[go: up one dir, main page]

KR102744312B1 - Anisopitropic conductive composition - Google Patents

Anisopitropic conductive composition Download PDF

Info

Publication number
KR102744312B1
KR102744312B1 KR1020230108655A KR20230108655A KR102744312B1 KR 102744312 B1 KR102744312 B1 KR 102744312B1 KR 1020230108655 A KR1020230108655 A KR 1020230108655A KR 20230108655 A KR20230108655 A KR 20230108655A KR 102744312 B1 KR102744312 B1 KR 102744312B1
Authority
KR
South Korea
Prior art keywords
anisotropic conductive
composition
conductive material
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020230108655A
Other languages
Korean (ko)
Inventor
손원일
장승준
변도영
Original Assignee
주식회사 이엔머티리얼즈
엔젯 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔머티리얼즈, 엔젯 주식회사 filed Critical 주식회사 이엔머티리얼즈
Priority to PCT/KR2024/009153 priority Critical patent/WO2025005755A1/en
Application granted granted Critical
Publication of KR102744312B1 publication Critical patent/KR102744312B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/275Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/2755Selective modification
    • H01L2224/27552Selective modification using a laser or a focussed ion beam [FIB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명에 따른 경화되어 전자부품의 일전극과 타전극을 결합시키는 전기적으로 접합재가 되는 이방성 도전 필름 제조용 조성물은,
상기 접합재에 전기도전성을 제공하는 금속이온을 포함하는 금속전구체;
경화가능한 고분자를 포함하는 경화성 수지;
상기 금속이온으로부터 환원되는 금속과 상기 고분자의 상분리를 유도하는 상분리 유도제; 및
용매를 포함하는 것을 특징으로 한다.
The composition for manufacturing an anisotropic conductive film that is cured according to the present invention and serves as an electrical bonding material for joining one electrode and the other electrode of an electronic component,
A metal precursor comprising a metal ion that provides electrical conductivity to the above-mentioned bonding material;
A curable resin comprising a curable polymer;
A phase separation inducing agent that induces phase separation between the metal reduced from the metal ion and the polymer; and
It is characterized by containing a solvent.

Description

이방성 도전 필름제조용 조성물 {Anisopitropic conductive composition} {Anisopitropic conductive composition} for manufacturing anisotropic conductive film

본 발명은 이방성 도전 필름제조용 조성물, 이방성 도전 필름, 이방성 도전 접속방법, 이방성 도전 접속구조체에 관한 것으로서, 더욱 상세하게는 기판의 전극과 칩의 전극을 결합시키고 전기적으로 연결하는 이방성 도전 필름제조용 조성물, 이방성 도전 필름, 이방성 도전 접속방법, 이방성 도전 접속구조체에 관한 것이다.The present invention relates to a composition for manufacturing an anisotropic conductive film, an anisotropic conductive film, an anisotropic conductive connection method, and an anisotropic conductive connection structure, and more specifically, to a composition for manufacturing an anisotropic conductive film, an anisotropic conductive film, an anisotropic conductive connection method, and an anisotropic conductive connection structure for bonding and electrically connecting an electrode of a substrate and an electrode of a chip.

이방성 도전 필름은 조성물은 반도체 패키지 및 마이크로 전자 소자의 제조와 어셈블리에 있어서 다양한 용도로서 이용된다. 예를 들면, 집적 회로 칩을 기판에 접착하기 위한 전기적 접속필름으로서, 또는 회로 어셈블리를 인쇄 회로 기판에 접착하기 위한 접속필름으로서 이용된다.The anisotropic conductive film composition is used for various purposes in the manufacture and assembly of semiconductor packages and microelectronic devices. For example, it is used as an electrical connection film for bonding an integrated circuit chip to a substrate, or as a connection film for bonding a circuit assembly to a printed circuit board.

보다 구체적으로 설명하면, 이방성 도전 필름 (ACP_anisotropic conductive Film)은 COG 어셈블리(chip-on glass assembly), 플렉스 어셈블리 상의 플립 칩, 비(非)접촉식 스마트 카드 모듈 어셈블리, 및 연성 기판 (flexible substrate) 또는 고형 기판(rigid substrate)에서의 필름 칩 다이 접착(flip chip die attach)을 포함하는, 각종 전자 하드웨어의 본딩 형성에 이용될 수 있다.More specifically, the anisotropic conductive film (ACP) can be used for bonding formation of various electronic hardware, including chip-on glass assembly (COG assembly), flip chip on flex assembly, non-contact smart card module assembly, and flip chip die attach on a flexible substrate or a rigid substrate.

최근, 마이크로 발광 다이오드로도 불리는 마이크로 LED(Light-emitting diode)는 한 변의 크기가 100㎛ 이하인 초소형 LED를 의미하며, 평판 디스플레이 기술 구현을 위한 중요 기술 중 하나이다.Recently, micro LED (Light-emitting diode), also called micro light-emitting diode, refers to an ultra-small LED with a side size of less than 100㎛, and is one of the important technologies for implementing flat panel display technology.

마이크로 LED는 기존의 LED 대비 에너지 효율과 광학적 효율이 우수하고, 단위면적당 발열량이 적다는 장점이 있으며, 매우 작은 화소를 구현할 수 있어 조명 외에도 초소형 디스플레이, 정밀 의료 기구로의 활용 가능성이 높다. 이러한 마이크로 LED를 기판상 전극에 부착하기 위해 이방성 도전성 필름(ACF, anisotropic conductive film)이 이용되고 있다.Micro LEDs have the advantages of superior energy efficiency and optical efficiency compared to existing LEDs, low heat generation per unit area, and can implement very small pixels, so they have high potential for use in ultra-small displays and precision medical devices in addition to lighting. An anisotropic conductive film (ACF) is used to attach these micro LEDs to electrodes on a substrate.

4K(3840 * 2160) 평판디스플레이에 이용되는 마이크로 LED의 크기는 적어도 50*20㎛ 이상이었기 때문에 ACF를 이용하여 전극을 부착하는 본딩 공정이 가능하였다. 그러나, 8K이상의 고화질의 구현을 위해서는 마이크로 LED의 크기가 더 작아져 30*20㎛로 된다.Since the size of the micro LED used in the 4K (3840 * 2160) flat panel display was at least 50*20㎛ or more, the bonding process using ACF to attach the electrode was possible. However, in order to implement high-definition resolution of 8K or higher, the size of the micro LED must be reduced to 30*20㎛.

따라서 마이크로 LED와 같은 미세한 소자의 전기적 접합에 이용하는 경우, 종래 ACF에 이용되는 도전성 입자는 직경이 약 3 내지 10 ㎛ 범위로 매우 크기 때문에 작은 마이크로 LED칩을 본딩하는 것이 기술적으로 문제가 된다. 즉, 고화질구현을 위한 마이크로 LED칩의 경우 전극간의 간격이 30um(또는 피치(pitch))이하가 되기 때문에 ACF필름을 이용하는 방법으로 본딩하기는 것은 매우 어렵다.Therefore, when used for electrical bonding of minute elements such as micro LEDs, since the conductive particles used in conventional ACFs are very large, with a diameter in the range of about 3 to 10 ㎛, bonding small micro LED chips is technically problematic. That is, in the case of micro LED chips for high-definition implementation, since the spacing between electrodes is less than 30 ㎛ (or pitch), it is very difficult to bond using a method using an ACF film.

대한민국 등록특허 제10-1462658호 (등록일 2014.11.11)Republic of Korea Patent No. 10-1462658 (Registration date 2014.11.11)

본 발명의 제1측면은 전술한 문제점을 극복하기 위해 제안된 것으로서, 30㎛m이하의 미세 피치(fine pitch)에서도 본딩이 가능하면서도 이방성 도전(Anisotropic conductive), 즉, X, Y축은 전기가 통하지 않고, Z축만 전기가 통하는 특성을 가지면서도 도전입자를 함유하지 않는 이방성 도전 필름 제조용 조성물을 제공하는데 있다.The first aspect of the present invention has been proposed to overcome the above-mentioned problems, and is to provide a composition for manufacturing an anisotropic conductive film which enables bonding even at a fine pitch of 30 ㎛ or less, and has an anisotropic conductive property, that is, electricity is not conducted along the X and Y axes but only along the Z axis, and does not contain conductive particles.

본 발명의 제2측면은 전술한 문제점을 극복하기 위해 제안된 것으로서, 전술한 이방성 도전 필름 제조용 조성물을 사용하여 전기적으로 접속하는 방향으로 금속입자가 환원된 소결체가 구비되는 이방성 도전 필름을 제공하는데 있다.The second aspect of the present invention is to overcome the above-mentioned problem by providing an anisotropic conductive film having a sintered body in which metal particles are reduced in an electrically connecting direction using the composition for manufacturing an anisotropic conductive film as described above.

본 발명의 제3측면은 전술한 문제점을 극복하기 위해 제안된 것으로서, 전술한 이방성 도전 필름을 사용하여 전기적으로 접속하는 방향으로 금속입자가 환원된 소결체가 구비되는 이방성 접속구조체를 제공하는데 있다.The third aspect of the present invention is to overcome the above-mentioned problem by providing an anisotropic connection structure having a sintered body in which metal particles are reduced in an electrically connecting direction using the above-mentioned anisotropic conductive film.

본 발명의 제1측면은, 대향하는 제1전극과 제2전극을 전기적으로 연결시키는 이방성 도전재료 제조용 조성물로서,The first aspect of the present invention is a composition for producing an anisotropic conductive material that electrically connects opposing first and second electrodes,

상기 이방성 도전재료에 전기도전성을 제공하는 금속이온을 포함하는 금속전구체;A metal precursor comprising a metal ion that provides electrical conductivity to the above-mentioned anisotropic conductive material;

경화가능한 고분자를 포함하는 경화성 수지;A curable resin comprising a curable polymer;

상기 금속이온으로부터 환원되는 금속과 상기 경화성 수지의 상분리를 유도하는 상분리 유도제; A phase separation inducing agent that induces phase separation between a metal reduced from the metal ion and the curable resin;

경화시간을 단축시키고 흐름성을 제어하는 흐름성제어제; 및A flow control agent that shortens the curing time and controls flowability; and

용매를 포함하는 이방성 도전재 제조용 조성물.A composition for producing an anisotropic conductive material comprising a solvent.

상기 상분리유도제는 친수성기 및 친유성기를 포함하는 이방성 도전재 제조용 조성물을 제공하는 것을 목적으로 한다.The purpose of the above phase separation inducing agent is to provide a composition for manufacturing an anisotropic conductive material including a hydrophilic group and a lipophilic group.

이 때, 상기 친유성기의 탄소수는 5 내지 25이고, 친수성기는 카르복실기(-COOH) 또는 아민기(- NH)를 포함하는 것이 바람직하다.At this time, it is preferable that the lipophilic group has 5 to 25 carbon atoms, and the hydrophilic group includes a carboxyl group (-COOH) or an amine group (- NH).

또한, 상기 카르복실기를 포함하는 화합물은 카프릴산(caprylic acid), 펠라르곤산(pelargonic acid), 카프로산(caproic acid), 운데카논산(Undecanic acid), 라우르산(lauric acid), 미리스트산(myristic acid), 베헨산(behenic acid), 팔미트산(palmitic acid), 리그노세르산(lignoceric acid), 스테아르산 (Stearic acid), 아라킨산 (Eicosanoic Acid), 올레산 (Oleic acid)로 구성되는 군에서 선택되는 적어도 하나 또는 이들의 조합인 것이 바람직하다.In addition, it is preferable that the compound containing the carboxyl group is at least one selected from the group consisting of caprylic acid, pelargonic acid, caproic acid, undecanic acid, lauric acid, myristic acid, behenic acid, palmitic acid, lignoceric acid, stearic acid, eicosanoic acid, and oleic acid, or a combination thereof.

또한, 상기 아민기를 포함하는 화합물은 헥실아민(hexylamine), 헵틸아민(Heptylamine), 옥틸아민 (Octylamine), 올레일 아민 (Oleylamine), 데실아민 (decylamine), 도데실아민 (dodecylamine), 2-에틸헥실아민 (2-ethylhexylamine), 1,3-디메틸-n-부틸아민(1,3-Dimethylbutylamine)로 구성되는 군에서 선택되는 적어도 하나 또는 이들의 조합인 것이 바람직하다.In addition, it is preferable that the compound containing the amine group is at least one selected from the group consisting of hexylamine, heptylamine, octylamine, oleylamine, decylamine, dodecylamine, 2-ethylhexylamine, and 1,3-dimethyl-n-butylamine, or a combination thereof.

또한, 상기 조성물은 60 내지 100℃로 제1가열시 일정수준으로 경화되어 필름화 가능하다.In addition, the composition can be hardened to a certain level and formed into a film when first heated at 60 to 100°C.

또한, 상기 조성물이 가열되어 상기 제1전극과 상기 제2전극사이에서 경화물이 될 때, 상기 대향하는 방향인 Z축방향으로는 도전성 경로가 형성되고, 상기 Z축 방향과 각각 수직인 X, Y축 방향으로는 도전성 경로(path)가 형성되지 못하는 것이 바람직하다.In addition, when the composition is heated and becomes a cured product between the first electrode and the second electrode, it is preferable that a conductive path is formed in the Z-axis direction, which is the opposing direction, and that no conductive path is formed in the X-axis and Y-axis directions, which are each perpendicular to the Z-axis direction.

또한, 상기 경화물은 상기 금속이온이 환원되어 형성되는 복수의 소결체가 상기 Z축방향으로 성장하여 상기 제1전극과 상기 제2전극을 전기적으로 연결하는 것이 바람직하다.In addition, it is preferable that the cured product is formed by reducing the metal ions and a plurality of sintered bodies grow in the Z-axis direction to electrically connect the first electrode and the second electrode.

또한, 상기 경화물에서 상기 복수의 소결체는 상기 X, Y축방향으로는 서로 연결되지 않는 것이 바람직하다.In addition, it is preferable that the plurality of sintered bodies in the above-mentioned hardened product are not connected to each other in the X and Y-axis directions.

또한, 상기 경화성수지는 라디칼에 의해 중합가능한 고분자 수지인 것이 바람직하다.In addition, it is preferable that the curable resin is a polymer resin that can be polymerized by radicals.

또한, 상기 경화성수지는 에폭시 수지 또는 아크릴계 수지인 일 수 있다.Additionally, the curable resin may be an epoxy resin or an acrylic resin.

또한, 상기 경화제는 열 또는 광으로써 경화성 수지를 경화시키는 물질로서, 아민 또는 포스핀 화합물을 포함하는 것이 바람직하다. In addition, the curing agent is a substance that cures the curable resin with heat or light, and preferably includes an amine or phosphine compound.

또한, 상기 아민 화합물은 2-메틸 이미다졸, 2,4-디메틸이미다졸, 2-에틸-4-메틸이미다졸, 2-페닐이미다졸, 2-페닐4-메틸이미다졸(2-Phenyl-4-methylimidazole); 3급 아민 화합물로서 트리에틸아민, 벤질디메틸아민, 메틸벤질디메틸아민, 2-(디메틸아미노메틸)페놀, 2,4,6-트리스(디메틸아미노메틸)페놀(2,4,6-Tris(dimethylaminomethyl)phenol) 로 구성되는 군에서 선택되는 물질로 이루어지는 것이 바람직하다.In addition, it is preferable that the amine compound is composed of a substance selected from the group consisting of 2-methyl imidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole; and as a tertiary amine compound, triethylamine, benzyldimethylamine, methylbenzyldimethylamine, 2-(dimethylaminomethyl)phenol, and 2,4,6-tris(dimethylaminomethyl)phenol.

또한, 상기 포스핀 화합물은,In addition, the above phosphine compound,

트리에틸포스핀, 트리부틸포스핀, 1,8-디아자비시클로(5,4,0)운데센-7; 또는 유기 포스핀 화합물로서 트리페닐포스핀, 트리메틸포스핀, 트리에틸포스핀, 트리부틸포스핀, 트리(p-메틸페닐)포스핀(Tris(4-methoxyphenyl)phosphine), 트리(노닐 페닐)포스핀로 구성되는 군에서 선택되는 하나인 것이 바람직하다.Triethylphosphine, tributylphosphine, 1,8-diazabicyclo(5,4,0)undecene-7; or one selected from the group consisting of triphenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri(p-methylphenyl)phosphine (Tris(4-methoxyphenyl)phosphine), and tri(nonylphenyl)phosphine as organic phosphine compounds is preferred.

또한, 상기 흐름성제어제는 분자량이 10,000 내지 1,100,000의 아크릴계 폴리머 수지인 것이 바람직하다.In addition, it is preferable that the flow control agent is an acrylic polymer resin having a molecular weight of 10,000 to 1,100,000.

또한, 상기 흐름성제어제는 유리전이온도(Tg)가 -20 내지 110℃인 것이 바람직하다.In addition, it is preferable that the flow control agent has a glass transition temperature (Tg) of -20 to 110°C.

또한, 상기 금속 전구체 60중량부에 대해서, 상분리유도제는 5 내지 15중량부, 경화성 수지는 3 내지 8중량부, 경화제는 3 내지 8중량부, 용매는 15 내지 25중량부로 포함되는 것이 바람직하다.In addition, for 60 parts by weight of the metal precursor, it is preferable that the phase separation inducer is included in an amount of 5 to 15 parts by weight, the curable resin is included in an amount of 3 to 8 parts by weight, the curing agent is included in an amount of 3 to 8 parts by weight, and the solvent is included in an amount of 15 to 25 parts by weight.

또한, 상기 조성물은 금속 도전성 전구체 60중량부에 대해서, 5 내지 15중량부로 포함되는 나노입자를 더 포함하는 것이 바람직하다.In addition, it is preferable that the composition further includes nanoparticles in an amount of 5 to 15 parts by weight per 60 parts by weight of the metal conductive precursor.

또한, 상기 나노입자는 은(Ag), 금(Au), 인듐(In), 구리(Cu), ITO(indium tin oxide), 팔라듐, 플레티늄, 니켈, 및 이리듐으로 이루어진 군에서 선택되는 1종을 포함하는 것이 바람직하다.In addition, it is preferable that the nanoparticles include one selected from the group consisting of silver (Ag), gold (Au), indium (In), copper (Cu), indium tin oxide (ITO), palladium, platinum, nickel, and iridium.

본 발명은 또한The present invention also comprises

전기도전성을 제공하는 금속이온을 포함하는 금속전구체;A metal precursor comprising a metal ion providing electrical conductivity;

경화가능한 고분자를 포함하는 경화성 수지;A curable resin comprising a curable polymer;

상기 금속이온으로부터 환원되는 금속과 상기 경화성 수지의 상분리를 유도하는 상분리 유도제; 및A phase separation inducing agent that induces phase separation between the metal reduced from the metal ion and the curable resin; and

경화시간을 단축시키고 흐름성을 제어하는 흐름성제어제;를 포함하는 이방성 도전재를 제공한다.Provided is an anisotropic conductive material including a flow control agent that shortens the curing time and controls flowability.

이 때, 상기 이방성 도전재는 60 내지 100℃로 제1가열에 의해서 일부 경화되어 프리스탠딩가능하다.At this time, the anisotropic conductive material is partially hardened by the first heating at 60 to 100°C and becomes free-standing.

또한, 상기 이방성 도전재는 열 또는 광에 의한 상기 제1가열 이후의 제2가열에 의해 상기 금속이온이 환원되어 일방향으로 도전성 경로를 형성하도록 성장하는 소결체가 형성되는 것이 바람직??.In addition, it is preferable that the anisotropic conductive material is formed into a sintered body in which the metal ions are reduced by second heating after the first heating by heat or light and grow to form a conductive path in one direction.

또한, 상기 도전재는 대향하는 제1전극과 제2전극을 전기적으로 연결하는 필름일 수 있다.Additionally, the above-mentioned challenge material may be a film that electrically connects the opposing first electrode and the second electrode.

본 발명에 따른 이방성 도전 필름 제조용 조성물은 내부에 금속입자를 포함하지 않아 미세전극에서도 적용가능하여 전극간에 도포되더라도 x, y방향으로는 전기가 흐르지 않고 z방향(즉, 기판의 전극과 칩의 전극)사이로만 전기가 흐르게 되어 전극간 쇼트가 발생하지 않고도 원하는 방향으로 전기를 흐르게 하는 효과가 있다.The composition for manufacturing an anisotropic conductive film according to the present invention does not contain metal particles therein and thus can be applied to microelectrodes. Thus, even when applied between electrodes, electricity does not flow in the x and y directions but only in the z direction (i.e., between the electrodes of the substrate and the electrodes of the chip), thereby having the effect of allowing electricity to flow in a desired direction without causing a short circuit between the electrodes.

본 발명에 따른 이방성 도전 필름은 내부에 광이나 열에 의해 환원 및 소결하는 금속성분을 사용하여 일방향으로만 전기적으로 도전성을 가지는 소결체를 구비한다. 따라서 인접하는 전극간에 걸쳐 설치되더라도 다른 방향으로는 전극간 쇼트가 발생하지 않게 되어 효율적으로 미세전극사이를 이방성 도전으로 접속할 수 있게 되는 효과가 있다.The anisotropic conductive film according to the present invention has a sintered body that is electrically conductive in only one direction by using a metal component that is reduced and sintered by light or heat inside. Therefore, even if it is installed across adjacent electrodes, short circuits between the electrodes do not occur in the other direction, so there is an effect that anisotropic conductive connection between microelectrodes can be efficiently achieved.

이에 따라 본 발명은 다양한 이방성 도전 전기접속이 요구되는 다양한 접속구조체에 적용될 수 있다. 특히 마이크로LED의 접속, FPD(flat panel display)의 chip on glass(COG), chip on film(COF), film on board(FOB), 콘넥터 대체 접속(Rigid 기판과 필름재, 필름재와 필름재의 접속)에 바람직하게 응용될 수 있다.Accordingly, the present invention can be applied to various connection structures requiring various anisotropic challenge electrical connections. In particular, it can be preferably applied to connections of micro LEDs, chip on glass (COG), chip on film (COF), film on board (FOB) of FPD (flat panel display), and connector replacement connections (connections between rigid substrates and film materials, and between film materials and film materials).

도 1의 (a)는 본 실시예에 따른 접속구조체를 설명하는 개념도이다.
도 2는 본 실시예에 따라 열 또는 레이저 경화시 금속입자의 환원과 소결 및 경화성 수지의 경화에 따라 소결체가 위치하는 영역과 고분자가 위치하는 영역은 복수개가 서로 혼성되면서 이방성 구조를 가지는 메커니즘을 설명하는 모식도이다.
도 3은 실시예 1의 조성물로 제조된 이방성 도전필름의 저항측정을 보여주는 실험사진이다.
도 4는 저항 측정위치를 도시하는 사진이다.
도 5는 ITO기판과 COF필름간 저항 그래프이다.
도 6은 glass 기판과 COF필름간 저항 그래프이다.
도 7은 실시예 2의 조성물로 제조된 이방성 도전필름의 열경화후 도전성기판과의 전극사이의 저항측정을 보여주는 실험사진이다.
도 8은 실시예 2의 조성물로 제조된 이방성 도전필름의 열경화후 절연기판과의 전극사이의 저항측정을 보여주는 실험사진이다.
도 9는 레이저 경화장치의 단면도이다.
도 10은 실험예 3에서 전극을 본딩한 후 전자현미경으로 접합재 부위를 촬영하여 도시한 전자현미경 사진이다.
도 11은 실험예 3에서 전극을 사이에 형성된 소결체의 EDS 분석 사진이다.
도 12 은 마이크로 엘이디 기판에 이방성 도전 필름으로 마이크로 엘이디 전극을 부착하는 공정을 설명하는 공정도이다.
도 13는 마이크로 엘이디 점등을 보여주는 실험사진이다.
도 14 내지 도 15는 이방성 도전 필름이 경화하여 전극사이을 연결하는 부위의 전자현미경 사진이다.
Fig. 1 (a) is a conceptual diagram explaining a connection structure according to the present embodiment.
FIG. 2 is a schematic diagram explaining a mechanism in which a region where a sintered body is located and a region where a polymer is located are hybridized with each other and have an anisotropic structure due to reduction and sintering of metal particles and hardening of a curable resin during heat or laser curing according to the present embodiment.
Figure 3 is an experimental photograph showing the resistance measurement of an anisotropic conductive film manufactured with the composition of Example 1.
Figure 4 is a photograph showing the resistance measurement location.
Figure 5 is a resistance graph between an ITO substrate and a COF film.
Figure 6 is a resistance graph between a glass substrate and a COF film.
Figure 7 is an experimental photograph showing the resistance measurement between the electrode and the conductive substrate after thermal curing of the anisotropic conductive film manufactured with the composition of Example 2.
Figure 8 is an experimental photograph showing the resistance measurement between the electrode and the insulating substrate after thermal curing of the anisotropic conductive film manufactured with the composition of Example 2.
Figure 9 is a cross-sectional view of a laser hardening device.
Figure 10 is an electron microscope photograph of the bonding material portion taken by an electron microscope after bonding the electrodes in Experimental Example 3.
Figure 11 is an EDS analysis photograph of a sintered body formed between electrodes in Experimental Example 3.
Figure 12 is a process diagram explaining a process of attaching a micro LED electrode to a micro LED substrate using an anisotropic conductive film.
Figure 13 is an experimental photograph showing the lighting of micro LEDs.
Figures 14 and 15 are electron microscope photographs of the area where the anisotropic conductive film is cured to connect the electrodes.

이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명의 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상의 범위 내에 포함된다고 할 것이다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the spirit of the present invention is not limited to the presented embodiments, and those skilled in the art who understand the spirit of the present invention will be able to easily propose other regressive inventions or other embodiments included within the scope of the spirit of the present invention by adding, changing, deleting, etc. other components within the scope of the same spirit, but this will also be considered to be included within the scope of the spirit of the present invention.

또한, 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.In addition, components having the same function within the same scope of the same idea shown in the drawings of the embodiment are described using the same reference numerals.

이하에서는 도면을 참조하면서 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

<제1측면><Aspect 1>

본 발명의 제1측면에 따른 이방성 도전재 제조용 조성물의 제1실시예는 금속 전구체, 상분리유도체, 경화성 수지(curable resin), 경화성 수지를 경화시키기 위한 경화제(curing agents), 흐름성제어제, 용매를 포함한다.A first embodiment of a composition for manufacturing an anisotropic conductive material according to the first aspect of the present invention comprises a metal precursor, a phase separation inducer, a curable resin, curing agents for curing the curable resin, a flow control agent, and a solvent.

금속 전구체는 이방성 도전 조성물 내에서 도전성을 가지는 금속 필러로 환원되기 전 상태의 물질로서, 금속 전구체는 금속 수소화물(metal hydride), 금속 수산화물(metal hydroxide), 금속 황산화물(metal sulfur oxide), 금속 질산화물(metal nitrate), 금속 할로겐화물(metal halide), 금속 착화합물(complex compound) 또는 이들의 조합을 포함하는 화합물이 사용될 수 있다.The metal precursor is a material before being reduced to a metal filler having conductivity in the anisotropic conductive composition. The metal precursor may be a compound including a metal hydride, a metal hydroxide, a metal sulfur oxide, a metal nitrate, a metal halide, a metal complex compound, or a combination thereof.

이 때, 금속 전구체에는 높은 전기도전성을 가지는 은(Ag), 구리(Cu), 금(Au), 비스무스, 인듐, 팔라듐, 플레티늄, 니켈, 이리듐등의 금속 또는 그 합금을 1종 이상 포함할 수 있으며, 바람직하게는 환원이 잘되고, 환원된 이후에 전기도전성이 높으며, 안정적인 은(Ag)이 포함되는 것이 좋다.At this time, the metal precursor may include one or more metals or alloys thereof having high electrical conductivity, such as silver (Ag), copper (Cu), gold (Au), bismuth, indium, palladium, platinum, nickel, and iridium. It is preferable to include silver (Ag), which is easily reduced, has high electrical conductivity after reduction, and is stable.

또한, 금속 전구체를 형성하기 위한 음이온은 히드록사이드 (hydroxide) 이온, 카르복실(carboxylic) 이온, 아세테이트(acetate) 이온, 프로피 오네이트(propionate) 이온, 아세틸아세토네이트(acetylacetonate) 이온, 2,2,6,6- 테트라메틸-3,5-헵탄디오네이트(2,2,6,6-tetramethyl-3,5-heptanedionate) 이온, 메톡사이드(methoxide) 이온, 2차-부톡사이드(sec-butoxide) 이온, 3차-부톡사이드 (t-butoxide) 이온, n-프로폭사이드(n-propoxide) 이온, i-프로폭사이드(ipropoxide) 이온, 에톡사이드(ethoxide) 이온, 포스페이트(phosphate) 이온, 알킬 포스페이트(alkylphosphonate) 이온, 나이트레이트(nitrate) 이온, 과염소산 (perchlorate) 이온, 황산(sulfate) 이온, 알킬설포네이트(alkylsulfonate) 이온, 페녹사이드(phenoxide) 이온, 브로마이드(bromide) 이온, 요오다이드(iodide) 이온, 클로라이드(chloride) 이온으로 구성되는 군에서 선택되는 적어도 하나 또는 이들의 조합인 음이온을 포함하는 것이 바람직하다.In addition, the anions for forming the metal precursor are hydroxide ion, carboxylic ion, acetate ion, propionate ion, acetylacetonate ion, 2,2,6,6-tetramethyl-3,5-heptanedionate ion, methoxide ion, sec-butoxide ion, t-butoxide ion, n-propoxide ion, ipropoxide ion, ethoxide ion, phosphate ion, alkylphosphonate ion, nitrate ion, perchlorate ion, sulfate ion, It is preferred that the anion comprises at least one or a combination of anions selected from the group consisting of alkylsulfonate ion, phenoxide ion, bromide ion, iodide ion, and chloride ion.

상분리유도제는 환원되는 금속과 경화되는 고분자의 상분리를 유도하는 물질로서, 금속 전구체가 후술할 열이나 광(레이저)에 의해 환원될 때 환원되는 금속과 경화되는 고분자를 상분리시키는 물질이다. 즉, 금속전구체 상태의 금속이온은 환원되면서 소결되는데, 이 때 고분자들과는 상분리된다.A phase separation inducer is a substance that induces phase separation between a reduced metal and a hardened polymer. It is a substance that causes phase separation between the reduced metal and the hardened polymer when the metal precursor is reduced by heat or light (laser) as described later. In other words, the metal ion in the metal precursor state is sintered while being reduced, and at this time, it phase separates from the polymer.

상분리유도제는 분자 내에 친수성기와 친유성기를 모두 포함하고 있어서, 친수성기는 환원되는 도전성 금속 입자덩어리(이하 소결체라고 함)를 표면에서 에워싸고, 친유성기는 고분자에 접하는 방식으로 상분리를 유도하는 것으로 추정된다.It is presumed that the phase separation inducer contains both hydrophilic and lipophilic groups in the molecule, and thus the hydrophilic groups induce phase separation by surrounding the reduced conductive metal particle mass (hereinafter referred to as the sintered body) on the surface, and the lipophilic groups come into contact with the polymer.

이 때, 친유성기의 탄소수는 5 내지 25이고, 친수성기는 카르복실기(-COOH) 또는 아민기(- NH)를 포함하는 것이 바람직하다.At this time, it is preferable that the number of carbon atoms in the lipophilic group is 5 to 25, and the hydrophilic group includes a carboxyl group (-COOH) or an amine group (- NH).

구체적으로 상분리유도제는 카르복시기를 포함하는 화합물로서, 카프릴산(caprylic acid), 펠라르곤산(pelargonic acid), 카프로산(caproic acid), 운데카논산(Undecanic acid), 라우르산(lauric acid), 미리스트산(myristic acid), 베헨산(behenic acid), 팔미트산(palmitic acid), 리그노세르산(lignoceric acid), 스테아르산 (Stearic acid), 아라킨산 (Eicosanoic Acid), 올레산 (Oleic acid)로 구성되는 군에서 선택되는 적어도 하나 또는 이들의 조합인 지방산이 사용될 수 있다.Specifically, the phase separation inducer is a compound containing a carboxyl group, and at least one fatty acid selected from the group consisting of caprylic acid, pelargonic acid, caproic acid, undecanic acid, lauric acid, myristic acid, behenic acid, palmitic acid, lignoceric acid, stearic acid, eicosanoic acid, and oleic acid or a combination thereof may be used.

상분리유도제 중 아민을 포함하는 화합물은 예를 들어 헥실아민(hexylamine), 헵틸아민(Heptylamine), 옥틸아민 (Octylamine), 올레일 아민 (Oleylamine), 데실아민 (decylamine), 도데실아민 (dodecylamine), 2-에틸헥실아민 (2-ethylhexylamine), 1,3-디메틸-n-부틸아민(1,3-Dimethylbutylamine)로 구성되는 군에서 선택되는 적어도 하나 또는 이들의 조합이 사용될 수 있다.Among the phase separation inducers, compounds containing amines may be used, for example, at least one selected from the group consisting of hexylamine, heptylamine, octylamine, oleylamine, decylamine, dodecylamine, 2-ethylhexylamine, and 1,3-dimethyl-n-butylamine, or a combination thereof.

이 때, 상분리유도제는 친수성기인 카르복실기 또는 아민기는 환원되는 도전성 금속 입자덩어리(이하 소결체라고 함)를 표면에서 에워싸고, 친유성기인 알킬기는 고분자에 접하는 방식으로 상분리를 유도한다.At this time, the phase separation inducer induces phase separation by surrounding the reduced conductive metal particle mass (hereinafter referred to as a sintered body) on the surface with the hydrophilic group, carboxyl group or amine group, and by contacting the polymer with the lipophilic group, alkyl group.

금속과 고분자가 상분리된 상태에서 열 또는 레이저에 의해 이방 도전성 조성물이 가열되어 경화물로 될 때, 경화물은 금속이온이 환원되어 복수의 소결체를 형성하는데, 금속 소결체는 금속이 풍부하여 도전성을 가지게 된다. 또한, 소결체를 제외한 영역은 경화성 수지가 경화된 고분자로 형성된 도전성을 가지지 않게 된다.When the anisotropic conductive composition is heated by heat or laser in a state where the metal and polymer are phase separated to become a cured product, the cured product forms a plurality of sintered bodies through reduction of metal ions, and the metal sintered body becomes conductive because it is rich in metal. In addition, the area excluding the sintered body becomes non-conductive because the curable resin is formed into a hardened polymer.

이 때, 경화물은 금속이온이 환원되어 형성되는 복수의 소결체가 상기 Z축방향으로 성장하여 상기 제1전극과 상기 제2전극을 전기적으로 연결하고, 복수의 소결체는 X, Y축방향으로는 서로 연결되지 않는다.At this time, the cured product is formed by reducing metal ions, and a plurality of sintered bodies grow in the Z-axis direction to electrically connect the first electrode and the second electrode, and the plurality of sintered bodies are not connected to each other in the X and Y-axis directions.

이러한 상분리유도 방식에 의해 X, Y축은 도전성 경로(path)가 형성되지 못하고, Z축방향으로만 도전성 경로가 되어 전기가 흐를 수 있다. 이 때, Z축은 예를 들면, 제1전극과 제2전극이 대향하는 방향이고, X, Y축 방향은 Z축 방향과 각각 수직인 방향이다.By this method of inducing phase separation, the X and Y axes do not form conductive paths, and only the Z-axis direction becomes a conductive path through which electricity can flow. At this time, the Z-axis is, for example, the direction in which the first electrode and the second electrode face each other, and the X and Y-axis directions are directions perpendicular to the Z-axis direction.

경화성수지는 라디칼에 의해 중합가능한 고분자 수지로서 에폭시 수지와 같은 수지가 사용될 수 있다. 사용될 수 있는 에폭시 수지로는 비스페놀 A형 에폭시 수지, 치환형 에폭시 수지, 선형 지방족 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비페닐형 에폭시 수지, 복소환계 에폭시 수지, 할로겐화 에폭시 수지 등 분자당 2개 이상의 에폭시기를 함유하는 물질이 사용될 수 있다. 또한, 전술한 에폭시 수지의 2종류 이상이 병용될 수 있다.The curable resin is a polymer resin that can be polymerized by radicals, and a resin such as an epoxy resin can be used. The epoxy resin that can be used includes a bisphenol A type epoxy resin, a substituted epoxy resin, a linear aliphatic epoxy resin, a cresol novolac type epoxy resin, a biphenyl type epoxy resin, a heterocyclic epoxy resin, a halogenated epoxy resin, and a material containing two or more epoxy groups per molecule. In addition, two or more types of the above-mentioned epoxy resins can be used in combination.

또한 경화성수지는 아크릴계 수지가 사용될 수 있으며, 이 때 경화되기 위한 단량체로서 (메타)아크릴레이트가 하나 이상의 관능기를 가지고 있는 모노머 또는 올리고머이며, 반응성 관능기가 1개 이상이고, 20개 미만인 우레탄 아크릴레이트, 에폭시 아크릴레이트, 크레졸 노블락계 아크릴레이트, 페놀노블락계 아크릴레이트, 인산아크릴레이트 등으로부터 선택되어진 1종 또는 2종 이상이 사용될 수 있다.In addition, an acrylic resin can be used as the curable resin, and at this time, a monomer for curing, (meth)acrylate, is a monomer or oligomer having one or more functional groups, and one or more selected from urethane acrylate, epoxy acrylate, cresol novolac acrylate, phenol novolac acrylate, phosphoric acid acrylate, etc. having one or more reactive functional groups and less than 20 can be used.

아크릴레이트계 모노머의 바람직한 예로서는 네오 펜틸글리콜모노(메타)아크릴레이트, 1,6-헥 산다이올모노(메타)아크릴레이트, 펜타에리스리톨펜타(메타)아크릴레이트, 다이펜타에리스리톨펜타(메타) 아크릴레이트(Dipentaerythritolpenta(meth)acrylate), 글리세린 다이(메타)아크릴레이트, 테트라하이드 로퍼퓨릴(메타)아크릴레이트(tetrahydrofurfuryl(meth)acrylate), 이소데실(메타)아크릴레이트(isodecyl (meth)acrylate), 2-(2-에톡시에톡시)에틸(메타)아크릴레이트, 스테아릴(메타)아크릴레이트, 라우릴(메 타)아크릴레이트, 2-페녹시에틸(메타)아크릴레이트, 이소보닐(메타)아크릴레이트, 트리데실(메타)아크릴레 이트, 에톡시부가형 노닐페놀(메타)아크릴레이트(ethoxylated nonylphenolacrylate), 에틸렌글리콜디(메타)아크릴레이트, 에톡시 부가형 비스페놀-에이디(메타)아크릴레이트, 시클로헥산디메탄올디(메타)아크릴레이트, 페녹시 테트라에틸렌글리콜(메타)아크릴레이트, 2-메타아크릴로일록시에틸포스페이트, 2-메타아크릴로일록시에틸 포스페이트, 디메틸올 트리시클로 데케인 디(메타)아크릴레이트, 디펜타에리트리톨 헥사아크릴레이트, 트리메틸로프로판벤조에이트 아크릴레이트 및 이들의 혼합물로 이루어지는 군으로부터 선택된다. 상기 (메 타) 아크릴레이트계 모노머의 함량은 5 내지 50 중량% 정도인 것이 바람직하다.Preferred examples of acrylate monomers include neopentylglycol mono(meth)acrylate, 1,6-hexanediol mono(meth)acrylate, pentaerythritol penta(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerin di(meth)acrylate, tetrahydrofurfuryl(meth)acrylate, isodecyl(meth)acrylate, 2-(2-ethoxyethoxy)ethyl(meth)acrylate, stearyl(meth)acrylate, lauryl(meth)acrylate, 2-phenoxyethyl(meth)acrylate, isobornyl(meth)acrylate, A monomer selected from the group consisting of tridecyl (meth)acrylate, ethoxylated nonylphenolacrylate, ethylene glycol di(meth)acrylate, ethoxy added bisphenol-AD(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, phenoxy tetraethylene glycol (meth)acrylate, 2-methacryloyloxyethyl phosphate, 2-methacryloyloxyethyl phosphate, dimethylol tricyclodecane di(meth)acrylate, dipentaerythritol hexaacrylate, trimethylopropanebenzoate acrylate, and mixtures thereof. The content of the (meth)acrylate monomer is preferably about 5 to 50 wt%.

경화제는 열 또는 광으로써 경화성 수지를 경화시키는 물질로서, 아민 또는 포스핀 화합물이 1종 또는 2종이상 병합되어 사용될 수 있다. 예를 들면, 아민경화제로는 2-메틸 이미다졸, 2,4-디메틸이미다졸, 2-에틸-4-메틸이미다졸, 2-페닐이미다졸, 2-페닐4-메틸이미다졸(2-Phenyl-4-methylimidazole); 3급 아민 화합물로서 트리에틸아민, 벤질디메틸아민, 메틸벤질디메틸아민, 2-(디메틸아미노메틸)페놀, 2,4,6-트리스(디메틸아미노메틸)페놀(2,4,6-Tris(dimethylaminomethyl)phenol)이 사용될 수 있다.The curing agent is a substance that cures the curable resin with heat or light, and one or more amine or phosphine compounds can be used. For example, amine curing agents include 2-methyl imidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methylimidazole; tertiary amine compounds include triethylamine, benzyldimethylamine, methylbenzyldimethylamine, 2-(dimethylaminomethyl)phenol, and 2,4,6-tris(dimethylaminomethyl)phenol.

또한, 포스핀 화합물은 트리에틸포스핀, 트리부틸포스핀, 1,8-디아자비시클로(5,4,0)운데센-7; 또는 유기 포스핀 화합물로 서 트리페닐포스핀, 트리메틸포스핀, 트리에틸포스핀, 트리부틸포스핀, 트리(p-메틸페닐)포스핀(Tris(4-methoxyphenyl)phosphine), 트리(노닐 페닐)포스핀이 사용될 수 있다.Additionally, the phosphine compounds may be triethylphosphine, tributylphosphine, 1,8-diazabicyclo(5,4,0)undecene-7; or as organic phosphine compounds, triphenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri(p-methylphenyl)phosphine (Tris(4-methoxyphenyl)phosphine), tri(nonylphenyl)phosphine may be used.

아크릴 수지를 경화하기 위한 경화제는 열 또는 광으로써 경화성 수지를 경화시키는 물질로서 라우릴퍼옥사이드(lauryl peroxide), 벤조일퍼옥사이드(benzoyl peroxide), 큐멘하이드로퍼옥사이드(cumen hydroperoxide), 디이소프로필벤젠하이드로퍼옥사이드(diisopropylbenzene hydroperoxide), t-부틸하이드로퍼옥사이드(t-butyl hydroperoxide)와 같은 유기 퍼옥사이드 등의 지용성 경화제 및 레독스 경화제 등이 바람직하다.The curing agent for curing the acrylic resin is a substance that cures the curable resin with heat or light, and is preferably an oil-soluble curing agent or a redox curing agent such as an organic peroxide such as lauryl peroxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, or t-butyl hydroperoxide.

흐름성제어제는 조성물을 초 속경화시키고 도전재의 흐름성을 제어하기 위해 포함되는 성분으로서, 분자량이 10,000 내지 1,100,000의 아크릴계 폴리머 수지이고, 유리전이온도(Tg)가 -20 내지 110℃이며, 메타크릴계를 함유하는 아크릴계 폴리머 수지가 바람직하다.The flow control agent is a component included to control the flow of the conductive agent and to achieve rapid curing of the composition. The acrylic polymer resin having a molecular weight of 10,000 to 1,100,000 and a glass transition temperature (Tg) of -20 to 110°C is preferable, and the acrylic polymer resin containing methacrylic is preferable.

도전재를 프리스탠딩(freestanding) 가능한 도전재(예를 들면, 필름)로 제조하는 경우, 분자량이 10,000 이하에서는 제1가열시 필름화하여 제조하기 힘들고, 제2가열시 압착시 고온고압에 의해 너무 쉽게 흘러내려 수지가 너무 잘 빠져 나가서 저항이 높아지고, 접착력이 크게 저하되는 물성을 나타내며, 1,100,000 이상이 될 경우 필름이 너무 브리틀(brittle)해져서 쉽게 깨어지고, Tack성(끈적이는 정도)가 너무 낮아 필름과 COF, TCP 등의 가압착 시 붙어 있지 않아서 불량이 날 확률이 높아진다.When manufacturing a conductive material as a freestanding conductive material (e.g., film), if the molecular weight is less than 10,000, it is difficult to manufacture it by forming a film during the first heating, and when pressing during the second heating, it flows too easily due to the high temperature and high pressure, so the resin comes out too easily, the resistance increases, and the adhesive strength is greatly reduced. If it is more than 1,100,000, the film becomes too brittle and breaks easily, and the tackiness (stickiness) is too low, so the film and COF, TCP, etc. do not stick together during pressurization, which increases the probability of defects.

이 때, 제1가열이란 조성물로부터 프리스탠딩가능한 정도의 경화를 가능하게 하고 내부의 금속이온은 환원하지 않는 가열을 말하고, 제2가열이란 내부의 금속이온이 환원하여 소결체를 형성하는 가열을 말한다.At this time, the first heating refers to heating that enables free-standing curing from the composition without reducing the internal metal ions, and the second heating refers to heating that reduces the internal metal ions to form a sintered body.

또한, 전술한 흐름성제어제는 COF(chip on flexible printed circuit)의 전극과 ITO 또는 Ti/Al/Ti 전극tern) 부분에 접속할 경우, 종래의 ACF로 얻을 수 없는 초기 전기접속 저항 값 및 아크릴 러버 자체의 높은 Tg를 가지기 때문에, 내열, 내습성을 가져 충분한 접속 신뢰성을 얻는 것이 가능하게 된다.In addition, since the aforementioned flow control agent has an initial electrical connection resistance value that cannot be obtained with a conventional ACF and a high Tg of the acrylic rubber itself when connected to the electrode of a COF (chip on flexible printed circuit) and the ITO or Ti/Al/Ti electrode section, it is possible to obtain sufficient connection reliability by having heat and moisture resistance.

용매는 전술한 구성성분을 용해하기 위한 것으로 용매는 비제한적으로 사용될 수 있으나, 테트라히드로퓨란(THF), 알코올(alcohol)계 용매, 에테르(ether)계 용매, 설파이드(sulfide)계 용매, 톨루엔(toluene)계 용매, 크실렌(xylene계)계 용매, 벤젠(benzene)계 용매, 알칸(alkane)계 용매, 옥세인(oxane)계 용매, 아민(amine)계 용매, 폴리올(polyol)계 용매 또는 다이케톤(diketone), 아미노 알코올(amino alcohol), 폴리아민(polyamine), 에탄올 아민(ethanol amine), 다이에탄올 아민(diethylnol amine), 에탄티올 (ethane thiol), 프로판티올(propane thiol), 부탄 티올(butane thiol), 펜탄 티올(pentane thiol), 헥산티올(hexane thiol), 헵탄 티올 (heptanes thiol), 옥탄티올(octane thiol), 노난티올 (nonane thiol), 데칸 티올(decane thiol), 운데칸 티올(undecane thiol)로 구성되는 군에서 선택되는 적어도 하나 이상 또는 이들의 조합인 용매를 사용하는 것이 바람직하다.The solvent is for dissolving the above-mentioned components, and the solvent may be used without limitation, but may include tetrahydrofuran (THF), alcohol solvents, ether solvents, sulfide solvents, toluene solvents, xylene solvents, benzene solvents, alkane solvents, oxane solvents, amine solvents, polyol solvents, or diketone, amino alcohol, polyamine, ethanol amine, diethylnol amine, ethane thiol, propane thiol, butane thiol, pentane thiol, hexane thiol, heptane thiol, It is preferable to use a solvent comprising at least one solvent selected from the group consisting of octane thiol, nonane thiol, decane thiol, and undecane thiol, or a combination thereof.

전술한 조성물에서 금속 전구체는 60중량부에 대해서, 상분리유도제는 5 내지 15중량부, 경화성 수지는 3 내지 8중량부, 경화제는 3 내지 8중량부, 용매는 15 내지 25중량부로 포함되는 것이 바람직하다.In the above-described composition, it is preferable that the metal precursor is contained in an amount of 60 parts by weight, the phase separation inducer in an amount of 5 to 15 parts by weight, the curable resin in an amount of 3 to 8 parts by weight, the curing agent in an amount of 3 to 8 parts by weight, and the solvent in an amount of 15 to 25 parts by weight.

금속 전구체 대비 상분리유도제가 상기 범위를 초과하면 전기저항이 증가하는 문제가 있고, 상기 범위 미만이면 상분리유도가 되지 않는 문제가 있다.If the phase separation inducer exceeds the above range compared to the metal precursor, there is a problem of increased electrical resistance, and if it is below the above range, there is a problem of no phase separation induction.

또한, 경화성 수지가 해당 범위보다 적은 양이 사용되는 경우 접착력이 불량할 가능성이 있으며, 해당 범위를 초과하는 경우 마이크로 LED와 기판전극 사이의 전기저항이 증가하는 문제점이 있다.In addition, if the amount of curable resin used is less than the range, there is a possibility that the adhesion will be poor, and if the amount of curable resin used is more than the range, there is a problem that the electrical resistance between the micro LED and the substrate electrode increases.

또한, 경화제가 해당 범위보다 적게 포함되는 경우 경화성 수지의 경화도 부족에 따른 부착력 불량이 발생할 수 있으며, 해당 범위보다 많은 양이 포함되는 경우 경화성 수지의 경화 속도가 빨라져 충분한 전기도전성을 얻기 어려워지거나, 전사가 이루어지기 전에 조성물이 경화되는 문제가 생길 수 있다.In addition, if the amount of the hardener is less than the range, poor adhesion may occur due to insufficient curing of the curable resin, and if the amount is more than the range, the curing speed of the curable resin may become too fast, making it difficult to obtain sufficient electrical conductivity, or the composition may become cured before transfer occurs.

따라서 전술한 범위내에서 조성물은 ISO 2409 부착력 시험척도로 5B 이고, 연속 인쇄성이 >7day이며, 레이저 경화시 30초 이하, 바람직하게 10초이하의 초속경화되는 레이저 경화특성을 가질 수 있다.Therefore, within the above-mentioned range, the composition may have a 5B adhesion test scale of ISO 2409, a continuous printability of >7 days, and a laser curing characteristic that is ultra-fast curing of 30 seconds or less, preferably 10 seconds or less, upon laser curing.

한편, 본 조성물을 레이저에 의한 경화시에는 파장이 760nm~4900nm인 것을 사용할 수 있으며, 특히 파장이 1000~4900nm 인 IR이 바람직하다. 상기 범위를 벗어나는 경우 레이저로 경화시 전자부품에 손상을 줄 수 있기 때문이다.Meanwhile, when curing the composition with a laser, a wavelength of 760 nm to 4900 nm can be used, and IR having a wavelength of 1000 nm to 4900 nm is particularly preferable. This is because when the wavelength is outside the above range, damage may occur to electronic components when curing with a laser.

레이저로 금속 전구체를 환원하여 소결하는 경우라도 경화성 수지가 열 또는 광으로 경화되는 재료 모두 가능하다. 레이저로 경화하는 경우라도 열로 경화되는 경화성 수지가 가능한 이유는 레이저에 의해 전극에 열이 발생하고 이때 발생한 열이 다시 경화성 수지의 경화에 필요한 열을 제공하기 때문이다. Even when reducing a metal precursor with a laser and sintering, both materials that are curable with heat or light are possible. The reason why a curable resin that is curable with heat is possible even when curing with a laser is because heat is generated in the electrode by the laser, and the heat generated at that time provides the heat necessary for curing the curable resin.

본 측면에서 이방성 도전 필름 제조용 조성물은 다음과 같은 메커니즘으로 신터링(sintering) 되면서, 금속전구체가 환원된 소결체가 형성되어 도전성입자를 가지지 않아도 도전성을 가지게 된다.In this aspect, the composition for manufacturing an anisotropic conductive film is sintered by the following mechanism, and a sintered body in which a metal precursor is reduced is formed, thereby having conductivity even without conductive particles.

(식 1)(Formula 1)

전술한 설명에서는 설명의 편의상 전극들의 개수를 한정하여 설명하였으나, N개의 하부전극들과 이에 대향하는 N개의 상부전극들로 이루어지는 접속구조체에서도 동일하게 적용될 수 있음을 당업자는 인식할 것이다.In the above description, the number of electrodes has been limited for convenience of explanation, but those skilled in the art will recognize that the same can be applied to a connection structure composed of N lower electrodes and N upper electrodes facing them.

본 발명의 제1측면에 따른 따른 이방성 도전 조성물의 제B실시예는 금속 전구체, 상분리유도체, 경화성 수지(curable resin), 경화성 수지를 경화시키기 위한 경화제(curing agents), 흐름성제어제, 용매, 및 도전성 입자를 포함한다.Example B of an anisotropic conductive composition according to the first aspect of the present invention comprises a metal precursor, a phase separation inducer, a curable resin, curing agents for curing the curable resin, a flow control agent, a solvent, and conductive particles.

즉, 제A실시예에 비하여 제B실시예는 도전성 입자를 더 포함한다. 도전성 입자는 은(Ag), 금(Au), 인듐(In), 구리(Cu), ITO(indium tin oxide), 팔라듐, 플레티늄, 니켈, 및 이리듐으로 이루어진 군에서 선택될 수 있으며, 0.01 ~ 5.0㎛ 범위의 크기를 갖는 나노 입자가 사용될 수 있다.That is, compared to Embodiment A, Embodiment B further includes conductive particles. The conductive particles may be selected from the group consisting of silver (Ag), gold (Au), indium (In), copper (Cu), indium tin oxide (ITO), palladium, platinum, nickel, and iridium, and nanoparticles having a size in the range of 0.01 to 5.0 μm may be used.

도전성 입자는 금속 도전성 전구체 60중량부에 대해서, 5 내지 15중량부로 포함되는 것이 바람직하다. 이로써, 도전성 입자를 소량 추가하는 것으로서, 전기도전성을 가지는 소결체에 더하여 전기 도전성을 보다 향상시킬 수 있다.It is preferable that the conductive particles are included in an amount of 5 to 15 parts by weight per 60 parts by weight of the metal conductive precursor. Thus, by adding a small amount of the conductive particles, the electrical conductivity can be further improved in addition to the sintered body having electrical conductivity.

이방성 도전재 제조용 조성물로 제조될 수 있는 도전재는 이방성 도전필름 (Anisotropic Conductive Film, ACF), 이방성 도전테이프 (Anisotropic Conductive Tape, ACT), 이방성 도전 접착제 (Anisotropic Conductive Adhesive, ACA), 이방성 도전페이스트 (Anisotropic Conductive Paste, ACP)등일 수 있다.Conductive materials that can be manufactured from the composition for manufacturing anisotropic conductive materials may include anisotropic conductive films (ACFs), anisotropic conductive tapes (ACTs), anisotropic conductive adhesives (ACAs), anisotropic conductive pastes (ACPs), etc.

<제2측면><Second side>

본 발명의 제2측면은 이방 도전성 필름의 제조방법이다. 이방성 도전 필름의 제조는 이형필름제공단계, 조성물도포단계 및 가열단계를 포함한다.The second aspect of the present invention is a method for manufacturing an anisotropic conductive film. The manufacturing of an anisotropic conductive film includes a release film providing step, a composition applying step, and a heating step.

이형필름제공단계는 도포된 조성물이 쉽게 박리되어 필름화되게할 수 있는 이형필름을 제공하는 단계이다. 이형필름은 당업계에서 사용되는 통상의 필름이면 그 종류가 제한되지 않으며, 예를 들어 PET 필름 등을 사용할 수 있다.The release film providing step is a step of providing a release film that can easily peel off the applied composition and form a film. The release film is not limited in type as long as it is a common film used in the art, and for example, PET film can be used.

조성물도포단계는 이형필름 상에 제1측면의 조성물을 원하는 크기로 도포하는 단계이다. 도포시 도막의 두께는 30 내지 200um, 바람직하게 40 내지 150 um이다.The composition application step is a step of applying the composition of the first side to a release film in a desired size. The thickness of the coating film at the time of application is 30 to 200 um, preferably 40 to 150 um.

금속 전구체, 상분리유도제, 경화성 수지(curable resin), 경화성 수지를 경화시키기 위한 경화제(curing agents), 흐름성제어제, 용매를 포함한다.It includes a metal precursor, a phase separation inducer, a curable resin, curing agents for curing the curable resin, a flow control agent, and a solvent.

금속 전구체는 도포시에는 금속염의 형태로서 액상에 용해되어 있으나, 전극사이에서 열이나 광에 의해 환원되어 도전성 금속으로 기능하게 된다. 이 때, 환원되는 도전성 금속은 입자덩어리(이하, 소결체라고 함)를 이루면서 금속도전성을 가지게 된다. 전극사이에서 가열되기 전의 이방성 도전필름 상태에서는 금속전구체는 환원되지 않는다.The metal precursor is dissolved in a liquid phase in the form of a metal salt when applied, but is reduced by heat or light between the electrodes to function as a conductive metal. At this time, the reduced conductive metal forms a particle mass (hereinafter referred to as a sintered body) and acquires metallic conductivity. The metal precursor is not reduced in the anisotropic conductive film state before being heated between the electrodes.

상분리유도제는 열이나 광에 의해 경화될 때 경화성수지와 환원되는 금속 전구체를 서로 상분리시켜서 도포된 상태에서 각 금속과 수지가 위치하는 영역이 구분되게 한다.When the phase separation inducer is cured by heat or light, it causes the curable resin and the reducing metal precursor to phase separate from each other, so that the areas where each metal and resin are located are distinct in the applied state.

이 때, 도포된 도막 내에서 환원된 금속은 적어도 하나의 소결체를 형성하며, 경화성 수지가 분포하는 고분자 영역이라고 할 때, 소결체는 고분자 내부에 분포하게 된다.At this time, the reduced metal within the applied film forms at least one sintered body, and when it is called a polymer region in which a curable resin is distributed, the sintered body is distributed within the polymer.

경화성 수지 및 경화제는 일반적인 열경화 또는 광경화에 적합한 수지로서, 열 또는 광경화시 상분리유도제에 의해서 금속과는 분리되는 고분자영역을 형성하면서 경화된다.The curable resin and the curing agent are resins suitable for general heat curing or photocuring, and are cured while forming a polymer region that is separated from the metal by a phase separation inducer during heat or photocuring.

흐름성제어제는 조성물을 초속경화시키고 필름화를 위한 흐름성을 제어하기 위해 포함되는 성분으로서, 분자량이 10,000 내지 1,100,000의 아크릴계 폴리머 수지이고, 유리전이온도(Tg)가 -20 내지 110℃이며, 메타크릴계를 함유하는 아크릴계 폴리머 수지가 바람직하다.The flow control agent is a component included to control the flowability for rapid curing of the composition and film formation, and is preferably an acrylic polymer resin having a molecular weight of 10,000 to 1,100,000, a glass transition temperature (Tg) of -20 to 110°C, and containing methacrylic.

용매는 수지를 용해하는 물질로서 용해 후 조성물의 점도는 25℃에서 5 내지 10,000cP, 바람직하게는 10~2,000cP가 보다 바람직하다.The solvent is a substance that dissolves the resin, and the viscosity of the composition after dissolution is preferably 5 to 10,000 cP, more preferably 10 to 2,000 cP, at 25°C.

조성물도포단계에서 조성물의 도포는 사용되는 응용제품의 용도에 따라서 스크린인쇄, 잉크젯, 닥터블레이드, 슬롯다이, 디스펜서, eHD 프린팅, 스핀코팅, pad 프린팅로 구성되는 군에서 선택되는 하나의 방법이 사용될 수 있다. 각 방법에 대한 설명은 다음과 같다.In the composition application step, the application of the composition may be performed using one method selected from the group consisting of screen printing, inkjet, doctor blade, slot die, dispenser, eHD printing, spin coating, and pad printing, depending on the purpose of the application product being used. A description of each method is as follows.

스크린인쇄(Screen printing) 잉크를 특수 제작된 메시 스크린을 통해 기판에 전달하는 인쇄 방식으로서, 두께가 있는 도료를 다양한 기판에 인쇄할 수 있는 장점이 있다.Screen printing is a printing method that transfers ink to a substrate through a specially designed mesh screen, and has the advantage of being able to print thick paint on various substrates.

잉크젯(Inkjet printing)은 노즐을 통해 미세한 잉크 방울을 기판에 분사하는 디지털 인쇄 방식으로서, 고해상도와 빠른 생산 속도를 가지며, 유연한 기판과 반도체 소자에도 사용된다.Inkjet printing is a digital printing method that sprays fine ink droplets onto a substrate through a nozzle. It has high resolution and fast production speed, and is also used for flexible substrates and semiconductor devices.

닥터블레이드(Doctor blade)는 스크린 인쇄 공정에서 사용되는 날카로운 날 부착된 도구로, 잉크를 고르게 퍼뜨리고 초과분을 제거하는 데 사용되며, 잉크의 두께와 일정성을 높여 전자 인쇄의 품질을 향상시킨다. A doctor blade is a sharp bladed tool used in the screen printing process to evenly spread ink and remove excess, improving the quality of electronic printing by increasing the thickness and consistency of the ink.

슬롯다이(Slot die)는 도료나 접착제를 일정한 두께로 기판에 코팅하는 방법으로서, 정확한 두께 제어와 높은 생산 효율로 인해 전자 부품 및 소자의 제조에 사용된다. Slot die is a method of coating a substrate with paint or adhesive at a certain thickness, and is used in the manufacture of electronic components and elements due to its precise thickness control and high production efficiency.

디스펜서(Dispenser)는 작은 양의 잉크, 접착제 또는 도료를 정밀하게 기판에 놓는 장치로서, 전자 부품의 접착, 소자 배치 등 다양한 전자 인쇄 작업에 사용된다.A dispenser is a device that precisely places a small amount of ink, adhesive, or paint on a substrate, and is used for various electronic printing tasks such as bonding electronic components and placing elements.

eHD 프린팅(eHD printing)은 전기장을 이용해 높은 정밀도와 해상도의 인쇄를 가능하게 하는 기술로서, 미세한 전자 소자, 유기 발광 다이오드(OLED) 디스플레이 등에 사용된다.eHD printing is a technology that uses electric fields to enable high-precision and high-resolution printing, and is used for fine electronic components and organic light-emitting diode (OLED) displays.

스핀코팅(Spin coating)은 고속 회전하는 기판 위에 액체 또는 젤 상태의 소재를 떨어뜨림으로써 일정한 두께의 코팅을 형성하는 공정으로서, 고르고 얇은 코팅을 만들기 위해 다양한 전자 소자와 반도체 공정에서 사용된다.Spin coating is a process of forming a coating of a certain thickness by dropping a liquid or gel-like material onto a high-speed rotating substrate. It is used in various electronic devices and semiconductor processes to create an even, thin coating.

패드 프린팅(Pad printing)은 부드러운 실리콘 패드를 사용하여 인쇄판에서 잉크를 가져와 복잡한 모양이나 표면의 기판에 전달하는 인쇄 기술로서, 곡면이나 불규칙한 표면의 전자 부품에도 인쇄할 수 있어 다양한 전자 제품의 제조에 활용된다.Pad printing is a printing technology that uses a soft silicone pad to transfer ink from a printing plate to a substrate with a complex shape or surface. It can also print on electronic components with curved or irregular surfaces, and is used in the manufacture of various electronic products.

가열단계는 전술한 제1가열 단계로서, 조성물도포단계에서 도포된 도막에서 열을 가하는 단계이다. 도막에 열을 가함으로써 도포된 조성물은 일정정도 경화되어 필름으로 박리될 수 있게 된다. 가열온도는 60 내지 100℃가 바람직하다. 상기 가열온도에서는 필름화 하기 적당한 온도로서 본 가열단계에서 도포된 도막 내 금속전구체는 소결체로 환원하지 않으며, 도포된 조성물은 프리스탠딩한 성질을 가지게 된다. The heating step is the first heating step described above, and is a step of applying heat to the coating film applied in the composition application step. By applying heat to the coating film, the applied composition hardens to a certain degree and can be peeled off as a film. The heating temperature is preferably 60 to 100°C. At the heating temperature, which is a temperature suitable for film formation, the metal precursor in the coating film applied in this heating step is not reduced to a sintered body, and the applied composition has a free-standing property.

박리단계는 이형필름으로부터 도막을 박리하여 이방성 도전필름을 형성하는 단계이다. 박리단계에서 제조된 이방성 도전필름은 가열단계를 내의 금속전구체는 아직 미소결된 상태이며, 추후 전극사이에 게재되어 레이저나 열을 가할 경우 금속전구체가 환원되면서 소결되어 일방향으로 전기를 도전하게 된다.The peeling step is a step of forming an anisotropic conductive film by peeling the coating from the release film. The anisotropic conductive film manufactured in the peeling step is still in an unsintered state in the metal precursor in the heating step, and when it is later placed between electrodes and a laser or heat is applied, the metal precursor is reduced and sintered, thereby conducting electricity in one direction.

<제3측면><Third Aspect>

박리단계 후에 박리되는 접속재는 이방성 도전필름으로서 일방향으로만 전기를 통하게하는 접속재가 된다.After the peeling step, the peeled connecting material becomes an anisotropic conductive film that conducts electricity in only one direction.

본 발명에 따라 제조된 이방성 도전필름은 흐름성제어제에 의해 필름이 형성되면서도 내부에는 열이나 레이저에 의해 환원되어 도전성을 가지는 소결체를 형성할 수 있는 금속전구체와 상분리유도제, 경화성 수지(curable resin), 경화성 수지를 경화시키기 위한 경화제(curing agents)가 포함된 조성물로부터 제조된다.An anisotropic conductive film manufactured according to the present invention is manufactured from a composition including a metal precursor capable of forming a sintered body having conductivity by being reduced by heat or laser while the film is formed by a flow control agent, a phase separation inducer, a curable resin, and curing agents for curing the curable resin.

따라서, 이방성 도전필름은 제조된 이후 전술한 제2측면의 이방성 도전필름 제조과정에서 가해지는 제1가열온도보다 높은 제2가열이 되는 경우 내부에 있던 금속이온이 환원되어, 금속입자가 되고, 금속입자가 소결되어 소결체를 형성한다.Accordingly, when the anisotropic conductive film is subjected to a second heating temperature higher than the first heating temperature applied during the manufacturing process of the anisotropic conductive film of the second aspect described above after being manufactured, the metal ions inside the film are reduced to become metal particles, and the metal particles are sintered to form a sintered body.

제2가열은 100 내지 300℃인 것이 바람직하다. 상기 범위 이하에서는 소결체 형성이 어려우며, 상기 범위를 초과하면 공정온도가 높아 기재 또는 기판에 열에의한 손상(demage)가 생기는~문제점이 생긴다.The second heating is preferably 100 to 300°C. Below the above range, it is difficult to form a sintered body, and if it exceeds the above range, the process temperature is high, causing problems such as heat damage to the substrate or base material.

이 때, 소결체는 일방향으로 성장하게 되며, 소결체의 주변은 고분자가 경화된 영역이므로 소결체가 성장하는 방향으로만 전기가 이동할 수 있는 도전성 경로를 형성하게 된다.At this time, the sintered body grows in one direction, and the area surrounding the sintered body is a region where the polymer is hardened, so a conductive path is formed through which electricity can only move in the direction in which the sintered body grows.

즉, 이방성 도전필름이, 전자부품의 제1전극과 제2전극사이에서 삽입된 상태에서 제2가열에 의해 경화물이 될 때, 제1전극과 제2전극이 대향하는 방향인 Z축방향으로는 소결체에 의한 도전성 경로가 형성되어 전기가 흐르게 되고, 상기 Z축 방향과 각각 수직인 X, Y축 방향으로는 도전성 경로(path)가 형성되지 못하게 된다.That is, when the anisotropic conductive film is inserted between the first electrode and the second electrode of the electronic component and is cured by the second heating, a conductive path is formed by the sintered body in the Z-axis direction, which is the direction in which the first and second electrodes face each other, so that electricity flows, and no conductive path is formed in the X-axis and Y-axis directions, which are respectively perpendicular to the Z-axis direction.

이 때, 이방성 도전필름 내부에는 금속 전구체 60중량부에 대해서, 5 내지 15중량부로 포함되는 나노입자를 더 포함할 수 있다.At this time, the anisotropic conductive film may further include nanoparticles in an amount of 5 to 15 parts by weight per 60 parts by weight of the metal precursor.

나노입자는 은(Ag), 금(Au), 인듐(In), 구리(Cu), ITO(indium tin oxide), 팔라듐, 플레티늄, 니켈, 및 이리듐으로 이루어진 군에서 선택되는 1종 또는 이들의 합금인 것이 바람직하다.It is preferable that the nanoparticles be one selected from the group consisting of silver (Ag), gold (Au), indium (In), copper (Cu), ITO (indium tin oxide), palladium, platinum, nickel, and iridium, or an alloy thereof.

또한, 나노입자는 0.01 ~ 5.0㎛인 것이 바람직하다.Additionally, it is preferable that the nanoparticles be 0.01 to 5.0 ㎛.

<제4측면><Aspect 4>

본 발명의 제4측면은 이방성 도전 필름이 사용된 접속구조체이다.The fourth aspect of the present invention is a connection structure using an anisotropic conductive film.

도 1의 (a)는 본 실시예에 따른 접속구조체를 설명하는 개념도로서, 본 실시예에 따른 접속구조체는 제1전극(20), 제2전극(30), 및 제1전극(20)과 제2전극(30)을 전기적으로 연결하는 접속재(70)를 포함한다.Fig. 1 (a) is a conceptual diagram explaining a connection structure according to the present embodiment, and the connection structure according to the present embodiment includes a first electrode (20), a second electrode (30), and a connection material (70) that electrically connects the first electrode (20) and the second electrode (30).

제1전극(20)은 소자 또는 플렉서블 기판에 형성된 전기적 접속을 위한 전극이며, 전극의 재료는 제한되지 않으나, 투명전극, 불투명전극등에 사용될 수 있으며, 예를 들어, ITO전극, Ti/AL/Ti전극에 사용될 수 있다.The first electrode (20) is an electrode for electrical connection formed on a device or a flexible substrate, and the material of the electrode is not limited, but can be used as a transparent electrode, an opaque electrode, etc., and for example, can be used as an ITO electrode, a Ti/AL/Ti electrode.

제2전극(30)은 제1전극(20)과 전기적 접속을 위한 전극으로서, 예를 들면, 파인피치 배선 전극을 가진 기판이거나 마이크로엘이디칩의 전극을 부착하기 위한 백플레인 기판일 수 있고, 제2전극(30)은 제1전극(20)과 대향하는 위치에 구비되며, 구리, 금(Au) 또는 몰리브덴-알루미늄-몰리브덴의 적층구조를 가지는 전극일 수 있다.The second electrode (30) is an electrode for electrical connection with the first electrode (20), and may be, for example, a substrate having a fine-pitch wiring electrode or a backplane substrate for attaching the electrode of a micro LED chip. The second electrode (30) is provided at a position facing the first electrode (20), and may be an electrode having a laminated structure of copper, gold (Au), or molybdenum-aluminum-molybdenum.

이때, 제1전극(20)과 제2전극(30)은 각각 대향하며, 제1전극(20)과 제2전극(30)사이의 간격은 10nm 내지 10μm, 바람직하게 10nm 내지 1000nm, 바람직하게 100 내지 450nm인 것이 바람직하며, 보다 바람직하게 140 내지 440nm이다. 간격이 상기 범위를 초과하는 경우 접촉 저항이 증가하는 문제점이 있다. 이 때, 각 전극의 폭은 1 내지 1000㎛, 바람직하게 3 내지 80㎛이다.At this time, the first electrode (20) and the second electrode (30) are respectively opposed, and the gap between the first electrode (20) and the second electrode (30) is preferably 10 nm to 10 μm, preferably 10 nm to 1000 nm, preferably 100 to 450 nm, and more preferably 140 to 440 nm. If the gap exceeds the above range, there is a problem that the contact resistance increases. At this time, the width of each electrode is 1 to 1000 μm, preferably 3 to 80 μm.

접속재(70)는 제1전극(20)과 제2전극(30)을 전기적으로 연결하기 위한 재료로서, 제1전극(20)과 제2전극(30)의 연결방향으로만 전기가 흐르고, 제1전극(20)과 제2전극(30)의 연결방향과 다른 방향으로는 전기가 흐르지 않도록 이방성 도전접속재이다.The connecting material (70) is a material for electrically connecting the first electrode (20) and the second electrode (30), and is an anisotropic conductive connecting material that allows electricity to flow only in the direction of connection between the first electrode (20) and the second electrode (30) and does not allow electricity to flow in a direction other than the direction of connection between the first electrode (20) and the second electrode (30).

이 때, 접속재는 제1전극(20)과 제2전극(30) 사이에 위치하여 물리적 및 전기적으로 접속하며, 경화시 제1전극(20)과 제2전극(30)은 사이에 게재된 이방성 도전 조성필름이 가열 가압되면서 경화되어 형성된다.At this time, the connecting material is positioned between the first electrode (20) and the second electrode (30) to physically and electrically connect them, and when cured, the first electrode (20) and the second electrode (30) are formed by curing the anisotropic conductive composition film placed between them while being heated and pressurized.

이방성 도전 필름은 금속 전구체, 상분리유도체, 경화성 수지(curable resin), 경화제(curing agents), 경화성 수지, 흐름성제어제 및 경화제를 용해시키기 위한 용제를 포함한 조성물로부터 제조된 필름이다. The anisotropic conductive film is a film manufactured from a composition including a metal precursor, a phase separation inducer, a curable resin, a curing agent, a curable resin, a flow control agent, and a solvent for dissolving the curing agent.

제1전극과 제2전극 사이에 이방성 도전 필름은 레이저나 열로 경화될 때 금속 전구체로부터 유래하는 금속이온이 환원되어 제1전극과 제2전극을 전기적으로 연결하는 도전성 경로를 형성되는 소결체가 경화성 수지가 경화되어 형성된 고분자가 위치하는 고분자영역으로부터 분리된 구조를 가진다. 이 때, 소결체가 위치하는 영역과 고분자가 위치하는 영역은 복수개가 서로 혼성된다.An anisotropic conductive film between the first electrode and the second electrode has a structure in which a sintered body, in which a metal ion derived from a metal precursor is reduced when cured with a laser or heat to form a conductive path that electrically connects the first electrode and the second electrode, is separated from a polymer region where a polymer formed by curing a curable resin is located. At this time, a plurality of regions where the sintered body is located and regions where the polymer is located are hybridized with each other.

즉, 금속전구체가 잉크 상태에서는 금속이온으로 존재하다가, 열 또는 레이저에 의해 전구체의 금속이온이 환원되는 과정에 금속으로 되어있는 칩과 기판의 전극 부분에 표면에 금속으로 환원이 되어 시드(seed) 층이 형성되고, 시드 층을 중심으로 점차로 금속입자가 성장해 가고, 금속입자의 성장과 동시에 상분리유도제에 의해 금속영역과 바인더영역으로 분리되며, 이후 각각 서로 다른 영역에서 금속은 소결되고 바인더는 경화된다.That is, the metal precursor exists as a metal ion in the ink state, and in the process of reducing the metal ion of the precursor by heat or laser, the metal is reduced to a metal on the surface of the electrode portion of the chip and substrate, forming a seed layer, and metal particles gradually grow centered on the seed layer, and simultaneously with the growth of the metal particles, they are separated into a metal region and a binder region by a phase-separation inducer, and thereafter, the metal is sintered and the binder is hardened in each different region.

도 1의 (b)는 다른 실시예에 따른 접속구조체를 설명하는 개념도로서, 2개의 전극이 2개의 대향하는 전극을 가진 접속구조체이다. 본 실시예에 따른 접속구조체는 제3전극(120a), 제4전극(120b), 제5전극(130a), 제6전극(130b) 및 제3전극-제5전극 및 제4전극-제6전극을 전기적으로 연결하는 접속재(170)를 포함한다.Fig. 1 (b) is a conceptual diagram explaining a connection structure according to another embodiment, which is a connection structure in which two electrodes have two opposing electrodes. The connection structure according to this embodiment includes a third electrode (120a), a fourth electrode (120b), a fifth electrode (130a), a sixth electrode (130b), and a connection material (170) electrically connecting the third electrode to the fifth electrode and the fourth electrode to the sixth electrode.

제3전극(120a), 제4전극(120b)은 기판에 형성된 전기적 접속을 위한 전극으로서, 예를 들면, 마이크로LED를 부착하기 위한 백플레인 기판일 수 있고, 제5전극은 제3전극과 대향하는 위치에 구비되어, 제3전극에 대향하는 전극을 제5전극, 제4전극에 대향하는 전극을 제6전극으로 칭하며, 몰리브덴-알루미늄-몰리브덴의 적층구조를 가지는 전극일 수 있다.The third electrode (120a) and the fourth electrode (120b) are electrodes for electrical connection formed on the substrate, and may be, for example, a backplane substrate for attaching micro LEDs, and the fifth electrode is provided at a position opposite the third electrode, such that the electrode opposite the third electrode is referred to as the fifth electrode, and the electrode opposite the fourth electrode is referred to as the sixth electrode, and may be an electrode having a layered structure of molybdenum-aluminum-molybdenum.

제5전극(130a), 제6전극(130b)은 전자부품에 형성된 소자에 형성된 전기적 접속을 위한 전극으로서, 예를 들어, 반도체칩이나 마이크로 엘이디칩일 수 있다. 마이크로엘이디칩인 경우 전극은 금일 수 있고, 하나의 전자부품이 양극과 음극의 2개의 전극인 제5전극(130a), 제6전극(130b)을 가질 수 있다.The fifth electrode (130a) and the sixth electrode (130b) are electrodes for electrical connection formed in an element formed in an electronic component, and may be, for example, a semiconductor chip or a micro LED chip. In the case of a micro LED chip, the electrode may be gold, and one electronic component may have the fifth electrode (130a) and the sixth electrode (130b) as two electrodes, an anode and a cathode.

이 때, 제3전극과 제4전극(제5전극과 제6전극) 사이의 간격은 1 내지 50㎛ 바람직하게 3 내지 50㎛이고, 각 전극의 폭은 1 내지 1000㎛, 3 내지 80㎛이다.At this time, the gap between the third electrode and the fourth electrode (the fifth electrode and the sixth electrode) is 1 to 50 ㎛, preferably 3 to 50 ㎛, and the width of each electrode is 1 to 1000 ㎛ and 3 to 80 ㎛.

한편, 제3전극과 제5전극 (제4전극과 제6전극)사이의 간격은 간격은 10nm 내지 10μm, 바람직하게 10nm 내지 1000nm, 바람직하게 100 내지 450nm인 것이 바람직하며, 보다 바람직하게 140 내지 440nm이다. 간격이 상기 범위를 초과하는 경우 접촉 저항이 증가하는 문제점이 있다.Meanwhile, the spacing between the third electrode and the fifth electrode (the fourth electrode and the sixth electrode) is preferably 10 nm to 10 μm, preferably 10 nm to 1000 nm, preferably 100 to 450 nm, and more preferably 140 to 440 nm. If the spacing exceeds the above range, there is a problem that the contact resistance increases.

접속재는 제3전극과 제5전극(제4전극과 제6전극)을 전기적으로 연결하기 위한 재료로서, 제3전극과 제5전극, 제4전극과 제6전극의 연결방향으로만 전기가 흐르고, 제3전극과 제5전극(제4전극과 제6전극)의 연결방향과 다른 방향으로는 전기가 흐르지 않는 이방성 도전접속재이다.The connecting material is a material for electrically connecting the third electrode and the fifth electrode (the fourth electrode and the sixth electrode), and is an anisotropic conductive connecting material in which electricity flows only in the connection direction between the third electrode and the fifth electrode and the fourth electrode and the sixth electrode, and does not flow in a direction other than the connection direction between the third electrode and the fifth electrode (the fourth electrode and the sixth electrode).

따라서, 이방 도전성 조성물이 제3전극과 제4전극에 연결되어 걸쳐서 도막을 형성하더라도 제3전극과 제4전극의 연결방향으로는 전기가 흐르지 않아서 제3전극과 제4전극 사이에 쇼트가 발생하지 않는다.Accordingly, even if the heterogeneous conductive composition is connected to the third electrode and the fourth electrode to form a film across them, electricity does not flow in the connection direction of the third electrode and the fourth electrode, so a short circuit does not occur between the third electrode and the fourth electrode.

이 때, 접속재는 제3전극과 제5전극(제4전극과 제6전극) 사이에 위치하여 물리적 및 전기적으로 접속하며, 경화시 제1전극과 제2전극은 사이의 이방성 도전 조성필름은 레이저와 열에 의해 경화된다.At this time, the connecting material is positioned between the third electrode and the fifth electrode (the fourth electrode and the sixth electrode) to physically and electrically connect them, and when cured, the anisotropic conductive composition film between the first electrode and the second electrode is cured by laser and heat.

이방성 도전 필름은 금속 전구체, 상분리유도체, 경화성 수지(curable resin), 경화성 수지를 경화시키기 위한 경화제(curing agents), 경화성 수지 및 경화제를 용해시키기 위한 용제를 포함한다.The anisotropic conductive film includes a metal precursor, a phase separation inducer, a curable resin, a curing agent for curing the curable resin, and a solvent for dissolving the curable resin and the curing agent.

이방성 도전 필름의 경화물은 금속 전구체로부터 유래하는 금속이온이 환원되어 형성되는 소결체가 경화성 수지가 경화되어 형성된 고분자 영역에 속하지 않으면서 분리되어 분포하는 구조를 가진다. 이 때, 소결체영역과 고분자 영역은 서로 분리되게 분포한다.The cured product of the anisotropic conductive film has a structure in which a sintered body formed by reduction of metal ions derived from a metal precursor is distributed separately without belonging to a polymer region formed by curing a curable resin. At this time, the sintered body region and the polymer region are distributed separately from each other.

예를 들어, 전자부품이 마이크로LED인 경우 마이크로LED의 제5전극과 제6전극이 각각 기판의 제3전극과 제4전극에 연결되는 경우 쇼트가 나지 않고 LED가 점등되게 된다.For example, if the electronic component is a micro LED, and the fifth and sixth electrodes of the micro LED are respectively connected to the third and fourth electrodes of the substrate, the LED will light up without a short circuit.

도 2는 본 실시예에 따라 열 또는 레이저 경화시 금속입자의 환원과 소결 및 경화성 수지의 경화에 따라 소결체가 위치하는 영역과 고분자가 위치하는 영역은 복수개가 서로 혼성되면서 이방성 구조를 가지는 메커니즘을 설명하는 모식도이다.FIG. 2 is a schematic diagram explaining a mechanism in which a region where a sintered body is located and a region where a polymer is located are hybridized with each other and have an anisotropic structure due to reduction and sintering of metal particles and hardening of a curable resin during heat or laser curing according to the present embodiment.

이에 따르면, 본 실시예로 제조된 이방성 도전 필름을 전극들 사이에 위치시키고, 경화할 경우 초기에는 LED chip 전극(120a)과 기판의 전극(110)의 각 표면에 금속 소결체가 형성되기 시작한다. 소결이 진행될수록 표면에 형성된 금속 소결체를 기준으로 점점 더 금속 소결체가 성장하게 되어 LED chip 전극(120a)과 기판의 전극(110)을 서로 연결하게 되는 것으로 파악되었다.(이는 후술할 도 24, 도 25에서 확인된다.) 즉, 금속 소결체는 LED chip 전극(120a)과 기판의 전극(110)면에서 각각 형성된 금속 소결체가 성장하여 서로 접합되어 형성된다.Accordingly, when the anisotropic conductive film manufactured by the present embodiment is positioned between electrodes and cured, a metal sintered body initially begins to form on each surface of the LED chip electrode (120a) and the electrode (110) of the substrate. As sintering progresses, the metal sintered body grows more and more based on the metal sintered body formed on the surface, and the LED chip electrode (120a) and the electrode (110) of the substrate are connected to each other. (This is confirmed in FIGS. 24 and 25 described below.) That is, the metal sintered body is formed by growing the metal sintered bodies formed on each surface of the LED chip electrode (120a) and the electrode (110) of the substrate and joining them to each other.

전술한 설명에서는 설명의 편의상 전극들의 개수를 한정하여 설명하였으나, N개의 하부전극들과 이에 대향하는 N개의 상부전극들로 이루어지는 접속구조체에서도 동일하게 적용될 수 있음을 당업자는 인식할 것이다.In the above description, the number of electrodes has been limited for convenience of explanation, but those skilled in the art will recognize that the same can be applied to a connection structure composed of N lower electrodes and N upper electrodes facing them.

<실시예><Example>

<제조예 1> 흐름성제어제 제조<Manufacturing Example 1> Manufacturing of flow control agent

2-에틸헥시아크릴레이트(2-Ethylhexylacrylate)와 n-부틸아크릴레이트(n-Buthylacrylate)는 "Junsei chemical 사" 제품을 사용하였고, 공단략체로 사용된 비닐 아세테이트(Vinyl Acetate; VAc)는 "Kanto chemical사"를 1-비닐-2-피로리디논(1-Vinyl-2-Pyrrolidinone; NVP)는 "Aldrich chemical사" 제품을 사용하였 고, 관능기 함유 단량체로 아크릴 산(Acrylic acid; AA), 그리시딜 메타아크릴레이트(Glycidyl Methacrylate; GMA) 및 2-하이드록시에틸 메타아크릴레이트(2-Hydroxyethyl Methacrylate; MEMA)는 "Junsei chemical사" 제품 을 사용하였다. 개시제는 벤조일 페록시드(Benzoyl peroxide; BPO)는 "영우화학(주)"의 제품을 α,α'-아조비스 이소뷰티로니 트릴(α,α'-azobis isobutyronitrile; AIBN)은 "Junsei chemical 사" 제품을 사용하였다. 용제는 에틸 아세테이트(Ethyl Acetate), 메탄올(Methanol), 톨루엔(Toluene)은 대원화공(주) 1급 시약을 사용 하였다. 하기외 표 조성대로 각각의 단량체를 2L의 4구 플라스크에 교반기, 온도계, 환류 냉각장치를 구비하오 투입하여 장착하였다. 전체 단량체를 투입하고, 용제를 투입하였다. 개시제는 용액 및 용제(EAc: TOL=7:3)에 녹여 투입하였다. 투입이 완료됨과 동시에 200rpm의 교반 속도로 70℃에서 8시간 중합시 켰다. 반응이 종결되면 톨루엔을 사용하여 고형분 40%로 맞추고 냉각수로 냉각시켜 Tg를 측정하였다.2-Ethylhexylacrylate and n-Buthylacrylate were purchased from "Junsei Chemical", vinyl acetate (VAc) used as a copolymer was purchased from "Kanto Chemical", 1-vinyl-2-pyrrolidinone (NVP) was purchased from "Aldrich Chemical", and functional group-containing monomers such as acrylic acid (AA), glycidyl methacrylate (GMA), and 2-hydroxyethyl methacrylate (MEMA) were purchased from "Junsei Chemical". Benzoyl peroxide (BPO) as initiator was manufactured by Youngwoo Chemical Co., Ltd. and α,α'-azobis isobutyronitrile (AIBN) was manufactured by Junsei Chemical Co., Ltd. The solvents were ethyl acetate, methanol, and toluene, all grade 1 reagents manufactured by Daewon Chemical Co., Ltd. Each monomer was placed into a 2 L four-necked flask equipped with a stirrer, thermometer, and reflux condenser according to the compositions in the table below. The entire monomer was placed, followed by the solvent. The initiator was dissolved in the solution and solvent (EAc: TOL = 7:3) and placed. As soon as the addition was completed, polymerization was performed at 70°C for 8 hours at a stirring speed of 200 rpm. When the reaction was complete, the solid content was adjusted to 40% using toluene, cooled with cooling water, and Tg was measured.

중합물의 Tg는 "Differential Scanning Calorimeter(DSC) Instrument Specialists사)의 DSC-550 모 델을 사용하여 측정하였다. 측정 방법은 10℃/min)의 승온속도로 상온에서 100℃까지 1차 가열한 후 (1strun), 액체질소를 사용하여 -100℃로 냉각시켰고, Tg는 2차 가열시(2nd run) 접선의 중간 지점(mid point)으로 조사하였다.The Tg of the polymer was measured using a DSC-550 model from Differential Scanning Calorimeter (DSC) Instrument Specialists. The measurement method was as follows: first heating from room temperature to 100°C at a heating rate of 10°C/min (1 run), then cooling to -100°C using liquid nitrogen, and the Tg was investigated as the midpoint of the tangent line during the second heating (2nd run).

<제조예 2 내지 5> 흐름성제어제 제조<Manufacturing examples 2 to 5> Manufacturing of flow control agent

전술한 제조예 1과 같이 제조예 2 내지 5를 제조하였고, 그 조성을 표 1에 정리하였다.Manufacturing Examples 2 to 5 were manufactured as in Manufacturing Example 1 described above, and their compositions are summarized in Table 1.

   흐름성제어제Flow control agent 제조예 1Manufacturing example 1 제조예 2Manufacturing example 2 제조예 3Manufacturing example 3 제조예 4Manufacturing example 4 제조예 5Manufacturing example 5 아크릴 단량체Acrylic monomer 2-에틸헥시아크릴레이트(2-Ethylhexylacrylate)2-Ethylhexylacrylate 1010 1010 2020 1010    n-부틸아크릴레이트(n-Buthylacrylate)n-Butylacrylate 55 55    55    비닐 아세테이트(Vinyl Acetate)Vinyl Acetate 55 55    55    단량체로 아크릴 산(Acrylic acid; AA)Acrylic acid (AA) as a monomer 1010 1010 1010 1010 3030 그리시딜 메타아크릴레이트(Glycidyl Methacrylate)Glycidyl Methacrylate 55 55 55 55 55 2-하이드록시에틸 메타아크릴레이트(2-Hydroxyethyl Methacrylate)2-Hydroxyethyl Methacrylate 55       55    1-비닐-2-피로리디논(1-Vinyl-2-Pyrrolidinone)1-Vinyl-2-Pyrrolidinone    55 55    1515 개시제Initiator 개시제는 벤조일 페록시드(Benzoyl peroxide; BPO)The initiator is benzoyl peroxide (BPO). 2020 2020 2020    1010 α,α'-아조비스 이소뷰티로니 트릴(α,α'-azobis isobutyronitrile; AIBN)α,α'-azobis isobutyronitrile (AIBN)          2020    용제solvent 에틸 아세테이트(Ethyl Acetate)Ethyl Acetate 2020 2020 2020 2020 2020 메탄올(Methanol),Methanol,             20 20 톨루엔(Toluene)Toluene 2020 2020 2020 2020 총합Total    100100 100100 100100 100100 100100 Tg(℃)Tg(℃)    1818 2020 5858 4545 110110

<실시예 1 내지 실시예 10> : 필름제조용 조성물<Examples 1 to 10>: Composition for film production

   ACA film 조성ACA film composition 실시예-1Example-1 실시예-2Example-2 실시예-3Example-3 실시예-4Example-4 실시예-5Example 5 실시예-6Example-6 실시예-7Example-7 실시예-8Example-8 실시예-9Example-9 실시예-10Example-10 금속전구체Metal precursor    3030 3030 3030 3030 3030 3030 3030 3030 3030 3030 아크릴 접착제Acrylic adhesive 제조예1Manufacturing example 1 3030             3030 3030 3030 3030 3030 제조예2Manufacturing example 2    3030                         제조예3Manufacturing example 3       3030                      제조예4Manufacturing example 4          3030                   제조예5Manufacturing example 5             3030                아크릴계
바인더
(부착력 보조졔)
Acrylic
bookbinder
(Adhesion Aid)
다이펜타에리스리톨펜타(메타) 아크릴레이트(Dipentaerythritolpenta(meth)acrylate)Dipentaerythritol penta(meth)acrylate 1010 1010 1010 1010 1010               
테트라하이드 로퍼퓨릴(메타)아크릴레이트(tetrahydrofurfuryl(meth)acrylate)Tetrahydrofurfuryl(meth)acrylate                1010             이소데실(메타)아크릴레이트(isodecyl(meth)acrylate),isodecyl(meth)acrylate,                   1010          하이드록시에틸아크릴레이트(hydroxy ethyl acrylate)Hydroxyethyl acrylate                      1010       2-하이드록시에틸메타아크릴레이트(2-Hydroxy ethyl metha acrylate)2-Hydroxyethylmethacrylate                               아크릴계 바인더 경화제Acrylic binder hardener 벤조일퍼옥사이드(benzoyl peroxide)Benzoyl peroxide 55 55 55 55 55 55 55 55       t-부틸하이드로퍼옥사이드(t-butyl hydroperoxide)t-butyl hydroperoxide                               에폭시계 바인더(부착력 보조제)Epoxy binder (adhesion aid) YD-114E (KUKDO, Bisphenol-A type liquid epoxy resin)YD-114E (KUKDO, Bisphenol-A type liquid epoxy resin)                         1010    YD-128 (KUKDO, Unmodified Bisphenol-A based Liquid Epoxy Resin)YD-128 (KUKDO, Unmodified Bisphenol-A based Liquid Epoxy Resin)                            1010 YDF-170 (KUKDO, BISPHENOL-F TYPE EPOXY RESIN)YDF-170 (KUKDO, BISPHENOL-F TYPE EPOXY RESIN)                               에폭시계 바인더 경화제Epoxy binder hardener 2-Phenyl-4-methylimidazole(aldrich)2-Phenyl-4-methylimidazole (aldrich)                         55    2,4,6-Tris(dimethylaminomethyl)phenol(aldrich)2,4,6-Tris(dimethylaminomethyl)phenol(aldrich)                            55 금속입자Metal particles Ag Nano particle dispersion (20nm, aldrich, 730793)Ag Nano particle dispersion (20nm, aldrich, 730793)                               Cu Nano particle dispersion(WiNEL㈜, 10nm)Cu Nano particle dispersion (WiNEL Co., Ltd., 10nm)                               용제solvent butyl actetatebutyl actetate 1515 1515 1515 1515 1515 1515 1515 1515 1515 1515 TolueneToluene 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 합계(wt%)Total (wt%)    100100 100100 100100 100100 100100 100100 100100 100100 100100 100100

<실시예 11 내지 실시예 13, 비교예 1 내지 4> : 필름제조용 조성물<Examples 11 to 13, Comparative Examples 1 to 4>: Composition for film production

   ACA film 조성ACA film composition 실시예-11Example-11 실시예-12Example-12 실시예-13Example-13 비교예-1Comparative Example-1 비교예-2Comparative Example-2 비교예-3Comparative Example-3 비교예-4Comparative Example-4 금속전구체Metal precursor    3030 2020 2020    3030 3030 3030 아크릴 접착제Acrylic adhesive 제조예1Manufacturing example 1 3030       3030    3030 3030 제조예2Manufacturing example 2    3030 3030             제조예3Manufacturing example 3                      제조예4Manufacturing example 4                      제조예5Manufacturing example 5                      아크릴계
바인더
(부착력 보조졔)
Acrylic
bookbinder
(Adhesion Aid)
다이펜타에리스리톨펜타(메타) 아크릴레이트(Dipentaerythritolpenta(meth)acrylate)Dipentaerythritol penta(meth)acrylate    1010 1010 1010 4040    2525
테트라하이드 로퍼퓨릴(메타)아크릴레이트(tetrahydrofurfuryl(meth)acrylate)Tetrahydrofurfuryl(meth)acrylate                      이소데실(메타)아크릴레이트(isodecyl(meth)acrylate),isodecyl(meth)acrylate,                      하이드록시에틸아크릴레이트(hydroxy ethyl acrylate)Hydroxyethyl acrylate                      2-하이드록시에틸메타아크릴레이트(2-Hydroxy ethyl metha acrylate)2-Hydroxyethylmethacrylate                      아크릴계 바인더 경화제Acrylic binder hardener 벤조일퍼옥사이드(benzoyl peroxide)Benzoyl peroxide    55 55 55 55    1515 t-부틸하이드로퍼옥사이드(t-butyl hydroperoxide)t-butyl hydroperoxide                      에폭시계 바인더(부착력 보조제)Epoxy binder (adhesion aid) YD-114E (KUKDO, Bisphenol-A type liquid epoxy resin)YD-114E (KUKDO, Bisphenol-A type liquid epoxy resin)                      YD-128 (KUKDO, Unmodified Bisphenol-A based Liquid Epoxy Resin)YD-128 (KUKDO, Unmodified Bisphenol-A based Liquid Epoxy Resin)                      YDF-170 (KUKDO, BISPHENOL-F TYPE EPOXY RESIN)YDF-170 (KUKDO, BISPHENOL-F TYPE EPOXY RESIN) 1010                   에폭시계 바인더 경화제Epoxy binder hardener 2-Phenyl-4-methylimidazole(aldrich)2-Phenyl-4-methylimidazole (aldrich)                      2,4,6-Tris(dimethylaminomethyl)phenol(aldrich)2,4,6-Tris(dimethylaminomethyl)phenol(aldrich)                      금속입자Metal particles Ag Nano particle dispersion (20nm, aldrich, 730793)Ag Nano particle dispersion (20nm, aldrich, 730793) 55 1010    3030          Cu Nano particle dispersion(WiNEL㈜, 10nm)Cu Nano particle dispersion (WiNEL Co., Ltd., 10nm)       1010             용제solvent butyl actetatebutyl actetate 1515 1515 1515 1515 1515 2525    TolueneToluene 1010 1010 1010 1010 1010 1515    합계(wt%)Total (wt%)    100100 100100 100100 100100 100100 100100 100100

<실험예><Experimental example>

<실험예 1> 물성평가<Experimental Example 1> Property Evaluation

전술한 실시예 1 내지 13 및 비교예 1 내지 4의 필름제조용 조성물에 대한 부착력, 및 접속저항 물성평가를 진행하여 표 4 및 표 5에 정리하였다.The adhesion and connection resistance properties of the film-making compositions of Examples 1 to 13 and Comparative Examples 1 to 4 described above were evaluated, and the results are summarized in Tables 4 and 5.

   ACA film 조성ACA film composition 실시예-1Example-1 실시예-2Example-2 실시예-3Example-3 실시예-4Example-4 실시예-5Example 5 실시예-6Example-6 실시예-7Example-7 실시예-8Example-8 실시예-9Example-9 실시예-10Example-10 물성평가Property Evaluation 초기 부착력( g/cm, 90° peel strength test)Initial adhesion (g/cm, 90° peel strength test) 980980 983983 941941 975975 957957 10241024 976976 10941094 987987 996996 신뢰성 평가 후 부착력 ( g/cm,, 85° C. and RH. 85%, 1,000hr, 90° peel strength test)Adhesion after reliability evaluation (g/cm,, 85° C. and RH. 85%, 1,000 hr, 90° peel strength test) 10641064 10641064 10191019 10011001 968968 10671067 987987 11481148 10411041 11101110 신뢰성 평가 후 부착력 (g/cm, ?40° C. to 80° C. for 1000 cycles, 90° peel strength test)Adhesion after reliability evaluation (g/cm, ?40° C. to 80° C. for 1000 cycles, 90° peel strength test) 11101110 11211121 10671067 10111011 994994 10841084 988988 12211221 10341034 12101210 초기 접속저항(Ω, 2-point probe)Initial connection resistance (Ω, 2-point probe) 5.85.8 5.95.9 6.46.4 8.48.4 7.57.5 6.86.8 9.19.1 6.86.8 8.88.8 5.65.6 신뢰성 평가 후 접속저항 ( Ω, 85° C. and RH. 85%, 1,000hr, 2-point probe)Connection resistance after reliability evaluation (Ω, 85° C. and RH. 85%, 1,000 hr, 2-point probe) 6.46.4 6.56.5 8.48.4 8.88.8 8.98.9 7.47.4 10.110.1 8.58.5 8.68.6 8.48.4 신뢰성 평가 후 접속저항 ( Ω, ?40° C. to 80° C. for 1000 cycles, 2-point probe)Connection resistance after reliability evaluation (Ω, ?40° C. to 80° C. for 1000 cycles, 2-point probe) 6.76.7 6.16.1 7.47.4 7.67.6 8.88.8 6.46.4 8.48.4 7.47.4 9.19.1 9.19.1

   ACA film 조성ACA film composition 실시예-11Example-11 실시예-12Example-12 실시예-13Example-13 비교예-1Comparative Example-1 비교예-2Comparative Example-2 비교예-3Comparative Example-3 비교예-4Comparative Example-4 물성평가Property Evaluation 초기 부착력( g/cm, 90° peel strength test)Initial adhesion (g/cm, 90° peel strength test) 10321032 987987 991991 987987 측정불가
(film화 안됨)
Immeasurable
(Not made into a film)
518518 측정불가
(film화 안됨)
Immeasurable
(Not made into a film)
신뢰성 평가 후 부착력 ( g/cm,, 85° C. and RH. 85%, 1,000hr, 90° peel strength test)Adhesion after reliability evaluation (g/cm,, 85° C. and RH. 85%, 1,000 hr, 90° peel strength test) 10311031 11121112 11101110 10611061 NDND 신뢰성 평가 후 부착력 (g/cm, ?40° C. to 80° C. for 1000 cycles, 90° peel strength test)Adhesion after reliability evaluation (g/cm, ?40° C. to 80° C. for 1000 cycles, 90° peel strength test) 11101110 12111211 11211121 11211121 NDND 초기 접속저항(Ω, 2-point probe)Initial connection resistance (Ω, 2-point probe) 6.16.1 8.98.9 10.410.4 12001200 5.45.4 신뢰성 평가 후 접속저항 ( Ω, 85° C. and RH. 85%, 1,000hr, 2-point probe)Connection resistance after reliability evaluation (Ω, 85° C. and RH. 85%, 1,000 hr, 2-point probe) 6.86.8 9.89.8 11.411.4 15001500 5.55.5 신뢰성 평가 후 접속저항 ( Ω, ?40° C. to 80° C. for 1000 cycles, 2-point probe)Connection resistance after reliability evaluation (Ω, ?40° C. to 80° C. for 1000 cycles, 2-point probe) 6.96.9 9.89.8 11.511.5 15001500 6.16.1

<실험예 1> 도전성 및 절연저항의 측정<Experimental Example 1> Measurement of conductivity and insulation resistance

실시예 1의 조성물로 제조된 이방성 도전필름을 구리전극의 크기가 8um, 전극 간의 간격(space가) 13um로 형성된 PI film(COF film)에 부착시킨다. 다음으로, 크기 1.5mm*12mm인 ITO기판을 이방성 도전 필름에 접착시킨 후, ACF Bonder(BD-02 Tabletop Heat Bonder (Pulse heater), OHASHI ENGINEERING㈜)를 이용하여 230℃와 본딩 압력이 130Mpa의 조건에서 시간에 따라 본딩하였다.An anisotropic conductive film manufactured with the composition of Example 1 was attached to a PI film (COF film) in which the size of the copper electrodes was 8 μm and the spacing (space) between the electrodes was 13 μm. Next, an ITO substrate having a size of 1.5 mm x 12 mm was bonded to the anisotropic conductive film, and bonding was performed over time under the conditions of 230°C and a bonding pressure of 130 MPa using an ACF Bonder (BD-02 Tabletop Heat Bonder (Pulse heater), OHASHI ENGINEERING Co., Ltd.).

도 4와 같이 ITO기판과 COF필름 사이에 본 발명에 따른 이방성 도전필름을 배치하고, 저항을 측정하여, 표 6 및 도 5에 정리하였다. 60초 이후 저항이 10Ω이하로 안정적으로 측정되며, COF의 전극과 ITO와 전기적으로 연결됨을 확인할 수 있다.As shown in Fig. 4, an anisotropic conductive film according to the present invention is placed between an ITO substrate and a COF film, and the resistance is measured, which is summarized in Table 6 and Fig. 5. After 60 seconds, the resistance is stably measured to be less than 10Ω, and it can be confirmed that the electrode of the COF is electrically connected to the ITO.

Time Time
(s)(s)
측정measurement
위치location
11 22 33 44 55 66 77 88
3030 1-2 1-2
전극electrode
2828 117117 7474 1010 1515 1717 1515 1010
3-4 3-4
전극electrode
5555 3434 1414 1212 1616 1313 1717 1919
6060 1-2 1-2
전극electrode
1515 1313 1010 77 77 66 66 77
3-4 3-4
전극electrode
1010 1616 1010 77 66 66 99 88
9090 1-2 1-2
전극electrode
99 1515 1010 77 66 66 66 55
3-4 3-4
전극electrode
88 99 88 66 55 55 55 55
120120 1-2 1-2
전극electrode
88 99 99 66 66 66 66 55
3-4 3-4
전극electrode
77 77 66 66 55 55 55 55
150150 1-2 1-2
전극electrode
77 77 77 66 66 66 66 66
3-4 3-4
전극electrode
77 77 55 55 55 55 55 55

표 7 및 도 6에는 ITO기판 대신에 전기가 통하지 않는 slide glass를 이용하여 실험예 1과 같이 실시하였다. 전기저항 측정 결과 전극 1과 2, 3과 4사이에 저항이 측정되지 않았다. 전극 1과 2사이 및 3과 4사이에는 전기적 short가 없다는 것이 확인되었다.Table 7 and Fig. 6 show that the same experiment as in Experimental Example 1 was performed using a non-conductive slide glass instead of an ITO substrate. As a result of measuring the electrical resistance, no resistance was measured between electrodes 1 and 2, 3 and 4. It was confirmed that there was no electrical short between electrodes 1 and 2 and 3 and 4.

Time Time
(s)(s)
측정measurement
위치location
11 22 33 44 55 66 77 88
3030 1-2 1-2
전극electrode
XX XX XX XX XX XX XX XX
3-4 3-4
전극electrode
XX XX XX XX XX XX XX XX
6060 1-2 1-2
전극electrode
XX XX XX XX XX XX XX XX
3-4 3-4
전극electrode
XX XX XX XX XX XX XX XX
9090 1-2 1-2
전극electrode
XX XX XX XX XX XX XX XX
3-4 3-4
전극electrode
XX XX XX XX XX XX XX XX
120120 1-2 1-2
전극electrode
XX XX XX XX XX XX XX XX
3-4 3-4
전극electrode
XX XX XX XX XX XX XX XX
150150 1-2 1-2
전극electrode
XX XX XX XX XX XX XX XX
3-4 3-4
전극electrode
XX XX XX XX XX XX XX XX

<실험예 2> 이방성 도전필름의 열경화<Experimental Example 2> Thermal curing of anisotropic conductive film

실시예 2의 조성물로 제조된 이방성 도전필름을 크기 1.5mm*12mm인 Ti/Al/Ti 기판에 접착시킨 후, ACF Bonder(BD-02 Tabletop Heat Bonder (Pulse heater), 전극의 크기가 8um, 전극 간의 간격(space가) 13um로 형성된 구리전극을 가진 PI film(COF film)을 이방성 도전 필름상에 부착시킨다. 다음으로, OHASHI ENGINEERING㈜)를 이용하여 230℃와 본딩 압력이 130Mpa의 조건에서 시간에 따라 본딩하였다.(도 7(a) 내지 도 7(b)).After the anisotropic conductive film manufactured with the composition of Example 2 was adhered to a Ti/Al/Ti substrate having a size of 1.5 mm*12 mm, a PI film (COF film) having copper electrodes formed with an electrode size of 8 μm and a space between the electrodes of 13 μm was attached on the anisotropic conductive film using an ACF Bonder (BD-02 Tabletop Heat Bonder (Pulse heater), electrodes of size 8 μm, and a space between the electrodes of 13 μm. Next, bonding was performed over time under conditions of 230°C and a bonding pressure of 130 MPa using OHASHI ENGINEERING Co., Ltd.) (Figs. 7(a) to 7(b)).

표 8에 도전성 기판 샘플의 저항측정결과를 정리하였다. 이에 따르면, 10Ω이하로 안정적으로 측정되며, COF의 전극과 ITO와 전기적으로 연결됨을 확인 할 수 있다.Table 8 summarizes the resistance measurement results of the conductive substrate sample. According to this, it can be confirmed that the resistance is stably measured below 10Ω and that the COF electrodes are electrically connected to the ITO.

LineLine 11 22 33 44 55 66 77 88 2-Point
Probe
2-Point
Probe
1-2
전극
1-2
electrode
5.85.8 4.44.4 3.83.8 4.24.2 6.16.1 8.08.0 6.76.7 6.76.7
3-4
전극
3-4
electrode
6.36.3 4.64.6 3.73.7 3.33.3 3.93.9 5.75.7 5.55.5 7.27.2

또한, Ti/Al/Ti 기판 대신에 전기가 통하지 않는 슬라이드 글라스(slide glass)를 이용하여 저항을 측정하여, 표 9와 같이 정리하였다.In addition, the resistance was measured using a non-conductive slide glass instead of a Ti/Al/Ti substrate, and the results were summarized in Table 9.

LineLine 11 22 33 44 55 66 77 88 2-Point
probe
2-Point
probe
1-2
전극
1-2
electrode
XX XX XX XX XX XX XX XX
3-4
전극
3-4
electrode
XX XX XX XX XX XX XX XX

이에 따르면, 전기저항 측정 결과 전극 1과 2, 3과 4사이에 저항이 측정되지 않았다. 전극 1과 2사이 및 3과 4사이 에는 전기적 쇼트(short)가 없다는 것이 확인 되었다.According to this, the electrical resistance measurement results showed that no resistance was measured between electrodes 1 and 2, 3 and 4. It was confirmed that there was no electrical short between electrodes 1 and 2 and 3 and 4.

<실험예 3> 이방성 도전필름의 레이저경화<Experimental Example 3> Laser curing of anisotropic conductive film

실시예 1에서 제조된 (크기: 1.5mm*12mm) 이방성 도전필름을 Ti/Al/Ti기판에 위에 붙이고, 전극의 크기가 8um, 전극 간의 간격(space가) 13um로 형성된 PI film(COF film)을 이방성 도전 필름 위로 놓는다. Laser sintering & curing장비 (FineTek㈜)을 이용하여 레이져 파워는 300W로 10초간 가하였다. 이 때 IR카메라로 측정된 온도는 250℃ 였다. 이렇게 제조된 기판을 이용하여 각각의 실시예 1과 같이 저항을 측정하였다. 표에 측정된 저항 값을 나타내었다. 10Ω이하로 안정적으로 측정되며, COF의 전극과 Ti/Al/Ti기판이 전기적으로 연결됨을 확인할 수 있고 이를 표 10에 정리하였다.The anisotropic conductive film (size: 1.5 mm * 12 mm) manufactured in Example 1 was attached on a Ti/Al/Ti substrate, and a PI film (COF film) formed with an electrode size of 8 μm and a gap (space) between the electrodes of 13 μm was placed on top of the anisotropic conductive film. Using laser sintering & curing equipment (FineTek Co., Ltd.), a laser power of 300 W was applied for 10 seconds. At this time, the temperature measured by the IR camera was 250°C. Using the substrate manufactured in this way, the resistance was measured in the same manner as in each Example 1. The measured resistance values are shown in the table. It was stably measured below 10Ω, and it could be confirmed that the electrodes of the COF and the Ti/Al/Ti substrate were electrically connected, which is summarized in Table 10.

LineLine 11 22 33 44 55 66 77 88 2-Point
probe
2-Point
probe
1-2
전극
1-2
electrode
3.83.8 3.33.3 4.54.5 4.24.2 5.15.1 7.17.1 8.78.7 6.46.4
3-4
전극
3-4
electrode
5.45.4 4.14.1 4.64.6 4.34.3 5.95.9 7.77.7 7.57.5 5.95.9

또한 Ti/Al/Ti기판 대신에 전기가 통하지 않는 slide glass를 이용하여 동일하게 실시하여 표 11에 정리하였다. 이에 따르면, 전기저항 측정 결과 전극 1과 2, 3과 4사이에 저항이 측정되지 않았다. 전극 1과 2사이 및 3과 4사이 에는 전기적 short가 없다는 것이 확인되었다.In addition, the same results were obtained using a nonconductive slide glass instead of the Ti/Al/Ti substrate, and the results are summarized in Table 11. According to the results of the electrical resistance measurement, no resistance was measured between electrodes 1 and 2, 3 and 4. It was confirmed that there was no electrical short between electrodes 1 and 2 and 3 and 4.

LineLine 11 22 33 44 55 66 77 88 2-Point
probe
2-Point
probe
1-2
전극
1-2
electrode
XX XX XX XX XX XX XX XX
3-4
전극
3-4
electrode
XX XX XX XX XX XX XX XX

이 때, 레이저장비는 도 9과 같이 파장 980nm의 면레이저 방식을 사용하였다. 레이저 소스부터 발진된 레이저는 광학계를 통하여 조사하고자 하는 면적에 균일하게 출력된다. 본딩시 압력이 필요한 경우에는 레이저와 시료 사이에 레이저의 흡수가 거의 없는 투명한 쿼츠를 넣고 쿼츠를 사용하여 시료에 압력을 가하는 상태에서 레이저를 조사한다.At this time, the laser equipment used a surface laser method with a wavelength of 980 nm as shown in Fig. 9. The laser oscillated from the laser source is uniformly output to the area to be irradiated through the optical system. When pressure is required during bonding, transparent quartz with almost no laser absorption is placed between the laser and the sample, and the laser is irradiated while applying pressure to the sample using the quartz.

쿼츠를 통과한 레이저는 COF film의 PI층과 금속 전극층 표면에 도달하여 PI층과 금속전극층의 레이저 흡수율에 따라 표면의 온도가 증가하게 된다. 수초 동안 레이저에 의하여 가열된 열이 열도전 방식으로 순간적으로 금속 전극층 아랫면에 위치한 이방성 도전필름 및 혹은 ITO 또는 Ti/Al/Ti층에 전달하여 소결(sintering)과 경화(curing)이 일어나 접합 공정이 이루어진다.The laser passing through the quartz reaches the surface of the PI layer and the metal electrode layer of the COF film, and the temperature of the surface increases according to the laser absorption rate of the PI layer and the metal electrode layer. The heat heated by the laser for several seconds is instantaneously transferred to the anisotropic conductive film and/or the ITO or Ti/Al/Ti layer located under the metal electrode layer in a thermally conductive manner, so that sintering and curing occur, and the bonding process is performed.

이 때, 금속전극층과 이방성 도전필름의 온도를 IR 카메라 이미지를 통하여 레이저 공정 중에 실시간 온도는 250 ℃였다.At this time, the temperature of the metal electrode layer and the anisotropic conductive film was monitored through an IR camera image, and the real-time temperature during the laser process was 250°C.

<실험예 4> 전자현미경 사진<Experimental Example 4> Electron Microscope Photograph

실험예 3에서 전극을 본딩한 후 전자현미경으로 접합재(이방성 도전필름) 부위를 촬영하여 도 10에 도시하였다. 이에 따르면, 따라서, Cu전극표면에 Ag가 소결체로 석출되어 있음을 확인할 수 있었고, 이는 금속전구체의 Ag 성분이 환원되어 소결체가 되면서 상하 전극방향을 서로 전기적으로 연결될 수 있는 도전성경로인 금속영역을 형성하였다. 한편, 소결체를 EDS를 통해 원소분석을 실시하여 도 11에 도시하였다. 그 결과 소결체의 주성분이 Ag 임을 확인 할 수 있다.In Experimental Example 3, after bonding the electrodes, the bonding material (anisotropic conductive film) portion was photographed with an electron microscope, and is shown in Fig. 10. According to this, it was confirmed that Ag was precipitated as a sintered body on the surface of the Cu electrode, and this was because the Ag component of the metal precursor was reduced to form a sintered body, forming a metal region, which is a conductive path that can electrically connect the upper and lower electrode directions. Meanwhile, the sintered body was subjected to elemental analysis via EDS, and is shown in Fig. 11. As a result, it was confirmed that the main component of the sintered body was Ag.

<실험예 5> 마이크로 LED 점등<Experimental Example 5> Micro LED Lighting

마이크로엘이디의 점등율 평가는 실시예 2의 조성물로 제조된 이방성 도전 필름을 IR laser(Infrared (IR) Lasers, 1064nm)를 이용하여 금속전구체와 고분자를 각각 소결 및 경화시켜(도 11) 평가하였다. 이에 100% 점등이 됨을 확인하였고 단면분석 결과 칩아래 부분에 금속층이 형성됨을 확인 할 수 있다. 실험의 사진을 도 12 내지 도 14에 도시하였다.The lighting rate of the micro LED was evaluated by sintering and curing the metal precursor and the polymer, respectively, using an IR laser (Infrared (IR) Lasers, 1064 nm) on the anisotropic conductive film manufactured with the composition of Example 2 (Fig. 11). As a result, it was confirmed that 100% lighting occurred, and the cross-sectional analysis results confirmed that a metal layer was formed under the chip. The photographs of the experiment are shown in Figs. 12 to 14.

이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.The above description is merely an example of the present invention, and those skilled in the art will appreciate that various modifications may be made without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in this specification are not intended to limit the present invention but to explain it, and the spirit and scope of the present invention are not limited by these embodiments. The scope of protection of the present invention should be interpreted by the following claims, and all techniques within a scope equivalent thereto should be interpreted as being included in the scope of the rights of the present invention.

Claims (23)

대향하는 제1전극과 제2전극을 전기적으로 연결시키는 이방성 도전재료 제조용 조성물로서,
상기 이방성 도전재료에 전기도전성을 제공하는 금속이온을 포함하는 금속전구체;
경화가능한 고분자를 포함하는 경화성 수지;
상기 금속이온으로부터 환원되는 금속과 상기 경화성 수지의 상분리를 유도하는 상분리 유도제;
경화시간을 단축시키고 흐름성을 제어하는 흐름성제어제; 및
용매를 포함하고,
환원되는 상기 금속에 의해 이방성 도전경로가 형성되는 이방성 도전재 제조용 조성물.
A composition for manufacturing an anisotropic conductive material that electrically connects opposing first and second electrodes,
A metal precursor comprising a metal ion that provides electrical conductivity to the above-mentioned anisotropic conductive material;
A curable resin comprising a curable polymer;
A phase separation inducing agent that induces phase separation between a metal reduced from the metal ion and the curable resin;
A flow control agent that shortens the curing time and controls flowability; and
Containing a solvent,
A composition for manufacturing an anisotropic conductive material in which an anisotropic conductive path is formed by the metal being reduced.
제1항에 있어서,
상기 상분리유도제는 친수성기 및 친유성기를 포함하는 이방성 도전재 제조용 조성물.
In the first paragraph,
The above-mentioned phase separation inducing agent is a composition for manufacturing an anisotropic conductive material including a hydrophilic group and a lipophilic group.
제2항에 있어서,
상기 친유성기의 탄소수는 5 내지 25이고, 친수성기는 카르복실기(-COOH) 또는 아민기(- NH)를 포함하는 이방성 도전재 제조용 조성물.
In the second paragraph,
A composition for producing an anisotropic conductive material wherein the lipophilic group has 5 to 25 carbon atoms and the hydrophilic group includes a carboxyl group (-COOH) or an amine group (- NH).
제3항에 있어서,
상기 카르복실기를 포함하는 화합물은 카프릴산(caprylic acid), 펠라르곤산(pelargonic acid), 카프로산(caproic acid), 운데카논산(Undecanic acid), 라우르산(lauric acid), 미리스트산(myristic acid), 베헨산(behenic acid), 팔미트산(palmitic acid), 리그노세르산(lignoceric acid), 스테아르산 (Stearic acid), 아라킨산 (Eicosanoic Acid), 올레산 (Oleic acid)로 구성되는 군에서 선택되는 적어도 하나 또는 이들의 조합인 이방성 도전재 제조용 조성물.
In the third paragraph,
A composition for producing an anisotropic conductive material, wherein the compound containing the carboxyl group is at least one selected from the group consisting of caprylic acid, pelargonic acid, caproic acid, undecanic acid, lauric acid, myristic acid, behenic acid, palmitic acid, lignoceric acid, stearic acid, eicosanoic acid, and oleic acid, or a combination thereof.
제3항에 있어서,
상기 아민기를 포함하는 화합물은 헥실아민(hexylamine), 헵틸아민(Heptylamine), 옥틸아민 (Octylamine), 올레일 아민 (Oleylamine), 데실아민 (decylamine), 도데실아민 (dodecylamine), 2-에틸헥실아민 (2-ethylhexylamine), 1,3-디메틸-n-부틸아민(1,3-Dimethylbutylamine)로 구성되는 군에서 선택되는 적어도 하나 또는 이들의 조합인 이방성 도전재 제조용 조성물.
In the third paragraph,
A composition for producing an anisotropic conductive material, wherein the compound containing the above amine group is at least one selected from the group consisting of hexylamine, heptylamine, octylamine, oleylamine, decylamine, dodecylamine, 2-ethylhexylamine, and 1,3-dimethyl-n-butylamine, or a combination thereof.
제1항에 있어서,
상기 조성물은 60 내지 100℃로 제1가열시 일정수준으로 경화되어 필름화 가능한 이방성 도전재 제조용 조성물.
In the first paragraph,
The above composition is a composition for manufacturing an anisotropic conductive material that can be formed into a film by hardening to a certain level upon first heating at 60 to 100°C.
제1항에 있어서,
상기 조성물이 가열되어 상기 제1전극과 상기 제2전극사이에서 경화물이 될 때, 상기 대향하는 방향인 Z축방향으로는 도전성 경로가 형성되고, 상기 Z축 방향과 각각 수직인 X, Y축 방향으로는 도전성 경로(path)가 형성되지 못하는 이방성 도전재 제조용 조성물.
In the first paragraph,
A composition for manufacturing an anisotropic conductive material, wherein when the composition is heated and hardened between the first electrode and the second electrode, a conductive path is formed in the Z-axis direction, which is the opposing direction, and no conductive path is formed in the X-axis and Y-axis directions, which are each perpendicular to the Z-axis direction.
제7항에 있어서,
상기 경화물은 상기 금속이온이 환원되어 형성되는 복수의 소결체가 상기 Z축방향으로 성장하여 상기 제1전극과 상기 제2전극을 전기적으로 연결하는 이방성 도전재 제조용 조성물.
In Article 7,
The above-mentioned cured product is a composition for manufacturing an anisotropic conductive material in which a plurality of sintered bodies formed by reduction of the above-mentioned metal ions grow in the Z-axis direction to electrically connect the first electrode and the second electrode.
제8항에 있어서,
상기 경화물에서 상기 복수의 소결체는 상기 X, Y축방향으로는 서로 연결되지 않는 이방성 도전재 제조용 조성물.
In Article 8,
A composition for manufacturing an anisotropic conductive material in which the plurality of sintered bodies in the above-mentioned cured product are not connected to each other in the X and Y-axis directions.
제1항에 있어서,
상기 경화성수지는 라디칼에 의해 중합가능한 고분자 수지인 이방성 도전재 제조용 조성물.
In the first paragraph,
The above curable resin is a composition for manufacturing an anisotropic conductive material, which is a polymer resin that can be polymerized by radicals.
제1항에 있어서,
상기 경화성수지는 에폭시 수지 또는 아크릴계 수지인 이방성 도전재 제조용 조성물.
In the first paragraph,
The above-mentioned curable resin is a composition for manufacturing an anisotropic conductive material, wherein the curable resin is an epoxy resin or an acrylic resin.
제1항에 있어서,
상기 경화성 수지를 광 또는 열로 경화하기 위한 아민 또는 포스핀 화합물을 포함하는 경화제를 더 포함하는 이방성 도전재 제조용 조성물.
In the first paragraph,
A composition for producing an anisotropic conductive material further comprising a curing agent including an amine or phosphine compound for curing the curable resin with light or heat.
제12항에 있어서,
상기 아민 화합물은 2-메틸 이미다졸, 2,4-디메틸이미다졸, 2-에틸-4-메틸이미다졸, 2-페닐이미다졸, 2-페닐4-메틸이미다졸(2-Phenyl-4-methylimidazole); 3급 아민 화합물로서 트리에틸아민, 벤질디메틸아민, 메틸벤질디메틸아민, 2-(디메틸아미노메틸)페놀, 2,4,6-트리스(디메틸아미노메틸)페놀(2,4,6-Tris(dimethylaminomethyl)phenol) 로 구성되는 군에서 선택되는 물질로 이루어지는 이방성 도전재 제조용 조성물.
In Article 12,
A composition for producing an anisotropic conductive material, wherein the above amine compound is selected from the group consisting of 2-methyl imidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole; and a tertiary amine compound, triethylamine, benzyldimethylamine, methylbenzyldimethylamine, 2-(dimethylaminomethyl)phenol, and 2,4,6-tris(dimethylaminomethyl)phenol.
제12항에 있어서,
상기 포스핀 화합물은,
트리에틸포스핀, 트리부틸포스핀, 1,8-디아자비시클로(5,4,0)운데센-7; 또는 유기 포스핀 화합물로서 트리페닐포스핀, 트리메틸포스핀, 트리에틸포스핀, 트리부틸포스핀, 트리(p-메틸페닐)포스핀(Tris(4-methoxyphenyl)phosphine), 트리(노닐 페닐)포스핀로 구성되는 군에서 선택되는 하나인 이방성 도전재 제조용 조성물.
In Article 12,
The above phosphine compound is,
A composition for producing an anisotropic conductive material, wherein the composition comprises one selected from the group consisting of triethylphosphine, tributylphosphine, 1,8-diazabicyclo(5,4,0)undecene-7; or an organic phosphine compound, triphenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri(p-methylphenyl)phosphine (Tris(4-methoxyphenyl)phosphine), and tri(nonylphenyl)phosphine.
제1항에 있어서,
상기 흐름성제어제는 분자량이 10,000 내지 1,100,000의 아크릴계 폴리머 수지인 이방성 도전재 제조용 조성물.
In the first paragraph,
The above-mentioned flow control agent is a composition for manufacturing an anisotropic conductive material, which is an acrylic polymer resin having a molecular weight of 10,000 to 1,100,000.
제1항에 있어서,
상기 흐름성제어제는 유리전이온도(Tg)가 -20 내지 110℃인 이방성 도전재 제조용 조성물.
In the first paragraph,
The above flow control agent is a composition for manufacturing an anisotropic conductive material having a glass transition temperature (Tg) of -20 to 110°C.
제1항에 있어서,
상기 금속 전구체 60중량부에 대해서, 상분리유도제는 5 내지 15중량부, 경화성 수지는 3 내지 8중량부, 경화제는 3 내지 8중량부, 용매는 15 내지 25중량부로 포함되는 이방성 도전재 제조용 조성물.
In the first paragraph,
A composition for producing an anisotropic conductive material, comprising 5 to 15 parts by weight of a phase separation inducer, 3 to 8 parts by weight of a curable resin, 3 to 8 parts by weight of a curing agent, and 15 to 25 parts by weight of a solvent for 60 parts by weight of the above metal precursor.
제1항에 있어서,
상기 조성물은 금속 도전성 전구체 60중량부에 대해서, 5 내지 15중량부로 포함되는 나노입자를 더 포함하는 이방성 도전재 제조용 조성물.
In the first paragraph,
A composition for producing an anisotropic conductive material, wherein the composition further comprises nanoparticles in an amount of 5 to 15 parts by weight based on 60 parts by weight of a metal conductive precursor.
제18항에 있어서,
상기 나노입자는 은(Ag), 금(Au), 인듐(In), 구리(Cu), ITO(indium tin oxide), 팔라듐, 플레티늄, 니켈, 및 이리듐으로 이루어진 군에서 선택되는 1종을 포함하는 이방성 도전재 제조용 조성물.
In Article 18,
A composition for manufacturing an anisotropic conductive material, wherein the nanoparticle comprises at least one selected from the group consisting of silver (Ag), gold (Au), indium (In), copper (Cu), indium tin oxide (ITO), palladium, platinum, nickel, and iridium.
전기도전성을 제공하는 금속이온을 포함하는 금속전구체;
경화가능한 고분자를 포함하는 경화성 수지;
상기 금속이온으로부터 환원되는 금속과 상기 경화성 수지의 상분리를 유도하는 상분리 유도제; 및
경화시간을 단축시키고 흐름성을 제어하는 흐름성제어제;를 포함하고
환원되는 상기 금속에 의해 이방성 도전경로가 형성되는 이방성 도전재.
A metal precursor comprising a metal ion providing electrical conductivity;
A curable resin comprising a curable polymer;
A phase separation inducing agent that induces phase separation between the metal reduced from the metal ion and the curable resin; and
Contains a flow control agent that shortens the curing time and controls flowability;
An anisotropic conductive material in which an anisotropic conductive path is formed by the above metal being reduced.
제20항에 있어서,
상기 이방성 도전재는 60 내지 100℃로 제1가열에 의해서 일부 경화되어 프리스탠딩가능한 이방성 도전재.
In Article 20,
The above anisotropic conductive material is a free-standing anisotropic conductive material that is partially hardened by first heating at 60 to 100°C.
제21항에 있어서,
상기 이방성 도전재는 열 또는 광에 의한 상기 제1가열 이후의 제2가열에 의해 상기 금속이온이 환원되어 일방향으로 도전성 경로를 형성하도록 성장하는 소결체가 형성되는 이방성 도전재.
In Article 21,
The above anisotropic conductive material is an anisotropic conductive material in which a sintered body is formed in which the metal ions are reduced by a second heating following the first heating by heat or light and grow to form a conductive path in one direction.
제20항에 있어서,
상기 도전재는 대향하는 제1전극과 제2전극을 전기적으로 연결하는 필름인 이방성 도전재.
In Article 20,
The above-mentioned conductive material is an anisotropic conductive material which is a film that electrically connects opposing first and second electrodes.
KR1020230108655A 2023-06-30 2023-08-18 Anisopitropic conductive composition Active KR102744312B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2024/009153 WO2025005755A1 (en) 2023-06-30 2024-06-30 Composition for manufacturing anisotropic conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020230085383 2023-06-30
KR20230085383 2023-06-30

Publications (1)

Publication Number Publication Date
KR102744312B1 true KR102744312B1 (en) 2024-12-18

Family

ID=94037920

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230108655A Active KR102744312B1 (en) 2023-06-30 2023-08-18 Anisopitropic conductive composition

Country Status (1)

Country Link
KR (1) KR102744312B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462658B1 (en) 2008-12-19 2014-11-17 삼성전자 주식회사 Semiconductor nanocrystals and manufacturing method thereof
WO2016067599A1 (en) * 2014-10-31 2016-05-06 バンドー化学株式会社 Bonding composition
JP2020100888A (en) * 2018-12-25 2020-07-02 京セラ株式会社 Copper particle, producing method for copper particle, copper paste, and semiconductor device and electric/electronic component
KR20210011475A (en) * 2013-03-26 2021-02-01 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462658B1 (en) 2008-12-19 2014-11-17 삼성전자 주식회사 Semiconductor nanocrystals and manufacturing method thereof
KR20210011475A (en) * 2013-03-26 2021-02-01 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
WO2016067599A1 (en) * 2014-10-31 2016-05-06 バンドー化学株式会社 Bonding composition
JP2020100888A (en) * 2018-12-25 2020-07-02 京セラ株式会社 Copper particle, producing method for copper particle, copper paste, and semiconductor device and electric/electronic component

Similar Documents

Publication Publication Date Title
KR100615870B1 (en) Functional alloy particles
KR102345819B1 (en) Anisotropic conductive film and manufacturing method therefor
KR101082249B1 (en) Anisotropic conductive film, joined structure and method for producing the joined structure
KR101971746B1 (en) Electrically conductive composition
US9023464B2 (en) Connecting film, and joined structure and method for producing the same
KR20090092796A (en) Anisotropic conductive film and method for producing the same, and bonded body
JP2007217503A (en) Anisotropically electroconductive adhesive film
JP5147048B2 (en) Anisotropic conductive film
JP2011111557A (en) Adhesive composition, circuit connecting material, connector and connection method of circuit member, and semiconductor device
KR20210062533A (en) Conductive ink composition
TW202229487A (en) Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same
JP5147049B2 (en) Anisotropic conductive film
KR102744312B1 (en) Anisopitropic conductive composition
KR102744320B1 (en) Anisopitropic conductive composition and manufacturing method of the same
KR102788583B1 (en) Anisotropic Conductive Connection Structure
JP6535989B2 (en) Method of manufacturing anisotropically conductive film and connection structure
EP3147340A1 (en) Adhesive agent and connection structure
JP2013112807A (en) Conductive ink composition and method of producing conductive pattern
JP6900741B2 (en) Growing method of anisotropic conductive film, connection structure and connection structure
WO2022107800A1 (en) Adhesive film for circuit connection, and connection structure and method for manufacturing same
US12305053B2 (en) Conductive ink composition
KR102821219B1 (en) Anisopitropic conductive composition
WO2025005757A1 (en) Anisotropic conductive connector
WO2025005756A1 (en) Anisotropic conductive film and manufacturing method thereof
WO2025005755A1 (en) Composition for manufacturing anisotropic conductive film

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20230818

PA0201 Request for examination

Patent event code: PA02011R01I

Patent event date: 20230818

Comment text: Patent Application

PA0302 Request for accelerated examination

Patent event date: 20240220

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240508

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20241203

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20241213

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20241213

End annual number: 3

Start annual number: 1

PG1601 Publication of registration