g. Ras or Rho
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/10Cellular immunotherapy characterised by the cell type used
    • A61K40/11T-cells, e.g. tumour infiltrating lymphocytes [TIL] or regulatory T [Treg] cells; Lymphokine-activated killer [LAK] cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K40/00
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
    • A61K2239/50Colon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K40/00
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
    • A61K2239/52Intestine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K40/00
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
    • A61K2239/54Pancreas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K40/00
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
    • A61K2239/55Lung
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물은 유효성분인 KRAS 돌연변이(G12D, G12V, 및 G13D) 재조합 중첩 펩타이드를 KRAS의 아미노산 서열에서 순차적으로 30개의 아미노산을 단위로 총 12개의 에피토프(epitope, n=1 내지 12이며 단, 마지막 에프토프(n=12)는 23개의 아미노산이다.)로 구분하되 에피토프 사이에 15개의 아미노산 서열이 중첩되도록 디자인하여 종래의 KRAS 돌연변이 에피토프 펩타이드를 항원으로 사용하는 것보다 향상된 KRAS 특이적 활성화 T 세포 유도 효과를 가지는 장점이 있다.The antigen composition for inducing KRAS-specific activated T cells of the present invention has the advantage of having an improved KRAS-specific activated T cell induction effect than when using conventional KRAS mutant epitope peptides as antigens, by sequentially dividing the KRAS mutant (G12D, G12V, and G13D) recombinant overlapping peptides, which are active ingredients, into a total of 12 epitopes (epitopes, n=1 to 12, provided that the last epitope (n=12) is 23 amino acids) in units of 30 amino acids in the amino acid sequence of KRAS, and designing such that 15 amino acid sequences overlap between the epitopes.

Description

KRAS 특이적 활성화 T 세포 유도용 항원 조성물{Antigen Composition For Inducing KRAS Specific Activated T Cell}{Antigen Composition For Inducing KRAS Specific Activated T Cell}

본 발명은 KRAS 특이적 활성화 T 세포 유도용 항원 조성물에 관한 것이다.The present invention relates to an antigen composition for inducing KRAS-specific activated T cells.

암 환자의 치료는 기본적으로 외과적 수술, 화학요법, 방사선 치료등을 단독 혹은 병행하여 시행하게 되며 싸이토카인(cytokine), 펩타이드 백신, 항체 치료제등의 병행치료도 증가하고 있는 추세이다. Treatment for cancer patients basically involves surgery, chemotherapy, and radiation therapy alone or in combination, and concurrent treatment with cytokines, peptide vaccines, and antibody treatments is also on the rise.

비특이적 수동 면역 반응에 의한 항암치료효과를 갖는 면역세포치료제가 간암환자대상 수술 후 재발 억제 효능이 있다는 것을 입증한 바 있으며 그 예로서 CAR-T 세포치료제가 임상허가를 받아 항암 면역세포치료와 면역관문 억제제들의 병행 치료에 대한 연구가 활발히 진행되고 있다.It has been proven that immunotherapy with anticancer effects through non-specific passive immune responses has the effect of suppressing recurrence after surgery for liver cancer patients, and as an example, CAR-T cell therapy has received clinical approval, and research on concurrent treatment with anticancer immunotherapy and immune checkpoint inhibitors is actively being conducted.

항암 치료제로 사용되는 일반적인 펩타이드 백신은 면역원성이 높은 아미노선 서열을 에피토프로 선별하고 이를 최적화하여 사용한다. 항암치료제로 사용되는 펩타이드 백신은 선택성이 좋고 효과적이며 우수한 내약성을 갖는 장점이 있다. Common peptide vaccines used as anticancer treatments select highly immunogenic amino acid sequences as epitopes and optimize them for use. Peptide vaccines used as anticancer treatments have the advantages of being highly selective, effective, and having excellent tolerability.

상기 펩타이드 백신은 암 항원을 인지하는 T 세포 수용체(T cell receptor; TCR)와 결합하는 항원제시세포(Antigen presenting cell; APC)의 주조직적합성복합체(Major histocompatibility complex; MHC) 분자에 실려 대부분 CD8 T 세포들을 교육시키거나 활성을 유도하므로 암세포 사멸을 유도한다.The above peptide vaccine induces cancer cell death by educating or activating mostly CD8 T cells by loading onto the major histocompatibility complex (MHC) molecule of antigen presenting cells (APC) that bind to the T cell receptor (TCR) that recognizes cancer antigens.

그러나 펩타이드 백신은 9 내지 11개 아미노산으로 구성된 에피토프에 의존하므로 암세포에서 상기 에피토프가 돌연변이를 일으키게 되면 면역회피를 할 수 있게 될 뿐 아니라 CD4 T 세포의 도움을 받지 못해 CD8 세포의 활성 및 메모리 기능에 제한을 가지게 된다. 또한 상기 펩타이드 백신은 MHC class I 분자에 올려지는 펩타이드로 디자인 되므로 환자의 인간백혈구 항원(Human leukocyte antigen, HLA) 타입에 따라 제한이 있는 문제점이 있었다.However, since peptide vaccines depend on epitopes consisting of 9 to 11 amino acids, if the epitopes are mutated in cancer cells, they can not only evade immunity, but also have limitations in the activity and memory functions of CD8 cells because they do not receive help from CD4 T cells. In addition, since the peptide vaccines are designed as peptides that are loaded onto MHC class I molecules, there was a problem in that there were limitations depending on the patient's human leukocyte antigen (HLA) type.

상기 문제점을 개선하기 위하여 중첩 펩타이드(overlapping peptide, OLP) 백신치료제가 개발되었다. OLP 백신은 펩타이드 백신과 달리 항원 전체를 포함하는 특징이 있다. OLP 백신은 항원 전체를 포함하되 에피토프의 아미오선 서열이 중첩이 되도록 설계 되었기 때문에 HLA 타입에 제한성이 없을 뿐 아니라 CD4 T 세포의 도움을 받을 수 있어 종래의 펩타이드 백신보다 우수한 면역반응을 보이는 장점이 있다. To improve the above problems, overlapping peptide (OLP) vaccines have been developed. Unlike peptide vaccines, OLP vaccines have the characteristic of containing the entire antigen. Since OLP vaccines contain the entire antigen but are designed so that the amino acid sequences of the epitopes overlap, they are not limited to HLA types and can receive help from CD4 T cells, so they have the advantage of showing a superior immune response than conventional peptide vaccines.

그러나 상기 OLP 백신은 특정 항원에 대한 OLP 라이브러리(library)중 면역반응이 우수한 20개 내외의 아미노산 서열을 포함하는 펩타이드를 에피토프로서 선별하는 과정이 필요할 뿐 아니라 선별된 에피토프를 10개 이상 연속적이며 중복되도록 디자인하기 때문에 많은 비용과 시간이 소요되는 제조상 문제점이 있었다. 재조합 중첩 펩타이드(Recombinant overlapping peptide, ROP)는 상기 OLP 백신치료제의 문제점을 개선하기 위해 개발된 것으로 재조합 단백질 생산기술을 통해 비용과 시간을 절약할 수 있는 장점이 있다. However, the above OLP vaccine not only requires a process of selecting a peptide containing about 20 amino acid sequences with an excellent immune response from an OLP library for a specific antigen as an epitope, but also has manufacturing problems that require a lot of cost and time because the selected epitopes are designed to be 10 or more consecutive and overlapping. Recombinant overlapping peptide (ROP) was developed to improve the problems of the above OLP vaccine treatment, and has the advantage of saving cost and time through recombinant protein production technology.

암 항원 중 KRAS 돌연변이는 고형암의 약 20%에서 발견되고 있는 비교적 흔한 발암유발변이로, 주로 췌장 및 대장의 선암, 폐암 등에서 가장 흔하게 발견된다. 그러나 오랜 연구와 노력에도 불구하고 KRAS 돌연변이 의존적 종양에서 K-ras 표적의 새로운 치료법들은 그 효과에 있어서 만족스럽지 못한 실정이다. 그 이유는 KRAS 돌연변이에 의해 발현되는 K-ras 돌연변이체들에 개별적으로 결합하는 항체를 만들기 어려워 K-ras의 기능을 억제하거나 비활성화 하는 간접적인 치료법에 국한되어 있었기 때문이다. 따라서 재조합 중첩 펩타이드(Recombinant overlapping peptide, ROP)을 이용하여 K-ras 돌연변이체의 개별적 인식이 가능하도록 유도할 수 있는 항원이 개발된다면 KRAS 돌연변이 의존적 종양 치료제 개발에 큰 기여를 할 수 있을 것으로 기대된다.Among cancer antigens, KRAS mutation is a relatively common oncogenic mutation found in about 20% of solid cancers, and is most commonly found in adenocarcinoma of the pancreas and colon, and lung cancer. However, despite long-term research and efforts, new treatments targeting K-ras in KRAS mutation-dependent tumors are not satisfactory in terms of their effects. This is because it is difficult to create antibodies that individually bind to K-ras mutants expressed by KRAS mutations, and thus, they have been limited to indirect treatments that inhibit or inactivate the function of K-ras. Therefore, if an antigen that can induce individual recognition of K-ras mutants using recombinant overlapping peptide (ROP) is developed, it is expected to greatly contribute to the development of treatments for KRAS mutation-dependent tumors.

본 명세서에서 언급된 특허문헌 및 참고문헌은 각각의 문헌이 참조에 의해 개별적이고 명확하게 특정된 것과 동일한 정도로 본 명세서에 참조로 삽입된다. The patent documents and references mentioned in this specification are incorporated by reference into this specification to the same extent as if each document was individually and specifically designated by reference.

한국공개특허 10-2018-0010229Korean Patent Publication No. 10-2018-0010229 한국공개특허 10-2020-0141994Korean Patent Publication No. 10-2020-0141994

Vaccines. 2014 Jul 2;2(3):515-36.Vaccines. 2014 Jul 2;2(3):515-36. Adv Protein Chem Struct Biol. 2015;99:1-14.Adv Protein Chem Struct Biol. 2015;99:1-14. Nat Rev Cancer. 2008 May;8(5):351-60). Nat Rev Cancer. 2008 May;8(5):351-60).

본 발명은 KRAS 전체 아미노산 서열 및 KRAS 돌연변이를 포함하므로 KRAS 돌연변이 의존적 종양의 다양한 KRAS 돌연변이에 직접 결합하여 면역반응을 일으킬 수 있는 KRAS 특이적 활성화 T 세포를 유도 할 수 있을 뿐 아니라 재조합 기술을 이용하여 제조되었으므로 경제적 효율성이 뛰어난 KRAS 특이적 활성화 T 세포 유도용 항원을 제공하는 것을 목적으로 한다.The present invention aims to provide an antigen for inducing KRAS-specific activated T cells, which comprises the entire amino acid sequence of KRAS and KRAS mutations, and thus can directly bind to various KRAS mutations of KRAS mutation-dependent tumors and induce an immune response, and which is economically efficient because it is manufactured using recombinant technology.

본 발명의 다른 목적 및 기술적 특징은 이하의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 구체적으로 제시된다. Other objects and technical features of the present invention are more specifically presented in the detailed description of the invention, the claims and the drawings below.

본 발명은 서열번호 1의 아미노산 서열로 이루어진 KRAS 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물을 제공한다. The present invention provides an antigen composition for inducing KRAS-specific activated T cells, comprising a KRAS mutant recombinant overlapping peptide consisting of an amino acid sequence of sequence number 1 as an active ingredient.

상기 KRAS 돌연변이 재조합 중첩 펩타이드는 KRAS 돌연변이로서 G12D, G12V, 및 G13D을 포함하며 서열번호 2로 이루어진 KRAS의 아미노산 서열에서 어느 하나의 아미노산으로부터 순차적으로 나열된 아미노산 서열을 단위로 하는 총 12 종류의 에피토프(epitope(n=1, 2, 3....10, 11, 12); 여기서 n은 에피토프의 순번을 의미하며 에피토프(n=1 내지 11)는 30개의 아미노산 서열을 포함하고 마지막 에프토프(n=12)는 23개의 아미노산 서열을 포함한다.)를 포함하되 에피토프(n=1)를 제외한 에피토프(n=2, 3,...12)는 N-terminal 방향 15개의 아미노산 서열이 직전 순번의 에피토프(n-1)의 C-terminal 방향 15개의 아미노산 서열과 서로 중첩되도록 디자인된 것을 특징으로 한다.The above KRAS mutant recombinant overlapping peptide comprises KRAS mutations including G12D, G12V, and G13D, and comprises a total of 12 types of epitopes (epitopes (n=1, 2, 3....10, 11, 12); here, n represents the order of the epitopes, and the epitopes (n=1 to 11) include 30 amino acid sequences and the last epitope (n=12) includes 23 amino acid sequences) sequentially listed as units from any one amino acid in the amino acid sequence of KRAS consisting of SEQ ID NO: 2, but is characterized in that the epitopes (n=2, 3,...12) excluding the epitope (n=1) are designed such that the N-terminal 15 amino acid sequence overlaps with the C-terminal 15 amino acid sequence of the epitope (n-1) of the immediately preceding order.

상기 KRAS 돌연변이 재조합 중첩 펩타이드는 상기 에피토프(n=1, 2, 3...10, 11, 12)가 순번에 따라 위치하며 상기 에피토프 사이는 LRMK-링커로 연결되며; 상기 에피토프(n=1)는 KRAS 돌연변이 G12V를 포함하며; 상기 에피토프(n=1)의 N-terminal에는 KRAS 돌연변이 G12D를 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되고; 상기 에피토프(n=12)의 C-terminal에는 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되며; 상기 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)의 C-terminal에는 KRAS 돌연변이가 포함되지 않은 에피토프(n=1)가 LRMK-링커로 더 연결되는 것을 특징으로 한다.The above KRAS mutant recombinant overlapping peptide has the epitopes (n=1, 2, 3...10, 11, 12) sequentially positioned and the epitopes are connected by an LRMK-linker; the epitope (n=1) includes KRAS mutation G12V; at the N-terminal of the epitope (n=1), an epitope (n=1) including KRAS mutation G12D is further connected by an LRMK-linker; at the C-terminal of the epitope (n=12), an epitope (n=1) including KRAS mutation G13D is further connected by an LRMK-linker; The C-terminal of the epitope (n=1) containing the above KRAS mutation G13D is further connected to an epitope (n=1) not containing the KRAS mutation by a LRMK-linker.

본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물은 유효성분인 KRAS 돌연변이(G12D, G12V, 및 G13D) 재조합 중첩 펩타이드를 KRAS의 아미노산 서열에서 순차적으로 30개의 아미노산을 단위로 총 12개의 에피토프(epitope, n=1 내지 12이며 단, 마지막 에프토프(n=12)는 23개의 아미노산이다.)로 구분하되 에피토프 사이에 15개의 아미노산 서열이 중첩되도록 디자인하여 종래의 KRAS 돌연변이 에피토프 펩타이드를 항원으로 사용하는 것보다 향상된 KRAS 특이적 활성화 T 세포 유도 효과를 가지는 장점이 있다.The antigen composition for inducing KRAS-specific activated T cells of the present invention has the advantage of having an improved KRAS-specific activated T cell induction effect than when using conventional KRAS mutant epitope peptides as antigens, by sequentially dividing the KRAS mutant (G12D, G12V, and G13D) recombinant overlapping peptides, which are active ingredients, into a total of 12 epitopes (epitopes, n=1 to 12, provided that the last epitope (n=12) is 23 amino acids) in units of 30 amino acids in the amino acid sequence of KRAS, and designing such that 15 amino acid sequences overlap between the epitopes.

도 1은 본 발명의 KRAS(M)-ROP의 아미노산 서열 구조를 보여준다.
도 2는 본 발명의 KRAS(M)-ROP에 대한 PBMC의 반응성을 분석한 결과를 보여준다.
도 3은 본 발명의 KRAS(M)-ROP 농도에 따른 LP-1 PBMC의 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다.
도 4는 본 발명의 KRAS(M)-ROP, KRAS1-24Wild-type, 및 KRAS1-24m돌연변이에 대한 LP-1 PBMC의 항원 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다.
도 5는 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 비교한 결과를 보여준다.
도 6은 본 발명의 ROP-T 세포에 대한 KRAS 돌연변이 에피토프 스크리닝 결과를 보여준다.
도 7은 본 발명의 HLA-DQ blocking 에세이 결과를 보여준다.
도 8은 본 발명의 조건별 IFN-γ를 분비(IFN-γ+)하는 CD3+ T 세포의 비율을 보여준다.
Figure 1 shows the amino acid sequence structure of KRAS(M)-ROP of the present invention.
Figure 2 shows the results of analyzing the reactivity of PBMC to KRAS(M)-ROP of the present invention.
Figure 3 shows the results of analyzing the specific CD3+ T cell ratio of LP-1 PBMC according to the KRAS(M)-ROP concentration of the present invention.
Figure 4 shows the results of analyzing the antigen-specific CD3+ T cell ratio of LP-1 PBMCs for KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 m mutant of the present invention.
Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention.
Figure 6 shows the results of KRAS mutant epitope screening for ROP-T cells of the present invention.
Figure 7 shows the results of the HLA-DQ blocking assay of the present invention.
Figure 8 shows the ratio of CD3+ T cells secreting IFN-γ (IFN-γ+) according to the conditions of the present invention.

본 발명은 서열번호 1의 아미노산 서열로 이루어진 KRAS 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물을 제공한다. The present invention provides an antigen composition for inducing KRAS-specific activated T cells, comprising a KRAS mutant recombinant overlapping peptide consisting of an amino acid sequence of sequence number 1 as an active ingredient.

상기 서열번호 1은 KRAS 단백질의 아미노산서열로서 189개의 아미노산으로 구성된다. 상기 KRAS 돌연변이는 12번째 아미노산이 글리신(Glycine, G)에서 아스파르트산(Aspartic acid, D)으로 치환되었거나, 12번째 아미노산이 글리신(Glycine, G)에서 발린(Valine, V)으로 치환되었거나, 13번째 아미노산이 글리신(Glycine, G)에서 아스파르트산(Aspartic acid, D)으로 치환된 것을 의미한다.The above sequence number 1 is the amino acid sequence of the KRAS protein and consists of 189 amino acids. The above KRAS mutation means that the 12th amino acid is substituted from glycine (G) to aspartic acid (D), or the 12th amino acid is substituted from glycine (G) to valine (V), or the 13th amino acid is substituted from glycine (G) to aspartic acid (D).

상기 재조합(recombinant)은 디자인된 항원의 유전정보를 포함하는 재조합 플라스미드 DNA에 끼워 넣는 것을 의미하며 상기 재조합 플라스미드 DNA를 미생물에 형질전환시켜 단백질을 발현시키고 이를 정제하게 되면 본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원이 수득된다. The above recombination means inserting the genetic information of the designed antigen into a recombinant plasmid DNA, and when the recombinant plasmid DNA is transformed into a microorganism to express the protein and purify it, the antigen for inducing KRAS-specific activated T cells of the present invention is obtained.

본 발명의 KRAS 돌연변이 재조합 중첩 펩타이드는 서열번호 2로 이루어진 KRAS의 아미노산 서열에서 어느 하나의 아미노산으로부터 순차적으로 나열된 아미노산 서열을 단위로 하는 총 12 종류의 에피토프(epitope(n=1, 2, 3....10, 11, 12); 여기서 n은 에피토프의 순번을 의미하며 에피토프(n=1 내지 11)는 30개의 아미노산 서열을 포함하고 마지막 에프토프(n=12)는 23개의 아미노산 서열을 포함한다.)를 포함하되 에피토프(n=1)를 제외한 에피토프(n=2, 3,...12)는 N-terminal 방향 15개의 아미노산 서열이 직전 순번의 에피토프(n-1)의 C-terminal 방향 15개의 아미노산 서열과 서로 중첩되도록 디자인된다. The KRAS mutant recombinant overlapping peptide of the present invention comprises a total of 12 types of epitopes (epitopes (n=1, 2, 3....10, 11, 12); here, n represents the order of the epitopes, and the epitopes (n=1 to 11) include 30 amino acid sequences and the last epitope (n=12) includes 23 amino acid sequences) whose units are sequentially listed amino acid sequences from any one amino acid in the amino acid sequence of KRAS consisting of SEQ ID NO: 2, but the epitopes (n=2, 3,...12) excluding the epitope (n=1) are designed such that the N-terminal 15 amino acid sequence overlaps with the C-terminal 15 amino acid sequence of the epitope (n-1) of the immediately preceding order.

상기 KRAS 돌연변이 재조합 중첩 펩타이드는 상기 에피토프(n=1, 2, 3...10, 11, 12)가 순번에 따라 위치하며 상기 에피토프 사이는 LRMK-링커로 연결된 것을 특징으로 하며 상기 LRMK-링커는 루신(Leucine, L), 아르기닌(Arginine, R), 메티오닌(Methione, M), 라이신(Lysine, K)으로 구성된 링커로서 수지상세포에 의한 항원제시과정(MHCI class I pathway)에 유리한 장점이 있다. The above KRAS mutant recombinant overlapping peptide is characterized in that the epitopes (n=1, 2, 3...10, 11, 12) are sequentially located and the epitopes are connected by an LRMK-linker. The LRMK-linker is a linker composed of Leucine (L), Arginine (R), Methionine (M), and Lysine (K), and has an advantage in the antigen presentation process (MHCI class I pathway) by dendritic cells.

상세하게는 본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물은 하기와 같이 디자인된다. 상기 에피토프(n=1)는 KRAS 돌연변이 G12V를 포함하며; 상기 에피토프(n=1)의 N-terminal에는 KRAS 돌연변이 G12D를 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되고; 상기 에피토프(n=12)의 C-terminal에는 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되며; 상기 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)의 C-terminal에는 KRAS 돌연변이가 포함되지 않은 에피토프(n=1)가 LRMK-링커로 더 연결된다.In detail, the antigen composition for inducing KRAS-specific activated T cells of the present invention is designed as follows. The epitope (n=1) includes KRAS mutation G12V; an epitope (n=1) including KRAS mutation G12D is further linked to the N-terminal of the epitope (n=1) via an LRMK-linker; an epitope (n=1) including KRAS mutation G13D is further linked to the C-terminal of the epitope (n=12) via an LRMK-linker; and an epitope (n=1) not including KRAS mutation is further linked to the C-terminal of the epitope (n=1) including KRAS mutation G13D via an LRMK-linker.

본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물을 이용하면 KRAS 돌연변이(G12D, G12V, G13D)에 대해 특이적인 T 세포를 유도할 수 있으며 상기 KRAS 돌연변이(G12D, G12V, G13D)에 대해 특이적인 T 세포는 KRAS 돌연변이(G12D, G12V, G13D)를 가지는 암세포를 치료하는데 사용 가능하다. By using the antigen composition for inducing KRAS-specific activated T cells of the present invention, T cells specific for KRAS mutations (G12D, G12V, G13D) can be induced, and the T cells specific for the KRAS mutations (G12D, G12V, G13D) can be used to treat cancer cells having KRAS mutations (G12D, G12V, G13D).

상기 KRAS 돌연변이(G12D, G12V, G13D)에 대해 특이적인 T 세포의 유도는 in vitro stimulation(IVS) 또는 Fast-IVS를 통해 수행할 수 있다. 상기 IVS는 혈액에서 분리한 단핵구(monocyte)로부터 분화와 성숙(maturation) 과정을 통해 단핵구 유도 수지상 세포(monocyte-derived dendritic cell, moDC)를 수득한 후 본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물을 처리한 환경에서 T 세포와 공배양(co-culture)하는 방법을 의미하며 상기 Fast-IVS는 PBMC 내의 DC세포에 대하여 성숙과정과 항원(KRAS 특이적 활성화 T 세포 유도용 항원 조성물)처리를 동시에 수행하는 것을 의미한다.Induction of T cells specific for the above KRAS mutations (G12D, G12V, G13D) can be performed through in vitro stimulation (IVS) or Fast-IVS. The IVS refers to a method of obtaining monocyte-derived dendritic cells (moDCs) through differentiation and maturation processes from monocytes isolated from blood, and then co-culturing them with T cells in an environment treated with the antigen composition for inducing KRAS-specific activated T cells of the present invention, while the Fast-IVS refers to simultaneously performing a maturation process and antigen (antigen composition for inducing KRAS-specific activated T cells) treatment on DC cells in PBMCs.

상기 T 세포 유도과정에서 항원으로 사용되는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물은 DC 세포의 성숙 및 생장에 필요한 싸이토카인(cytokine), 호르몬 및 완충용액을 더 포함할 수 있다. 바람직하게는 싸이토카인(cytokine)은 인터루킨-4(interleukin-4), 인터루킨-1β, 과립구 대식세포 콜로니 자극 인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF), 종양괴사인자-α(Tumor Necrosis Factor-α, TNF-α)일 수 있으며 상기 호르몬은 프로스타글란딘 E2(Prostaglandin E2, PGE2)일 수 있다.The antigen composition for inducing KRAS-specific activated T cells used as an antigen in the above T cell induction process may further contain cytokines, hormones, and buffers necessary for the maturation and growth of DC cells. Preferably, the cytokines may be interleukin-4, interleukin-1β, Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), and Tumor Necrosis Factor-α (TNF-α), and the hormone may be prostaglandin E2 (PGE2).

KRAS는 RAS 단백질의 일종으로 세포의 분화, 증식 및 생존과 관련된 신호전달체계에서 중요한 역할을 하는 small GTPases 단백질이다. 상기 RAS 단백질은 여러가지 암종에서 돌연변이로 발견되는 oncogene으로 잘 알려져 있으며 RAS-유래 암종의 85%가 KRAS 돌연변이에 의한 것으로 알려져 있다. 따라서 KRAS 돌연변이를 특이적으로 인식하는 T 세포를 증폭시키게 되면 KRAS 돌연변이를 가진 암을 제거하여 이를 치료하거나 암에 대한 백신 역할을 수행할 수 있게 된다. 상기 암은 KRAS 돌연변이를 가진 암이라면 제한되지 않으며 그 예로서 부신피질 암종(ACC), 방광요로상피 암종(BLCA), 유방 침습 암종(BRCA), 경부 편평 세포 암종 및 자궁경부내 선암종(CESC), 결장 선암종(COAD), 만성 림프성 백혈병(CLL), 대장암(CRC), 미만성 거대 B-세포 림프종(DLBCL), 다형성아교모세포종(GBM), 두경부 편평 세포 암종(HNSC), 혐색소 신장(KICH), 신장 투명 세포 암종(KIRC), 신장 유두상 세포 암종(KIRP), 급성 골수성 백혈병(LAML), 간세포 암종(LIHC), 폐 선암종(LUAD), 폐 편평 세포 암종(LUSC), 다발성 골수종(MM), 난소 장액낭선암종(OV), 췌장 선암종(PAAD), 전립선 선암종(PRAD), 직장 선암종(READ), 피부 흑색종(SKCM), 위 선암종(STAD), 고환 생식 세포 종양(TGCT), 갑상선 선암종(THCA), 자궁체부 자궁내막양 암종(UCEC) 또는 자궁 암육종(UCS)일 수 있다.KRAS is a type of RAS protein, a small GTPases protein that plays an important role in the signaling system related to cell differentiation, proliferation, and survival. The RAS protein is well known as an oncogene found as a mutation in various cancers, and 85% of RAS-derived cancers are known to be caused by KRAS mutations. Therefore, if T cells that specifically recognize KRAS mutations are amplified, cancers with KRAS mutations can be eliminated and treated, or they can serve as a vaccine against cancer. The above cancers are not limited to cancers with KRAS mutations, and examples thereof include adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and cervical intraepithelial adenocarcinoma (CESC), colon adenocarcinoma (COAD), chronic lymphocytic leukemia (CLL), colorectal cancer (CRC), diffuse large B-cell lymphoma (DLBCL), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), chromophobe kidney (KICH), renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), multiple myeloma (MM), ovarian serous adenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectal adenocarcinoma (READ), skin It may be melanoma (SKCM), gastric adenocarcinoma (STAD), testicular germ cell tumor (TGCT), thyroid adenocarcinoma (THCA), corpus endometrioid carcinoma (UCEC), or uterine carcinosarcoma (UCS).

하기에서 실시예를 통해 본 발명을 상세히 설명한다.The present invention is described in detail below through examples.

실시예 Example

1. KRAS(WT)의 제조1. Manufacturing of KRAS(WT)

먼저 KRAS 아미노산 서열(서열번호 2)을 발현벡터에 삽입하였다. KRAS(WT)는 189개의 아미노산으로 이루어져 있으며 아미노산 서열은 하기 표 1과 같다.First, the KRAS amino acid sequence (SEQ ID NO: 2) was inserted into the expression vector. KRAS (WT) consists of 189 amino acids, and the amino acid sequence is as shown in Table 1 below.

이름name 아미노산 서열(189aa)Amino acid sequence (189aa) KRAS(WT)KRAS(WT) MTEYKLVVVG10 AGGVGKSALT20 IQLIQNHFVD30 EYDPTIEDSY40

RKQVVIDGET50 CLLDILDTAG60 QEEYSAMRDQ70 YMRTGEGFLC80

VFAINNTKSF90 EDIHHYREQI100 KRVKDSEDVP110 MVLVGNKCDL120

PSRTVDTKQA130 QDLARSYGIP140 FIETSAKTRQ150 RVEDAFYTLV160

REIRQYRLKK170 ISKEEKTPGC180 VKIKKCIIM189
MTEYKLVVVG 10 AGGVGKSALT 20 IQLIQNHFVD 30 EYDPTIEDSY 40

RKQVVIDGET 50 CLLDILDTAG 60 QEEYSAMRDQ 70 YMRTGEGFLC 80

VFAINNTKSF 90 EDIHHYREQI 100 KRVKDSEDVP 110 MVLVGNKCDL 120

PSRTVDTKQA 130 QDLARSYGIP 140 FIETSAKTRQ 150 RVEDAFYTLV 160

REIRQYRLKK 170 ISKEEKTPGC 180 VKIKKCIIM 189

상기 KRAS-WT를 제한효소로 처리한 후 pET30a 벡터에 넣어 발현벡터를 제조 하였으며 상기 발현벡터는 E.coli에 형질전환하여 단백질을 발현시켰다. The above KRAS-WT was treated with a restriction enzyme and placed into the pET30a vector to produce an expression vector, which was then transformed into E. coli to express the protein.

2. KRAS(M)-ROP의 제조2. Manufacturing of KRAS(M)-ROP

KRAS Mutant Recombinant Overlapping Peptide(KRAS(M)-ROP)의 항원을 디자인하고 KRAS(WT)와 동이한 방법으로 발현벡터를 제조하였다. 상기 KRAS(M)-ROP은 KRAS 아미노산 12번째 위치의 G(Glycine)가 D(Asapartic acid)로 변이한 G12D, KRAS 아미노산 12번째 위치의 G(Glycine)가 V(Valine)로 변이한 G12V, 또는 KRAS 아미노산 13번째 위치의 G(Glycine)가 D(Asapartic acid)로 변이한 G13D를 포함한다. The antigen of KRAS Mutant Recombinant Overlapping Peptide (KRAS (M)-ROP) was designed and an expression vector was prepared in the same manner as KRAS (WT). The KRAS (M)-ROP includes G12D, in which G (Glycine) at the 12th amino acid position of KRAS is mutated to D (Asapartic acid), G12V, in which G (Glycine) at the 12th amino acid position of KRAS is mutated to V (Valine), or G13D, in which G (Glycine) at the 13th amino acid position of KRAS is mutated to D (Asapartic acid).

상기 KRAS(M)-ROP은 500개의 아미노산 서열을 가지는 것을 특징으로 하며 아미노산이 순차적으로 30개씩 구분되되 하나의 에피토프(epitope)는 15개의 아미노산 서열이 서로 중복되도록 디자인되었다. 표 2는 KRAS(M)-ROP의 아미노산 서열(서열번호 1) 및 KRAS(M)-ROP 에피토프의 아미노산 서열을 보여준다. The above KRAS(M)-ROP is characterized by having a 500 amino acid sequence, and the amino acids are sequentially separated into groups of 30, but each epitope is designed to have 15 amino acid sequences overlapping each other. Table 2 shows the amino acid sequence of KRAS(M)-ROP (SEQ ID NO: 1) and the amino acid sequence of the KRAS(M)-ROP epitope.

도 1은 본 발명의 KRAS(M)-ROP의 에피토프 구조를 보여준다.Figure 1 shows the epitope structure of KRAS(M)-ROP of the present invention.

이름name 아미노산 서열(500aa)Amino acid sequence (500aa) KRAS(M)-ROPKRAS(M)-ROP MTEYKLVVVG10 ADGVGKSALT20 IQLIQNHFVD30 LRMK 34
MTEYKLVVVG44 AVGVGKSALT54 IQLIQNHFVD64 LRMK 68
KSALTIQLIQ78 NHFVDEYDPT88 IEDSYRKQVV98 LRMK 102
EYDPTIEDSY112 RKQVVIDGET122 CLLDILDTAG132 LRMK 136
IDGETCLLDI146 LDTAGQEEYS156 AMRDQYMRTG166 LRMK 170
QEEYSAMRDQ180 YMRTGEGFLC190 VFAINNTKSF200 LRMK 204
EGFLCVFAIN214 NTKSFEDIHH224 YREQIKRVKD234 LRMK 238
EDIHHYREQI248 KRVKDSEDVP258 MVLVGNKCDL268 LRMK 272
SEDVPMVLVG282 NKCDLPSRTV292 DTKQAQDLAR302 LRMK 306
PSRTVDTKQA316 QDLARSYGIP326 FIETSAKTRQ336 LRMK 340
SYGIPFIETS350 AKTRQRVEDA360 FYTLVREIRQ370 LRMK 374
RVEDAFYTLV384 REIRQYRLKK394 ISKEEKTPGC404 LRMK 408
YRLKKISKEE418 KTPGCVKIKK428 CIIM432 LRMK 436
MTEYKLVVVG446 AGDVGKSALT456 IQLIQNHFVD466 LRMK 470
MTEYKLVVVG480 AGGVGKSALT490 IQLIQNHFVD500
MTEYKLVVVG 10 A D GVGKSALT 20 IQLIQNHFVD 30 LRMK 34
MTEYKLVVVG 44 A V GVGKSALT 54 IQLIQNHFVD 64 LRMK 68
KSALTIQLIQ 78 NHFVDEYDPT 88 IEDSYRKQVV 98 LRMK 102
EYDPTIEDSY 112 RKQVVIDGET 122 CLLDILDTAG 132 LRMK 136
IDGETCLLDI 146 LDTAGQEEYS 156 AMRDQYMRTG 166 LRMK 170
QEEYSAMRDQ 180 YMRTGEGGFLC 190 VFAINNTKSF 200 LRMK 204
EGFLCVFAIN 214 NTKSFEDIHH 224 YREQIKRVKD 234 LRMK 238
EDIHHYREQI 248 KRVKDSEDVP 258 MVLVGNKCDL 268 LRMK 272
SEDVPMVLVG 282 NKCDLPSRTV 292 DTKQAQDLAR 302 LRMK 306
PSRTVDTKQA 316 QDLARSYGIP 326 FIETSAKTRQ 336 LRMK 340
SYGIPFIETS 350 AKTRQRVEDA 360 FYTLVREIRQ 370 LRMK 374
RVEDAFYTLV 384 REIRQYRLKK 394 ISKEEKTPGC 404 LRMK 408
YRLKKISKEE 418 KTPGCVKIKK 428 CIIM 432 LRMK 436
MTEYKLVVVG 446 AG D VGKSALT 456 IQLIQNHFVD 466 LRMK 470
MTEYKLVVVG 480 AGGVGKSALT 490 IQLIQNHFVD 500
에피토프 이름Epitope name 아미노산 서열
(서열번호는 KRAS WT을 기준으로 부여하였음)
Amino acid sequence
(Sequence numbers are based on KRAS WT)
에피토프1(E1, n=1)Epitope 1 (E1, n=1) MTEYKLVVVG10 AGGVGKSALT20 IQLIQNHFVD30 MTEYKLVVVG 10 AGGVGKSALT 20 IQLIQNHFVD 30 에피토프2(E2, n=2)Epitope 2 (E2, n=2) KSALT20 IQLIQNHFVD30 EYDPTIEDSY40 RKQVV45 KSALT 20 IQLIQNHFVD 30 EYDPTIEDSY 40 RKQVV 45 에피토프3(E3, n=3)Epitope 3 (E3, n=3) EYDPTIEDSY40 RKQVVIDGET50 CLLDILDTAG60 EYDPTIEDSY 40 RKQVVIDGET 50 CLLDILDTAG 60 에피토프4(E4, n=4)Epitope 4 (E4, n=4) IDGET50 CLLDILDTAG60 QEEYSAMRDQ70 YMRTG75 IDGET 50 CLLDILDTAG 60 QEEYSAMRDQ 70 YMRTG 75 에피토프5(E5, n=5)Epitope 5 (E5, n=5) QEEYSAMRDQ70 YMRTGEGFLC80 VFAINNTKSF90 QEEYSAMRDQ 70 YMRTGEGGFLC 80 VFAINNTKSF 90 에피토프6(E6, n=6)Epitope 6 (E6, n=6) EGFLC80 VFAINNTKSF90 EDIHHYREQI100 KRVKD105 EGFLC 80 VFAINNTKSF 90 EDIHHYREQI 100 KRVKD 105 에피토프7(E7, n=7)Epitope 7 (E7, n=7) EDIHHYREQI100 KRVKDSEDVP110 MVLVGNKCDL120 EDIHHYREQI 100 KRVKDSEDVP 110 MVLVGNKCDL 120 에피토프8(E8, n=8)Epitope 8 (E8, n=8) SEDVP110 MVLVGNKCDL120 PSRTVDTKQA130 QDLAR135 SEDVP 110 MVLVGNKCDL 120 PSRTVDTKQA 130 QDLAR 135 에피토프9(E9, n=8)Epitope 9 (E9, n=8) PSRTVDTKQA130 QDLARSYGIP140 FIETSAKTRQ150 PSRTVDTKQA 130 QDLARSYGIP 140 FIETSAKTRQ 150 에피토프10(E10, n=10)Epitope 10 (E10, n=10) SYGIP140 FIETSAKTRQ150 RVEDAFYTLV160 REIRQ165 SYGIP 140 FIETSAKTRQ 150 RVEDAFYTLV 160 REIRQ 165 에피토프11(E11, n=11)Epitope 11 (E11, n=11) RVEDAFYTLV160 REIRQYRLKK170 ISKEEKTPGC180 RVEDAFYTLV 160 REIRQYRLKK 170 ISKEEKTPGC 180 에피토프12(E12, n=12)Epitope 12 (E12, n=12) YRLKK170 ISKEEKTPGC180 VKIKKCIIM189 YRLKK 170 ISKEEKTPGC 180 VKIKKCIIM 189 에피토프1-G12D(E1-G12D)Epitope 1-G12D (E1-G12D) MTEYKLVVVG10 ADGVGKSALT20 IQLIQNHFVD30 MTEYKLVVVG 10 A D GVGKSALT 20 IQLIQNHFVD 30 에피토프1-G12V(E1-G12V)Epitope 1-G12V (E1-G12V) MTEYKLVVVG10 AVGVGKSALT20 IQLIQNHFVD30 MTEYKLVVVG 10 A V GVGKSALT 20 IQLIQNHFVD 30 에피토프1-G13D(E1-G13D)Epitope 1-G13D (E1-G13D) MTEYKLVVVG10 AGDVGKSALT20 IQLIQNHFVD30 MTEYKLVVVG 10 AG D VGKSALT 20 IQLIQNHFVD 30

상기 KRAS-ROP(M)은 합성한 후(Genescript Co. Ltd.) pET30a 벡터에 클로닝(cloning)하였으며 E.coli에 형질전환하여 발현시켰다. 발현된 단백질은 APC(Activated protein C)를 이용하여 절단하는 방법으로 KRAS(M)-ROP을 제조하였다. The above KRAS-ROP(M) was synthesized (Genescript Co. Ltd.) and cloned into the pET30a vector, transformed into E. coli, and expressed. The expressed protein was cleaved using APC (Activated protein C) to produce KRAS(M)-ROP.

3. KRAS(M)-ROP 반응성 스크리닝 분석3. KRAS(M)-ROP reactivity screening analysis

정상인의 말초 혈액 단핵세포 (peripheral blood mononuclear cell, PBMC)에서 KRAS(M)-ROP의 반응성을 스크리닝 하였다. 상기 스크리닝은 고착화효소항체법(enzyme-linked immune absorbent spot assay, ELISpot assay)을 이용하였다. The reactivity of KRAS(M)-ROP was screened in peripheral blood mononuclear cells (PBMCs) from normal individuals. The screening was performed using an enzyme-linked immune absorbent spot assay (ELISpot assay).

도 2는 본 발명의 KRAS(M)-ROP에 대한 PBMC의 반응성을 분석한 결과를 보여준다. 패널 A는 ELISpot(IFN-γ) assay의 SFC 이미지를 보여주며 패널 B는 ELISpot(IFN-γ) assay의 SFC 그래프를 보여준다. Figure 2 shows the results of analyzing the reactivity of PBMC to KRAS(M)-ROP of the present invention. Panel A shows the SFC image of the ELISpot(IFN-γ) assay, and Panel B shows the SFC graph of the ELISpot(IFN-γ) assay.

먼저 정상인 자원자의 백혈구분반술에서 얻어진 PBMC(LP-1 PBMC, LP-4 PBMC, 및 LP-6 PBMC) 1x105cell을 파종(seeding)하여 세포배양한 후 항원을 처리하였다. 상기 항원으로 KRAS(M)-ROP 5㎍/㎖, 1.0㎍/㎖, 0.1㎍/㎖을 사용하였으며 양성대조군(positive control)로서 anti-CD3를 사용하였다. 세포배양은 37℃, CO2 5%, overnight(O/N)의 조건으로 수행하였으며 배양한 세포는 IFN-γ로 염색하여 SFC(Spot Forming Cell)를 읽어 분석하였다. 실험결과 정상인 PBMC중 LP-1에서 KRAS(M)-ROP에 대한 반응성이 가장 우수한 것으로 확인되었다. First, 1x10 5 cells of PBMC (LP-1 PBMC, LP-4 PBMC, and LP-6 PBMC) obtained from leukapheresis of normal volunteers were seeded and cultured, and then treated with antigens. KRAS (M)-ROP 5 ㎍ / ㎖, 1.0 ㎍ / ㎖, and 0.1 ㎍ / ㎖ were used as the antigen, and anti-CD3 was used as a positive control. Cell culture was performed under the conditions of 37℃, CO 2 5%, overnight (O / N), and the cultured cells were stained with IFN-γ and analyzed by reading SFC (Spot Forming Cell). As a result of the experiment, it was confirmed that the reactivity to KRAS (M)-ROP was the best in LP-1 among normal PBMCs.

4. KRAS(M)-ROP 농도별 특이적 CD3+ T 세포 비율 분석4. Analysis of specific CD3+ T cell ratio by KRAS(M)-ROP concentration

상기 LP-1 PBMC에 대하여 KRAS(M)-ROP 농도에 따른 KRAS(M)-ROP 특이적 CD3+ T세포 비율을 분석하였다. 이를 위하여 LP-1 PBMC에 항원을 처리한 후 IFN-γ capture staining을 수행하고 이를 분석하였다. The KRAS(M)-ROP-specific CD3+ T cell ratio according to the KRAS(M)-ROP concentration was analyzed for the above LP-1 PBMC. To this end, LP-1 PBMC was treated with antigen, and then IFN-γ capture staining was performed and analyzed.

도 3은 본 발명의 KRAS(M)-ROP 농도에 따른 LP-1 PBMC의 KRAS(M)-ROP 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다. 패널 A는 ELISpot(IFN-γ) assay의 조건별 SFC 이미지를 보여주며 패널 B는 ELISpot(IFN-γ) assay의 조건별 SFC 그래프를 보여준다. 패널 C는 IFN-γ capture staining의 원리 빛 방법을 보여주며 패널 D는 IFN-γ capture FACS 분석결과를 보여준다. 패널 E는 IFN-γ 분비 CD3+ T 세포 비율(%) 그래프를 보여준다.Figure 3 shows the results of analyzing the KRAS(M)-ROP-specific CD3+ T cell ratio of LP-1 PBMC according to the KRAS(M)-ROP concentration of the present invention. Panel A shows the SFC image of the ELISpot(IFN-γ) assay according to the conditions, and Panel B shows the SFC graph of the ELISpot(IFN-γ) assay according to the conditions. Panel C shows the principle and method of IFN-γ capture staining, and Panel D shows the result of IFN-γ capture FACS analysis. Panel E shows a graph of the ratio (%) of IFN-γ secreting CD3+ T cells.

먼저 LP-1 PBMC 1x106cell을 파종(seeding)하여 세포배양한 후 농도를 달리하여 항원(KRAS(M)-ROP 5㎍/㎖, KRAS(M)-ROP 1.0㎍/㎖, KRAS(M)-ROP 0.1㎍/㎖)을 처리하였다. 또한 파상풍 백신(Tetanus toxoid vaccine, TTX)을 5㎍/㎖, 1.0㎍/㎖으로 처리한 LP-1 PBMC과 anti-CD3를 양성대조군(positive control)으로 사용하였다. 세포배양은 37℃, CO2 5%, overnight(O/N)의 조건으로 수행하였다. First, LP-1 PBMC 1x10 6 cells were seeded and cultured, and then treated with antigens at different concentrations (KRAS(M)-ROP 5 ㎍/㎖, KRAS(M)-ROP 1.0 ㎍/㎖, KRAS(M)-ROP 0.1 ㎍/㎖). In addition, LP-1 PBMC treated with 5 ㎍/㎖ and 1.0 ㎍/㎖ of tetanus toxoid vaccine (TTX) and anti-CD3 were used as positive controls. Cell culture was performed at 37℃, CO2 5%, overnight (O/N).

IFN-γ capture staining은 항원이 처리된 LP-1 PBMC에 1차 포획 항체(1st capture antibody)를 처리한 후 37℃에서 45분간 배양하고 2차 검출 항체(2nd detection andtibody)와 CD3, CD4, CD8, 및 CD137을 처리하는 방법으로 수행하였다. 상기 IFN-γ capture staining이 수행된 LP-1 PBMC는 세포자동해석분리장치(Fluorescence activated cell sorter, FACS)를 이용하여 세포특성을 분석하였다.IFN-γ capture staining was performed by treating LP-1 PBMCs treated with the 1st capture antibody, incubating at 37℃ for 45 minutes, and then treating with 2nd detection antibodies and CD3, CD4, CD8, and CD137. LP-1 PBMCs subjected to the IFN-γ capture staining were analyzed for their cell characteristics using a fluorescence activated cell sorter (FACS).

실험결과 LP-1 PBMC에 농도에 따라 항원을 처리하게 되면 KRAS(M)-ROP 특이적 CD2+ T 세포 비율이 증가하는 것이 확인되었으며 이는 상기 ELISpot(IFN-g) 결과와 잘 일치하였다. 따라서 LP-1 PBMC의 반응성은 KRAS(M)-ROP에 농도 의존적으로 증가하는 것으로 판단된다. 또한 LP-1 PBMC에 KRAS(M)-ROP에 대한 반응성을 정량적으로 평가한 결과 KRAS(M)-ROP 5㎍/㎖을 처리하는 경우 KRAS(M)-ROP 특이 CD3+ T 세포의 비율이 2.4% 수준인 것으로 확인되었다.As a result of the experiment, it was confirmed that when LP-1 PBMCs were treated with antigens according to their concentration, the ratio of KRAS(M)-ROP-specific CD2+ T cells increased, which was well consistent with the above ELISpot (IFN-g) results. Therefore, it is judged that the reactivity of LP-1 PBMCs increases in a concentration-dependent manner to KRAS(M)-ROP. In addition, as a result of quantitatively evaluating the reactivity of LP-1 PBMCs to KRAS(M)-ROP, it was confirmed that the ratio of KRAS(M)-ROP-specific CD3+ T cells was about 2.4% when 5㎍/㎖ of KRAS(M)-ROP was treated.

5. 항원의 종류에 따른 항원 특이적 CD3+ T 세포 비율 비교 분석5. Comparative analysis of antigen-specific CD3+ T cell ratios by antigen type

LP-1 PBMC에 KRAS(M)-ROP(500aa), KRAS1-24Wild-type(Peptide Wt, 24aa), 또는 KRAS1-24돌연변이(24aa)를 처리 한 후 항원 특이적 CD3+ T 세포 비율을 비교 분석하였다. After treating LP-1 PBMCs with KRAS(M)-ROP(500aa), KRAS 1-24 Wild-type (Peptide Wt, 24aa), or KRAS 1-24 mutant (24aa), the proportion of antigen-specific CD3+ T cells was compared and analyzed.

도 4는 본 발명의 KRAS(M)-ROP, KRAS1-24Wild-type, 및 KRAS1-24돌연변이에 대한 LP-1 PBMC의 항원 특이적 CD3+ T-세포 비율을 분석한 결과를 보여준다. 패널 A는 KRAS(M)-ROP, KRAS1-24Wild-type, 및 KRAS1-24돌연변이가 처리된 LP-1 PBMC의 IFN-γ capture FACS 분석결과를 보여준다. 패널 B는 IFN-γ 분비 CD3+ T 세포 비율(%) 그래프를 보여주며, 패널 C는 항원 특이 CD3+ T 세포 비율(%) 그래프를 표로 정리한 결과를 보여준다. No Ag는 실행기(effector)만을 사용한 것을 의미하며, @CD3는 양성대조군(positive control)로서 anti-CD3를 사용한 것을 의미한다.Figure 4 shows the results of analyzing the antigen-specific CD3+ T-cell ratio of LP-1 PBMCs for KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 mutants of the present invention. Panel A shows the results of IFN-γ capture FACS analysis of LP-1 PBMCs treated with KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 mutants. Panel B shows a graph of the percentage of IFN-γ secreting CD3+ T cells, and Panel C shows a table summarizing the graph of the percentage of antigen-specific CD3+ T cells. No Ag means that only the effector was used, and @CD3 means that anti-CD3 was used as a positive control.

상기 KRAS1-24돌연변이는 KRAS1-24Wild-type에서 12번째 아미노산인 G가 D, 또는 V로 치환되거나 12번째 아미노산인 G가 D된 것(Pep.G12D, Pep.G12V, Pep.G13D)을 의미한다. 항원 특이적 CD3+ T-세포 비율은 상기와 동일한 방법으로 분석하였으며 항원으로 KRAS(M)-ROP(500aa), Peptide Wt, Pep.G12D, Pep.G12V, 및 Pep.G13D를 사용하였다. The above KRAS 1-24 mutations refer to the 12th amino acid G being substituted with D or V in KRAS 1-24 Wild-type, or the 12th amino acid G being replaced with D (Pep.G12D, Pep.G12V, Pep.G13D). The antigen-specific CD3+ T-cell ratio was analyzed using the same method as above, and KRAS (M)-ROP (500aa), Peptide Wt, Pep.G12D, Pep.G12V, and Pep.G13D were used as antigens.

실험결과 Peptide Wt에 반응한 CD+ T세포는 확인되지 않았으며 Pep.G12D, Pep.G12V, 및 Pep.G13D에 반응한 CD3+ T 세포 역시 0.31%(Pep.G12D), 0.11%(Pep.G12V) 및 0.25%(Pep.G13D)로 현저히 낮은 것을 확인되었다. 상기 결과는 KRAS(M)-ROP에 반응하여 유도된 CD3+ T 세포의 비율이 2.41%임을 감안할 때 24개의 아미노산으로 구성된 펩타이드인 에피토프만으로는 항원 특이 CD3+ T 세포의 유도가 미미하다는 것을 의미한다. As a result of the experiment, CD+ T cells that responded to peptide Wt were not confirmed, and CD3+ T cells that responded to Pep.G12D, Pep.G12V, and Pep.G13D were also significantly low at 0.31% (Pep.G12D), 0.11% (Pep.G12V), and 0.25% (Pep.G13D). Considering that the ratio of CD3+ T cells induced in response to KRAS(M)-ROP was 2.41%, the above results imply that the induction of antigen-specific CD3+ T cells is minimal with only an epitope consisting of a peptide composed of 24 amino acids.

6. KRAS(M)-ROP 및 Fast-IVS를 이용한 ROP-T 세포의 제조6. Production of ROP-T cells using KRAS(M)-ROP and Fast-IVS

상기 실험결과를 바탕으로 KRAS(M)-ROP에 반응하는 CD3+ T 세포(ROP-T 세포)를 제조하였다. 본 발명에서는 Fast-IVS(Fast-In vitro Stimulation)을 적용하여 ROP-T 세포를 제조하였다. Based on the above experimental results, CD3+ T cells (ROP-T cells) that react with KRAS(M)-ROP were produced. In the present invention, ROP-T cells were produced by applying Fast-IVS (Fast-In vitro Stimulation).

도 5는 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 비교한 결과를 보여준다. 패널 A는 Fast-IVS를 이용한 ROP-T 세포의 제조공정 및 평가 과정 및 ROP-T 세포의 특성 분석 과정을 보여준다. 패널 B는 Fast-IVS 공정 조건과 No-Cytokine 공정 조건에서 증폭된 T 세포의 IFNg+ CD3+ T 세포 비율을 비교한 결과를 보여준다.Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention. Panel A shows the manufacturing process and evaluation process of ROP-T cells using Fast-IVS and the characteristic analysis process of ROP-T cells. Panel B shows the results of comparing the IFNg+ CD3+ T cell ratios of T cells amplified under Fast-IVS process conditions and No-Cytokine process conditions.

상기 Fast-IVS 공정은 항원을 이용하여 항원 특이적 CD3+ T 세포를 유도하는 것과 싸이토카인을 처리하여 세포 증폭(Cell Expansion)을 수행하는 공정을 동시에 수행하는 것을 특징으로 한다. 이에 반하여 상기 No-Cytokine 공정은 항원에 의해 유도된 항원 특이적 CD3+ T 세포에 대하여 싸이토카인을 처리하지 않고 세포 증폭을 수행하는 것을 특징으로 한다. The above Fast-IVS process is characterized by simultaneously performing the processes of inducing antigen-specific CD3+ T cells using an antigen and performing cell expansion by treating cytokines. In contrast, the No-Cytokine process is characterized by performing cell expansion on antigen-specific CD3+ T cells induced by the antigen without treating them with cytokines.

상기 Fast-IVS 공정의 세포 증폭에 사용한 싸이토카인(cytokine)은 인터루킨-4(Interleukin-4, IL-4), 과립구 대식세포 콜로니 자극 인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF), 종양괴사인자-α(Tumor Necrosis Factor-α, TNF-α), 인터루킨-1b(Interleukin-1β, IL-1β) 및 프로스타글란딘 E2(Prostaglandin E2, PGE2)이다. The cytokines used for cell amplification in the above Fast-IVS process are Interleukin-4 (IL-4), Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), and Prostaglandin E2 (PGE2).

하기 표 3은 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 보여준다.Table 3 below shows the Fast-IVS process and the No-Cytokine process of the present invention.

Fast-IVS 공정Fast-IVS process No-Cytokine 공정 No-Cytokine Process Day-0Day-0 LP-1 PBMC Seeding with Ag, IL-4, and GM-CSFLP-1 PBMC Seeding with Ag, IL-4, and GM-CSF LP-1 PBMC Seeding Without CytokineLP-1 PBMC Seeding Without Cytokine Day-1Day-1 Adding TNF-α, IL-1β and PGE2Adding TNF-α, IL-1β and PGE2 No Cytokine AddingNo Cytokine Adding Day 3Day 3 ExpansionExpansion ExpansionExpansion Day 5, 7, 9, 11, 12Day 5, 7, 9, 11, 12 Media AddingMedia Adding Media AddingMedia Adding Day 13Day 13 HarvestHarvest HarvestHarvest

분석결과 Fast-IVS 공정에서 No-Cytokine 공정보다 IFN-γ을 분비하는 항원 특이적 CD3+ T 세포 비율이 4배가량 더 많이 증폭된 것이 확인되었다.The analysis results confirmed that the proportion of antigen-specific CD3+ T cells secreting IFN-γ was amplified approximately four times more in the Fast-IVS process than in the No-Cytokine process.

7. ROP-T 세포 제조용 Fast-IVS 공정의 최적화7. Optimization of Fast-IVS process for ROP-T cell production

KRAS(M)-ROP의 처리 농도 및 Fast-IVS 공정조건을 변경하여 ROP-T 세포 제조용 Fast-IVS 공정을 최적화하였다. 하기 표 4는 Fast-IVS 공정의 최적화를 위한 실시예를 보여준다.The Fast-IVS process for ROP-T cell production was optimized by changing the treatment concentration of KRAS(M)-ROP and the Fast-IVS process conditions. Table 4 below shows examples for optimization of the Fast-IVS process.

실시예1Example 1 실시예2Example 2 실시예3Example 3 실험조건 Experimental conditions ScaleScale PBMCsPBMCs 10M@24well10M@24well 10M@24well10M@24well 10M@24well10M@24well CytokineCytokine 제조사manufacturing company JW CreageneJW Creagene JW CreageneJW Creagene JW CreageneJW Creagene KRAS(M)-ROPKRAS(M)-ROP ㎍/㎖ ㎍/㎖ 5.05.0 1.01.0 1.01.0 Fast-IVS(배지 AIM-V) 기간Fast-IVS (Badge AIM-V) period DaysDays 55 55 77 Expansion 기간 Expansion period DaysDays 1010 1010 1010 실험결과Experimental Results Expansion FoldExpansion Fold No Ag-TNo Ag-T 4545 3434 5555 ROP-TROP-T 5555 4949 6565 Helper T cellHelper T cell No Ag-TNo Ag-T 54.754.7 35.835.8 21.121.1 ROP-TROP-T 64.464.4 75.375.3 60.460.4 KRAS(M)-ROP specific T cell(IFN-g+, CD3+)(%)KRAS(M)-ROP specific T cell(IFN-g+, CD3+)(%) No Ag-TNo Ag-T 4.64.6 1.11.1 1.21.2 ROP-TROP-T 19.719.7 18.618.6 52.952.9

실험결과 모든 실시예에서 ROP-T 세포가 증폭된 것이 확인되었으며 최적의 Fast-IVS 공정은 KRAS(M)-ROP의 처리 농도 1.0㎍/㎖ 및 Fast-IVS 기간 7일 인 것으로 확인되었다.The experimental results confirmed that ROP-T cells were amplified in all examples, and the optimal Fast-IVS process was confirmed to be a treatment concentration of 1.0 μg/㎖ of KRAS(M)-ROP and a Fast-IVS period of 7 days.

8. ROP-T 세포 특성 분석8. Analysis of ROP-T cell characteristics

KRAS 돌연변이 에피토프(epitope) 스크리닝을 수행하여 증폭된 ROP-T 세포의 특성을 분석하였다. 이를 위하여 PBMC로부터 자가 수지상세포(Autologous Dendritic Cell)를 유도하고 상기 자가 수지상세포에 항원을 감작시켜 항원 특이적인 T 세포를 자극할 수 있는 항원 감작수지상 세포(Antigen pulsed Dendritic Cell, Ag pulsed DC)를 제조하여 ROP-T 세포의 반응성을 확인하였다. 상기 반응성은 재자극 IFN-γ 분비 T 세포 비율(Re-stimulation IFN-g secretion T frequency)(%)을 산출하여 분석하였다. The characteristics of amplified ROP-T cells were analyzed by performing KRAS mutant epitope screening. To this end, autologous dendritic cells (ADCs) were induced from PBMCs, and antigen-sensitized ADCs were prepared to stimulate antigen-specific T cells, thereby confirming the reactivity of ROP-T cells. The reactivity was analyzed by calculating the re-stimulation IFN-γ secretion T cell frequency (%).

도 6은 본 발명의 ROP-T 세포에 대한 KRAS 돌연변이 에피토프 스크리닝 결과를 보여준다. 패널 A는 IFG-γ+, CD3+, CD4+에 대한 FACS 분석결과를 보여준다. 패널 B는 조건 별 재자극 IFN-γ 분비 T 세포 비율의 세포 비율(%)을 분석한 결과를 보여준다. Figure 6 shows the results of KRAS mutant epitope screening for ROP-T cells of the present invention. Panel A shows the results of FACS analysis for IFG-γ+, CD3+, and CD4+. Panel B shows the results of analyzing the cell ratio (%) of the conditionally restimulated IFN-γ secreting T cell ratio.

먼저 자가 수지상세포(Autologous DC)를 4일간 배양하고 항원에 감작시켜 Ag pulsed DC를 준비하였다. 상기 Ag pulsed DC는 96well에 5x103cells/100㎕으로 분주하였다. KRAS(M)-ROP 특이 CD3+ T 세포를 상기 96well에 1x105cells/100㎕가 되도록 분주하되 상기 Ag pulsed DC와 KRAS(M)-ROP 특이 CD3+ T 세포의 세포수가 1:20의 비율이 되도록 하였다. Ag pulsed DC와 KRAS(M)-ROP 특이 CD3+ T 세포가 혼합된 배지는 4시간동안 배양하였다. 상기 FACS를 이용하여 배양된 세포들의 CD3+, CD4+, CD137+, IFN-γ cap, 및 IFN-γ 분비 T 세포 비율(%)을 분석하였다. 상기 Ag pulsed DC의 제조에 사용한 항원은 KRAS(M)-ROP(500aa)(ROP_DC), KRAS1-24wild type peptide(WT_DC), KRAS1-24G12D mutant peptide(G12D_DC), KRAS1-24G12V mutant peptide(G12V_DC), 및 KRAS1-24G13D mutant peptide(G13D_DC)이었다. 또한 비교를 위하여 항원(Ag) 없이 실행기(effector)만을 사용한 DC(NoAg_DC)를 사용하였다. First, autologous DCs were cultured for 4 days and sensitized to antigen to prepare Ag pulsed DCs. The Ag pulsed DCs were dispensed into 96-well at 5x103 cells/100㎕. KRAS(M)-ROP-specific CD3+ T cells were dispensed into the 96-well at 1x105 cells/100㎕, with a cell ratio of 1:20 between the Ag pulsed DCs and KRAS(M)-ROP-specific CD3+ T cells. The medium containing Ag pulsed DCs and KRAS(M)-ROP-specific CD3+ T cells was cultured for 4 hours. The ratios (%) of CD3+, CD4+, CD137+, IFN-γ cap, and IFN-γ secreting T cells of the cultured cells were analyzed using FACS. The antigens used in the production of the above Ag pulsed DC were KRAS(M)-ROP(500aa)(ROP_DC), KRAS 1-24 wild type peptide(WT_DC), KRAS 1-24 G12D mutant peptide(G12D_DC), KRAS 1-24 G12V mutant peptide(G12V_DC), and KRAS 1-24 G13D mutant peptide(G13D_DC). In addition, DC using only the effector without the antigen (Ag) (NoAg_DC) was used for comparison.

실험결과 ROP_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 KRAS(M)-ROP 특이 CD3+/CD4+ T 세포와 KRAS(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 10% 및 5%인 것이 확인되었다. G12D_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 KRAS(M)-ROP 특이 CD3+/CD4+ T 세포와 KRAS(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 1.5% 및 0.5%인 것이 확인되었다. G13D_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 KRAS(M)-ROP 특이 CD3+/CD4+ T 세포와 KRAS(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 3.0% 및 1.5%인 것이 확인되었다. 이에 반하여 Wt_DC 및 G12V_DC를 사용하여 재자극한 경우 KRAS(M)-ROP 특이 CD3+/CD4+ T 세포와 KRAS(M)-ROP 특이 CD3+/CD8+ T 세포가 거의 검출되지 않았다.The experimental results showed that when restimulated using ROP_DC, the ratios (%) of KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells in CD3+ ROP-T cells were 10% and 5%, respectively. When restimulated using G12D_DC, the ratios (%) of KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells in CD3+ ROP-T cells were 1.5% and 0.5%, respectively. When restimulated with G13D_DC, the percentages (%) of KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells present in CD3+ ROP-T cells were confirmed to be 3.0% and 1.5%, respectively. In contrast, when restimulated with Wt_DC and G12V_DC, KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells were barely detected.

9. ROP-T 세포의 HLA 제한 분석9. HLA restriction analysis of ROP-T cells

유도된 ROP-T 중 KRAS G13D mutant 특이 T 세포의 HLA 제한(restriction)을 확인하기 위해 인간 백혈구 항원(Human leukocyte antigen DQ, HLA-DQ) 에세이를 수행하였다. To confirm HLA restriction of KRAS G13D mutant-specific T cells among induced ROP-T, human leukocyte antigen DQ (HLA-DQ) assay was performed.

도 7은 본 발명의 HLA-DQ blocking 에세이 결과를 보여준다.Figure 7 shows the results of the HLA-DQ blocking assay of the present invention.

먼저 항원을 감작시킨 DC(Ag pulsed DC)를 제조하였다. 상기 Ag pulsed DC의 제조에 사용한 항원은 KRAS(M)-ROP(500aa)(ROP_DC), KRAS1-24wild type peptide(WT_DC), KRAS1-24G12D mutant peptide(G12D_DC), KRAS1-24G12V mutant peptide(G12V_DC), 및 KRAS1-24G13D mutant peptide(G13D_DC)이었다. 상기 제조한 Ag pulsed DC에 대하여 1시간동안 HLA-DQ 항체로 처리하는 방법으로 HLA-DQ blocking을 실시하였다. HLA-DQ blocking된 Ag pulsed DC를 이용하여 ROP-T를 재자극(re-stimulation)한 후 FACS 분석을 통해 IFN-g+, CD3+, CD4+를 분석하였다. First, antigen-sensitized DC (Ag pulsed DC) was prepared. The antigens used in the preparation of the Ag pulsed DC were KRAS (M)-ROP (500aa) (ROP_DC), KRAS 1-24 wild type peptide (WT_DC), KRAS 1-24 G12D mutant peptide (G12D_DC), KRAS 1-24 G12V mutant peptide (G12V_DC), and KRAS 1-24 G13D mutant peptide (G13D_DC). HLA-DQ blocking was performed on the prepared Ag pulsed DC by treating it with HLA-DQ antibody for 1 hour. After re-stimulation of ROP-T using the HLA-DQ blocked Ag pulsed DC, IFN-g+, CD3+, and CD4+ were analyzed through FACS.

분석결과 항원 비특이 T 세포(NoAg-T)은 재자극에 사용한 DC의 종류 및 상기 DC에 대한 HLA-DQ blocking의 여부에 상관없이 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 미미한 것으로 확인되었다. 이에 반하여 ROP-T 세포는 ROP_DC를 사용하여 재자극하게 되면 DC에 대한 HLA-DQ blocking 여부에 상관없이 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 15% 이상으로 증가하는 것으로 확인되었다. 또한 ROP-T 세포는 HLA-DQ blocked G13D_DC를 이용하여 재자극을 수행한 경우 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 HLA-DQ unblocked G13D_DC를 사용하여 재자극한 경우에 대비하여 6% 가량 감소(7% →1%)하는 것이 확인 되었다.The results of the analysis showed that the proportion of CD3+CD4+ T cells secreting IFN-γ was minimal for antigen-nonspecific T cells (NoAg-T), regardless of the type of DC used for restimulation and the presence or absence of HLA-DQ blocking on the DC. In contrast, when ROP-T cells were restimulated using ROP_DC, the proportion of CD3+CD4+ T cells secreting IFN-γ increased to more than 15%, regardless of the presence or absence of HLA-DQ blocking on the DC. In addition, when ROP-T cells were restimulated using HLA-DQ blocked G13D_DC, the proportion of CD3+CD4+ T cells secreting IFN-γ was confirmed to decrease by approximately 6% (7% → 1%) compared to when restimulated using HLA-DQ unblocked G13D_DC.

결과적으로 본 발명의 ROP-T 세포는 ROP 항원에 특이적이며 HLA-DQ에 제한적이며 G13D 돌연변이에 특이성을 보이는 CD4+ T 세포의 증폭을 유도하는 것으로 판단된다.As a result, it is judged that the ROP-T cells of the present invention induce the amplification of CD4+ T cells that are specific for ROP antigens, restricted to HLA-DQ, and specific for the G13D mutation.

10. 대조군 native KRAS-T 세포와 peptide mix-T 세포의 비교10. Comparison of control native KRAS-T cells and peptide mix-T cells

KRAS(M)-ROP의 KRAS 돌연변이에 대한 특이적인 반응 유도를 검증하였다. We verified that KRAS(M)-ROP induces a specific response to KRAS mutations.

도 8은 본 발명의 조건별 IFN-γ를 분비(IFN-γ+)하는 CD3+ T 세포의 비율을 보여준다. 먼저 KRAS(M)-ROP 또는 native KRAS(189aa)을 항원으로 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 또한 KRAS1-24wild type 펩타이드, KRAS1-24G12D 펩타이드, KRAS1-24G12V 펩타이드, 및 KRAS1-24G13D 펩타이드 혼합물을 항원으로 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 대조군으로는 항원없이 실행기만을 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 상기 유도한 T 세포는 ROP_DC를 이용하여 재자극하고 FACS를 이용하여 IFN-γ+ CD3+ T 세포의 비율을 분석하였다.Figure 8 shows the ratio of CD3+ T cells secreting IFN-γ (IFN-γ+) according to the conditions of the present invention. First, T cells were induced using the Fast-IVS process using KRAS(M)-ROP or native KRAS(189aa) as an antigen. In addition, T cells were induced using the Fast-IVS process using a mixture of KRAS 1-24 wild type peptide, KRAS 1-24 G12D peptide, KRAS 1-24 G12V peptide, and KRAS 1-24 G13D peptide as antigens. As a control, T cells were induced using the Fast-IVS process using only an executor without an antigen. The induced T cells were restimulated using ROP_DC, and the ratio of IFN-γ+ CD3+ T cells was analyzed using FACS.

하기 표 5는 KRAS(M)-ROP의 KRAS 돌연변이에 대한 특이적인 반응 유도 검증 실험방법을 보여준다. 하기 표 5에 있어서 KRAS epitope wild type은 Native KRAS1-24(24aa)를 의미하며; KRAS epitope G12D는 KRAS1-24G12D(24aa)를 의미하며; KRAS epitope G12V는 KRAS1-24G12V(24aa)를 의미하며; KRAS epitope G13D는 KRAS1-24G13D(24aa)를 의미한다.Table 5 below shows the specific response induction verification experimental method for KRAS mutations of KRAS(M)-ROP. In Table 5 below, KRAS epitope wild type means Native KRAS 1-24 (24aa); KRAS epitope G12D means KRAS 1-24 G12D(24aa); KRAS epitope G12V means KRAS 1-24 G12V(24aa); KRAS epitope G13D means KRAS 1-24 G13D(24aa).

conditionsconditions Fast-IVSFast-IVS ExpansionExpansion AntigenAntigen CytokineCytokine DaysDays MediaMedia DaysDays No Ag-TNo Ag-T -- D0:IL-4, GM-CSF
D+1:TNF-a, IL-1b, PGE2
D0:IL-4, GM-CSF
D+1:TNF-a, IL-1b, PGE2
7 Days7 Days Alys+IL-2+SR3%Alys+IL-2+SR3% 10 Days10 Days
ROP-TROP-T KRAS(M)-ROP(8.5μM=5㎍/㎖)KRAS(M)-ROP(8.5μM=5㎍/㎖) Pep.-TPep.-T KRAS epitope(24mer) 4종 혼합물(wild type, G12D, G12V, G13D)(8.5μM)KRAS epitope (24mer) 4 types mixture (wild type, G12D, G12V, G13D) (8.5 μM) WT-TWT-T Native KRAS(8.5μM=2㎍/㎖)Native KRAS (8.5 μM = 2 μg/ml)

실험결과 항원을 사용하지 않고 Fast-IVS를 통해 유도한 T 세포(No Ag-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 8% 수준인 것으로 확인되었다. KRAS(M)-ROP을 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(ROP-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 37.4%에 달하는 것으로 확인되었다. Native KRAS를 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(WT-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 18.4% 수준인 것으로 확인되었다. KRAS1-24wild type 펩타이드, KRAS1-24G12D 펩타이드, KRAS1-24G12V 펩타이드, 및 KRAS1-24G13D 펩타이드 혼합물을 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(Pep_T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 19.0% 수준인 것으로 확인되었다. The experimental results showed that the proportion of IFN-γ+ CD3+ T cells was approximately 8% in the case of T cells induced through Fast-IVS without using an antigen (No Ag-T). The proportion of IFN-γ+ CD3+ T cells was approximately 37.4% in the case of T cells induced through the Fast-IVS process using KRAS(M)-ROP as an antigen (ROP-T). The proportion of IFN-γ+ CD3+ T cells was approximately 18.4% in the case of T cells induced through the Fast-IVS process using Native KRAS as an antigen (WT-T). In the case of T cells (Pep_T) induced through the Fast-IVS process using a mixture of KRAS 1-24 wild type peptide, KRAS 1-24 G12D peptide, KRAS 1-24 G12V peptide, and KRAS 1-24 G13D peptide as antigens, the ratio of IFN-γ+ CD3+ T cells was confirmed to be 19.0%.

정리하면 KRAS(M)-ROP 항원이 Native KRAS 또는 KRAS 돌연변이를 포함하는 에피토프를 사용하는 것보다 2배 가량 우수한 IFN-γ+ CD3+ T 세포 유도 효과가 있는 것으로 판단된다.In summary, it was determined that the KRAS(M)-ROP antigen had a IFN-γ+ CD3+ T cell induction effect that was approximately twice as superior to that using epitopes containing native KRAS or KRAS mutations.

본 명세서에서 설명된 구체적인 실시예는 본 발명의 바람직한 구현예 또는 예시를 대표하는 의미이며, 이에 의해 본 발명의 범위가 한정되지는 않는다. 본 발명의 변형과 다른 용도가 본 명세서 특허청구범위에 기재된 발명의 범위로부터 벗어나지 않는다는 것은 당업자에게 명백하다. The specific embodiments described in this specification are meant to represent preferred embodiments or examples of the present invention, and the scope of the present invention is not limited thereby. It will be apparent to those skilled in the art that modifications and other uses of the present invention do not depart from the scope of the invention described in the claims of this specification.

<110> MYONGJI HOSPITAL, MYONGJI MEDICAL FOUNDATION <120> Antigen Composition For Inducing KRAS Specific Activated T Cell <130> MP21-0082 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 500 <212> PRT <213> Artificial Sequence <220> <223> KRAS antigen for KRAS Specific Activated Cell <400> 1 Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Asp Gly Val Gly Lys 1 5 10 15 Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp Leu Arg 20 25 30 Met Lys Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Val Gly Val 35 40 45 Gly Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp 50 55 60 Leu Arg Met Lys Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His 65 70 75 80 Phe Val Asp Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln 85 90 95 Val Val Leu Arg Met Lys Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr 100 105 110 Arg Lys Gln Val Val Ile Asp Gly Glu Thr Cys Leu Leu Asp Ile Leu 115 120 125 Asp Thr Ala Gly Leu Arg Met Lys Ile Asp Gly Glu Thr Cys Leu Leu 130 135 140 Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr Ser Ala Met Arg Asp 145 150 155 160 Gln Tyr Met Arg Thr Gly Leu Arg Met Lys Gln Glu Glu Tyr Ser Ala 165 170 175 Met Arg Asp Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Cys Val Phe 180 185 190 Ala Ile Asn Asn Thr Lys Ser Phe Leu Arg Met Lys Glu Gly Phe Leu 195 200 205 Cys Val Phe Ala Ile Asn Asn Thr Lys Ser Phe Glu Asp Ile His His 210 215 220 Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Leu Arg Met Lys Glu Asp 225 230 235 240 Ile His His Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Glu Asp 245 250 255 Val Pro Met Val Leu Val Gly Asn Lys Cys Asp Leu Leu Arg Met Lys 260 265 270 Ser Glu Asp Val Pro Met Val Leu Val Gly Asn Lys Cys Asp Leu Pro 275 280 285 Ser Arg Thr Val Asp Thr Lys Gln Ala Gln Asp Leu Ala Arg Leu Arg 290 295 300 Met Lys Pro Ser Arg Thr Val Asp Thr Lys Gln Ala Gln Asp Leu Ala 305 310 315 320 Arg Ser Tyr Gly Ile Pro Phe Ile Glu Thr Ser Ala Lys Thr Arg Gln 325 330 335 Leu Arg Met Lys Ser Tyr Gly Ile Pro Phe Ile Glu Thr Ser Ala Lys 340 345 350 Thr Arg Gln Arg Val Glu Asp Ala Phe Tyr Thr Leu Val Arg Glu Ile 355 360 365 Arg Gln Leu Arg Met Lys Arg Val Glu Asp Ala Phe Tyr Thr Leu Val 370 375 380 Arg Glu Ile Arg Gln Tyr Arg Leu Lys Lys Ile Ser Lys Glu Glu Lys 385 390 395 400 Thr Pro Gly Cys Leu Arg Met Lys Tyr Arg Leu Lys Lys Ile Ser Lys 405 410 415 Glu Glu Lys Thr Pro Gly Cys Val Lys Ile Lys Lys Cys Ile Ile Met 420 425 430 Leu Arg Met Lys Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Gly 435 440 445 Asp Val Gly Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe 450 455 460 Val Asp Leu Arg Met Lys Met Thr Glu Tyr Lys Leu Val Val Val Gly 465 470 475 480 Ala Gly Gly Val Gly Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn 485 490 495 His Phe Val Asp 500 <210> 2 <211> 189 <212> PRT <213> Homo sapiens <400> 2 Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Gly Gly Val Gly Lys 1 5 10 15 Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp Glu Tyr 20 25 30 Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Val Ile Asp Gly 35 40 45 Glu Thr Cys Leu Leu Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr 50 55 60 Ser Ala Met Arg Asp Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Cys 65 70 75 80 Val Phe Ala Ile Asn Asn Thr Lys Ser Phe Glu Asp Ile His His Tyr 85 90 95 Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Glu Asp Val Pro Met Val 100 105 110 Leu Val Gly Asn Lys Cys Asp Leu Pro Ser Arg Thr Val Asp Thr Lys 115 120 125 Gln Ala Gln Asp Leu Ala Arg Ser Tyr Gly Ile Pro Phe Ile Glu Thr 130 135 140 Ser Ala Lys Thr Arg Gln Arg Val Glu Asp Ala Phe Tyr Thr Leu Val 145 150 155 160 Arg Glu Ile Arg Gln Tyr Arg Leu Lys Lys Ile Ser Lys Glu Glu Lys 165 170 175 Thr Pro Gly Cys Val Lys Ile Lys Lys Cys Ile Ile Met 180 185 <110> MYONGJI HOSPITAL, MYONGJI MEDICAL FOUNDATION <120> Antigen Composition For Inducing KRAS Specific Activated T Cell <130> MP21-0082 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 500 <212> PRT <213> Artificial Sequence <220> <223> KRAS antigen for KRAS Specific Activated Cell <400> 1 Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Asp Gly Val Gly Lys 1 5 10 15 Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp Leu Arg 20 25 30 Met Lys Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Val Gly Val 35 40 45 Gly Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp 50 55 60 Leu Arg Met Lys Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His 65 70 75 80 Phe Val Asp Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln 85 90 95 Val Val Leu Arg Met Lys Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr 100 105 110 Arg Lys Gln Val Val Ile Asp Gly Glu Thr Cys Leu Leu Asp Ile Leu 115 120 125 Asp Thr Ala Gly Leu Arg Met Lys Ile Asp Gly Glu Thr Cys Leu Leu 130 135 140 Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr Ser Ala Met Arg Asp 145 150 155 160 Gln Tyr Met Arg Thr Gly Leu Arg Met Lys Gln Glu Glu Tyr Ser Ala 165 170 175 Met Arg Asp Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Cys Val Phe 180 185 190 Ala Ile Asn Asn Thr Lys Ser Phe Leu Arg Met Lys Glu Gly Phe Leu 195 200 205 Cys Val Phe Ala Ile Asn Asn Thr Lys Ser Phe Glu Asp Ile His His 210 215 220 Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Leu Arg Met Lys Glu Asp 225 230 235 240 Ile His His Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Glu Asp 245 250 255 Val Pro Met Val Leu Val Gly Asn Lys Cys Asp Leu Leu Arg Met Lys 260 265 270 Ser Glu Asp Val Pro Met Val Leu Val Gly Asn Lys Cys Asp Leu Pro 275 280 285 Ser Arg Thr Val Asp Thr Lys Gln Ala Gln Asp Leu Ala Arg Leu Arg 290 295 300 Met Lys Pro Ser Arg Thr Val Asp Thr Lys Gln Ala Gln Asp Leu Ala 305 310 315 320 Arg Ser Tyr Gly Ile Pro Phe Ile Glu Thr Ser Ala Lys Thr Arg Gln 325 330 335 Leu Arg Met Lys Ser Tyr Gly Ile Pro Phe Ile Glu Thr Ser Ala Lys 340 345 350 Thr Arg Gln Arg Val Glu Asp Ala Phe Tyr Thr Leu Val Arg Glu Ile 355 360 365 Arg Gln Leu Arg Met Lys Arg Val Glu Asp Ala Phe Tyr Thr Leu Val 370 375 380 Arg Glu Ile Arg Gln Tyr Arg Leu Lys Lys Ile Ser Lys Glu Glu Lys 385 390 395 400 Thr Pro Gly Cys Leu Arg Met Lys Tyr Arg Leu Lys Lys Ile Ser Lys 405 410 415 Glu Glu Lys Thr Pro Gly Cys Val Lys Ile Lys Lys Cys Ile Ile Met 420 425 430 Leu Arg Met Lys Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Gly 435 440 445 Asp Val Gly Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe 450 455 460 Val Asp Leu Arg Met Lys Met Thr Glu Tyr Lys Leu Val Val Val Gly 465 470 475 480 Ala Gly Gly Val Gly Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn 485 490 495 His Phe Val Asp 500 <210> 2 <211> 189 <212> PRT <213> Homo sapiens <400> 2 Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Gly Gly Val Gly Lys 1 5 10 15 Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp Glu Tyr 20 25 30 Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Val Ile Asp Gly 35 40 45 Glu Thr Cys Leu Leu Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr 50 55 60 Ser Ala Met Arg Asp Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Cys 65 70 75 80 Val Phe Ala Ile Asn Asn Thr Lys Ser Phe Glu Asp Ile His His Tyr 85 90 95 Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Glu Asp Val Pro Met Val 100 105 110 Leu Val Gly Asn Lys Cys Asp Leu Pro Ser Arg Thr Val Asp Thr Lys 115 120 125 Gln Ala Gln Asp Leu Ala Arg Ser Tyr Gly Ile Pro Phe Ile Glu Thr 130 135 140 Ser Ala Lys Thr Arg Gln Arg Val Glu Asp Ala Phe Tyr Thr Leu Val 145 150 155 160 Arg Glu Ile Arg Gln Tyr Arg Leu Lys Lys Ile Ser Lys Glu Glu Lys 165 170 175 Thr Pro Gly Cys Val Lys Ile Lys Lys Cys Ile Ile Met 180 185

Claims (5)

서열번호 1의 아미노산 서열로 이루어진 KRAS 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물.
An antigen composition for inducing KRAS-specific activated T cells, comprising a KRAS mutant recombinant overlapping peptide consisting of an amino acid sequence of sequence number 1 as an active ingredient.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020210154617A 2021-11-11 2021-11-11 Antigen Composition For Inducing KRAS Specific Activated T Cell Active KR102753583B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020210154617A KR102753583B1 (en) 2021-11-11 2021-11-11 Antigen Composition For Inducing KRAS Specific Activated T Cell
PCT/KR2022/016547 WO2023085657A1 (en) 2021-11-11 2022-10-27 Antigen composition for inducing kras-specific activated t cells
KR1020240130362A KR20240148770A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130365A KR20240145449A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130363A KR20240150729A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130364A KR20240144081A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210154617A KR102753583B1 (en) 2021-11-11 2021-11-11 Antigen Composition For Inducing KRAS Specific Activated T Cell

Related Child Applications (4)

Application Number Title Priority Date Filing Date
KR1020240130364A Division KR20240144081A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130365A Division KR20240145449A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130362A Division KR20240148770A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130363A Division KR20240150729A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell

Publications (2)

Publication Number Publication Date
KR20230068628A KR20230068628A (en) 2023-05-18
KR102753583B1 true KR102753583B1 (en) 2025-01-10

Family

ID=86336391

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020210154617A Active KR102753583B1 (en) 2021-11-11 2021-11-11 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130362A Pending KR20240148770A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130365A Pending KR20240145449A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130363A Pending KR20240150729A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130364A Pending KR20240144081A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell

Family Applications After (4)

Application Number Title Priority Date Filing Date
KR1020240130362A Pending KR20240148770A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130365A Pending KR20240145449A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130363A Pending KR20240150729A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell
KR1020240130364A Pending KR20240144081A (en) 2021-11-11 2024-09-26 Antigen Composition For Inducing KRAS Specific Activated T Cell

Country Status (2)

Country Link
KR (5) KR102753583B1 (en)
WO (1) WO2023085657A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240102892A (en) * 2022-12-23 2024-07-03 한미약품 주식회사 Antigen peptide with multiple KRAS variant peptide linked together, nucleic acid encoding same, and use thereof
WO2024147556A1 (en) * 2023-01-05 2024-07-11 의료법인 명지의료재단 Composition for anticancer vaccine comprising k-ras mutant multiple epitope polypeptide as active ingredient

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122601B1 (en) * 2013-09-05 2020-06-12 덴드레온 파마슈티칼즈 엘엘씨 Humoral immune response against tumor antigens after treatment with a cancer antigen specific active immunotherapy and its association with improved clinical outcome

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805367A1 (en) * 2005-12-08 2021-04-14 NorthWest Biotherapeutics, Inc. Compositions and methods for inducing the activation of immature monocytic dendritic cells
HUE065689T2 (en) * 2014-11-26 2024-06-28 The United States Of America Anti-mutated KRAS T cell receptors
IL255769B2 (en) 2015-05-20 2023-09-01 Broad Inst Inc Shared neoantigens
US11771749B2 (en) * 2017-02-03 2023-10-03 The Medical College Of Wisconsin, Inc. KRAS peptide vaccine compositions and method of use
US20210268086A1 (en) * 2018-06-27 2021-09-02 Modernatx, Inc. Personalized cancer vaccine epitope selection
US20240317830A1 (en) * 2019-10-09 2024-09-26 Edward Fritsch Multi-domain protein vaccine
IL295788A (en) * 2020-02-24 2022-10-01 Oblique Therapeutics Ab Kras epitopes and antibodies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122601B1 (en) * 2013-09-05 2020-06-12 덴드레온 파마슈티칼즈 엘엘씨 Humoral immune response against tumor antigens after treatment with a cancer antigen specific active immunotherapy and its association with improved clinical outcome

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
비특허문헌1*
비특허문헌2*

Also Published As

Publication number Publication date
KR20240148770A (en) 2024-10-11
KR20240145449A (en) 2024-10-07
WO2023085657A1 (en) 2023-05-19
KR20230068628A (en) 2023-05-18
KR20240144081A (en) 2024-10-02
KR20240150729A (en) 2024-10-16

Similar Documents

Publication Publication Date Title
KR20240150729A (en) Antigen Composition For Inducing KRAS Specific Activated T Cell
Knutson et al. IL-12 enhances the generation of tumour antigen-specific Th1 CD4 T cells during ex vivo expansion
US20210317184A1 (en) T cell modification
IL309716A (en) B*44 restricted peptides for use in immunotherapy against cancers and related methods
Chen et al. Therapeutic efficacy of an anti-PD-L1 antibody based immunocytokine in a metastatic mouse model of colorectal cancer
EP1962891B1 (en) Dna vaccine for cancer therapy
Bellati et al. Cellular adaptive immune system plays a crucial role in trastuzumab clinical efficacy
Brookman-May et al. Vaccination therapy in renal cell carcinoma: current position and future options in metastatic and localized disease
EP4056197A1 (en) Tumor-specific polypeptide sequence and use thereof
KR20230068627A (en) Manufacturing Method of KRAS Specific Activated Cell Using KRAS Antigen Composition
Rajan et al. Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions
KR101769025B1 (en) Composition comprising branched multipeptide vaccine and vaccine comprising the same
Berry et al. Evaluation of attenuated tumor antigens and the implications for peptide-based cancer vaccine development
KR102732911B1 (en) Pharmaceutical Composition For Preventing Or Treating Breast Cancer Comprising K-ras Specific Activated T Cell And Manufacturing Method Thereof
KR102732913B1 (en) Pharmaceutical Composition For Preventing Or Treating Melanoma Comprising K-ras Specific Activated T Cell And Manufacturing Method Thereof
KR102732909B1 (en) Pharmaceutical Composition For Preventing Or Treating Lung Papillary Adenocarcinoma Comprising K-ras Specific Activated T Cell And Manufacturing Method Thereof
KR102732910B1 (en) Pharmaceutical Composition For Preventing Or Treating Colorectal Cancer Comprising K-ras Specific Activated T Cell And Manufacturing Method Thereof
KR102732912B1 (en) Pharmaceutical Composition For Preventing Or Treating Lung Adenocarcinoma Comprising K-ras Specific Activated T Cell And Manufacturing Method Thereof
Indar et al. Current concepts in immunotherapy for the treatment of colorectal cancer.
WO2020146773A1 (en) Methods of using il-2/cd25 fusion protein
Carson III et al. Current immunotherapeutic strategies in breast cancer
Lim et al. Idiotypic Immune Targeting of Multiple Myeloma
Topchyan et al. Harnessing the IL-21-BATF Pathway in the CD8+ T Cell Anti-Tumor Response. Cancers 2021, 13, 1263
Kontani et al. Neutralization of TGF-beta led to spontaneous elicitation of antitumor immune responses and elimination of tumors in mice administered of DNA encoding soluble TGF-beta receptor
Merge Interleukin-13 receptor α2 DNA prime boost vaccine induces tumor immunity in murine tumor models

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211111

PA0201 Request for examination
PG1501 Laying open of application
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240627

A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20240926

Patent event code: PA01071R01D

PX0701 Decision of registration after re-examination

Patent event date: 20241007

Comment text: Decision to Grant Registration

Patent event code: PX07013S01D

X701 Decision to grant (after re-examination)
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20250108

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20250108

End annual number: 3

Start annual number: 1

PG1601 Publication of registration