[go: up one dir, main page]

KR102712136B1 - Polypeptide variant having biotin synthase activity and biotin production method using the same - Google Patents

Polypeptide variant having biotin synthase activity and biotin production method using the same Download PDF

Info

Publication number
KR102712136B1
KR102712136B1 KR1020210157042A KR20210157042A KR102712136B1 KR 102712136 B1 KR102712136 B1 KR 102712136B1 KR 1020210157042 A KR1020210157042 A KR 1020210157042A KR 20210157042 A KR20210157042 A KR 20210157042A KR 102712136 B1 KR102712136 B1 KR 102712136B1
Authority
KR
South Korea
Prior art keywords
biotin
polypeptide
sequence
microorganism
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210157042A
Other languages
Korean (ko)
Other versions
KR20230070943A (en
Inventor
임보람
김문정
임수빈
김현아
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020210157042A priority Critical patent/KR102712136B1/en
Priority to PCT/KR2022/017832 priority patent/WO2023085874A1/en
Publication of KR20230070943A publication Critical patent/KR20230070943A/en
Application granted granted Critical
Publication of KR102712136B1 publication Critical patent/KR102712136B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/185Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system
    • C12P17/186Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system containing a 2-oxo-thieno[3,4-d]imidazol nucleus, e.g. Biotin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/01Sulfurtransferases (2.8.1)
    • C12Y208/01006Biotin synthase (2.8.1.6)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 출원은 바이오틴 신타제 활성을 갖는 폴리펩티드 변이체, 상기 변이체를 포함하는 미생물, 및 상기 균주를 이용한 바이오틴 생산 방법에 관한 것이다. The present application relates to a polypeptide variant having biotin synthase activity, a microorganism comprising the variant, and a method for producing biotin using the strain.

Description

바이오틴 신타제 활성을 갖는 폴리펩티드 변이체 및 이를 이용한 바이오틴 생산 방법{Polypeptide variant having biotin synthase activity and biotin production method using the same} Polypeptide variant having biotin synthase activity and biotin production method using the same {Polypeptide variant having biotin synthase activity and biotin production method using the same}

본 출원은 바이오틴 신타제 활성을 갖는 폴리펩티드 변이체 또는 이를 이용한 바이오틴 생산 방법에 관한 것이다.The present application relates to a polypeptide variant having biotin synthase activity or a method for producing biotin using the same.

바이오틴(Biotin) 은 세포 성장 및 단백질 생성, 활성에 중요한 역할을 하는 비타민 B군 (Vitamin B7)에 속하며, 동식물 그리고 미생물에 있어 필수적인 영양소이다. 황을 포함하는 1개의 링 구조가 또 다른 링 구조에 연결되어 있는 구조를 갖는 바이오틴은 멀티 카복실라제 (carboxylase)의 조효소로써 기능하며 포도당 대사를 비롯하여 아미노산과 지방산 대사 과정에서도 중요한 역할을 수행한다. Biotin belongs to the vitamin B group (Vitamin B7) that plays an important role in cell growth, protein production, and activity, and is an essential nutrient for plants, animals, and microorganisms. Biotin, which has a structure in which one ring structure containing sulfur is connected to another ring structure, functions as a coenzyme of multicarboxylase and plays an important role in the metabolism of amino acids and fatty acids as well as glucose metabolism.

바이오틴은 많은 미생물 종이 생합성을 할 수 있는데 반해 대부분의 동물들은 스스로 합성할 수 없기 때문에 필수 비타민으로 분류되어 식품이나 사료 첨가제, 혹은 다른 의약품의 합성 및 생산의 원료로 이용되는 등 그 유용성이 매우 큰 물질이다. 특히 최근에는 항생제 규제확대로 인한 비타민 수요가 증가되는 추세를 보이며 판가가 점차 상승되고 있다. 그러나 시장에 판매되고 있는 대부분의 바이오틴은 다단계 화학 공법을 통한 생산으로만 진행되고 있어 필환경시대가 도래한 현재 생물학적 생산 기술공법에 대한 요구도가 높아지고 있다. 그러나, 생물학적 생산 기술공법은 2000년대 이후 거의 진보된 문헌이나 특허가 없는 것으로 보여지며, 생산 효율도 높지 않다. 따라서 바이오틴의 생물학적 생산 기술공법을 다수 확보하는 것은 중요하다.Biotin is classified as an essential vitamin because many microorganisms can synthesize it, while most animals cannot, and it is used as a raw material for the synthesis and production of food or feed additives or other pharmaceuticals, making it a very useful substance. In particular, the demand for vitamins has been increasing due to the expansion of antibiotic regulations, and its sales price is gradually increasing. However, most biotin sold on the market is produced only through multi-step chemical processes, and now that the era of essential environmental technologies has arrived, the demand for biological production technologies is increasing. However, there appears to be almost no advanced literature or patents on biological production technologies since the 2000s, and their production efficiency is not high. Therefore, it is important to secure a large number of biological production technologies for biotin.

따라서, 이러한 배경 하에 바이오틴 생산능 증가를 위한 연구가 여전히 필요한 실정이다. Therefore, under these circumstances, research to increase biotin production is still needed.

본 출원의 하나의 목적은 바이오틴 신타제(biotin synthase) 활성을 갖는 폴리펩티드 변이체를 제공하는 것이다. One object of the present application is to provide a polypeptide variant having biotin synthase activity.

본 출원의 다른 하나의 목적은 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another object of the present application is to provide a polynucleotide encoding a variant of the present application.

본 출원의 또 다른 하나의 목적은 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공하는 것이다. Another object of the present application is to provide a recombinant vector comprising the polynucleotide.

본 출원의 또 다른 하나의 목적은 바이오틴 신타제의 활성을 갖는 폴리펩티드 변이체를 포함하는, 바이오틴을 생산하는 미생물을 제공하는 것이다. Another object of the present application is to provide a microorganism producing biotin, comprising a polypeptide variant having biotin synthase activity.

본 출원의 또 다른 하나의 목적은 상기 바이오틴을 생산하는 미생물을 포함하는 바이오틴 생산용 조성물을 제공하는 것이다. Another object of the present application is to provide a composition for producing biotin comprising a microorganism producing biotin.

본 출원의 또 다른 하나의 목적은 상기 바이오틴을 생산하는 미생물을 배양하는 단계를 포함하는 바이오틴 생산 방법을 제공하는 것이다.Another object of the present application is to provide a method for producing biotin, which comprises a step of culturing a microorganism producing biotin.

본 출원에서는 바이오틴 생산능을 향상시킬 수 있는 바이오틴 신타제 또는 이의 변이체를 탐색하고, 이를 미생물에 도입함으로써, 바이오틴 생산능이 우수한 재조합 미생물(균주)을 제공하고자 한다.In this application, we seek to provide a recombinant microorganism (strain) with excellent biotin production ability by searching for a biotin synthase or a variant thereof capable of improving biotin production ability and introducing the same into a microorganism.

상기 목적을 달성하기 위한 본 출원의 일 양상은 바이오틴 신타제 활성을 갖는 폴리펩티드 변이체를 제공할 수 있다. One aspect of the present application for achieving the above object can provide a polypeptide variant having biotin synthase activity.

본 출원에서, “바이오틴 신타제(biotin synthase; EC 2.8.1.6)”는 데티오바이오틴(dethiobiotin, DTB;)로부터 바이오틴으로의 전환을 촉매하는 효소로서, 라디칼 메커니즘을 이용하여, 데티오바이오틴을 티올화(thiolate)하여 바이오틴으로 전환하는 SAM 의존 효소를 의미할 수 있다. 상기 바이오틴 신타제는 상기 활성을 갖는 효소면 미생물 유래에 상관없이 포함될 수 있고, 예를 들면 세라티아 속(Serratia sp.; 예를 들면 세라티아 마르세센스(Serratia marcescens)) 또는 에스케리키아 속(Escherichia sp.; 예를 들면 대장균(Escherichia coli)) 미생물 유래일 수 있다. 상기 바이오틴 신타제는 BioB 단백질 또는 BioB와 혼용하여 사용될 수 있다. 일 예에서, 상기 바이오틴 신타제는 서열번호 1의 아미노산 서열을 포함하거나 서열번호 1의 아미노산 서열로 이루어진 것일 수 있으며 바이오틴 신타제와 동일하거나 상응하는 전환 활성을 갖는다면 서열번호 1의 아미노산 서열에서 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 폴리펩티드도 본 출원의 범위 내에 포함될 수 있다. 또한 미생물의 유래에 상관없이 서열번호 1의 아미노산 서열과 적어도 60% 이상, 70% 이상, 80% 이상, 85% 이상, 90% 이상, 92% 이상, 94% 이상, 96% 이상, 98% 이상, 또는 99% 이상, 99.5% 이상 또는 99.8% 이상의 상동성 또는 동일성을 갖는 폴리펩티드로서, 바이오틴 신타제와 동일하거나 상응하는 전환 활성을 갖는 폴리펩티드도 상기 바이오틴 신타제로서 본 출원의 범위 내에 포함될 수 있다. In the present application, “biotin synthase (EC 2.8.1.6)” may refer to an enzyme that catalyzes the conversion of dethiobiotin (DTB) into biotin, and may mean a SAM-dependent enzyme that thiolates dethiobiotin into biotin using a radical mechanism. The biotin synthase may be included regardless of the origin of the microorganism as long as it is an enzyme having the above activity, and may be, for example, derived from a microorganism such as Serratia sp. (for example, Serratia marcescens ) or Escherichia sp. (for example, Escherichia coli ). The biotin synthase may be used interchangeably with BioB protein or BioB. In one example, the biotin synthase may comprise or consist of the amino acid sequence of SEQ ID NO: 1, and if it has the same or corresponding conversion activity as biotin synthase, a polypeptide having an amino acid sequence in which a part of the sequence is deleted, modified, substituted or added to the amino acid sequence of SEQ ID NO: 1 may also be included within the scope of the present application. In addition, regardless of the origin of the microorganism, a polypeptide having at least 60%, 70%, 80%, 85%, 90%, 92%, 94%, 96%, 98%, or 99%, 99.5% or 99.8% homology or identity to the amino acid sequence of SEQ ID NO: 1, and having the same or corresponding conversion activity as biotin synthase may also be included within the scope of the present application as the biotin synthase.

본 출원에서, '특정 서열번호로 기재된 아미노산 서열을 포함하는 폴리펩티드(또는 단백질)', '특정 서열번호로 기재된 아미노산 서열로 이루어진 폴리펩티드(또는 단백질)'라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 폴리펩티드(또는 단백질)와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 폴리펩티드(또는 단백질)도 본 출원의 변이 대상이 되는 단백질 또는 폴리펩티드로 사용될 수 있다. 예를 들면, 서열번호 1의 아미노산 서열의 일부 서열이 결실, 변형 또는 치환된 서열을 가지거나 서열번호 1의 아미노산 서열에 일부 서열이 부가된 서열을 가지는 폴리펩티드(또는 단백질)는 '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'와 동일한 혹은 상응하는 활성을 가진다면 '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'에 속할 수 있다. In the present application, even if it is described as 'a polypeptide (or protein) comprising an amino acid sequence described by a specific sequence number' or 'a polypeptide (or protein) composed of an amino acid sequence described by a specific sequence number', if it has the same or corresponding activity as the polypeptide (or protein) composed of the amino acid sequence of the corresponding sequence number, a polypeptide (or protein) having an amino acid sequence in which a part of the sequence is deleted, modified, substituted or added can also be used as the protein or polypeptide that is the target of mutation of the present application. For example, a polypeptide (or protein) having a sequence in which a part of the amino acid sequence of sequence number 1 is deleted, modified or substituted or a sequence in which a part of the sequence is added to the amino acid sequence of sequence number 1 can belong to the 'polypeptide composed of the amino acid sequence of sequence number 1' if it has the same or corresponding activity as the 'polypeptide composed of the amino acid sequence of sequence number 1'.

상기 바이오틴 신타제의 아미노산 서열 및 바이오틴 신타제를 암호화하는 유전자의 염기 서열은 미국 생물공학정보센터(NCBI) 및 일본 DNA 데이터 뱅크(DDBJ)와 같은 당업계에 공지된 데이터 베이스로부터 용이하게 얻을 수 있고, 예를 들면, GenBank Accession No. WP_000951213.1일 수 있다. 상기 바이오틴 신타제를 암호화하는 유전자는 bioB 유전자일 수 있으며, 상기 바이오틴 신타제는 bioB 유전자에 의해 암호화되는 것일 수 있다. The amino acid sequence of the above biotin synthase and the base sequence of the gene encoding biotin synthase can be easily obtained from databases known in the art, such as the National Center for Biotechnology Information (NCBI) and the DNA Data Bank of Japan (DDBJ), and may be, for example, GenBank Accession No. WP_000951213.1. The gene encoding the biotin synthase may be a bioB gene, and the biotin synthase may be encoded by the bioB gene.

본 출원에서, 폴리뉴클레오티드 또는 폴리펩티드가 "특정 핵산 서열(염기서열) 또는 아미노산 서열을 포함한다" 함은 상기 폴리뉴클레오티드 또는 폴리펩티드가 상기 특정 핵산 서열(염기서열) 또는 아미노산 서열로 이루어지거나 이를 필수적으로 포함하는 것을 의미할 수 있으며, 상기 폴리뉴클레오티드 또는 폴리펩티드의 본래의 기능 및/또는 목적하는 기능을 유지하는 범위에서 상기 특정 핵산 서열(염기서열) 또는 아미노산 서열에 변이(결실, 치환, 변형, 및/또는 부가)가 가해진 서열을 포함하는 것(또는 상기 변이를 배제하지 않는 것)으로 해석될 수 있다. 일 예에서, 폴리뉴클레오티드 또는 폴리펩티드가 "특정 핵산 서열(염기서열) 또는 아미노산 서열을 포함한다" 함은 상기 폴리뉴클레오티드 또는 폴리펩티드가 (i) 상기 특정 핵산 서열(염기서열) 또는 아미노산 서열로 이루어지거나 이를 필수적으로 포함하거나, 또는 (ii) 상기 특정 핵산 서열(염기서열) 또는 아미노산 서열과 적어도 60% 이상, 70% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 98% 이상, 99.5% 이상, 또는 99.9% 이상의 상동성을 갖는 핵산 서열 또는 아미노산 서열로 이루어지거나 이를 필수적으로 포함하고 본래의 기능 및/또는 목적하는 기능을 유지하는 것을 의미할 수 있다.In the present application, the phrase “a polynucleotide or a polypeptide comprises a specific nucleic acid sequence (base sequence) or amino acid sequence” may mean that the polynucleotide or the polypeptide consists of or essentially includes the specific nucleic acid sequence (base sequence) or amino acid sequence, and may be interpreted as including a sequence in which a mutation (deletion, substitution, modification, and/or addition) is added to the specific nucleic acid sequence (base sequence) or amino acid sequence within the scope of maintaining the original function and/or the desired function of the polynucleotide or the polypeptide (or not excluding the mutation). In one example, a polynucleotide or polypeptide "comprising a particular nucleic acid sequence (base sequence) or amino acid sequence" can mean that the polynucleotide or polypeptide (i) consists of or essentially comprises the particular nucleic acid sequence (base sequence) or amino acid sequence, or (ii) consists of or essentially comprises a nucleic acid sequence or amino acid sequence that has at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 98%, 99.5%, or 99.9% homology to the particular nucleic acid sequence (base sequence) or amino acid sequence and retains its original function and/or desired function.

본 출원에서, ‘상동성 (homology)’ 또는 ‘동일성 (identity)’은 두 개의 주어진 아미노산 서열 또는 염기 서열 상호간 유사한 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.In this application, ‘homology’ or ‘identity’ means the degree of similarity between two given amino acid sequences or base sequences, which may be expressed as a percentage. The terms homology and identity are often used interchangeably.

보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 일반적으로 서열 전체 또는 일부분과 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드와의 하이브리드화 역시 포함됨이 자명하다.Sequence homology or identity of conserved polynucleotides or polypeptides is determined by standard alignment algorithms, and may be used together with a default gap penalty established by the program being used. In practice, homologous or identical sequences are generally capable of hybridizing with all or part of the sequence under moderate or high stringent conditions. It will be appreciated that hybridization also includes hybridization with polynucleotides containing common codons or codons that take codon degeneracy into account in the polynucleotide.

임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.Whether any two polynucleotide or polypeptide sequences are homologous, similar or identical can be determined using well-known computer algorithms such as the "FASTA" program using default parameters as in, for example, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444. Alternatively, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needleman program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277) (version 5.0.0 or later) can be determined using the GCG program package (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [Ed.,] Academic Press, San Diego,1994, and [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073). For example, homology, similarity or identity can be determined using BLAST from the National Center for Biotechnology Information Database, or ClustalW.

폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.Homology, similarity or identity of polynucleotides or polypeptides can be determined by comparing sequence information, for example, using a GAP computer program such as that disclosed in Smith and Waterman, Adv. Appl. Math (1981) 2:482, or, for example, Needleman et al. (1970), J Mol Biol. 48:443. In brief, the GAP program can be defined as the total number of symbols in the shorter of the two sequences divided by the number of similarly arranged symbols (i.e., nucleotides or amino acids). Default parameters for the GAP program include (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and (2) a matrix of 1-bit integers, as disclosed in Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979), as disclosed in Gribskov et al(1986) Nucl. Acids Res. 14: 6745 weighted comparison matrix (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional penalty of 0.10 for each symbol in each gap (or gap opening penalty 10, gap extension penalty 0.5); and (3) no penalty for terminal gaps.

일 예에서, 상기 바이오틴 신타제 활성을 갖는 폴리펩티드 변이체는 서열번호 1의 아미노산 서열 또는 이와 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 갖는 아미노산 서열에서, 서열번호 1의 아미노산 서열의 3번째 잔기에 상응하는 아미노산이 다른 아미노산으로 치환된 것일 수 있다. 또한, 일 예에서, 본 출원의 폴리펩티드 변이체는 서열번호 1의 아미노산 서열의 3번째 잔기에 상응하는 아미노산이 다른 아미노산으로 치환된 폴리펩티드로서 서열번호 1의 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함하는 폴리펩티드일 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 변이체에 포함됨은 자명하다. 예를 들면, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.In one example, the polypeptide variant having biotin synthase activity may be an amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity thereto, wherein the amino acid corresponding to the third residue of the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid. In addition, in one example, the polypeptide variant of the present application may be a polypeptide comprising an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity with the amino acid sequence of SEQ ID NO: 1, as a polypeptide in which the amino acid corresponding to the 3rd residue of the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid. In addition, it is obvious that a variant having an amino acid sequence in which a part of the sequence is deleted, modified, substituted, conservatively substituted or added is also included in the variant of the present application, as long as it has such homology or identity and exhibits an effect corresponding to the variant of the present application. For example, in the case of having sequence additions or deletions, naturally occurring mutations, silent mutations or conservative substitutions that do not alter the function of the variant of the present application at the N-terminus, C-terminus and/or within the amino acid sequence.

상기 “보존적 치환(conservative substitution)”은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 통상적으로, 보존적 치환은 단백질 또는 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않을 수 있다.The above “conservative substitution” refers to the replacement of one amino acid with another amino acid having similar structural and/or chemical properties. Such amino acid substitutions may generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the protein or polypeptide.

본 출원에서, "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)되어 상기 변이체의 변이 전 아미노산 서열과 상이하나 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 지칭한다. 이러한 변이체는 일반적으로 상기 폴리펩티드의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 동정(identify)될 수 있다. 즉, 변이체의 능력은 변이 전 폴리펩티드에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 또한, 일부 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이체를 포함할 수 있다. 다른 변이체는 성숙 단백질(mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이체를 포함할 수 있다. 상기 용어 “변이체”는 변이형, 변형, 변이형 폴리펩티드, 변이된 단백질, 변이 및 변이체 등의 용어(영문 표현으로는 modification, modified polypeptide, modified protein, mutant, mutein, divergent 등)가 혼용되어 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다. 일 예에서, 상기 변이체는 서열번호 1의 아미노산 서열의 3번째 위치에 상응하는 아미노산인 알라닌이 다른 아미노산(예를 들면, 알라닌 외의 다른 아미노산)으로 치환된, 서열번호 21로 기재된 아미노산 서열을 포함하는 폴리펩티드일 수 있다.In this application, the term "variant" refers to a polypeptide in which one or more amino acids are conservatively substituted and/or modified, thereby differing from the amino acid sequence of the variant before the mutation, but retaining functions or properties. Such variants can generally be identified by modifying one or more amino acids in the amino acid sequence of the polypeptide and evaluating the properties of the modified polypeptide. That is, the ability of the variant may be increased, unchanged, or decreased compared to the polypeptide before the mutation. In addition, some variants may include variants in which one or more portions, such as the N-terminal leader sequence or the transmembrane domain, are deleted. Other variants may include variants in which portions are deleted from the N- and/or C-terminus of the mature protein. The above term “variant” may be used interchangeably with terms such as variant, modification, variant polypeptide, mutated protein, mutation, and variant (in English expressions, modification, modified polypeptide, modified protein, mutant, mutein, divergent, etc.), and is not limited thereto if the term is used in the meaning of mutation. In one example, the variant may be a polypeptide including the amino acid sequence described in SEQ ID NO: 21, in which alanine, an amino acid corresponding to the third position of the amino acid sequence of SEQ ID NO: 1, is substituted with another amino acid (for example, an amino acid other than alanine).

또한, 변이체는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 변이체의 N-말단에는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이동(translocation)에 관여하는 시그널(또는 리더) 서열이 컨쥬게이트 될 수 있다. 또한 상기 변이체는 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.Additionally, the variant may include deletions or additions of amino acids that have minimal impact on the properties and secondary structure of the polypeptide. For example, the N-terminus of the variant may be conjugated to a signal (or leader) sequence that is involved in co-translationally or post-translationally translocation of the protein. Additionally, the variant may be conjugated to other sequences or linkers so that it can be identified, purified, or synthesized.

본 출원에서, ‘서열번호 ~의 아미노산 서열에서 ~번째’는 ‘서열번호 ~의 아미노산 서열로 구성되는(또는 이루어지는) 폴리펩티드의 N-말단에서 ~번째’와 동일한 의미로 사용될 수 있다.In the present application, ‘the ~th amino acid sequence having sequence number ~’ can be used with the same meaning as ‘the ~th amino acid sequence from the N-terminus of a polypeptide consisting of (or made of) the amino acid sequence having sequence number ~’.

본 출원에서, "상응하는(corresponding to)"은, 폴리펩티드에서 열거되는 위치의 아미노산 잔기이거나, 또는 폴리펩티드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 상응하는 위치의 아미노산을 확인하는 것은 특정 서열을 참조하는 서열의 특정 아미노산을 결정하는 것일 수 있다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 참조 (reference) 단백질에서의 유사하거나 대응되는 위치를 지칭한다. In this application, "corresponding to" refers to an amino acid residue at a position listed in a polypeptide, or an amino acid residue that is similar, identical, or homologous to the residue listed in the polypeptide. Identifying an amino acid at a corresponding position can determine a particular amino acid in a sequence that references a particular sequence. As used herein, "corresponding region" generally refers to a similar or corresponding position in a related or reference protein.

예를 들어, 임의의 아미노산 서열을 서열번호 1과 정렬(align)하고, 이를 토대로 상기 아미노산 서열의 각 아미노산 잔기는 서열번호 1의 아미노산 잔기와 상응하는 아미노산 잔기의 숫자 위치를 참조하여 넘버링 할 수 있다. 예를 들어, 본 출원에 기재된 것과 같은 서열 정렬 알고리즘은, 쿼리 시퀀스("참조 서열"이라고도 함)와 비교하여 아미노산의 위치, 또는 치환, 삽입 또는 결실 등의 변형이 발생하는 위치를 확인할 수 있다.For example, any amino acid sequence can be aligned with SEQ ID NO: 1, and based on this, each amino acid residue of the amino acid sequence can be numbered by referring to the numerical position of the amino acid residue corresponding to the amino acid residue in SEQ ID NO: 1. For example, a sequence alignment algorithm such as that described in the present application can identify the position of an amino acid, or the position at which a modification, such as a substitution, insertion, or deletion, occurs, by comparing it to a query sequence (also referred to as a “reference sequence”).

이러한 정렬에는 예를 들어 Needleman-Wunsch 알고리즘 (Needleman 및 Wunsch, 1970, J. Mol. Biol. 48: 443-453), EMBOSS 패키지의 Needle 프로그램 (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000), Trends Genet. 16: 276-277) 등을 이용할 수 있으나, 이에 제한되지 않고 당업계에 알려진 서열 정렬 프로그램, 쌍 서열(pairwise sequence) 비교 알고리즘 등을 적절히 사용할 수 있다.For this alignment, for example, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000), Trends Genet. 16: 276-277) can be used, but is not limited thereto, and any sequence alignment program or pairwise sequence comparison algorithm known in the art can be appropriately used.

일 예에서, 상기 폴리펩티드 변이체는 서열번호 1의 아미노산 서열의 3번째 위치에 상응하는 아미노산인 알라닌이 다른 아미노산으로 치환되고, 서열번호 1의 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. In one example, the polypeptide variant can comprise an amino acid sequence in which the amino acid corresponding to the third position of the amino acid sequence of SEQ ID NO: 1, alanine, is replaced with another amino acid, and has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity with the amino acid sequence of SEQ ID NO: 1.

일 예에서, 상기 바이오틴 신타제 활성을 갖는 폴리펩티드 변이체는 서열번호 1의 아미노산 서열에서 3번째 아미노산이 다른 아미노산으로 치환된 것일 수 있다. In one example, the polypeptide variant having biotin synthase activity may have the third amino acid in the amino acid sequence of SEQ ID NO: 1 replaced with a different amino acid.

상기 다른 아미노산은 치환되기 전에 상기 위치(서열번호 1 의 아미노산 서열에서 이에 상응하는 위치)에 존재하던 아미노산(예를 들면, 알라닌) 외의 다른 종류의 아미노산 잔기를 의미할 수 있고, 예를 들면, 프롤린, 아르기닌, 류신, 이소류신, 발린, 페닐알라닌, 트립토판, 메티오닌, 글리신, 세린, 쓰레오닌, 시스테인, 티로신, 아스파라진, 글루타민, 리신, 히스티딘, 아스파르트산, 및 글루탐산일 수 있다. The above other amino acids may refer to other types of amino acid residues other than the amino acid (e.g., alanine) present at the position (the corresponding position in the amino acid sequence of SEQ ID NO: 1) before being substituted, and may be, for example, proline, arginine, leucine, isoleucine, valine, phenylalanine, tryptophan, methionine, glycine, serine, threonine, cysteine, tyrosine, asparagine, glutamine, lysine, histidine, aspartic acid, and glutamic acid.

일 예에 따른 폴리펩티드 변이체는, A polypeptide variant according to an example is:

서열번호 1의 3번째 위치에 상응하는 아미노산인 알라닌이 알라닌 이외의 다른 아미노산으로 치환된 것일 수 있다. 상기 알라닌 이외의 다른 아미노산은 알지닌, 프롤린, 류신, 이소류신, 발린, 페닐알라닌, 트립토판, 메티오닌, 글리신, 세린, 트레오닌, 시스테인, 티로신, 아스파라진, 글루타민, 리신, 히스티딘, 아스파르트산 및 글루탐산을 포함할 수 있다. 일 구체예에 따른 폴리펩티드 변이체는 상기 3번째 위치에 상응하는 알라닌이 쓰레오닌으로 치환된 것일 수 있다. Alanine, an amino acid corresponding to the third position of sequence number 1, may be substituted with an amino acid other than alanine. The amino acids other than alanine may include arginine, proline, leucine, isoleucine, valine, phenylalanine, tryptophan, methionine, glycine, serine, threonine, cysteine, tyrosine, asparagine, glutamine, lysine, histidine, aspartic acid, and glutamic acid. A polypeptide variant according to one specific example may be one in which alanine corresponding to the third position is substituted with threonine.

일 예에 따른 폴리펩티드 변이체는 서열번호 1의 아미노산 서열에서 3번째 알라닌이 쓰레오닌으로 치환된 것일 수 있다. A polypeptide variant according to an example may be one in which the third alanine in the amino acid sequence of SEQ ID NO: 1 is substituted with threonine.

일 예에 따른 폴리펩티드 변이체는 서열번호 21의 아미노산 서열을 포함하거나 서열번호 21의 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.A polypeptide variant according to one example can comprise or consist essentially of the amino acid sequence of SEQ ID NO: 21.

일 예에 따른 폴리펩티드 변이체는 서열번호 1 또는 이와 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 갖는 아미노산 서열에서, 서열번호 1의 아미노산 서열의 3번째 잔기에 상응하는 아미노산이 다른 아미노산으로 치환되어, 치환 전의 폴리펩티드 보다 바이오틴 생산 활성이 증가된 것일 수 있다 . A polypeptide variant according to an example may be one in which the amino acid corresponding to the third residue of the amino acid sequence of SEQ ID NO: 1 is replaced with a different amino acid in SEQ ID NO: 1 or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity thereto, such that the biotin producing activity is increased compared to the polypeptide before the replacement .

본 출원에서 용어, 폴리펩티드 활성의 “강화”는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “강화”, “상향조절”, “과발현” 또는 “증가”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다. In this application, the term “enhancement” of polypeptide activity means that the activity of the polypeptide is increased compared to the intrinsic activity. The enhancement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase. Here, activation, enhancement, up-regulation, overexpression, and increase may all include exhibiting an activity that was not originally present, or exhibiting an enhanced activity compared to the intrinsic activity or the activity before modification. The “intrinsic activity” means the activity of a specific polypeptide that a parent strain or an unmodified microorganism originally had before the trait change when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification.” “Enhanced,” “upregulated,” “overexpressed,” or “increased” activity of a polypeptide relative to its intrinsic activity means that the activity and/or concentration (expression level) of the specific polypeptide is enhanced compared to the activity and/or concentration (expression amount) that the parent strain or unmodified microorganism originally had prior to the transformation.

상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량)를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.The above enhancement can be achieved by introducing an exogenous polypeptide, or by enhancing the activity and/or concentration (expression amount) of the endogenous polypeptide. Whether the activity of the polypeptide is enhanced can be confirmed by an increase in the level of activity of the polypeptide, the expression amount, or the amount of a product secreted from the polypeptide.

상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).Enhancement of the activity of the above polypeptide can be achieved by applying various methods well known in the art, and is not limited as long as the activity of the target polypeptide can be enhanced compared to the microorganism before modification. Specifically, it may be performed using genetic engineering and/or protein engineering, which are routine methods of molecular biology and are well known to those skilled in the art, but is not limited thereto (e.g., Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).

구체적으로, 본 출원의 폴리펩티드의 강화는Specifically, the enhancement of the polypeptide of the present application is

1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가; 1) Increase in the intracellular copy number of a polynucleotide encoding a polypeptide;

2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체; 2) Replacing the gene expression control region on the chromosome that codes for a polypeptide with a highly active sequence;

3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형; 3) Modification of the base sequence encoding the initiation codon or 5'-UTR region of a gene transcript encoding a polypeptide;

4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;4) Modification of the amino acid sequence of the polypeptide so as to enhance the polypeptide activity;

5) 폴리펩티드 활성이 강화도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);5) Modification of a polynucleotide sequence encoding said polypeptide such that the activity of said polypeptide is enhanced (e.g., modification of a polynucleotide sequence of said polypeptide gene such that the polynucleotide sequence of said polypeptide is encoded by a modified polypeptide such that the activity of said polypeptide is enhanced);

6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입; 6) Introduction of a foreign polypeptide exhibiting the activity of the polypeptide or a foreign polynucleotide encoding the same;

7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화; 7) Codon optimization of polynucleotides encoding polypeptides;

8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는8) Analyzing the tertiary structure of the polypeptide and selecting the exposed portion to modify or chemically modify; or

9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more of the above 1) to 8), but is not particularly limited thereto.

보다 구체적으로,More specifically,

상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.The increase in the intracellular copy number of the polynucleotide encoding the polypeptide described above 1) may be achieved by introduction into the host cell of a vector capable of replicating and functioning independently of the host, to which the polynucleotide encoding the polypeptide is operably linked. Alternatively, the polynucleotide encoding the polypeptide may be achieved by introduction of one copy or two or more copies into the chromosome of the host cell. The introduction into the chromosome may be performed by introduction into the host cell of a vector capable of inserting the polynucleotide into the chromosome of the host cell, but is not limited thereto. The vector is as described above.

상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.The above 2) replacement of the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a sequence having strong activity may be, for example, a mutation in the sequence such as deletion, insertion, non-conservative or conservative substitution, or a combination thereof to further enhance the activity of the expression control region, or replacement with a sequence having stronger activity. The expression control region may include, but is not particularly limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation. As an example, the original promoter may be replaced with a strong promoter, but is not limited thereto.

공지된 강력한 프로모터의 예에는 cj1 내지 cj7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.Examples of known strong promoters include, but are not limited to, cj1 to cj7 promoters (US Patent No. US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent No. US 10584338 B2), O2 promoter (US Patent No. US 10273491 B2), tkt promoter, yccA promoter, etc.

상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.The above 3) modification of the base sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide may be, for example, a substitution with a base sequence encoding another initiation codon having a higher polypeptide expression rate than the endogenous initiation codon, but is not limited thereto.

상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.The modification of the amino acid sequence or polynucleotide sequence of the above 4) and 5) may be, but is not limited to, a mutation in the sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof in the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity, or an amino acid sequence or polynucleotide sequence improved to have increased activity. The replacement may be specifically performed by inserting the polynucleotide into a chromosome by homologous recombination, but is not limited thereto. The vector used at this time may additionally include a selection marker to confirm whether or not the chromosome has been inserted. The selection marker is as described above.

상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.The introduction of the foreign polynucleotide exhibiting the activity of the above 6) polypeptide may be the introduction into the host cell of a foreign polynucleotide encoding a polypeptide exhibiting the same/similar activity as the above polypeptide. The foreign polynucleotide is not limited in its origin or sequence as long as it exhibits the same/similar activity as the above polypeptide. The method used for the above introduction can be performed by a person skilled in the art appropriately selecting a known transformation method, and the introduced polynucleotide is expressed in the host cell, thereby producing the polypeptide and increasing its activity.

상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.The above 7) codon optimization of a polynucleotide encoding a polypeptide may be codon optimization of an endogenous polynucleotide to increase transcription or translation within a host cell, or codon optimization of a foreign polynucleotide to achieve optimized transcription or translation within a host cell.

상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.The above 8) analyzing the tertiary structure of a polypeptide and selecting an exposed portion to modify or chemically modify may be done by, for example, comparing the sequence information of the polypeptide to be analyzed with a database storing the sequence information of known proteins, determining a template protein candidate based on the degree of sequence similarity, confirming the structure based on this, and selecting an exposed portion to modify or chemically modify and modifying or modifying it.

이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도 발현량이 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.Such enhancement of polypeptide activity may be, but is not limited to, an increase in the activity or concentration or expression level of the corresponding polypeptide relative to the activity or concentration of the polypeptide expressed in the wild-type or unmodified microbial strain, or an increase in the amount of a product produced from the polypeptide.

본 출원에서 용어, 폴리펩티드의 “약화”는 내재적 활성에 비하여 활성이 감소되거나 또는 활성이 없는 것을 모두 포함하는 개념이다. 상기 약화는 불활성화(inactivation), 결핍(deficiency), 하향조절(down-regulation), 감소(decrease), 저하(reduce), 감쇠(attenuation) 등의 용어와 혼용될 수 있다. In this application, the term “attenuation” of a polypeptide is a concept that includes both a decrease in activity or no activity compared to the intrinsic activity. The attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, and attenuation.

상기 약화는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드의 변이 등으로 폴리펩티드 자체의 활성이 본래 미생물이 가지고 있는 폴리펩티드의 활성에 비해 감소 또는 제거된 경우, 이를 코딩하는 폴리뉴클레오티드의 유전자의 발현 저해 또는 폴리펩티드로의 번역(translation) 저해 등으로 세포 내에서 전체적인 폴리펩티드 활성 정도 및/또는 농도(발현량)가 천연형 균주에 비하여 낮은 경우, 상기 폴리뉴클레오티드의 발현이 전혀 이루어지지 않은 경우, 및/또는 폴리뉴클레오티드의 발현이 되더라도 폴리펩티드의 활성이 없는 경우 역시 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주, 야생형 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “불활성화, 결핍, 감소, 하향조절, 저하, 감쇠”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성에 비하여 낮아진 것을 의미한다. The above weakening may also include cases where the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide originally possessed by the microorganism due to mutation of the polynucleotide encoding the polypeptide, etc., cases where the overall level of polypeptide activity and/or concentration (expression amount) within the cell is lower than that of the natural strain due to inhibition of expression of the gene of the polynucleotide encoding it or inhibition of translation into a polypeptide, cases where the polynucleotide is not expressed at all, and/or cases where the polynucleotide is expressed but there is no activity of the polypeptide. The above “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain, wild type, or unmodified microorganism before the change in trait when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification.” The term “inactivation, deficiency, reduction, down-regulation, reduction, attenuation” of a polypeptide activity relative to its intrinsic activity means that the activity of a particular polypeptide is lowered compared to the activity that the parent strain or unmodified microorganism originally had prior to the transformation.

이러한 폴리펩티드의 활성의 약화는, 당업계에 알려진 임의의 방법에 의하여 수행될 수 있으나 이로 제한되는 것은 아니며, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다(예컨대, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012 등).Attenuation of the activity of such polypeptides can be accomplished by any method known in the art, including but not limited to, and can be achieved by application of various methods well known in the art (e.g., Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).

구체적으로, 본 출원의 폴리펩티드의 약화는Specifically, the weakening of the polypeptide of the present application is

1) 폴리펩티드를 코딩하는 유전자 전체 또는 일부의 결손;1) Deletion of all or part of a gene encoding a polypeptide;

2) 폴리펩티드를 코딩하는 유전자의 발현이 감소하도록 발현조절영역(또는 발현조절서열)의 변형;2) Modification of the expression control region (or expression control sequence) so as to decrease the expression of the gene encoding the polypeptide;

3) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 구성하는 아미노산 서열의 변형(예컨대, 아미노산 서열 상의 1 이상의 아미노산의 삭제/치환/부가);3) Modification of the amino acid sequence constituting the polypeptide (e.g., deletion/substitution/addition of one or more amino acids in the amino acid sequence) so as to eliminate or weaken the activity of the polypeptide;

4) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 코딩하는 유전자 서열의 변형 (예를 들어, 폴리펩티드의 활성이 제거 또는 약화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 핵산염기 서열 상의 1 이상의 핵산염기의 삭제/치환/부가);4) Modification of the gene sequence encoding the polypeptide such that the activity of the polypeptide is eliminated or weakened (e.g., deletion/substitution/addition of one or more nucleotides in the nucleotide sequence of the polypeptide gene such that the polypeptide is modified such that the activity of the polypeptide is eliminated or weakened);

5) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;5) Modification of the base sequence encoding the initiation codon or 5'-UTR region of a gene transcript encoding a polypeptide;

6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입;6) Introduction of an antisense oligonucleotide (e.g., antisense RNA) that binds complementarily to a transcript of the gene encoding the polypeptide;

7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가;7) Addition of a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of a gene encoding a polypeptide to form a secondary structure to which ribosome attachment is impossible;

8) 폴리펩티드를 코딩하는 유전자 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE); 또는8) Addition of a promoter that is transcribed in the opposite direction to the 3' end of the ORF (open reading frame) of the gene sequence encoding the polypeptide (Reverse transcription engineering, RTE); or

9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more of the above 1) to 8), but is not particularly limited thereto.

예컨대, For example,

상기 1) 폴리펩티드를 코딩하는 상기 유전자 일부 또는 전체의 결손은, 염색체 내 내재적 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드 전체의 제거, 일부 뉴클레오티드가 결실된 폴리뉴클레오티드로의 교체 또는 마커 유전자로 교체일 수 있다.The above 1) deletion of part or all of the gene encoding the polypeptide may be the deletion of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide having some nucleotides deleted, or replacement with a marker gene.

또한, 상기 2) 발현조절영역(또는 발현조절서열)의 변형은, 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 발현조절영역(또는 발현조절서열) 상의 변이 발생, 또는 더욱 약한 활성을 갖는 서열로의 교체일 수 있다. 상기 발현조절영역에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.In addition, the above 2) modification of the expression control region (or expression control sequence) may be a mutation in the expression control region (or expression control sequence) by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, or replacement with a sequence having weaker activity. The expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.

또한, 상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 낮은 다른 개시코돈을 코딩하는 염기서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.In addition, the above 3) modification of the base sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide may be, for example, a substitution with a base sequence encoding another initiation codon having a lower polypeptide expression rate than the endogenous initiation codon, but is not limited thereto.

또한, 상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은 폴리펩티드의 활성을 약화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 약한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 없도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 폴리뉴클레오티드 서열 내 변이를 도입하여 종결 코돈을 형성시킴으로써, 유전자의 발현을 저해하거나 약화시킬 수 있으나, 이에 제한되지 않는다.In addition, the modification of the amino acid sequence or polynucleotide sequence of the above 4) and 5) may be, but is not limited to, a mutation in the sequence such as deletion, insertion, non-conservative or conservative substitution, or a combination thereof in the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide, or replacement with an amino acid sequence or polynucleotide sequence improved to have a weaker activity, or an amino acid sequence or polynucleotide sequence improved to have no activity. For example, the expression of the gene may be inhibited or weakened by introducing a mutation in the polynucleotide sequence to form a stop codon, but is not limited thereto.

상기 6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입은 예를 들어 문헌 [Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986]을 참고할 수 있다.The introduction of an antisense oligonucleotide (e.g., antisense RNA) that complementarily binds to a transcript of the gene encoding the polypeptide described above 6) can be described, for example, with reference to the literature [Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].

상기 7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가는 mRNA 번역을 불가능하게 하거나 속도를 저하시키는 것일 수 있다.7) Addition of a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of a gene encoding a polypeptide to form a secondary structure to which ribosome attachment is impossible may render mRNA translation impossible or slow it down.

상기 8) 폴리펩티드를 코딩하는 유전자서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE)는 상기 폴리펩티드를 코딩하는 유전자의 전사체에 상보적인 안티센스 뉴클레오티드를 만들어 활성을 약화하는 것일 수 있다.The addition of a promoter transcribed in the opposite direction to the 3' end of the ORF (open reading frame) of the gene sequence encoding the above 8) polypeptide (Reverse transcription engineering, RTE) may weaken the activity by creating an antisense nucleotide complementary to the transcript of the gene encoding the above polypeptide.

또 다른 양상은 상기 폴리펩티드 변이체를 코딩하는 폴리뉴클레오티드를 제공할 수 있다. Another aspect may be to provide a polynucleotide encoding the above polypeptide variant.

본 출원에서, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이체를 코딩하는 폴리뉴클레오티드 단편을 의미한다.In this application, "polynucleotide" means a polymer of nucleotides in which nucleotide units (monomers) are covalently bonded to form a long chain, a DNA or RNA strand of a certain length or longer, and more specifically, a polynucleotide fragment encoding the variant.

본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 21로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 22의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 22의 서열로 이루어지거나, 필수적으로 구성될 수 있다.A polynucleotide encoding a variant of the present application may comprise a base sequence encoding an amino acid sequence set forth in SEQ ID NO: 21. As an example of the present application, the polynucleotide of the present application may have or comprise the sequence of SEQ ID NO: 22. Additionally, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 22.

본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 1의 220번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 시스테인을 코딩하는 코돈 중 하나일 수 있다.The polynucleotide of the present application may have various modifications made to the coding region within a range that does not change the amino acid sequence of the variant of the present application, taking into account the degeneracy of the codon or the codon preferred in an organism that is intended to express the variant of the present application. Specifically, the polynucleotide of the present application has or includes a base sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, and less than 100% homology or identity with the sequence of SEQ ID NO: 2, or may consist of or consist essentially of a base sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, and less than 100% homology or identity with the sequence of SEQ ID NO: 2, but is not limited thereto. At this time, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 220th position of SEQ ID NO: 1 may be one of the codons encoding cysteine.

또한, 본 출원의 폴리뉴클레오티드는 공지의 유전자 서열로부터 제조될 수 있는 프로브, 예를 들면, 본 출원의 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화할 수 있는 서열이라면 제한없이 포함될 수 있다. 상기 “엄격한 조건(stringent condition)”이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(J. Sambrook et al.,Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8 참조)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 폴리뉴클레오티드끼리, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 상동성 또는 동일성을 갖는 폴리뉴클레오티드끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 폴리뉴클레오티드끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1×SSC, 0.1% SDS, 구체적으로 60℃, 0.1×SSC, 0.1% SDS, 보다 구체적으로 68℃, 0.1×SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로 2회 내지 3회 세정하는 조건을 열거할 수 있다.In addition, the polynucleotide of the present application may include, without limitation, a probe that can be prepared from a known genetic sequence, for example, a sequence that can hybridize under stringent conditions with a complementary sequence to all or a part of the polynucleotide sequence of the present application. The “stringent conditions” above mean conditions that enable specific hybridization between polynucleotides. Such conditions are specifically described in the literature (see J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8). For example, the conditions under which polynucleotides having high homology or identity hybridize with each other, or polynucleotides having 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more homology or identity hybridize, and polynucleotides having lower homology or identity do not hybridize, or the conditions of washing once, specifically twice to three times, at a salt concentration and temperature corresponding to the washing conditions of conventional southern hybridization, such as 60°C, 1×SSC, 0.1% SDS, specifically 60°C, 0.1×SSC, 0.1% SDS, and more specifically 68°C, 0.1×SSC, 0.1% SDS.

혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(miS.martch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, “상보적”은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데닌은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원의 폴리뉴클레오티드는 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.Hybridization requires that the two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization. The term “complementary” is used to describe the relationship between nucleotide bases that can hybridize with each other. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the polynucleotides of the present application may also include isolated nucleic acid fragments that are complementary to the entire sequence, as well as substantially similar nucleic acid sequences.

구체적으로, 본 출원의 폴리뉴클레오티드와 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.Specifically, a polynucleotide having homology or identity with the polynucleotide of the present application can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the conditions described above. In addition, the Tm value may be, but is not limited to, 60° C., 63° C., or 65° C. and can be appropriately adjusted by a person skilled in the art depending on the purpose.

상기 폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition; F.M. Ausubel et al.,Current Protocols in Molecular Biology, 9.50-9.51, 11.7-11.8 참조). The appropriate stringency to hybridize the polynucleotides will depend on the length and degree of complementarity of the polynucleotides and variables are well known in the art (see, e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition; F.M. Ausubel et al., Current Protocols in Molecular Biology, 9.50-9.51, 11.7-11.8).

또 다른 양상은 상기 폴리뉴클레오티드를 포함하는 벡터를 제공할 수 있다. 상기 벡터는 상기 폴리뉴클레오티드를 숙주세포에서 발현시키기 위한 발현 벡터일 수 있으나, 이에 제한되지 않는다.Another aspect may provide a vector comprising the polynucleotide. The vector may be, but is not limited to, an expression vector for expressing the polynucleotide in a host cell.

본 출원에서, “벡터"는 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.In the present application, a “vector” may include a DNA construct comprising a base sequence of a polynucleotide encoding a target polypeptide operably linked to a suitable expression control region (or expression control sequence) so as to enable expression of the target polypeptide in a suitable host. The expression control region may include a promoter capable of initiating transcription, an optional operator sequence for controlling such transcription, a sequence encoding a suitable mRNA ribosome binding site, and sequences controlling termination of transcription and translation. The vector may be capable of replicating or functioning independently of the host genome after being transformed into a suitable host cell, and may be integrated into the genome itself.

본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.The vector used in the present application is not particularly limited, and any vector known in the art can be used. Examples of commonly used vectors include plasmids, cosmids, viruses, and bacteriophages in a natural or recombinant state. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pDZ series, pBR series, pUC series, pBluescriptII series, pGEM series, pTZ series, pCL series, and pET series can be used as plasmid vectors. Specifically, pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors can be used.

일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.For example, a polynucleotide encoding a target polypeptide can be inserted into a chromosome via a vector for intracellular chromosomal insertion. The insertion of the polynucleotide into the chromosome can be accomplished by any method known in the art, for example, homologous recombination, but is not limited thereto. A selection marker for confirming whether the chromosome has been inserted can be additionally included. The selection marker is for selecting cells transformed with the vector, i.e., confirming whether the target nucleic acid molecule has been inserted, and markers that confer a selectable phenotype, such as drug resistance, nutrient requirement, resistance to cytotoxic agents, or expression of a surface polypeptide, can be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or exhibit other phenotypic traits, so that the transformed cells can be selected.

본 출원에서 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.In this application, the term "transformation" means introducing a vector containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell. The transformed polynucleotide may include both a position inserted into the chromosome of the host cell or an extrachromosomal position, as long as it can be expressed in the host cell. In addition, the polynucleotide includes DNA and/or RNA encoding the target polypeptide. The polynucleotide may be introduced in any form as long as it can be introduced into the host cell and expressed. For example, the polynucleotide may be introduced into the host cell in the form of an expression cassette, which is a genetic construct containing all elements necessary for its own expression. The expression cassette may typically include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal that are operably linked to the polynucleotide. The above expression cassette may be in the form of an expression vector capable of self-replication. In addition, the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence necessary for expression in the host cell, but is not limited thereto.

또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 변이체를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다.Additionally, the term "operably linked" as used herein means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the target variant of the present application is functionally linked to the polynucleotide sequence.

또 다른 양상은, 바이오틴 신타제 활성이 강화된, 바이오틴을 생산하는 미생물을 제공할 수 있다. 일 예에서 상기 바이오틴 신타제는 세라티아 속(Serratia sp.; 예를 들면 세라티아 마르세센스(Serratia marcescens)) 또는 에스케리키아 속(Escherichia sp.; 예를 들면 대장균 (Escherichia coli)) 미생물 유래일 수 있다. 폴리펩티드(예를 들면, 바이오틴 신타제) 활성의 강화와 관련해서는 전술한 바와 같다. Another aspect can be provided by providing a microorganism producing biotin having enhanced biotin synthase activity. In one example, the biotin synthase can be from a microorganism of the genus Serratia (e.g., Serratia marcescens ) or the genus Escherichia (e.g., Escherichia coli ). The enhancement of polypeptide (e.g., biotin synthase) activity is as described above.

일 예에서 상기 미생물은 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드; 본 출원의 폴리펩티드 변이체; 상기 폴리펩티드 또는 상기 폴리펩티드 변이체를 암호화하는 폴리뉴클레오티드; 및 상기 폴리뉴클레오티드를 포함하는 벡터로 이루어지는 군에서 선택된 1종 이상을 포함할 수 있다. In one example, the microorganism may comprise at least one selected from the group consisting of a polypeptide comprising an amino acid sequence of sequence number 1; a polypeptide variant of the present application; a polynucleotide encoding the polypeptide or the polypeptide variant; and a vector comprising the polynucleotide.

일 예에서, 상기 미생물은 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase), 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase), 말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase), 및 데티오바이오틴 신테타제(Dethiobiotin synthetase)으로 이루어진 군에서 선택된 1종 이상의 활성이 추가로 강화된 것일 수 있고, 예를 들면, 본 출원의 변이체를 암호화도록 변이된 bioB 유전자를 포함하는 bioABFCD 오페론이 도입된 것일 수 있다. 폴리펩티드 활성의 강화와 관련해서는 전술한 바와 같다.In one example, the microorganism may further have an enhanced activity of at least one selected from the group consisting of 7,8-diamino-pelargonic acid aminotransferase, 8-amino-7-oxononanoate synthase, malonyl-ACP O-methyltransferase, and dethiobiotin synthetase, for example, a bioABFCD operon including a bioB gene mutated to encode the variant of the present application may be introduced. The enhancement of the polypeptide activity is as described above.

본 출원에서, “7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase)”는 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase)의 활성으로 생산된 8-amino-7-oxononanoate (7-Keto-8-aminopelargonic acid; KAPA)에 SAM 또는 라이신 같은 아민기를 가진 효소 특이적 특정 물질로부터 얻은 alpha-amino group을 결합시켜 7,8-diamino-pelargonic acid (DAPA)를 생성하는 단백질을 의미할 수 있다. In the present application, “7,8-diamino-pelargonic acid aminotransferase” may mean a protein that generates 7,8-diamino-pelargonic acid (DAPA) by bonding an alpha-amino group obtained from an enzyme-specific specific substance having an amine group such as SAM or lysine to 8-amino-7-oxononanoate (7-Keto-8-aminopelargonic acid; KAPA) produced by the activity of 8-amino-7-oxononanoate synthase.

본 출원에서, “8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase)”는 6-carboxyhexanoyl-CoA (Pimeloyl-coA/ACP)와 알라닌의 탈탄산 축합반응을 촉매하는 단백질을 의미할 수 있다. In the present application, “8-amino-7-oxononanoate synthase” may mean a protein that catalyzes the decarboxylative condensation reaction of 6-carboxyhexanoyl-CoA (Pimeloyl-coA/ACP) and alanine.

본 출원에서, “말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase 또는 Malonyl-[acyl-carrier protein] O-methyltransferase)”는 지방산 생합성 경로 중의 탄소 중합체를 pimeloyl-coA/ACP 로 전환하는 효소로 malonyl thioester의 카복시 그룹을 메틸 에스터 화 시키는 단백질을 의미할 수 있다. In the present application, “malonyl-ACP O-methyltransferase (or malonyl-[acyl-carrier protein] O-methyltransferase)” may mean a protein that methyl esterifies the carboxyl group of malonyl thioester by converting a carbon polymer in the fatty acid biosynthetic pathway into pimeloyl-coA/ACP.

본 출원에서, “데티오바이오틴 신테타제(Dethiobiotin synthetase)”는 바이오틴 생산 전구물질인 데티오바이오틴을 7,8-diamino-pelargonic acid (DAPA)로부터 전환시키는 효소를 의미할 수 있다. In the present application, “dethiobiotin synthetase” may mean an enzyme that converts dethiobiotin, a precursor for biotin production, from 7,8-diamino-pelargonic acid (DAPA).

본 출원에서 용어, "균주(또는, 미생물)"는 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 폴리펩티드, 단백질 또는 산물의 생산을 위하여 유전적 변형(modification)을 포함하는 미생물일 수 있다.In this application, the term "strain (or microorganism)" includes both wild-type microorganisms and microorganisms that have undergone genetic modification naturally or artificially, and may be microorganisms that have a specific mechanism weakened or strengthened due to causes such as the insertion of an external gene or the enhancement or inactivation of the activity of an endogenous gene, and may be microorganisms that include genetic modification for the production of a desired polypeptide, protein or product.

본 출원의 균주는 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드; 본 출원의 변이체, 본 출원의 폴리뉴클레오티드 및 본 출원의 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 발현하도록 변형된 균주; 본 출원의 변이체, 또는 본 출원의 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 본 출원의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있으나, 이에 제한되지 않는다.The strain of the present application may be, but is not limited to, a strain comprising a polypeptide comprising an amino acid sequence of SEQ ID NO: 1; a strain comprising at least one of a variant of the present application, a polynucleotide of the present application, and a vector comprising a polynucleotide of the present application; a strain modified to express the variant of the present application or the polynucleotide of the present application; a strain (e.g., a recombinant strain) expressing the variant of the present application or the polynucleotide of the present application; or a strain (e.g., a recombinant strain) having the activity of the variant of the present application.

본 출원의 균주는 바이오틴 생산능을 가진 균주일 수 있다.The strain of the present application may be a strain having biotin production ability.

본 출원의 균주는 자연적으로 바이오틴 신타제 또는 바이오틴 생산능을 가지고 있는 미생물, 또는 바이오틴 신타제 또는 바이오틴 생산능이 없는 모균주에 본 출원의 변이체 또는 이를 코딩하는 폴리뉴클레오티드(또는 상기 폴리뉴클레오티드를 포함하는 벡터)가 도입되거나 및/또는 바이오틴 생산능이 부여된 미생물일 수 있으나 이에 제한되지 않는다. The strain of the present application may be, but is not limited to, a microorganism naturally having biotin synthase or biotin production ability, or a parent strain lacking biotin synthase or biotin production ability, into which the variant of the present application or a polynucleotide encoding the same (or a vector including the polynucleotide) is introduced and/or biotin production ability is imparted.

일 예로, 본 출원의 균주는 본 출원의 폴리뉴클레오티드 또는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어, 본 출원의 변이체를 발현하는 세포 또는 미생물로서, 본 출원의 목적상 본 출원의 균주는 본 출원의 변이체를 포함하여 바이오틴을 생산할 수 있는 미생물을 모두 포함할 수 있다. 예를 들어, 본 출원의 균주는 천연의 야생형 미생물 또는 바이오틴을 생산하는 미생물에 본 출원의 변이체를 코딩하는 폴리뉴클레오티드가 도입됨으로써 바이오틴 신타제 활성을 갖는 변이체가 발현되어, 바이오틴 생산능이 증가된 재조합 균주일 수 있다. 상기 바이오틴 생산능이 증가된 재조합 균주는, 천연의 야생형 미생물 또는 바이오틴 신타제 비변형 미생물(즉, 야생형 바이오틴 신타제를 발현하는 미생물)에 비하여 바이오틴 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다. 그 예로, 상기 바이오틴 생산능의 증가 여부를 비교하는 대상 균주인, 바이오틴 신타제 비변형 미생물은 야생형 대장균, 대장균 W3110, 대장균 CV04-0002 균주, 및/또는 대장균 CV04-0104 균주(상기 CV04-0002 균주 기반의 대장균 생합성 오페론이 추가 도입된 균주)일 수 있으나, 이에 제한되지 않는다.For example, the strain of the present application is a cell or microorganism that is transformed with a vector including a polynucleotide encoding the polynucleotide of the present application or a variant of the present application, and expresses the variant of the present application. For the purpose of the present application, the strain of the present application may include all microorganisms capable of producing biotin, including the variant of the present application. For example, the strain of the present application may be a recombinant strain in which a variant having biotin synthase activity is expressed by introducing a polynucleotide encoding the variant of the present application into a natural wild-type microorganism or a microorganism that produces biotin, thereby increasing biotin production ability. The recombinant strain in which biotin production ability is increased may be a microorganism in which biotin production ability is increased compared to a natural wild-type microorganism or a biotin synthase-unmodified microorganism (i.e., a microorganism expressing wild-type biotin synthase), but is not limited thereto. For example, the target strain for comparing the increase in biotin production ability, a biotin synthase non-modified microorganism, may be, but is not limited to, a wild-type E. coli strain, E. coli W3110, E. coli CV04-0002 strain, and/or E. coli CV04-0104 strain (a strain into which an E. coli biosynthetic operon based on the CV04-0002 strain is additionally introduced).

일 예로, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물의 바이오틴 생산량(또는 생산능)에 비해 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.5% 이상, 약 29% 이상, 약 29.5% 이상, 약 30% 이상, 약 31% 이상, 약 32% 이상, 약 33% 이상, 약 34% 이상, 또는 약 35% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 또는 약 35% 이하일 수 있음) 증가된 것일 수 있다. 다른 예에서, 상기 생산량이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, 바이오틴 생산량(또는 생산능)이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 1.16배 이상, 1.17배 이상, 1.18배 이상, 1.19배 이상, 약 1.2 배 이상, 1.25배 이상, 또는 약 1.3배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있으나, 이에 제한되지 않는다. 상기 용어 “약(about)”은 ±0.5, ±0.4, ±0.3, ±0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다.For example, the recombinant strain with increased productivity has a biotin production (or productivity) of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, about 7% or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, or about 20% About 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.5% or more, about 29% or more, about 29.5% or more, about 30% or more, about 31% or more, about 32% or more, about 33% or more, about 34% or more, or about 35% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% Below, about 40% or less, or about 35% or less) may be increased. In another example, the recombinant strain with increased production may have an increased biotin production (or productivity) of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, or about 1.3 times or more (the upper limit is not particularly limited, and may be, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less), compared to the parent strain before mutation or the unmodified microorganism, but is not limited thereto. The above term “about” includes all ranges including ±0.5, ±0.4, ±0.3, ±0.2, ±0.1, etc., and includes all numerical values in a range equal to or similar to the numerical value following the term “about,” but is not limited thereto.

본 출원에서, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 바이오틴 신타제 변이체가 도입되지 않거나 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 “변형 전 균주”, “변형 전 미생물”, “비변이 균주”, “비변형 균주”, “비변이 미생물” 또는 “기준 미생물”과 혼용될 수 있다.In the present application, the term "unmodified microorganism" does not exclude a strain containing a mutation that may occur naturally in a microorganism, and may refer to a wild-type strain or a natural strain itself, or a strain before its characteristics are changed by genetic mutation due to natural or artificial factors. For example, the unmodified microorganism may refer to a strain into which the biotin synthase variant described herein is not introduced or before it is introduced. The term "unmodified microorganism" may be used interchangeably with "pre-modified strain", "pre-modified microorganism", "unmutated strain", "unmodified microorganism", or "reference microorganism".

상기 미생물은 에스케리키아 속(Escherichia sp.)일 수 있으며, 상기 에스케리키아 속 미생물은 대장균(Escherichia coli)일 수 있다. The above microorganism may be Escherichia sp., and the Escherichia sp. microorganism may be Escherichia coli .

본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형(예컨대, 상술한 단백질 변이체를 코딩하기 위한 변형)은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다. In the microorganism of the present application, modification of part or all of the polynucleotide (e.g., modification for encoding the protein variant described above) may be induced by, but is not limited to, (a) homologous recombination using a vector for chromosome insertion in the microorganism or genome editing using engineered nuclease (e.g., CRISPR-Cas9) and/or (b) treatment with light such as ultraviolet rays and radiation and/or chemicals. The method for modifying part or all of the gene may include a method using DNA recombination technology. For example, a nucleotide sequence or vector including a nucleotide sequence homologous to a target gene may be injected into the microorganism to cause homologous recombination, thereby causing deletion of part or all of the gene. The injected nucleotide sequence or vector may include, but is not limited to, a dominant selection marker.

다른 양상은 상기 바이오틴 신타제 활성을 갖는 폴리펩티드 변이체, 상기 변이체를 암호화하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 및 상기 미생물(또는 균주, 재조합 세포)로 이루어진 군에서 선택된 1종 이상을 포함하는, 바이오틴 생산용 조성물을 제공할 수 있다. 상기 변이체, 폴리뉴클레오티드, 벡터, 및 미생물 등은 전술한 바와 같다. Another aspect can provide a composition for producing biotin, comprising at least one selected from the group consisting of a polypeptide variant having the biotin synthase activity, a polynucleotide encoding the variant, a vector comprising the polynucleotide, and the microorganism (or strain, recombinant cell). The variant, the polynucleotide, the vector, and the microorganism, etc. are as described above.

일 예에서, 상기 생산용 조성물은 바이오틴 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.In one example, the production composition may further comprise any suitable excipient commonly used in compositions for biotin production, including but not limited to preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizers, or isotonic agents.

다른 양상은 상기 바이오틴 신타제 활성을 갖는 폴리펩티드 변이체, 이를 암호화하는 폴리뉴클레오티드, 및/또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 미생물에 도입(예를 들면, 형질전환)시키는 단계를 포함하는, 상기 미생물의 바이오틴 생산능 증가 방법 또는 상기 미생물에 바이오틴 생산능을 부여하는 방법을 제공할 수 있다.Another aspect may provide a method for increasing biotin production ability of a microorganism or a method for imparting biotin production ability to a microorganism, the method comprising a step of introducing (e.g., transforming) a polypeptide variant having the biotin synthase activity, a polynucleotide encoding the same, and/or a recombinant vector comprising the polynucleotide into the microorganism.

본 출원의 또 다른 하나의 양태는 본 출원의 미생물을 배지에서 배양하는 단계를 포함하는, 바이오틴 생산방법을 제공한다. Another aspect of the present application provides a method for producing biotin, comprising the step of culturing a microorganism of the present application in a medium.

본 출원에서, "배양"은 본 출원의 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.In this application, "cultivation" means growing the microorganism of this application under appropriately controlled environmental conditions. The culturing process of this application can be performed according to appropriate media and culturing conditions known in the art. This culturing process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culturing may be batch, continuous, and/or fed-batch, but is not limited thereto.

본 출원에서, "배지"는 본 출원의 미생물을 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다. 구체적으로, 미생물에 대한 배양 배지는 문헌["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)] 등에서 찾아볼 수 있다.In this application, "medium" means a material containing nutrients as main components necessary for culturing the microorganism of the present application, and supplies nutrients and growth factors, including water essential for survival and growth. Specifically, the medium and other culture conditions used for culturing the microorganism of the present application may be any medium used for culturing general microorganisms without particular limitation, but the microorganism of the present application may be cultured in a general medium containing an appropriate carbon source, nitrogen source, phosphorus, inorganic compound, amino acid, and/or vitamin, etc., under aerobic conditions while controlling temperature, pH, etc. Specifically, culture media for microorganisms can be found in the literature ["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)], etc.

본 출원에서 상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.In the present application, the carbon source may include carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, etc.; sugar alcohols such as mannitol, sorbitol, etc., organic acids such as pyruvic acid, lactic acid, citric acid, etc.; amino acids such as glutamic acid, methionine, lysine, etc. In addition, natural organic nutrients such as starch hydrolysate, molasses, blackstrap molasses, rice winter, cassava, sugarcane residue, and corn steep liquor may be used, and specifically, carbohydrates such as glucose and sterilized pretreated molasses (i.e., molasses converted into reducing sugar) may be used, and other appropriate amounts of carbon sources may be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more, but are not limited thereto.

상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.The nitrogen source may include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, ammonium nitrate, etc.; organic nitrogen sources such as amino acids such as glutamic acid, methionine, glutamine, etc., peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolysate, fish or its decomposition product, defatted soybean cake or its decomposition product, etc. These nitrogen sources may be used alone or in combination of two or more, but are not limited thereto.

상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.The above-mentioned personnel may include potassium phosphate monobasic, potassium phosphate dibasic, or their corresponding sodium-containing salts. The inorganic compounds may include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. In addition, amino acids, vitamins, and/or appropriate precursors may be included. These components or precursors may be added to the medium in batch or continuous manner. However, the present invention is not limited thereto.

또한, 본 출원의 미생물의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.In addition, during the cultivation of the microorganism of the present application, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner to adjust the pH of the medium. In addition, during the cultivation, an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation. In addition, in order to maintain the aerobic state of the medium, oxygen or an oxygen-containing gas may be injected into the medium, or in order to maintain the anaerobic and microaerobic state, no gas may be injected, or nitrogen, hydrogen, or carbon dioxide gas may be injected, but is not limited thereto.

본 출원의 배양에서 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃ 를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다. In the culture of the present application, the culture temperature can be maintained at 20 to 45°C, specifically 25 to 40°C, and the culture can be performed for about 10 to 160 hours, but is not limited thereto.

본 출원의 배양에 의하여 생산된 바이오틴은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.Biotin produced by the culture of the present invention can be secreted into the medium or remain within the cells.

본 출원의 바이오틴 생산방법은, 본 출원의 미생물을 준비하는 단계, 상기 미생물을 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관, in any order)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다. The method for producing biotin of the present application may additionally include a step of preparing a microorganism of the present application, a step of preparing a medium for culturing the microorganism, or a combination thereof (in any order), for example, before the culturing step.

본 출원의 바이오틴 생산방법은, 상기 배양에 따른 배지(배양이 수행된 배지) 또는 상기 미생물로부터 바이오틴을 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.The biotin production method of the present application may additionally include a step of recovering biotin from the culture medium (the medium in which the culture is performed) or the microorganism according to the culture. The recovering step may be additionally included after the culturing step.

상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 바이오틴을 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 바이오틴을 회수할 수 있다.The above recovery may be to collect the target biotin using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method. For example, various chromatographies such as centrifugation, filtration, treatment with a crystallized protein precipitant (salting out method), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography, HPLC or a combination of these methods may be used, and the target biotin can be recovered from the medium or microorganism using a suitable method known in the art.

또한, 본 출원의 바이오틴 생산방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 바이오틴 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 이시적(또는 연속적)으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.In addition, the biotin production method of the present application may additionally include a purification step. The purification may be performed using a suitable method known in the art. In one example, when the biotin production method of the present application includes both a recovery step and a purification step, the recovery step and the purification step may be performed in a sequential manner (or sequentially) regardless of the order, or may be performed simultaneously or integrated into one step, but is not limited thereto.

본 출원의 방법에서, 변이체, 폴리뉴클레오티드, 벡터 및 균주 등은 전술한 바와 같다.In the method of the present application, the variant, polynucleotide, vector, strain, etc. are as described above.

본 출원의 바이오틴 신타제 활성을 갖는 폴리펩티드 변이체를 포함하는, 미생물을 배양하는 경우, 기존 비변형 폴리펩티드를 갖는 미생물에 비해 고수율로 바이오틴 생산이 가능하다. When culturing a microorganism comprising a polypeptide variant having biotin synthase activity of the present invention, biotin can be produced at a higher yield compared to a microorganism having an existing unmodified polypeptide.

본 발명은 하기 실시예를 들어 더욱 자세히 설명할 것이나, 하기 실시예로 권리범위가 한정되는 의도는 아니다.The present invention will be described in more detail with reference to the following examples, but the scope of the invention is not intended to be limited by the following examples.

실시예 1. Example 1. SS . . marcescensmarcescens 유래 바이오틴 신타제 변이체Biotin synthase mutant derived

실시예 1-1. Example 1-1. S. marcescensS. marcescens 유래 바이오틴 신타제 변이체 발현 벡터 제작 및 변이 균주 제작Construction of expression vectors of derived biotin synthase mutants and construction of mutant strains

세라티아 마르세센스(Serratia marcescens 또는 S.mar) 유래 바이오틴 신타제 단백질에서 세 번째 위치의 아미노산인 알라닌 잔기를 쓰레오닌으로 치환한 형태의 변이체(A3T, S.mar)가 바이오틴 생산에 미치는 영향을 확인하고자, 상기 언급한 아미노산 변이가 포함된 과발현 벡터를 제작하였다.Serratia marcescens ( Serratia marcescens or S.mar ) To determine the effect of a mutant (A3T, S.mar) in which the third amino acid residue, alanine, was substituted with threonine in the derived biotin synthase protein on biotin production, an overexpression vector containing the above-mentioned amino acid mutation was constructed.

pSC101 오리진을 포함하는 pCL1920벡터 (GenBank No AB236930)를 기반으로 S. marcescens 유래 bioB 유전자의 자가 프로모터를 이용하여 bioB 유전자가 코딩하는 단백질만을 발현할 수 있는 과발현 벡터 2종을 제작하였다. 벡터를 제작하기 위해 S.mar 야생형 균주(KTCT NO. 2354)의 염색체를 주형으로 하여 서열번호 3와 서열번호 4의 프라이머 쌍을 이용하여 PCR하여 변이가 포함되지 않은 야생형 bioB 유전자를 획득하고, 서열번호 3와 서열번호 5, 서열번호 6와 서열번호 4의 프라이머 쌍을 이용하여 PCR하여 변이체를 코딩하는 bioB 유전자를 획득하였다. 사용한 프라이머 서열은 표 1에 기재하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 25회 반복한 후, 72℃에서 5분간 중합반응을 수행하는 조건으로 PCR을 수행하였다. 그 결과 야생형 단편조각 1166bp의 bioB(S.mar Wt) (서열번호 7)과 변이체형 단편조각인 132bp의 bioB(g7a) 1 (서열번호 8)와 1075bp의 bioB(g7a) 2 (서열번호 9)의 DNA 단편을 수득하였다. 수득한 DNA 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 SmaI의 제한효소로 처리된 pCL1920 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 2종의 야생형 바이오틴 신타제 과발현 벡터 pCL1920-Pn-bioB(S.mar)와 변이형 바이오틴 신타제 과발현 벡터 pCL1920-Pn-bioB(A3T, S.mar)를 제작하였다. S. marcescens based on the pCL1920 vector (GenBank No AB236930) containing the pSC101 origin Two overexpression vectors capable of expressing only the protein encoded by the bioB gene were constructed using an autonomous promoter of the derived bioB gene. To construct the vectors, the chromosome of the S. mar wild-type strain (KTCT NO. 2354) was used as a template, and the primer pairs of SEQ ID NO: 3 and SEQ ID NO: 4 were used to perform PCR to obtain a wild-type bioB gene without mutation, and the bioB gene encoding the mutant was obtained by PCR using the primer pairs of SEQ ID NO: 3 and SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 4. The primer sequences used are listed in Table 1. PfuUltra TM high-fidelity DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction. PCR was performed under the following conditions: denaturation at 95°C for 30 sec; annealing at 55°C for 30 sec; and polymerization at 72°C for 2 min, repeated 25 times, and then polymerization at 72°C for 5 min. As a result, DNA fragments of the wild-type 1166 bp bioB (S.mar Wt) (SEQ ID NO: 7) and the mutant fragments of the 132 bp bioB (g7a) 1 (SEQ ID NO: 8) and the 1075 bp bioB (g7a) 2 (SEQ ID NO: 9) were obtained. The obtained DNA products were purified using a PCR Purification kit from QIAGEN and then cloned using the pCL1920 vector treated with the SmaI restriction enzyme and the Infusion Cloning Kit from TaKaRa, thereby constructing two types of wild-type biotin synthase overexpression vectors, pCL1920-Pn-bioB (S.mar) and mutant biotin synthase overexpression vectors, pCL1920-Pn-bioB (A3T, S.mar).

명칭 Name 서열(5'->3')Sequence (5'->3') 서열번호 Sequence number VB07_0001VB07_0001 GACTCTAGAGGATCCCCgggTGTTGTAAACCAAATTGGATGACTCTAGAGGATCCCCgggTGTTGTAAACCAAATTGGAT 서열번호 3Sequence number 3 VB07_0002VB07_0002 ATTCGAGCTCGGTACCCgggTCACGGCGCCGCGTTGTAAAATTCGAGCTCGGGTACCCgggTCACGGCGCCGCGTTGTAAA 서열번호 4Sequence number 4 VB07_0003VB07_0003 TGTCCAGTGAATGCGGTCGGTCATCATGGCGTCTCCAAAACTGTCCAGTGAATGCGGTCGGTCATCATGGCGTCTCCAAAAC 서열번호 5Sequence number 5 VB07_0004VB07_0004 GTTTTGGAGACGCCATGATGACCGACCGCATTCACTGGACAGTTTTGGAGACGCCATGATGACCGACCGCATTCACTGGACA 서열번호 6Sequence number 6

바이오틴 생산능 증가여부를 확인하기 위해 상기 제작된 2종의 bioB 유전자 과발현 벡터 (야생형 바이오틴 신타제 과발현 벡터 pCL1920-Pn-bioB(S.mar)와 변이형 바이오틴 신타제 과발현 벡터 pCL1920-Pn-bioB(A3T, S.mar))를 열충격법(Heat shock transformation)으로 바이오틴이 소량 생산되는 대장균 균주 (CV04-0002)에 도입하였다. 대조군으로 pCL1920 벡터를 CV04-0002 균주에 도입하였다.To confirm whether biotin production ability was increased, the two types of bioB gene overexpression vectors constructed above (wild-type biotin synthase overexpression vector pCL1920-Pn-bioB (S.mar) and mutant biotin synthase overexpression vector pCL1920-Pn-bioB (A3T, S.mar)) were introduced into an E. coli strain (CV04-0002) that produces a small amount of biotin by heat shock transformation. As a control, the pCL1920 vector was introduced into the CV04-0002 strain.

상기 CV04-0002 균주는 대장균(W3110) birA 유전자가 제거되고 코리네박테리움 글루타미쿰 유래 birA 유전자가 삽입된 균주(W3110 ΔbirA(E.co)::Pcj1_birA(C.gl))로서, 다음과 같은 방법으로 수득하였다:The above CV04-0002 strain is a strain (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl)) in which the E. coli (W3110) birA gene has been deleted and the Corynebacterium glutamicum-derived birA gene has been inserted, and was obtained by the following method:

대장균 W3110 염색체 DNA를 주형으로 하여 VB7_7 (서열번호 32)과 VB7_8 (서열번호 33)의 프라이머를 이용하여 업스트림 (Upstream) 지역 약 0.5 kb (서열번호 34; 업스트림 단편), VB7_9 (서열번호 35)와 VB7_10 (서열번호 36)의 프라이머를 이용하여 다운스트림 (Downstream) 지역 약 0.5 kb의 (서열번호 37; 다운스트림 단편) 유전자 단편을 PCR 수행을 통해 수득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 60초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하여 수득하였다. 수득한 DNA 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 증폭된 birA 업스트림 및 다운스트림 단편, 그리고 EcoRⅤ 제한효소로 절단된 염색체 형질전환용 벡터 pSKH vector(WO2020032590A1 참조)를 깁슨 어셈블리 (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법을 이용하여 클로닝함으로써 birA 유전자 결손 및 타겟 유전자 삽입용 벡터 pSKHΔbirA(E.co)를 제작하였다. 다음으로 birA 유전자 결손 벡터 pSKHΔbirA(E.co)를 기반으로 기공지된 cj1 프로모터를 포함한 코리네박테리움 글루타미쿰 유래 birA 유전자를 삽입하는 벡터를 제작하였다. 우선 합성 cj1 프로모터 DNA (서열번호 38)를 주형으로 VB7_11 (서열번호 39)과 VB7_15 (서열번호 40)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을 PCR 수행을 통해 수득하고, 코리네박테리움 글루타미쿰 ATCC13032 염색체 DNA를 주형으로 하여 VB7_16 (서열번호 41)과 VB7_17 (서열번호 42)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였다(서열번호 43). 수득한 DNA 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 cj1 프로모터와 각 각의 birA 유전자 단편, 그리고 ScaⅠ제한효소로 절단된 pSKHΔbirA(E.co) 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝함으로써 재조합 플라스미드를 획득하여, SKHΔbirA(E.co)::Pcj1_birA(C.gl)로 명명하였다. 상기 얻어진 pSKHΔbirA(E.co)::Pcj1_birA(C.gl)를 야생형 대장균 W3110 electro-competent cell에 전기천공법으로 형질전환(transformation) 후, 2차 교차 과정을 거쳐 CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl))를 수득하였다.Using E. coli W3110 chromosomal DNA as a template, a gene fragment of about 0.5 kb in the upstream region (SEQ ID NO: 34; upstream fragment) was obtained using the primers VB7_7 (SEQ ID NO: 32) and VB7_8 (SEQ ID NO: 33) (SEQ ID NO: 34; upstream fragment) and a gene fragment of about 0.5 kb in the downstream region (SEQ ID NO: 37; downstream fragment) was obtained by PCR using the primers VB7_9 (SEQ ID NO: 35) and VB7_10 (SEQ ID NO: 36). SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were as follows: denaturation at 95°C for 5 minutes, 30 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 60 seconds, and polymerization at 72°C for 30 seconds, and then polymerization at 72°C for 5 minutes. The obtained DNA product was purified using a PCR Purification kit from QIAGEN, and the amplified birA upstream and downstream fragments and the pSKH vector for chromosomal transformation digested with EcoRⅤ restriction enzyme (see WO2020032590A1) were cloned using the Gibson assembly method (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) to produce a vector pSKHΔbirA(E.co) for birA gene deletion and target gene insertion. Next, a vector inserting the birA gene derived from Corynebacterium glutamicum including the disclosed cj1 promoter was produced based on the birA gene deletion vector pSKHΔbirA(E.co). First, using the synthetic cj1 promoter DNA (SEQ ID NO: 38) as a template and the primers VB7_11 (SEQ ID NO: 39) and VB7_15 (SEQ ID NO: 40), a cj1 promoter fragment of about 0.3 kb was obtained through PCR, and using the Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template and the primers VB7_16 (SEQ ID NO: 41) and VB7_17 (SEQ ID NO: 42), a birA gene fragment of about 0.8 kb was obtained through PCR (SEQ ID NO: 43). The obtained DNA product was purified using a PCR Purification kit from QIAGEN, and the cj1 promoter, each birA gene fragment, and the pSKHΔbirA(E.co) vector digested with ScaI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named SKHΔbirA(E.co)::Pcj1_birA(C.gl). The obtained pSKHΔbirA(E.co)::Pcj1_birA(C.gl) was transformed into a wild-type E. coli W3110 electro-competent cell by electroporation, and CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl)) was obtained through a second crossing over process.

각각의 균주를 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 하기 표 2의 조성을 갖는 역가 배지 25㎖에 접종한 다음, 이를 30℃, 200rpm의 배양기에서 40시간 동안 배양하고, 각 균주의 바이오틴 생산량을 MS-MS 기법을 이용하여 측정하고, 그 결과를 표 3에 나타내었다. Each strain was spread on LB solid medium and cultured overnight in an incubator at 30°C. The strains cultured overnight on the LB solid medium were inoculated into 25 ml of a titer medium having the composition shown in Table 2 below, and cultured for 40 hours in an incubator at 30°C and 200 rpm, and the biotin production of each strain was measured using the MS-MS technique, and the results are shown in Table 3.

조성furtherance 농도(g/L)Concentration (g/L) 포도당 Glucose 3030 KH2PO4 KH 2 PO 4 0.30.3 K2HPO4 K 2 HPO 4 0.60.6 효모액기스Yeast extract 2.52.5 (NH4)2SO4 (NH 4 ) 2 SO 4 1515 MgSO4,7H2OMgSO 4 ,7H 2 O 11 FeSO4,7H2OFeSO 4 ,7H 2 O 0.030 0.030 NaClNaCl 2.52.5 탄산칼슘 Calcium carbonate 4040

균주명Strain name OD562nmOD562nm 소모당(g/L)Consumption (g/L) 바이오틴(mg/L)Biotin (mg/L) E.coli CV04-0002/pCL1920E. coli CV04-0002/pCL1920 35.335.3 3030 0.170.17 E.coli CV04-0002/ pCL1920-Pn-bioB(S.mar)E.coli CV04-0002/pCL1920-Pn-bioB(S.mar) 34.134.1 3030 0.350.35 E.coli CV04-0002/ pCL1920-Pn-bioB(A3T, S.mar)E.coli CV04-0002/pCL1920-Pn-bioB(A3T, S.mar) 34.334.3 3030 0.490.49

상기 표 3에서 볼 수 있는 바와 같이, S. marcescens 균주 유래의 bioB 유전자가 과발현된 균주의 경우 바이오틴 생산량이 증가하였으며, S. marcescens 유래 바이오틴 신타아제 변이체(A3T, S.mar)가 도입된 균주(CV04-0002/pCL1920-Pn-bioB(A3T, S.mar))도 변이체가 도입되지 않은 모균주 및 야생형 바이오틴 신타아제가 도입된 균주 대비 바이오틴 생산량이 증가하였다. As can be seen in Table 3 above, S. marcescens In the strain where the bioB gene from the strain was overexpressed, biotin production increased, and the strain (CV04-0002/pCL1920-Pn-bioB(A3T, S.mar)) into which the biotin synthase mutant (A3T, S.mar) from S. marcescens was introduced also showed increased biotin production compared to the parent strain without the mutant and the strain into which the wild-type biotin synthase was introduced.

실시예 1-2. Example 1-2. S. marcescensS. marcescens 유래 바이오틴 신타제 변이체를 포함하는 바이오틴 오페론의 발현 벡터 제작 및 변이 균주 제작Construction of expression vectors of biotin operons containing derived biotin synthase mutants and construction of mutant strains

본 실시예에서 바이오틴 오페론이 모두 포함된 바이오틴 생합성 강화 기반에서도 bioB 유전자의 변이형태가 바이오틴 생산 증가에 더 큰 영향을 줄 수 있는지 확인하고자 하였다. pCL1920벡터를 기반으로 S. marcescens 유래 바이오틴 오페론 bioABFCD 유전자의 자가 프로모터를 이용하여 bioABFCD 유전자가 코딩하는 단백질을 발현할 수 있는 과발현 벡터 2종을 제작하였다. 벡터를 제작하기 위해 S.mar 야생형 (KTCT NO: 2354) 균주의 염색체를 주형으로 하여 서열번호 10와 서열번호 11의 프라이머 쌍을 이용하여 PCR하여 변이가 포함되지 않은 야생형 bioABFCD 오페론 유전자를 획득하였고, 서열번호 10와 서열번호 5, 서열번호 11와 서열번호 6의 프라이머 쌍을 각각 이용하여 PCR하여 변이체(A3T, S.ma)를 암호화할 수 있는 bioB 유전자를 포함한 bioABFCD 오페론 유전자를 획득하였다. 사용한 프라이머의 서열은 표 1 및 표 4에 기재하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 6분을 25회 반복한 후, 72℃에서 10분간 중합반응을 수행하였다. 그 결과 야생형 단편조각 5016bp의 bioABFCD(Wt) (서열번호 12) 과 변이체형 단편조각인 1407bp의 bioAB (g7a)FCD 1 (서열번호 13)와 3650bp의 bioAB (g7a)FCD 2 (서열번호 14)의 DNA 단편을 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 SmaI의 제한효소로 처리된 pCL1920 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 2종의 야생형 과발현 벡터 pCL1920-Pn-bioABFCD(S.mar)와 변이형 과발현 벡터 pCL1920-Pn-bioAB(A3T, S.mar)FCD를 제작하였다. In this example, we aimed to determine whether the mutant form of the bioB gene could have a greater effect on increasing biotin production in a biotin biosynthesis-enhanced system that includes the entire biotin operon. Based on the pCL1920 vector, S. marcescens origin Two overexpression vectors capable of expressing proteins encoded by the bioABFCD gene were constructed using the self-promoter of the biotin operon bioABFCD gene. To construct the vectors, the chromosome of the S. mar wild-type (KTCT NO: 2354) strain was used as a template, and the primer pairs of SEQ ID NO: 10 and SEQ ID NO: 11 were used to perform PCR to obtain the wild-type bioABFCD operon gene without mutation, and the bioABFCD operon gene including the bioB gene that can encode the mutant (A3T, S. ma) was obtained by PCR using the primer pairs of SEQ ID NO: 10 and SEQ ID NO: 5 and SEQ ID NO: 11 and SEQ ID NO: 6, respectively. The sequences of the primers used are listed in Tables 1 and 4. PfuUltra TM high-fidelity DNA polymerase (Stratagene) was used as the polymerase for the PCR reaction, and the PCR conditions were denaturation, 95°C, 30 sec; After repeating 25 cycles of annealing at 55°C for 30 seconds and polymerization at 72°C for 6 minutes, polymerization was performed at 72°C for 10 minutes. As a result, DNA fragments of the wild-type fragment bioABFCD (Wt) (SEQ ID NO: 12) of 5016 bp and the mutant fragments bioAB (g7a)FCD 1 (SEQ ID NO: 13) of 1407 bp and bioAB (g7a)FCD 2 (SEQ ID NO: 14) of 3650 bp were obtained. The obtained DNA product was purified using QIAGEN's PCR Purification kit and then cloned using pCL1920 vector treated with SmaI restriction enzyme and TaKaRa's Infusion Cloning Kit to produce two wild-type overexpression vectors, pCL1920-Pn-bioABFCD(S.mar) and mutant overexpression vector pCL1920-Pn-bioAB(A3T, S.mar)FCD.

명칭designation 서열(5'->3')Sequence (5'->3') 서열번호Sequence number VB07_0005VB07_0005 GACTCTAGAGGATCCCCgggTTAACGCGCGGCGTCGGCCAGACTCTAGAGGATCCCCgggTTAACGCGCGGCGTCGGCCA 서열번호 10Sequence number 10 VB07_0006VB07_0006 ATTCGAGCTCGGTACCCgggTCACTGCGCCAGCAAGCTGAATTCGAGCTCGGTACCCgggTCACTGCGCCAGCAAGCTGA 서열번호 11Sequence number 11

바이오틴 생산능 증가여부를 확인하기 위해 상기 제작된 2종의 bioABFCD 유전자 과발현 벡터 (야생형 과발현 벡터 pCL1920-Pn-bioABFCD(S.ma)와 변이형 과발현 벡터 pCL1920-Pn-bioAB(A3T, S.ma)FCD)를 열충격법으로 바이오틴이 소량 생산되는 대장균 균주(CV04-0002)에 도입하였다. 대조군으로서 pCL1920 벡터를 CV04-0002 균주에 도입하였다.To confirm whether biotin production ability increases, the two types of bioABFCD gene overexpression vectors constructed above (wild-type overexpression vector pCL1920-Pn-bioABFCD(S.ma) and mutant overexpression vector pCL1920-Pn-bioAB(A3T, S.ma)FCD) were introduced into an E. coli strain (CV04-0002) that produces a small amount of biotin by the heat shock method. As a control, the pCL1920 vector was introduced into the CV04-0002 strain.

각각의 균주를 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 상기 표 2의 조성을 갖는 역가배지 25㎖에 접종한 다음, 이를 30℃, 200 rpm의 배양기에서 48 시간 동안 배양하고, 각 균주의 바이오틴 생산량을 MS-MS 기법을 이용하여 측정하고, 그 결과를 표 5에 나타내었다. Each strain was spread on LB solid medium and cultured overnight in an incubator at 30°C. The strain cultured overnight on the LB solid medium was inoculated into 25 ml of a titer medium having the composition of Table 2, which was then cultured for 48 hours in an incubator at 30°C and 200 rpm, and the biotin production of each strain was measured using the MS-MS technique, and the results are shown in Table 5.

균주명Strain name OD562nmOD562nm 소모당(g/L)Consumption (g/L) 바이오틴(mg/L)Biotin (mg/L) E.coli CV04-0002/pCL1920E. coli CV04-0002/pCL1920 36.136.1 3030 0.20.2 E.coli CV04-0002/ pCL1920-Pn- bioABFCD (S.mar)E.coli CV04-0002/ pCL1920-Pn- bioABFCD (S.mar) 35.635.6 3030 1.61.6 E.coli CV04-0002/ pCL1920-Pn- bioAB (A3T, S.mar) FCDE.coli CV04-0002/ pCL1920-Pn- bioAB (A3T, S.mar) FCD 35.835.8 3030 2.72.7

상기 표 5에서 볼 수 있는 바와 같이, 세라티아 균주 유래의 바이오틴 오페론이 과발현된 균주의 바이오틴 생산량이 증가하였고, 확인할 수 있었고, bioB 유전자가 코딩하는 단백질(바이오틴 신타제)에 A3T 변이를 포함하는 바이오틴 오페론이 도입된 pCL1920-Pn-bioAB(A3T, S.ma)FCD 균주의 바이오틴 생산량은 변이체가 도입되지 않은 모균주 및 야생형 바이오틴 오페론이 도입된 균주 대비 증가하였다. As can be seen in Table 5 above, the biotin production of the strain overexpressing the biotin operon derived from the Serratia strain increased and could be confirmed, and the biotin production of the pCL1920-Pn-bioAB(A3T, S.ma)FCD strain, into which the biotin operon including the A3T mutation in the protein (biotin synthase) encoded by the bioB gene was introduced, increased compared to the parent strain without the mutation and the strain into which the wild-type biotin operon was introduced.

실시예 2. 대장균 유래 바이오틴 신타제Example 2. Biotin synthase derived from E. coli

실시예 2-1. 대장균 유래 바이오틴 신타제 발현 벡터 제작 및 변이 균주 제작Example 2-1. Production of E. coli-derived biotin synthase expression vector and production of mutant strains

본 실시예에서 S. marcescens 유래 바이오틴 신타제와 대장균 유래 바이오틴 신타제의 바이오틴 생산에 미치는 영향 비교를 위해서 대장균 유래 bioB 유전자의 과발현 벡터를 제작하였다.In this example, S. marcescens To compare the effects of E. coli-derived biotin synthase and E. coli-derived biotin synthase on biotin production, an overexpression vector of the E. coli-derived bioB gene was constructed.

pCL1920벡터를 기반으로 대장균 유래 bioB 유전자의 자가 프로모터를 이용하여 bioB 유전자가 코딩하는 단백질만을 발현할 수 있는 과발현 벡터를 제작하였다. 벡터를 제작하기 위해 E. coli W3110 균주의 염색체를 주형으로 하여 서열번호 15과 서열번호 16의 프라이머 쌍을 이용하여 PCR하여 변이가 포함되지 않은 야생형 bioB 유전자를 획득하였다. 사용한 프라이머 서열은 표 6에 기재하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 25회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과 야생형 단편조각 1167bp의 bioB(Wt, Eco) (서열번호 17) DNA 단편을 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 SmaI의 제한효소로 처리된 pCL1920 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 2종의 bioB 코딩 단백질 야생형 바이오틴 신타제 과발현 벡터 pCL1920-Pn-bioB(Eco, WT) 를 제작하였다. Based on the pCL1920 vector, an overexpression vector capable of expressing only the protein encoded by the bioB gene was constructed using the autonomous promoter of the bioB gene derived from E. coli. To construct the vector, the chromosome of the E. coli W3110 strain was used as a template and the primer pair of SEQ ID NO: 15 and SEQ ID NO: 16 was used to perform PCR to obtain a wild-type bioB gene without mutation. The primer sequences used are listed in Table 6. PfuUltra TM high-fidelity DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and the PCR conditions were as follows: denaturation at 95°C for 30 sec; annealing at 55°C for 30 sec; and polymerization at 72°C for 2 min, repeated 25 times, and then polymerization was performed at 72°C for 5 min. As a result, a wild-type fragment of 1167 bp, bioB (Wt, Eco) (SEQ ID NO: 17) DNA fragment was obtained. The obtained DNA product was purified using QIAGEN's PCR Purification kit and then cloned using pCL1920 vector treated with SmaI restriction enzyme and TaKaRa's Infusion Cloning Kit to produce two types of bioB coding protein wild-type biotin synthase overexpression vector pCL1920-Pn-bioB (Eco, WT).

명칭 Name 서열(5'->3')Sequence (5'->3') 서열번호 Sequence number VB07_0007VB07_0007 GACTCTAGAGGATCCCCgggAATCGACTTGTAAACCAAATGACTCTAGAGGATCCCCgggAATCGACTTGTAAACCAAAT 서열번호 15Sequence number 15 VB07_0008VB07_0008 ATTCGAGCTCGGTACCCgggTCATAATGCTGCCGCGTTGTATTCGAGCTCGGTACCCgggTCATAATGCTGCCGCGTTGT 서열번호 16Sequence number 16

바이오틴 생산능 증가여부를 확인하기 위해 상기에서 제작된 bioB 유전자 과발현 벡터 (야생형 과발현 벡터 pCL1920-Pn-bioB(Eco)를 열충격법으로 바이오틴이 소량 생산되는 대장균 균주(CV04-0002)(실시예 1-1 참조)에 도입하였다. 대조군으로 pCL1920 벡터도 CV04-0002 균주에 도입하였다.To confirm whether biotin production ability increased, the bioB gene overexpression vector constructed above (wild-type overexpression vector pCL1920-Pn-bioB (Eco)) was introduced into an E. coli strain (CV04-0002) (see Example 1-1) that produces a small amount of biotin by the heat shock method. As a control, the pCL1920 vector was also introduced into the CV04-0002 strain.

각각의 균주를 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 상기 표 2의 조성을 갖는 역가 배지 25㎖에 접종한 다음, 이를 30℃, 200rpm의 배양기에서 40시간 동안 배양하고, 각 균주의 바이오틴 생산량을 MS-MS 기법을 이용하여 측정하고, 그 결과를 표 7에 나타내었다. Each strain was spread on LB solid medium and cultured overnight in an incubator at 30°C. The strain cultured overnight on the LB solid medium was inoculated into 25 ml of a titer medium having the composition of Table 2, which was then cultured in an incubator at 30°C and 200 rpm for 40 hours, and the biotin production of each strain was measured using the MS-MS technique, and the results are shown in Table 7.

균주명Strain name OD562nmOD562nm 소모당(g/L)Consumption (g/L) 바이오틴(mg/L)Biotin (mg/L) E.coli CV04-0002/pCL1920E. coli CV04-0002/pCL1920 35.135.1 3030 0.160.16 E.coli CV04-0002/pCL1920-Pn-bioB(Eco)E.coli CV04-0002/pCL1920-Pn-bioB(Eco) 34.434.4 3030 0.230.23

상기 표 7에서 볼 수 있는 바와 같이, 야생형 바이오틴 신타제를 발현할 수 있는 벡터가 도입된 균주(E.coli CV04-0002/pCL1920-Pn-bioB(Eco))는 공벡터가 들어간 균주 보다 바이오틴 생산량이 소폭 증가하였다. As shown in Table 7 above, the strain introduced with a vector capable of expressing wild-type biotin synthase (E. coli CV04-0002/pCL1920-Pn-bioB(Eco)) showed a slight increase in biotin production compared to the strain introduced with the empty vector.

실시예 2-2. 대장균 유래 바이오틴 신타제를 포함하는 바이오틴 오페론의 발현 벡터 제작 및 변이 균주 제작Example 2-2. Production of expression vector of biotin operon containing E. coli-derived biotin synthase and production of mutant strain

바이오틴 오페론이 모두 포함된 바이오틴 생합성 강화벡터 기반에서도 bioB 유전자의 변이가 바이오틴 생산 증가에 더 큰 영향을 줄 수 있는지 확인하기 위하여 pCL1920벡터(GenBank No AB236930)를 기반으로 대장균 유래 바이오틴 오페론 bioABFCD 유전자의 자가 프로모터를 이용하여 bioABFCD bioB 유전자가 코딩하는 단백질만을 발현할 수 있는 과발현 벡터를 제작하였다. 벡터를 제작하기 위해 대장균 W3110 균주의 염색체를 주형으로 하여 서열번호 18와 서열번호 19의 프라이머 쌍을 이용하여 PCR하여 변이가 포함되지 않은 야생형 bioABFCD 오페론 유전자를 획득하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 6분을 25회 반복한 후, 72℃에서 10분간 중합반응을 수행하였다. 그 결과 야생형 단편조각 5020bp의 bioABFCD(Eco WT) (서열번호 20) DNA 단편을 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 SmaI의 제한효소로 처리된 pCL1920 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 2종의 bioABFCD 코딩 단백질 야생형 과발현 벡터 pCL1920-Pn-bioABFCD(Eco) 를 제작하였다. To determine whether mutation of the bioB gene can have a greater effect on increasing biotin production in a biotin biosynthesis enhanced vector containing the entire biotin operon, an overexpression vector was constructed using the autologous promoter of the bioABFCD gene of the E. coli biotin operon based on the pCL1920 vector (GenBank No AB236930) to express only the protein encoded by the bioABFCD bioB gene. To construct the vector, the chromosome of E. coli W3110 strain was used as a template and PCR was performed using the primer pair of SEQ ID NO: 18 and SEQ ID NO: 19 to obtain the wild-type bioABFCD operon gene without mutation. PfuUltraTM high-fidelity DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and the PCR conditions were as follows: denaturation, 95°C, 30 sec; annealing, 55°C, 30 sec; And after repeating the polymerization reaction at 72℃ for 6 minutes 25 times, the polymerization reaction was performed at 72℃ for 10 minutes. As a result, a wild-type fragment of 5020 bp bioABFCD (Eco WT) (SEQ ID NO: 20) DNA fragment was obtained. The obtained DNA product was purified using QIAGEN's PCR Purification kit and then cloned using pCL1920 vector treated with SmaI restriction enzyme and TaKaRa's Infusion Cloning Kit, thereby constructing two types of bioABFCD coding protein wild-type overexpression vectors pCL1920-Pn-bioABFCD (Eco).

명칭 Name 서열(5'->3')Sequence (5'->3') 서열번호 Sequence number VB07_0009VB07_0009 GACTCTAGAGGATCCCCgggTTATTGGCAAAAAAATGTTTGACTCTAGAGGATCCCCgggTTATTGGCAAAAAAAATGTTT 서열번호 18Sequence number 18 VB07_0010VB07_0010 ATTCGAGCTCGGTACCCgggCTACAACAAGGCAAGGTTTA ATTCGAGCTCGGGTACCCgggCTACAACAAGGCAAGGTTTA 서열번호 19Sequence number 19

바이오틴 생산능 증가여부를 확인하기 위해 상기 제작된 2종의 bioABFCD bioB 유전자 과발현 벡터 (야생형 과발현 벡터 pCL1920-Pn-bioABFCD(Eco)를 바이오틴이 소량 생산되는 대장균 균주 CV04-0002 (실시예 1-1)에 도입하였다. 대조군으로서 pCL1920 벡터를 CV04-0002 균주에 도입하였다.To confirm whether biotin production ability increased, the two types of bioABFCD bioB gene overexpression vectors produced above (wild-type overexpression vector pCL1920-Pn-bioABFCD (Eco)) were introduced into E. coli strain CV04-0002 (Example 1-1) that produces small amounts of biotin. As a control, the pCL1920 vector was introduced into the CV04-0002 strain.

각각의 균주를 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 상기 표 2의 조성을 갖는 역가배지 25㎖에 접종한 다음, 이를 30℃, 200 rpm의 배양기에서 48 시간 동안 배양하고, 배양액 중의 바이오틴 생산량을 MS-MS 방법으로 측정하고, 그 결과를 표 9에 나타내었다.Each strain was spread on LB solid medium and cultured overnight in an incubator at 30°C. The strain cultured overnight on the LB solid medium was inoculated into 25 ml of a titer medium having the composition of Table 2, which was then cultured for 48 hours in an incubator at 30°C and 200 rpm, and the amount of biotin produced in the culture medium was measured by the MS-MS method, and the results are shown in Table 9.

균주명Strain name OD562nmOD562nm 소모당(g/L)Consumption (g/L) 바이오틴(mg/L)Biotin (mg/L) E.coli CV04-0002/pCL1920E. coli CV04-0002/pCL1920 32.832.8 3030 0.20.2 E.coli CV04-0002/pCL1920-Pn-bioABFCD(Eco)E.coli CV04-0002/pCL1920-Pn-bioABFCD(Eco) 33.133.1 3030 1.3.1.3.

상기 표 9에서 볼 수 있는 바와 같이, 야생형 바이오틴 오페론이 과발현된 균주(E.coli CV04-0002/pCL1920-Pn-bioABFCD(Eco))는 대조군(E.coli CV04-0002/pCL1920) 보다 바이오틴 생산량이 증가하였다. As shown in Table 9 above, the strain overexpressing the wild-type biotin operon (E. coli CV04-0002/pCL1920-Pn-bioABFCD(Eco)) showed increased biotin production compared to the control group (E. coli CV04-0002/pCL1920).

실시예 3. 바이오틴 고생산 균주 기반 바이오틴 신타제 변이체를 포함하는 바이오틴 오페론의 발현 벡터 제작 및 변이 균주 제작Example 3. Production of expression vector of biotin operon including biotin synthase mutant based on high-producing biotin strain and production of mutant strain

실시예 1 및 2에서 제작한 3종의 바이오틴 생합성 오페론 강화 벡터 pCL1920-Pn-bioABFCD(S.mar), pCL1920-Pn-bioAB(A3T, S.mar)FCD, pCL1920-Pn-bioABFCD(Eco) 를 대장균 바이오틴 생합성 오페론이 추가 도입된 바이오틴 고생산 균주 CV04-0104 균주 기반으로 도입하였다. 바이오틴 고생산 균주 CV04-0104 균주는 CV04-0002 균주 기반으로 대장균 바이오틴 생합성 오페론을 insAB 유전자 자리에 1 copy 추가 삽입한 균주로 다음의 과정을 통해 제작하였다.The three biotin biosynthesis operon-enhanced vectors pCL1920-Pn-bioABFCD(S.mar), pCL1920-Pn-bioAB(A3T, S.mar)FCD, and pCL1920-Pn-bioABFCD(Eco) constructed in Examples 1 and 2 were introduced into the CV04-0104 strain, a high-producing biotin strain with an additional introduction of the E. coli biotin biosynthesis operon. The CV04-0104 strain, a high-producing biotin strain, is a strain with an additional insertion of one copy of the E. coli biotin biosynthesis operon into the insAB gene locus based on the CV04-0002 strain, and was constructed through the following process.

바이오틴 고생산 균주 제작 벡터를 제작하기 위해 대장균 W3110를 주형으로 insA 업스트림 (Upstream) 및 다운스트림 (Downstream) 지역, 그리고 바이오틴 오페론 단편을 수득하였다. 구체적으로, PCR 수행을 통해 대장균 W3110 염색체 DNA를 주형으로 하여 VB07_0011 (서열번호 23)과 VB07_0012 (서열번호 24)의 프라이머를 이용하여 업스트림 (Upstream) 지역 약 0.5 kb (서열번호 25), VB07_0013 (서열번호 26)과 VB07_0014 (서열번호 27)의 프라이머를 이용하여 바이오틴 오페론 지역 약 5 Kb의 유전자 단편(서열번호 28), VB07_0015 (서열번호 29)과 VB07_0016 (서열번호 30)의 프라이머를 이용하여 다운스트림 (Downstream) 지역 약 0.5 kb의 (서열번호 31) 유전자 단편을 수득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 60초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하여 각각의 단편을 PCR 산물로서 수득하였다. 수득한 PCR 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 증폭된 insAB 유전자의 업스트림과 다운스트림, 바이오틴 오페론 단편을 이용하여 벡터를 제작하였다. PCT 등록특허 WO2020032590A1에 기재된 방법대로, 유전자 치환 벡터 pSKH를 이용하여 EcoRⅤ 제한효소로 절단한 뒤 상기 준비된 PCR 산물을 깁슨 어셈블리(DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법으로 클로닝하여 바이오틴 오페론 1copy 추가 벡터 pSKHΔinsAB::Pn-bioABFCD를 제작하였다. 클로닝은 깁슨 어셈블리 시약과 각 유전자 단편들을 혼합 후 50℃에 1시간 보존함으로써 수행하였다.To construct a vector for producing a high-producing biotin strain, E. coli W3110 was used as a template to obtain the insA upstream and downstream regions and a biotin operon fragment. Specifically, through PCR, using E. coli W3110 chromosomal DNA as a template, a gene fragment of about 0.5 kb (SEQ ID NO: 25) in the upstream region was obtained using the primers VB07_0011 (SEQ ID NO: 23) and VB07_0012 (SEQ ID NO: 24), a gene fragment of about 5 kb (SEQ ID NO: 28) in the biotin operon region was obtained using the primers VB07_0013 (SEQ ID NO: 26) and VB07_0014 (SEQ ID NO: 27), and a gene fragment of about 0.5 kb (SEQ ID NO: 31) in the downstream region was obtained using the primers VB07_0015 (SEQ ID NO: 29) and VB07_0016 (SEQ ID NO: 30). SolgTM Pfu-X DNA polymerase was used as the polymerase for PCR reaction, and the PCR amplification conditions were as follows: denaturation at 95°C for 5 minutes, 30 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 60 seconds, and polymerization at 72°C for 30 seconds, and then polymerization at 72°C for 5 minutes to obtain each fragment as a PCR product. The obtained PCR products were purified using QIAGEN's PCR Purification kit, and then vectors were constructed using the upstream and downstream of the amplified insAB gene and the biotin operon fragment. According to the method described in PCT registered patent WO2020032590A1, the gene replacement vector pSKH was used to cut the PCR product with EcoRⅤ restriction enzyme, and the prepared PCR product was cloned using the Gibson assembly method (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) to produce a biotin operon 1 copy addition vector pSKHΔinsAB::Pn-bioABFCD. Cloning was performed by mixing the Gibson assembly reagent and each gene fragment and then storing it at 50°C for 1 hour.

상기 제작된 벡터 pSKHΔinsAB::Pn-bioABFCD를 전기천공법을 통해 CV04-0002 균주 (실시예 1-1)에 도입하여 바이오틴 오페론이 추가된 바이오틴 생합성 강화균주 CV04-0104 균주를 제작하였다.The vector pSKHΔinsAB::Pn-bioABFCD constructed above was introduced into the CV04-0002 strain (Example 1-1) via electroporation to construct the CV04-0104 strain, a biotin biosynthesis-enhanced strain with an added biotin operon.

사용된 프라이머 서열을 하기의 표 10에 나타내었다:The primer sequences used are shown in Table 10 below:

명칭 Name 서열(5'->3')Sequence (5'->3') 서열번호 Sequence number VB07_0011VB07_0011 gggcTGCAGGAATTCGATCCAGATACGCTTTTTCCAgggcTGCAGGAATTCGATCCAGATACGCTTTTTCCA 서열번호 23Sequence number 23 VB07_0012VB07_0012 AAACATTTTTTTGCCAATAACACGCAAGCACCTTAAAATCACAAACATTTTTTTGCCAATAACACGCAAGCACCTTAAAATCAC 서열번호 24Sequence number 24 VB07_0013VB07_0013 GTGATTTTAAGGTGCTTGCGTGTTATTGGCAAAAAAATGTTTGTGATTTTAAGGTGCTTGCGTGTTATTGGCAAAAAAAATGTTT 서열번호 26Sequence number 26 VB07_0014VB07_0014 TCAGATAATGCCCGATGACCCTACAACAAGGCAAGGTTTATTCAGATAATGCCCGATGACCCTACAACAAGGCAAGGTTTAT 서열번호 27Sequence number 27 VB07_0015VB07_0015 ATAAACCTTGCCTTGTTGTAGGGTCATCGGGCATTATCTGAATAAACCTTGCCTTGTTGTAGGGGTCATCGGGCATTATCTGA 서열번호 29Sequence number 29 VB07_0016VB07_0016 GCTAGGTCGACTAGCGTGATGCCTTTTTTGTCGTGGGTGCTAGGTCGACTAGCGTGATGCCTTTTTTGTCGTGGGT 서열번호 30Sequence number 30

상기 준비된 CV04-0104 균주에 실시예 1 및 2에서 제작한 3종의 바이오틴 생합성 오페론 강화 벡터 pCL1920-Pn-bioABFCD(S.mar), pCL1920-Pn-bioAB(A3T, S.mar)FCD, pCL1920-Pn-bioABFCD(Eco)를 각각 열충격 도입법을 이용하여 도입하여, E.coli CV04-0104/pCL1920-Pn-bioABFCD(S.mar), E. coli CV04-0104/pCL1920-Pn-bioAB(A3T, S.mar)FCD, 및 E.coli CV04-0104/pCL1920-Pn-bioABFCD(Eco)를 각각 제작하였다. 대조군으로, CV04-0104 균주에 pCL1920가 도입된 E.coli CV04-0104/pCL1920를 준비하였다. The three biotin biosynthesis operon-enhanced vectors pCL1920-Pn-bioABFCD(S.mar), pCL1920-Pn-bioAB(A3T, S.mar)FCD, and pCL1920-Pn-bioABFCD(Eco) constructed in Examples 1 and 2 were introduced into the prepared CV04-0104 strain using the heat shock introduction method, respectively, to construct E. coli CV04-0104/pCL1920-Pn-bioABFCD(S.mar), E. coli CV04-0104/pCL1920-Pn-bioAB(A3T, S.mar)FCD, and E. coli CV04-0104/pCL1920-Pn-bioABFCD(Eco), respectively. As a control, E. coli CV04-0104/pCL1920, in which pCL1920 was introduced into the CV04-0104 strain, was prepared.

각각의 균주를 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 상기 표 2의 조성을 갖는 역가 배지 25㎖에 접종한 다음, 이를 30℃, 200rpm의 배양기에서 40시간 동안 배양하고, 각 균주의 바이오틴 생산량을 MS-MS 기법을 이용하여 측정하고, 그 결과를 표 11에 나타내었다. Each strain was spread on LB solid medium and cultured overnight in an incubator at 30°C. The strain cultured overnight on the LB solid medium was inoculated into 25 ml of a titer medium having the composition of Table 2, which was then cultured in an incubator at 30°C and 200 rpm for 40 hours, and the biotin production of each strain was measured using the MS-MS technique, and the results are shown in Table 11.

균주명Strain name OD562nmOD562nm 소모당(g/L)Consumption (g/L) 바이오틴(mg/L)Biotin (mg/L) E.coli CV04-0104/pCL1920E. coli CV04-0104/pCL1920 36.736.7 3030 1.51.5 E.coli CV04-0104/pCL1920-Pn- bioABFCD(S.mar)E.coli CV04-0104/pCL1920-Pn- bioABFCD (S.mar) 36.136.1 3030 4.54.5 E.coli CV04-0104/pCL1920-Pn- bioAB(A3T, S.mar)FCDE.coli CV04-0104/pCL1920-Pn- bioAB(A3T, S.mar)FCD 35.435.4 3030 7.17.1 E.coli CV04-0104/pCL1920-Pn- bioABFCD(Eco)E.coli CV04-0104/pCL1920-Pn- bioABFCD(Eco) 36.536.5 3030 4.34.3

상기 표 11에서 볼 수 있는 바와 같이, 세라티아 마르세센스 또는 대장균 유래의 바이오틴 생합성 오페론이 도입된 균주들의 경우 대조군 (E.coli CV04-0104/ pCL1920) 대비 모두 바이오틴 농도가 크게 향상되었다. As can be seen in Table 11 above, the biotin concentrations of all strains introduced with the biotin biosynthesis operon derived from Serratia marcescens or E. coli were significantly improved compared to the control group (E. coli CV04-0104/pCL1920).

특히, 세라티아 마르세센스 유래의 바이오틴 신타제에 A3T 변이가 도입된 E. coli CV04-0104/ pCL1920-Pn-bioAB(A3T, S.mar)FCD 의 바이오틴 생산량이 변이가 도입되지 않은 E.coli CV04-0104/ pCL1920-Pn-bioABFCD(S.mar) 균주보다 증가하였고 이는 대장균 유래의 바이오틴 생합성 오페론이 강화된 E.coli CV04-0104/pCL1920-Pn-bioABFCD(Eco) 균주의 바이오틴 생산량 대비 향상하였다. In particular, the biotin production of E. coli CV04-0104/ pCL1920-Pn-bioAB(A3T, S.mar)FCD, in which an A3T mutation was introduced into biotin synthase from Serratia marcescens, increased compared to that of the E. coli CV04-0104/ pCL1920-Pn-bioABFCD(S.mar) strain in which the mutation was not introduced, and this was improved compared to the biotin production of the E. coli CV04-0104/pCL1920-Pn-bioABFCD(Eco) strain in which the biotin biosynthesis operon from E. coli was enhanced.

<110> CJ CheilJedang Corporation <120> Polypeptide variant having biotin synthase activity and biotin production method using the same <130> DPP20205278KR <160> 43 <170> koPatentIn 3.0 <210> 1 <211> 346 <212> PRT <213> Artificial Sequence <220> <223> wild-type biotin synthase (BioB) of Serratia marcescens <400> 1 Met Met Ala Asp Arg Ile His Trp Thr Val Gly Gln Ala Gln Ala Leu 1 5 10 15 Phe Asp Lys Pro Leu Leu Glu Leu Leu Phe Glu Ala Gln Thr Val His 20 25 30 Arg Gln His Phe Asp Pro Arg Gln Val Gln Val Ser Thr Leu Leu Ser 35 40 45 Ile Lys Thr Gly Ala Cys Pro Glu Asp Cys Lys Tyr Cys Pro Gln Ser 50 55 60 Ser Arg Tyr Lys Thr Gly Leu Glu Ser Glu Arg Leu Met Gln Val Glu 65 70 75 80 Gln Val Leu Glu Ser Ala Arg Lys Ala Lys Ala Asn Gly Ser Thr Arg 85 90 95 Phe Cys Met Gly Ala Ala Trp Lys Asn Pro His Glu Arg Asp Met Pro 100 105 110 Tyr Leu Gln Gln Met Val Gln Gly Val Lys Ala Met Gly Met Glu Thr 115 120 125 Cys Met Thr Leu Gly Thr Leu Asp Gly Thr Gln Ala Glu Arg Leu Ala 130 135 140 Glu Ala Gly Leu Asp Tyr Tyr Asn His Asn Leu Asp Thr Ser Pro Glu 145 150 155 160 Phe Tyr Gly Ser Ile Ile Thr Thr Arg Ser Tyr Gln Glu Arg Leu Asp 165 170 175 Thr Leu Asp Lys Val Arg Asp Ala Gly Ile Lys Val Cys Ser Gly Gly 180 185 190 Ile Val Gly Leu Gly Glu Thr Val Arg Asp Arg Ala Gly Leu Leu Val 195 200 205 Gln Leu Ala Asn Leu Pro Lys Pro Pro Glu Ser Val Pro Ile Asn Met 210 215 220 Leu Val Lys Val Lys Gly Thr Pro Leu Ala Asp Asn Asp Asp Val Asp 225 230 235 240 Pro Phe Asp Phe Ile Arg Thr Ile Ala Val Ala Arg Ile Met Met Pro 245 250 255 Ser Ser Tyr Val Arg Leu Ser Ala Gly Arg Glu Gln Met Asn Glu Gln 260 265 270 Thr Gln Ala Met Cys Phe Met Ala Gly Ala Asn Ser Ile Phe Tyr Gly 275 280 285 Cys Lys Leu Leu Thr Thr Pro Asn Pro Glu Glu Asp Lys Asp Leu Gln 290 295 300 Leu Phe Arg Lys Leu Gly Leu Asn Pro Gln Gln Thr Ala Thr Glu His 305 310 315 320 Gly Asp Asn Gln Gln Gln Gln Val Leu Ala Lys Gln Leu Leu Asn Ala 325 330 335 Asp Thr Ala Glu Phe Tyr Asn Ala Ala Leu 340 345 <210> 2 <211> 1041 <212> DNA <213> Artificial Sequence <220> <223> gene encoding wild-type biotin synthase (BioB) of Serratia marcescens <400> 2 atgatggccg accgcattca ctggacagta gggcaagccc aggccctgtt tgataaaccg 60 ctgctggaac tgctgttcga agcgcaaacc gtacaccgcc agcacttcga cccgcgtcag 120 gtgcaggtca gcacgctgct gtcgatcaag accggcgctt gcccggaaga ctgcaaatac 180 tgcccgcaga gctcacgcta caagaccggc ctggagtcgg agcggctgat gcaggtcgag 240 caggtgctgg aatcggcacg caaggccaag gcgaacggtt cgacccgttt ttgcatgggc 300 gcggcgtgga agaacccgca cgagcgcgat atgccttatc tgcagcaaat ggtgcagggc 360 gtgaaagcga tgggcatgga aacctgcatg acgctgggca cattggatgg cacccaggcc 420 gagcggctgg cggaggccgg gctggattac tacaaccata acctcgacac ctcgccggag 480 ttctacggca gcatcatcac cacccgcagc taccaggagc gcctggatac gctcgacaag 540 gtgcgcgacg ccggcatcaa agtgtgctcc ggcggcatcg tcgggctggg tgaaacggtg 600 cgcgatcgcg ccgggctgct ggtgcagctg gccaacctgc caaaaccacc ggagagcgtg 660 ccgatcaaca tgttggtgaa ggtgaaaggc acgccgctgg cggataacga tgacgtcgat 720 ccgtttgatt tcatccgcac catcgcggtg gcgcgcatca tgatgccatc ttcttatgtc 780 cgtctctccg caggccgcga acagatgaac gaacagacgc aggcgatgtg cttcatggcc 840 ggcgccaact cgatcttcta cggttgcaag ctgctgacca cgccgaatcc ggaagaagac 900 aaagacctgc agctgttccg caagctgggg ctcaacccgc agcagaccgc aaccgaacac 960 ggcgacaacc agcaacagca ggtgctggcc aagcaactgc tgaacgccga taccgccgag 1020 ttttacaacg cggcgccgtg a 1041 <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0001 <400> 3 gactctagag gatccccggg tgttgtaaac caaattggat 40 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0002 <400> 4 attcgagctc ggtacccggg tcacggcgcc gcgttgtaaa 40 <210> 5 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0003 <400> 5 tgtccagtga atgcggtcgg tcatcatggc gtctccaaaa c 41 <210> 6 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0004 <400> 6 gttttggaga cgccatgatg accgaccgca ttcactggac a 41 <210> 7 <211> 1166 <212> DNA <213> Artificial Sequence <220> <223> wild-type bioB gene fragment of Serratia marcescens (1166bp), wherein atg at positions 106-108 is a start codon for encoding SEQ ID NO: 1 <400> 7 gactctagag gatccccggg tgttgtaaac caaattggat taaaattggt tgacagtata 60 tccacaatat ttaaactggc gacacttttt cgttttggag acgccatgat ggccgaccgc 120 attcactgga cagtagggca agcccaggcc ctgtttgata aaccgctgct ggaactgctg 180 ttcgaagcgc aaaccgtaca ccgccagcac ttcgacccgc gtcaggtgca ggtcagcacg 240 ctgctgtcga tcaagaccgg cgcttgcccg gaagactgca aatactgccc gcagagctca 300 cgctacaaga ccggcctgga gtcggagcgg ctgatgcagg tcgagcaggt gctggaatcg 360 gcacgcaagg ccaaggcgaa cggttcgacc cgtttttgca tgggcgcggc gtggaagaac 420 ccgcacgagc gcgatatgcc ttatctgcag caaatggtgc agggcgtgaa agcgatgggc 480 atggaaacct gcatgacgct gggcacattg gatggcaccc aggccgagcg gctggcggag 540 gccgggctgg attactacaa ccataacctc gacacctcgc cggagttcta cggcagcatc 600 atcaccaccc gcagctacca ggagcgcctg gatacgctcg acaaggtgcg cgacgccggc 660 atcaaagtgt gctccggcgg catcgtcggg ctgggtgaaa cggtgcgcga tcgcgccggg 720 ctgctggtgc agctggccaa cctgccaaaa ccaccggaga gcgtgccgat caacatgttg 780 gtgaaggtga aaggcacgcc gctggcggat aacgatgacg tcgatccgtt tgatttcatc 840 cgcaccatcg cggtggcgcg catcatgatg ccatcttctt atgtccgtct ctccgcaggc 900 cgcgaacaga tgaacgaaca gacgcaggcg atgtgcttca tggccggcgc caactcgatc 960 ttctacggtt gcaagctgct gaccacgccg aatccggaag aagacaaaga cctgcagctg 1020 ttccgcaagc tggggctcaa cccgcagcag accgcaaccg aacacggcga caaccagcaa 1080 cagcaggtgc tggccaagca actgctgaac gccgataccg ccgagtttta caacgcggcg 1140 ccgtgacccg ggtaccgagc tcgaat 1166 <210> 8 <211> 132 <212> DNA <213> Artificial Sequence <220> <223> bioB gene mutant (g7a) fragment of Serratia marcescens (132bp), wherein atg at positions 106-108 corresponds to the start codon of SEQ ID NO: 7 <400> 8 gactctagag gatccccggg tgttgtaaac caaattggat taaaattggt tgacagtata 60 tccacaatat ttaaactggc gacacttttt cgttttggag acgccatgat gaccgaccgc 120 attcactgga ca 132 <210> 9 <211> 1075 <212> DNA <213> Artificial Sequence <220> <223> bioB gene mutant (g7a) fragment of Serratia marcescens (1075bp), wherein atg at positions 15-17 corresponds to the start codon of SEQ ID NO: 7 <400> 9 gttttggaga cgccatgatg accgaccgca ttcactggac agtagggcaa gcccaggccc 60 tgtttgataa accgctgctg gaactgctgt tcgaagcgca aaccgtacac cgccagcact 120 tcgacccgcg tcaggtgcag gtcagcacgc tgctgtcgat caagaccggc gcttgcccgg 180 aagactgcaa atactgcccg cagagctcac gctacaagac cggcctggag tcggagcggc 240 tgatgcaggt cgagcaggtg ctggaatcgg cacgcaaggc caaggcgaac ggttcgaccc 300 gtttttgcat gggcgcggcg tggaagaacc cgcacgagcg cgatatgcct tatctgcagc 360 aaatggtgca gggcgtgaaa gcgatgggca tggaaacctg catgacgctg ggcacattgg 420 atggcaccca ggccgagcgg ctggcggagg ccgggctgga ttactacaac cataacctcg 480 acacctcgcc ggagttctac ggcagcatca tcaccacccg cagctaccag gagcgcctgg 540 atacgctcga caaggtgcgc gacgccggca tcaaagtgtg ctccggcggc atcgtcgggc 600 tgggtgaaac ggtgcgcgat cgcgccgggc tgctggtgca gctggccaac ctgccaaaac 660 caccggagag cgtgccgatc aacatgttgg tgaaggtgaa aggcacgccg ctggcggata 720 acgatgacgt cgatccgttt gatttcatcc gcaccatcgc ggtggcgcgc atcatgatgc 780 catcttctta tgtccgtctc tccgcaggcc gcgaacagat gaacgaacag acgcaggcga 840 tgtgcttcat ggccggcgcc aactcgatct tctacggttg caagctgctg accacgccga 900 atccggaaga agacaaagac ctgcagctgt tccgcaagct ggggctcaac ccgcagcaga 960 ccgcaaccga acacggcgac aaccagcaac agcaggtgct ggccaagcaa ctgctgaacg 1020 ccgataccgc cgagttttac aacgcggcgc cgtgacccgg gtaccgagct cgaat 1075 <210> 10 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0005 <400> 10 gactctagag gatccccggg ttaacgcgcg gcgtcggcca 40 <210> 11 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0006 <400> 11 attcgagctc ggtacccggg tcactgcgcc agcaagctga 40 <210> 12 <211> 5016 <212> DNA <213> Artificial Sequence <220> <223> bioABFCD(Wt) fragment of Serratia marcescens (5016bp) <400> 12 gactctagag gatccccggg ttaacgcgcg gcgtcggcca cggcggcggt caggcggctg 60 agctgttccg cttcgatgat gtaaggcggc atcaggtaaa tcagcttgcc gaacggccgg 120 atccataccc cgcgctcgac gaacccgcgc tgcagctcgg cgacatccac cggttcgcgc 180 atctccacca ccccaatcgc gcccagcacc cgcacgtcgg ccaccttcgg cagcgccgcc 240 aacggcaaca gttcccgctt caactgggtt tcgatggcgc tcacctgcgc ctgccagcga 300 ttttccgcca gcagcgccag actggcgtcc gccacggcgc aggccagcgg attgcccata 360 aaggtcggcc cgtgcataaa gcagccggcc gcgccgttgc tgatggtctc cgccacgtgg 420 cgggtagtca aggtggcgga aagggtcata tagccgccgg tcagcgcctt gcccagacag 480 agaatgtccg gcaccacctg cgcgtgctcg caggcgaaca gcttgccggt gcggccgaaa 540 ccggtggcga tctcgtcggc gatcagcagc acctgatggc gatcgcacag ctcgcgcacc 600 cgcttgagat aggtcggatg gtagatgcgc atgccgccgg cgccttgcac caccggttcc 660 agaatcaccg ccgccacttc accggcgtgc tgctccagca gcgcggcgaa cggcgcgata 720 tcctcttcac gccattcctc gtcgaagcgg cactgcggcg cggtggcgaa caggtgcggc 780 gccagatacc cctgatagag gctgtgcatc gagttgtccg gatcgcagac cgacatcgcg 840 ccgaaggtat cgccgtgata gccgtggcgc agcgtcagga tgcgctgccg gcgctcgccg 900 cgcgcctgcc agtactgcag cgccattttc agcgacactt ctaccgccac cgaaccagag 960 tccgccagga acacgcactg cagtgcttcc ggcgtcattt ccaccagccg acggcacaac 1020 gagatggcgg ccggatgggt aatgccgccg aacatcacgt gcgacatctt ctccaactgc 1080 tggctggcgg cctgattcag acgcggatgg ttgtaaccgt ggatcgccgc ccaccaggag 1140 gacatgccgt ccaccagact ccggccgtcc gccagctgca gttcgacgcc gctggccgat 1200 tcgatcgggt aacagggtaa cgggcggctc atggaggtgt aggggtgcca gatatggcgt 1260 tggtcaaacg ccaggtcgga agcggtgaca gacattgttg taaaccaaat tggattaaaa 1320 ttggttgaca gtatatccac aatatttaaa ctggcgacac tttttcgttt tggagacgcc 1380 atgatggccg accgcattca ctggacagta gggcaagccc aggccctgtt tgataaaccg 1440 ctgctggaac tgctgttcga agcgcaaacc gtacaccgcc agcacttcga cccgcgtcag 1500 gtgcaggtca gcacgctgct gtcgatcaag accggcgctt gcccggaaga ctgcaaatac 1560 tgcccgcaga gctcacgcta caagaccggc ctggagtcgg agcggctgat gcaggtcgag 1620 caggtgctgg aatcggcacg caaggccaag gcgaacggtt cgacccgttt ttgcatgggc 1680 gcggcgtgga agaacccgca cgagcgcgat atgccttatc tgcagcaaat ggtgcagggc 1740 gtgaaagcga tgggcatgga aacctgcatg acgctgggca cattggatgg cacccaggcc 1800 gagcggctgg cggaggccgg gctggattac tacaaccata acctcgacac ctcgccggag 1860 ttctacggca gcatcatcac cacccgcagc taccaggagc gcctggatac gctcgacaag 1920 gtgcgcgacg ccggcatcaa agtgtgctcc ggcggcatcg tcgggctggg tgaaacggtg 1980 cgcgatcgcg ccgggctgct ggtgcagctg gccaacctgc caaaaccacc ggagagcgtg 2040 ccgatcaaca tgttggtgaa ggtgaaaggc acgccgctgg cggataacga tgacgtcgat 2100 ccgtttgatt tcatccgcac catcgcggtg gcgcgcatca tgatgccatc ttcttatgtc 2160 cgtctctccg caggccgcga acagatgaac gaacagacgc aggcgatgtg cttcatggcc 2220 ggcgccaact cgatcttcta cggttgcaag ctgctgacca cgccgaatcc ggaagaagac 2280 aaagacctgc agctgttccg caagctgggg ctcaacccgc agcagaccgc aaccgaacac 2340 ggcgacaacc agcaacagca ggtgctggcc aagcaactgc tgaacgccga taccgccgag 2400 ttttacaacg cggcgccgtg atgagctggc agcaacgcat cgagcaggcg ctggctgagc 2460 ggcgcctgaa cgccgcctac cgccggcgac agaccaccga gggcggcaac ggccgccaga 2520 tccggctcgg cgatcgtctc tatctgaact tctcgggcaa cgactacctg ggcttgagcc 2580 aggatgcgcg ggtgatcgcc gcctggcagc agggcgcgca gcgttacggc gtcggcagcg 2640 gcggttcggg ccacgtgacc ggttttagcg cggcgcatca ggcgctggaa gagcaactgg 2700 cggcttggct cggctatccg cgcgcgctgc tgttcatctc cggctacgcc gccaaccagg 2760 cggtgctggc ggcgttgatg caaaagggcg atcgcatttt ggccgatcgt ctcagccatg 2820 cctcgctgct ggaggcggcg gcgcagtcgc cggccgagct gcgccggttc cagcacaatc 2880 aaccgcaggc cttggcggat ctgctggcca aaccctgcga cgggcagcgg ctggcggtca 2940 ccgaaggggt gttcagcatg gatggcgacg gcgcgccgtt ggcggagctg catcgcttaa 3000 cccgtgcggc gggcgcctgg ctgatggtgg atgacgccca cggcatcggc gtgcgcggcg 3060 aacaaggccg cggcagttgc tggcagcagg gcgtgcgccc tgaactgctg gtggcgacct 3120 tcggcaaggc gttcggcgtc agcggcgcgg cggtgctgtg cgatgaggcg accgccgagt 3180 atctgctgca gttcgcccgc catctgatct acagcaccgc gatgccgccg gcgcaggcct 3240 gcgcgctgca ggcggcgctg gcccgtattc gagagggtga tgatctgcga gcccggctgc 3300 aggacaacat tcggcgtttc cgtcagggcg cggcgccgtt ggcgctgacc ctgacggatt 3360 ccgacaccgc catccagccg ctgctggtgg gggataatca gcgcgcgctc gatctggcga 3420 cccgcctgcg cgagtgcggc ctgtgggtga gcgccatccg tccgccgacg gtgcccccgg 3480 gcggcgcgcg gctgcgcatt accctgacgg cggcgcatca gtcgcaggat atcgatcgcc 3540 tgctggaggt gctgaatgac gtcagccaat gacacagtga acaaacaggc ggtcgcctcg 3600 gccttcagcc gcgcggccgg cagctacgat gccgccgccg cgctgcagcg tgacgttggc 3660 gagcgcttac tggggatggg gagttcccac ccgggcgaac agctgctgga cgccggctgc 3720 ggcaccggct atttcagccg tatgtggcgt gagcgcggca aacgggtgac cgcgctcgat 3780 ttggcgccgg gcatgctgga cgtcgcccgc caacggcagg cggcgcatca ttatctgctg 3840 ggcgatatcg aacaggtgcc gctgcccgat gcggcgatgg acatctgttt cagcagcctg 3900 gtggtgcagt ggtgcagcga tctgcctgcc gcgctggcag agctgtatcg cgtgacccgt 3960 cccggcggcg tgatcctgtt ttccacgctg gcggcgggct cgctgcagga attgggggac 4020 gcctggcaac aggtggacgg cgaacgtcac gtgaacgcct ttttgccgtt gacgcagatc 4080 cgcaccgcct gcgccgccta tcgacacgag ctggtgacgg agttgcgcac cctgaactac 4140 ccggacgtga tgacgctgat gcgttcgctc aagggcatcg gggcgacgca tttgcatcag 4200 gggcgtgagg gcggcctgat gtcgcgtggc cgcctcgccg cgctgcaggc ggcttacccg 4260 tgccggcagg ggcagttccc gctcagctat catctggctt atggagtgat ttatcgtgag 4320 taaacgttgg ttcgtgaccg gcaccgacac cgaagtgggg aaaaccgtcg ccagcagcgc 4380 cttgctgcag gccgccaacc gggcgggcta ccgcagcgcc ggctataagc cggtggcctc 4440 cggcagcgag atgaccgccg aggggctgcg caacggcgac gcgctggcgc tgcaggccaa 4500 cagcggtgtg gcgctggatt acgacgaagt gaacccttac gtatttgccg aaccgacctc 4560 gccgcatatc gtcagcgccg atgaaggccg gccgatcgac gcggcgcggc tgtccgacgg 4620 cctgcgccgg ctggagcagc gcgccgactg ggtgctggtc gagggggccg gcgggtggtt 4680 taccccgttg tcggcggagt acaccttcgc cgactgggtg cggcaagagc aactgccggt 4740 gatcctggtg gtgggcatca agctgggctg catcaaccac gcggtgctga cggcccaggc 4800 ggtgcaacag gccgggctga cgctggccgg ttggatcgcc aacgacgtgg cgccgccggg 4860 gcggcggcat caggaatacc tggctacgct gcgccgtatg ctgcccgcgc cgctgctggg 4920 cgaaatcccg cacctgccgc aggccgaacg ggcgccgctg gggcagtatc tggatatcag 4980 cttgctggcg cagtgacccg ggtaccgagc tcgaat 5016 <210> 13 <211> 1407 <212> DNA <213> Artificial Sequence <220> <223> bioAB(g7a)FCD mutant fragment of Serratia marcescens (1407bp) <400> 13 gactctagag gatccccggg ttaacgcgcg gcgtcggcca cggcggcggt caggcggctg 60 agctgttccg cttcgatgat gtaaggcggc atcaggtaaa tcagcttgcc gaacggccgg 120 atccataccc cgcgctcgac gaacccgcgc tgcagctcgg cgacatccac cggttcgcgc 180 atctccacca ccccaatcgc gcccagcacc cgcacgtcgg ccaccttcgg cagcgccgcc 240 aacggcaaca gttcccgctt caactgggtt tcgatggcgc tcacctgcgc ctgccagcga 300 ttttccgcca gcagcgccag actggcgtcc gccacggcgc aggccagcgg attgcccata 360 aaggtcggcc cgtgcataaa gcagccggcc gcgccgttgc tgatggtctc cgccacgtgg 420 cgggtagtca aggtggcgga aagggtcata tagccgccgg tcagcgcctt gcccagacag 480 agaatgtccg gcaccacctg cgcgtgctcg caggcgaaca gcttgccggt gcggccgaaa 540 ccggtggcga tctcgtcggc gatcagcagc acctgatggc gatcgcacag ctcgcgcacc 600 cgcttgagat aggtcggatg gtagatgcgc atgccgccgg cgccttgcac caccggttcc 660 agaatcaccg ccgccacttc accggcgtgc tgctccagca gcgcggcgaa cggcgcgata 720 tcctcttcac gccattcctc gtcgaagcgg cactgcggcg cggtggcgaa caggtgcggc 780 gccagatacc cctgatagag gctgtgcatc gagttgtccg gatcgcagac cgacatcgcg 840 ccgaaggtat cgccgtgata gccgtggcgc agcgtcagga tgcgctgccg gcgctcgccg 900 cgcgcctgcc agtactgcag cgccattttc agcgacactt ctaccgccac cgaaccagag 960 tccgccagga acacgcactg cagtgcttcc ggcgtcattt ccaccagccg acggcacaac 1020 gagatggcgg ccggatgggt aatgccgccg aacatcacgt gcgacatctt ctccaactgc 1080 tggctggcgg cctgattcag acgcggatgg ttgtaaccgt ggatcgccgc ccaccaggag 1140 gacatgccgt ccaccagact ccggccgtcc gccagctgca gttcgacgcc gctggccgat 1200 tcgatcgggt aacagggtaa cgggcggctc atggaggtgt aggggtgcca gatatggcgt 1260 tggtcaaacg ccaggtcgga agcggtgaca gacattgttg taaaccaaat tggattaaaa 1320 ttggttgaca gtatatccac aatatttaaa ctggcgacac tttttcgttt tggagacgcc 1380 atgatgaccg accgcattca ctggaca 1407 <210> 14 <211> 3650 <212> DNA <213> Artificial Sequence <220> <223> bioAB(g7a)FCD mutant fragment of Serratia marcescens (3650bp) <400> 14 gttttggaga cgccatgatg accgaccgca ttcactggac agtagggcaa gcccaggccc 60 tgtttgataa accgctgctg gaactgctgt tcgaagcgca aaccgtacac cgccagcact 120 tcgacccgcg tcaggtgcag gtcagcacgc tgctgtcgat caagaccggc gcttgcccgg 180 aagactgcaa atactgcccg cagagctcac gctacaagac cggcctggag tcggagcggc 240 tgatgcaggt cgagcaggtg ctggaatcgg cacgcaaggc caaggcgaac ggttcgaccc 300 gtttttgcat gggcgcggcg tggaagaacc cgcacgagcg cgatatgcct tatctgcagc 360 aaatggtgca gggcgtgaaa gcgatgggca tggaaacctg catgacgctg ggcacattgg 420 atggcaccca ggccgagcgg ctggcggagg ccgggctgga ttactacaac cataacctcg 480 acacctcgcc ggagttctac ggcagcatca tcaccacccg cagctaccag gagcgcctgg 540 atacgctcga caaggtgcgc gacgccggca tcaaagtgtg ctccggcggc atcgtcgggc 600 tgggtgaaac ggtgcgcgat cgcgccgggc tgctggtgca gctggccaac ctgccaaaac 660 caccggagag cgtgccgatc aacatgttgg tgaaggtgaa aggcacgccg ctggcggata 720 acgatgacgt cgatccgttt gatttcatcc gcaccatcgc ggtggcgcgc atcatgatgc 780 catcttctta tgtccgtctc tccgcaggcc gcgaacagat gaacgaacag acgcaggcga 840 tgtgcttcat ggccggcgcc aactcgatct tctacggttg caagctgctg accacgccga 900 atccggaaga agacaaagac ctgcagctgt tccgcaagct ggggctcaac ccgcagcaga 960 ccgcaaccga acacggcgac aaccagcaac agcaggtgct ggccaagcaa ctgctgaacg 1020 ccgataccgc cgagttttac aacgcggcgc cgtgatgagc tggcagcaac gcatcgagca 1080 ggcgctggct gagcggcgcc tgaacgccgc ctaccgccgg cgacagacca ccgagggcgg 1140 caacggccgc cagatccggc tcggcgatcg tctctatctg aacttctcgg gcaacgacta 1200 cctgggcttg agccaggatg cgcgggtgat cgccgcctgg cagcagggcg cgcagcgtta 1260 cggcgtcggc agcggcggtt cgggccacgt gaccggtttt agcgcggcgc atcaggcgct 1320 ggaagagcaa ctggcggctt ggctcggcta tccgcgcgcg ctgctgttca tctccggcta 1380 cgccgccaac caggcggtgc tggcggcgtt gatgcaaaag ggcgatcgca ttttggccga 1440 tcgtctcagc catgcctcgc tgctggaggc ggcggcgcag tcgccggccg agctgcgccg 1500 gttccagcac aatcaaccgc aggccttggc ggatctgctg gccaaaccct gcgacgggca 1560 gcggctggcg gtcaccgaag gggtgttcag catggatggc gacggcgcgc cgttggcgga 1620 gctgcatcgc ttaacccgtg cggcgggcgc ctggctgatg gtggatgacg cccacggcat 1680 cggcgtgcgc ggcgaacaag gccgcggcag ttgctggcag cagggcgtgc gccctgaact 1740 gctggtggcg accttcggca aggcgttcgg cgtcagcggc gcggcggtgc tgtgcgatga 1800 ggcgaccgcc gagtatctgc tgcagttcgc ccgccatctg atctacagca ccgcgatgcc 1860 gccggcgcag gcctgcgcgc tgcaggcggc gctggcccgt attcgagagg gtgatgatct 1920 gcgagcccgg ctgcaggaca acattcggcg tttccgtcag ggcgcggcgc cgttggcgct 1980 gaccctgacg gattccgaca ccgccatcca gccgctgctg gtgggggata atcagcgcgc 2040 gctcgatctg gcgacccgcc tgcgcgagtg cggcctgtgg gtgagcgcca tccgtccgcc 2100 gacggtgccc ccgggcggcg cgcggctgcg cattaccctg acggcggcgc atcagtcgca 2160 ggatatcgat cgcctgctgg aggtgctgaa tgacgtcagc caatgacaca gtgaacaaac 2220 aggcggtcgc ctcggccttc agccgcgcgg ccggcagcta cgatgccgcc gccgcgctgc 2280 agcgtgacgt tggcgagcgc ttactgggga tggggagttc ccacccgggc gaacagctgc 2340 tggacgccgg ctgcggcacc ggctatttca gccgtatgtg gcgtgagcgc ggcaaacggg 2400 tgaccgcgct cgatttggcg ccgggcatgc tggacgtcgc ccgccaacgg caggcggcgc 2460 atcattatct gctgggcgat atcgaacagg tgccgctgcc cgatgcggcg atggacatct 2520 gtttcagcag cctggtggtg cagtggtgca gcgatctgcc tgccgcgctg gcagagctgt 2580 atcgcgtgac ccgtcccggc ggcgtgatcc tgttttccac gctggcggcg ggctcgctgc 2640 aggaattggg ggacgcctgg caacaggtgg acggcgaacg tcacgtgaac gcctttttgc 2700 cgttgacgca gatccgcacc gcctgcgccg cctatcgaca cgagctggtg acggagttgc 2760 gcaccctgaa ctacccggac gtgatgacgc tgatgcgttc gctcaagggc atcggggcga 2820 cgcatttgca tcaggggcgt gagggcggcc tgatgtcgcg tggccgcctc gccgcgctgc 2880 aggcggctta cccgtgccgg caggggcagt tcccgctcag ctatcatctg gcttatggag 2940 tgatttatcg tgagtaaacg ttggttcgtg accggcaccg acaccgaagt ggggaaaacc 3000 gtcgccagca gcgccttgct gcaggccgcc aaccgggcgg gctaccgcag cgccggctat 3060 aagccggtgg cctccggcag cgagatgacc gccgaggggc tgcgcaacgg cgacgcgctg 3120 gcgctgcagg ccaacagcgg tgtggcgctg gattacgacg aagtgaaccc ttacgtattt 3180 gccgaaccga cctcgccgca tatcgtcagc gccgatgaag gccggccgat cgacgcggcg 3240 cggctgtccg acggcctgcg ccggctggag cagcgcgccg actgggtgct ggtcgagggg 3300 gccggcgggt ggtttacccc gttgtcggcg gagtacacct tcgccgactg ggtgcggcaa 3360 gagcaactgc cggtgatcct ggtggtgggc atcaagctgg gctgcatcaa ccacgcggtg 3420 ctgacggccc aggcggtgca acaggccggg ctgacgctgg ccggttggat cgccaacgac 3480 gtggcgccgc cggggcggcg gcatcaggaa tacctggcta cgctgcgccg tatgctgccc 3540 gcgccgctgc tgggcgaaat cccgcacctg ccgcaggccg aacgggcgcc gctggggcag 3600 tatctggata tcagcttgct ggcgcagtga cccgggtacc gagctcgaat 3650 <210> 15 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0007 <400> 15 gactctagag gatccccggg aatcgacttg taaaccaaat 40 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0008 <400> 16 attcgagctc ggtacccggg tcataatgct gccgcgttgt 40 <210> 17 <211> 1167 <212> DNA <213> Artificial Sequence <220> <223> wild-type bioB fragment of E. coli (1167bp) <400> 17 gactctagag gatccccggg aatcgacttg taaaccaaat tgaaaagatt taggtttaca 60 agtctacacc gaattaacaa caaaaaacac gttttggaga agccccatgg ctcaccgccc 120 acgctggaca ttgtcgcaag tcacagaatt atttgaaaaa ccgttgctgg atctgctgtt 180 tgaagcgcag caggtgcatc gccagcattt cgatcctcgt caggtgcagg tcagcacgtt 240 gctgtcgatt aagaccggag cttgtccgga agattgcaaa tactgcccgc aaagctcgcg 300 ctacaaaacc gggctggaag ccgagcggtt gatggaagtt gaacaggtgc tggagtcggc 360 gcgcaaagcg aaagcggcag gatcgacgcg cttctgtatg ggcgcggcgt ggaagaatcc 420 ccacgaacgc gatatgccgt acctggaaca aatggtgcag ggggtaaaag cgatggggct 480 ggaggcgtgt atgacgctgg gcacgttgag tgaatctcag gcgcagcgcc tcgcgaacgc 540 cgggctggat tactacaacc acaacctgga cacctcgccg gagttttacg gcaatatcat 600 caccacacgc acttatcagg aacgcctcga tacgctggaa aaagtgcgcg atgccgggat 660 caaagtctgt tctggcggca ttgtgggctt aggcgaaacg gtaaaagatc gcgccggatt 720 attgctgcaa ctggcaaacc tgccgacgcc gccggaaagc gtgccaatca acatgctggt 780 gaaggtgaaa ggcacgccgc ttgccgataa cgatgatgtc gatgcctttg attttattcg 840 caccattgcg gtcgcgcgga tcatgatgcc aacctcttac gtgcgccttt ctgccggacg 900 cgagcagatg aacgaacaga ctcaggcgat gtgctttatg gcaggcgcaa actcgatttt 960 ctacggttgc aaactgctga ccacgccgaa tccggaagaa gataaagacc tgcaactgtt 1020 ccgcaaactg gggctaaatc cgcagcaaac tgccgtgctg gcaggggata acgaacaaca 1080 gcaacgtctt gaacaggcgc tgatgacccc ggacaccgac gaatattaca acgcggcagc 1140 attatgaccc gggtaccgag ctcgaat 1167 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0009 <400> 18 gactctagag gatccccggg ttattggcaa aaaaatgttt 40 <210> 19 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0010 <400> 19 attcgagctc ggtacccggg ctacaacaag gcaaggttta 40 <210> 20 <211> 5020 <212> DNA <213> Artificial Sequence <220> <223> wold-type bioABFCD(Eco) fragment of E. coli (5020bp) <400> 20 gactctagag gatccccggg ttattggcaa aaaaatgttt catcctgtac cgcgcggtta 60 accgctgcgg tcagacgctg caactgttgc gggagaataa tatagggcgg catcaggtaa 120 atcagtttgc caaaaggccg gatccagaca ccctgttcga caaagaattt ttgcagcgcc 180 gccatattca ccggatgagt ggtttcgacc acgccaatgg cccccagtac gcgcacatcg 240 gcaaccattt cggcatcacg ggcgggggca agttgctcgc gcagctgtac ttcaatatcc 300 gccacctgtt gctgccagtc gccagattcg agaatcgcca ggctggcgtt tgctgccgcg 360 caggccagcg gattgcccat aaaagttggc ccatgcataa agcaaccggc ttcaccgtta 420 ctgatggttt ctgcaacctc gcgcgtggtg agtgtggcgg aaagggtcat tgtgccgccg 480 gttaaggctt taccgaggca caaaatgtcc ggcgcgattt ctgcatgttc acaggcaaac 540 agtttcccgg tacgaccaaa tccagtggcg atctcgtcgg caatcagcaa gataccttcg 600 cgatcgcata ttttgcggat tcgttttaac cattccggat ggtacatgcg catcccgcct 660 gcgccctgga caatcggctc aatgatcacc gccgcgattt catgacgatg cgccgccatc 720 aggcgggcaa agcccaccat atcgcgctca tcccattcgc catccatgcg gctttgcggg 780 gcgggagcaa acaggttttc tggcaggtag cctttccaca gactgtgcat tgagttatcc 840 ggatcgcaca ccgacatcgc gccaaaggta tcgccatgat aaccattgcg gaaggtcaga 900 aaacgctggc gcgcttcgcc tttggcttgc cagtactgca acgccatttt catcgccact 960 tccaccgcta cggaaccgga gtccgcgaga aaaacgcact ccagcggttg cggcgtcatc 1020 gccaccagtt tgcggcacag ctcaatggct ggcgcatggg tgataccgcc aaacatcaca 1080 tgcgacatgg catcaatttg cgacttcatc gccgcattaa gctgcgggtg attgtagccg 1140 tggatcgccg cccaccagga cgacataccg tcaaccaggc gtctgccgtc agacaaaatc 1200 agctcgcaac cttcggcgct caccaccgga taaaccggca gaggggaggt catggatgtg 1260 tatgggtgcc agatatggcg ttggtcaaag gcaagatcgt ccgttgtcat aatcgacttg 1320 taaaccaaat tgaaaagatt taggtttaca agtctacacc gaattaacaa caaaaaacac 1380 gttttggaga agccccatgg ctcaccgccc acgctggaca ttgtcgcaag tcacagaatt 1440 atttgaaaaa ccgttgctgg atctgctgtt tgaagcgcag caggtgcatc gccagcattt 1500 cgatcctcgt caggtgcagg tcagcacgtt gctgtcgatt aagaccggag cttgtccgga 1560 agattgcaaa tactgcccgc aaagctcgcg ctacaaaacc gggctggaag ccgagcggtt 1620 gatggaagtt gaacaggtgc tggagtcggc gcgcaaagcg aaagcggcag gatcgacgcg 1680 cttctgtatg ggcgcggcgt ggaagaatcc ccacgaacgc gatatgccgt acctggaaca 1740 aatggtgcag ggggtaaaag cgatggggct ggaggcgtgt atgacgctgg gcacgttgag 1800 tgaatctcag gcgcagcgcc tcgcgaacgc cgggctggat tactacaacc acaacctgga 1860 cacctcgccg gagttttacg gcaatatcat caccacacgc acttatcagg aacgcctcga 1920 tacgctggaa aaagtgcgcg atgccgggat caaagtctgt tctggcggca ttgtgggctt 1980 aggcgaaacg gtaaaagatc gcgccggatt attgctgcaa ctggcaaacc tgccgacgcc 2040 gccggaaagc gtgccaatca acatgctggt gaaggtgaaa ggcacgccgc ttgccgataa 2100 cgatgatgtc gatgcctttg attttattcg caccattgcg gtcgcgcgga tcatgatgcc 2160 aacctcttac gtgcgccttt ctgccggacg cgagcagatg aacgaacaga ctcaggcgat 2220 gtgctttatg gcaggcgcaa actcgatttt ctacggttgc aaactgctga ccacgccgaa 2280 tccggaagaa gataaagacc tgcaactgtt ccgcaaactg gggctaaatc cgcagcaaac 2340 tgccgtgctg gcaggggata acgaacaaca gcaacgtctt gaacaggcgc tgatgacccc 2400 ggacaccgac gaatattaca acgcggcagc attatgagct ggcaggagaa aatcaacgcg 2460 gcgctcgatg cgcggcgtgc tgccgatgcc ctgcgtcgcc gttatccggt ggcgcaagga 2520 gccggacgct ggctggtggc ggatgatcgc cagtatctga acttttccag taacgattat 2580 ttaggtttaa gccatcatcc gcaaattatc cgtgcctggc agcagggggc ggagcaattt 2640 ggcatcggta gcggcggctc cggtcacgtc agcggttata gcgtggtgca tcaggcactg 2700 gaagaagagc tggccgagtg gcttggctat tcgcgggcac tgctgtttat ctctggtttc 2760 gccgctaatc aggcagttat tgccgcgatg atggcgaaag aggaccgtat tgctgccgac 2820 cggcttagcc atgcctcatt gctggaagct gccagtttaa gcccgtcgca gcttcgccgt 2880 tttgctcata acgatgtcac tcatttggcg cgattgcttg cttccccctg tccggggcag 2940 caaatggtgg tgacagaagg cgtgttcagc atggacggcg atagtgcgcc actggcggaa 3000 atccagcagg taacgcaaca gcacaatggc tggttgatgg tcgatgatgc ccacggcacg 3060 ggcgttatcg gggagcaggg gcgcggcagc tgctggctgc aaaaggtaaa accagaattg 3120 ctggtagtga cttttggcaa aggatttggc gtcagcgggg cagcggtgct ttgctccagt 3180 acggtggcgg attatctgct gcaattcgcc cgccacctta tctacagcac cagtatgccg 3240 cccgctcagg cgcaggcatt acgtgcgtcg ctggcggtca ttcgcagtga tgagggtgat 3300 gcacggcgcg aaaaactggc ggcactcatt acgcgttttc gtgccggagt acaggatttg 3360 ccgtttacgc ttgctgattc atgcagcgcc atccagccat tgattgtcgg tgataacagc 3420 cgtgcgttac aactggcaga aaaactgcgt cagcaaggct gctgggtcac ggcgattcgc 3480 ccgccaaccg tacccgctgg tactgcgcga ctgcgcttaa cgctaaccgc tgcgcatgaa 3540 atgcaggata tcgaccgtct gctggaggtg ctgcatggca acggttaata aacaagccat 3600 tgcagcggca tttggtcggg cagccgcaca ctatgagcaa catgcagatc tacagcgcca 3660 gagtgctgac gccttactgg caatgcttcc acagcgtaaa tacacccacg tactggacgc 3720 gggttgtgga cctggctgga tgagccgcca ctggcgggaa cgtcacgcgc aggtgacggc 3780 cttagatctc tcgccgccaa tgcttgttca ggcacgccag aaggatgccg cagaccatta 3840 tctggcggga gatatcgaat ccctgccgtt agcgactgcg acgttcgatc ttgcatggag 3900 caatctcgca gtgcagtggt gcggtaattt atccacggca ctccgcgagc tgtatcgggt 3960 ggtgcgcccc aaaggcgtgg tcgcgtttac cacgctggtg cagggatcgt tacccgaact 4020 gcatcaggcg tggcaggcgg tggacgagcg tccgcatgct aatcgctttt taccgccaga 4080 tgaaatcgaa cagtcgctga acggcgtgca ttatcaacat catattcagc ccatcacgct 4140 gtggtttgat gatgcgctca gtgccatgcg ttcgctgaaa ggcatcggtg ccacgcatct 4200 tcatgaaggg cgcgacccgc gaatattaac gcgttcgcag ttgcagcgat tgcaactggc 4260 ctggccgcaa cagcaggggc gatatcctct gacgtatcat ctttttttgg gagtgattgc 4320 tcgtgagtaa acgttatttt gtcaccggaa cggataccga agtggggaaa actgtcgcca 4380 gttgtgcact tttacaagcc gcaaaggcag caggctaccg gacggcaggt tataaaccgg 4440 tcgcctctgg cagcgaaaag accccggaag gtttacgcaa tagcgacgcg ctggcgttac 4500 agcgcaacag cagcctgcag ctggattacg caacagtaaa tccttacacc ttcgcagaac 4560 ccacttcgcc gcacatcatc agcgcgcaag agggcagacc gatagaatca ttggtaatga 4620 gcgccggatt acgcgcgctt gaacaacagg ctgactgggt gttagtggaa ggtgctggcg 4680 gctggtttac gccgctttct gacactttca cttttgcaga ttgggtaaca caggaacaac 4740 tgccggtgat actggtagtt ggtgtgaaac tcggctgtat taatcacgcg atgttgactg 4800 cacaggtaat acaacacgcc ggactgactc tggcgggttg ggtggcgaac gatgttacgc 4860 ctccgggaaa acgtcacgct gaatatatga ccacgctcac ccgcatgatt cccgcgccgc 4920 tgctgggaga gatcccctgg cttgcagaaa atccagaaaa tgcggcaacc ggaaagtaca 4980 taaaccttgc cttgttgtag cccgggtacc gagctcgaat 5020 <210> 21 <211> 346 <212> PRT <213> Artificial Sequence <220> <223> mutant biotin synthase (BioB) of Serratia marcescens <400> 21 Met Met Thr Asp Arg Ile His Trp Thr Val Gly Gln Ala Gln Ala Leu 1 5 10 15 Phe Asp Lys Pro Leu Leu Glu Leu Leu Phe Glu Ala Gln Thr Val His 20 25 30 Arg Gln His Phe Asp Pro Arg Gln Val Gln Val Ser Thr Leu Leu Ser 35 40 45 Ile Lys Thr Gly Ala Cys Pro Glu Asp Cys Lys Tyr Cys Pro Gln Ser 50 55 60 Ser Arg Tyr Lys Thr Gly Leu Glu Ser Glu Arg Leu Met Gln Val Glu 65 70 75 80 Gln Val Leu Glu Ser Ala Arg Lys Ala Lys Ala Asn Gly Ser Thr Arg 85 90 95 Phe Cys Met Gly Ala Ala Trp Lys Asn Pro His Glu Arg Asp Met Pro 100 105 110 Tyr Leu Gln Gln Met Val Gln Gly Val Lys Ala Met Gly Met Glu Thr 115 120 125 Cys Met Thr Leu Gly Thr Leu Asp Gly Thr Gln Ala Glu Arg Leu Ala 130 135 140 Glu Ala Gly Leu Asp Tyr Tyr Asn His Asn Leu Asp Thr Ser Pro Glu 145 150 155 160 Phe Tyr Gly Ser Ile Ile Thr Thr Arg Ser Tyr Gln Glu Arg Leu Asp 165 170 175 Thr Leu Asp Lys Val Arg Asp Ala Gly Ile Lys Val Cys Ser Gly Gly 180 185 190 Ile Val Gly Leu Gly Glu Thr Val Arg Asp Arg Ala Gly Leu Leu Val 195 200 205 Gln Leu Ala Asn Leu Pro Lys Pro Pro Glu Ser Val Pro Ile Asn Met 210 215 220 Leu Val Lys Val Lys Gly Thr Pro Leu Ala Asp Asn Asp Asp Val Asp 225 230 235 240 Pro Phe Asp Phe Ile Arg Thr Ile Ala Val Ala Arg Ile Met Met Pro 245 250 255 Ser Ser Tyr Val Arg Leu Ser Ala Gly Arg Glu Gln Met Asn Glu Gln 260 265 270 Thr Gln Ala Met Cys Phe Met Ala Gly Ala Asn Ser Ile Phe Tyr Gly 275 280 285 Cys Lys Leu Leu Thr Thr Pro Asn Pro Glu Glu Asp Lys Asp Leu Gln 290 295 300 Leu Phe Arg Lys Leu Gly Leu Asn Pro Gln Gln Thr Ala Thr Glu His 305 310 315 320 Gly Asp Asn Gln Gln Gln Gln Val Leu Ala Lys Gln Leu Leu Asn Ala 325 330 335 Asp Thr Ala Glu Phe Tyr Asn Ala Ala Leu 340 345 <210> 22 <211> 1041 <212> DNA <213> Artificial Sequence <220> <223> mutant bioB of Serratia marcescens encoding mutant biotin synthase of SEQ ID NO: 21 <400> 22 atgatgaccg accgcattca ctggacagta gggcaagccc aggccctgtt tgataaaccg 60 ctgctggaac tgctgttcga agcgcaaacc gtacaccgcc agcacttcga cccgcgtcag 120 gtgcaggtca gcacgctgct gtcgatcaag accggcgctt gcccggaaga ctgcaaatac 180 tgcccgcaga gctcacgcta caagaccggc ctggagtcgg agcggctgat gcaggtcgag 240 caggtgctgg aatcggcacg caaggccaag gcgaacggtt cgacccgttt ttgcatgggc 300 gcggcgtgga agaacccgca cgagcgcgat atgccttatc tgcagcaaat ggtgcagggc 360 gtgaaagcga tgggcatgga aacctgcatg acgctgggca cattggatgg cacccaggcc 420 gagcggctgg cggaggccgg gctggattac tacaaccata acctcgacac ctcgccggag 480 ttctacggca gcatcatcac cacccgcagc taccaggagc gcctggatac gctcgacaag 540 gtgcgcgacg ccggcatcaa agtgtgctcc ggcggcatcg tcgggctggg tgaaacggtg 600 cgcgatcgcg ccgggctgct ggtgcagctg gccaacctgc caaaaccacc ggagagcgtg 660 ccgatcaaca tgttggtgaa ggtgaaaggc acgccgctgg cggataacga tgacgtcgat 720 ccgtttgatt tcatccgcac catcgcggtg gcgcgcatca tgatgccatc ttcttatgtc 780 cgtctctccg caggccgcga acagatgaac gaacagacgc aggcgatgtg cttcatggcc 840 ggcgccaact cgatcttcta cggttgcaag ctgctgacca cgccgaatcc ggaagaagac 900 aaagacctgc agctgttccg caagctgggg ctcaacccgc agcagaccgc aaccgaacac 960 ggcgacaacc agcaacagca ggtgctggcc aagcaactgc tgaacgccga taccgccgag 1020 ttttacaacg cggcgccgtg a 1041 <210> 23 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0011 <400> 23 gggctgcagg aattcgatcc agatacgctt tttcca 36 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0012 <400> 24 aaacattttt ttgccaataa cacgcaagca ccttaaaatc ac 42 <210> 25 <211> 594 <212> DNA <213> Artificial Sequence <220> <223> insAB upstream fragment (594bp) <400> 25 gggctgcagg aattcgatcc agatacgctt tttccagcgc gtttcggcga aacaggtcca 60 ccatcacgcg tttggcgata gtgcagagga aggagcgagg atcgcggatc gtcgagagcg 120 tttcgctgac cattacccgc aaaaaagtgt cctgggcaat gtcatctgca tcaaaagcag 180 actggagttt gcgcgtcagc cagcttttca accagccgtg atgtgtgcca taaagcgact 240 cgaacgttaa ggaagctgtg gtagtggcgc ggtcagacat gcggagtgca tcaaaagtta 300 attatcacgt agtcatatta atatgagaat ggttatcatt acaattggaa ataaaattgt 360 ttccaataga catttttaac atgttgtttt tctaagtgtt ataaggtagg tataaaatgg 420 gatggagcct ctgcttctgg catgtgtcgg tcagaatgac tcatgatgtg gtctgctatt 480 attgacatcc tcactgccct aaaggatggg gatttcggta atgctgccaa cttactgatt 540 tagtgtatga tggtgatttt aaggtgcttg cgtgttattg gcaaaaaaat gttt 594 <210> 26 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0013 <400> 26 gtgattttaa ggtgcttgcg tgttattggc aaaaaaatgt tt 42 <210> 27 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0014 <400> 27 tcagataatg cccgatgacc ctacaacaag gcaaggttta t 41 <210> 28 <211> 5022 <212> DNA <213> Artificial Sequence <220> <223> biotin operon fragment (10044bp) <400> 28 gtgattttaa ggtgcttgcg tgttattggc aaaaaaatgt ttcatcctgt accgcgcggt 60 taaccgctgc ggtcagacgc tgcaactgtt gcgggagaat aatatagggc ggcatcaggt 120 aaatcagttt gccaaaaggc cggatccaga caccctgttc gacaaagaat ttttgcagcg 180 ccgccatatt caccggatga gtggtttcga ccacgccaat ggcccccagt acgcgcacat 240 cggcaaccat ttcggcatca cgggcggggg caagttgctc gcgcagctgt acttcaatat 300 ccgccacctg ttgctgccag tcgccagatt cgagaatcgc caggctggcg tttgctgccg 360 cgcaggccag cggattgccc ataaaagttg gcccatgcat aaagcaaccg gcttcaccgt 420 tactgatggt ttctgcaacc tcgcgcgtgg tgagtgtggc ggaaagggtc attgtgccgc 480 cggttaaggc tttaccgagg cacaaaatgt ccggcgcgat ttctgcatgt tcacaggcaa 540 acagtttccc ggtacgacca aatccagtgg cgatctcgtc ggcaatcagc aagatacctt 600 cgcgatcgca tattttgcgg attcgtttta accattccgg atggtacatg cgcatcccgc 660 ctgcgccctg gacaatcggc tcaatgatca ccgccgcgat ttcatgacga tgcgccgcca 720 tcaggcgggc aaagcccacc atatcgcgct catcccattc gccatccatg cggctttgcg 780 gggcgggagc aaacaggttt tctggcaggt agcctttcca cagactgtgc attgagttat 840 ccggatcgca caccgacatc gcgccaaagg tatcgccatg ataaccattg cggaaggtca 900 gaaaacgctg gcgcgcttcg cctttggctt gccagtactg caacgccatt ttcatcgcca 960 cttccaccgc tacggaaccg gagtccgcga gaaaaacgca ctccagcggt tgcggcgtca 1020 tcgccaccag tttgcggcac agctcaatgg ctggcgcatg ggtgataccg ccaaacatca 1080 catgcgacat ggcatcaatt tgcgacttca tcgccgcatt aagctgcggg tgattgtagc 1140 cgtggatcgc cgcccaccag gacgacatac cgtcaaccag gcgtctgccg tcagacaaaa 1200 tcagctcgca accttcggcg ctcaccaccg gataaaccgg cagaggggag gtcatggatg 1260 tgtatgggtg ccagatatgg cgttggtcaa aggcaagatc gtccgttgtc ataatcgact 1320 tgtaaaccaa attgaaaaga tttaggttta caagtctaca ccgaattaac aacaaaaaac 1380 acgttttgga gaagccccat ggctcaccgc ccacgctgga cattgtcgca agtcacagaa 1440 ttatttgaaa aaccgttgct ggatctgctg tttgaagcgc agcaggtgca tcgccagcat 1500 ttcgatcctc gtcaggtgca ggtcagcacg ttgctgtcga ttaagaccgg agcttgtccg 1560 gaagattgca aatactgccc gcaaagctcg cgctacaaaa ccgggctgga agccgagcgg 1620 ttgatggaag ttgaacaggt gctggagtcg gcgcgcaaag cgaaagcggc aggatcgacg 1680 cgcttctgta tgggcgcggc gtggaagaat ccccacgaac gcgatatgcc gtacctggaa 1740 caaatggtgc agggggtaaa agcgatgggg ctggaggcgt gtatgacgct gggcacgttg 1800 agtgaatctc aggcgcagcg cctcgcgaac gccgggctgg attactacaa ccacaacctg 1860 gacacctcgc cggagtttta cggcaatatc atcaccacac gcacttatca ggaacgcctc 1920 gatacgctgg aaaaagtgcg cgatgccggg atcaaagtct gttctggcgg cattgtgggc 1980 ttaggcgaaa cggtaaaaga tcgcgccgga ttattgctgc aactggcaaa cctgccgacg 2040 ccgccggaaa gcgtgccaat caacatgctg gtgaaggtga aaggcacgcc gcttgccgat 2100 aacgatgatg tcgatgcctt tgattttatt cgcaccattg cggtcgcgcg gatcatgatg 2160 ccaacctctt acgtgcgcct ttctgccgga cgcgagcaga tgaacgaaca gactcaggcg 2220 atgtgcttta tggcaggcgc aaactcgatt ttctacggtt gcaaactgct gaccacgccg 2280 aatccggaag aagataaaga cctgcaactg ttccgcaaac tggggctaaa tccgcagcaa 2340 actgccgtgc tggcagggga taacgaacaa cagcaacgtc ttgaacaggc gctgatgacc 2400 ccggacaccg acgaatatta caacgcggca gcattatgag ctggcaggag aaaatcaacg 2460 cggcgctcga tgcgcggcgt gctgccgatg ccctgcgtcg ccgttatccg gtggcgcaag 2520 gagccggacg ctggctggtg gcggatgatc gccagtatct gaacttttcc agtaacgatt 2580 atttaggttt aagccatcat ccgcaaatta tccgtgcctg gcagcagggg gcggagcaat 2640 ttggcatcgg tagcggcggc tccggtcacg tcagcggtta tagcgtggtg catcaggcac 2700 tggaagaaga gctggccgag tggcttggct attcgcgggc actgctgttt atctctggtt 2760 tcgccgctaa tcaggcagtt attgccgcga tgatggcgaa agaggaccgt attgctgccg 2820 accggcttag ccatgcctca ttgctggaag ctgccagttt aagcccgtcg cagcttcgcc 2880 gttttgctca taacgatgtc actcatttgg cgcgattgct tgcttccccc tgtccggggc 2940 agcaaatggt ggtgacagaa ggcgtgttca gcatggacgg cgatagtgcg ccactggcgg 3000 aaatccagca ggtaacgcaa cagcacaatg gctggttgat ggtcgatgat gcccacggca 3060 cgggcgttat cggggagcag gggcgcggca gctgctggct gcaaaaggta aaaccagaat 3120 tgctggtagt gacttttggc aaaggatttg gcgtcagcgg ggcagcggtg ctttgctcca 3180 gtacggtggc ggattatctg ctgcaattcg cccgccacct tatctacagc accagtatgc 3240 cgcccgctca ggcgcaggca ttacgtgcgt cgctggcggt cattcgcagt gatgagggtg 3300 atgcacggcg cgaaaaactg gcggcactca ttacgcgttt tcgtgccgga gtacaggatt 3360 tgccgtttac gcttgctgat tcatgcagcg ccatccagcc attgattgtc ggtgataaca 3420 gccgtgcgtt acaactggca gaaaaactgc gtcagcaagg ctgctgggtc acggcgattc 3480 gcccgccaac cgtacccgct ggtactgcgc gactgcgctt aacgctaacc gctgcgcatg 3540 aaatgcagga tatcgaccgt ctgctggagg tgctgcatgg caacggttaa taaacaagcc 3600 attgcagcgg catttggtcg ggcagccgca cactatgagc aacatgcaga tctacagcgc 3660 cagagtgctg acgccttact ggcaatgctt ccacagcgta aatacaccca cgtactggac 3720 gcgggttgtg gacctggctg gatgagccgc cactggcggg aacgtcacgc gcaggtgacg 3780 gccttagatc tctcgccgcc aatgcttgtt caggcacgcc agaaggatgc cgcagaccat 3840 tatctggcgg gagatatcga atccctgccg ttagcgactg cgacgttcga tcttgcatgg 3900 agcaatctcg cagtgcagtg gtgcggtaat ttatccacgg cactccgcga gctgtatcgg 3960 gtggtgcgcc ccaaaggcgt ggtcgcgttt accacgctgg tgcagggatc gttacccgaa 4020 ctgcatcagg cgtggcaggc ggtggacgag cgtccgcatg ctaatcgctt tttaccgcca 4080 gatgaaatcg aacagtcgct gaacggcgtg cattatcaac atcatattca gcccatcacg 4140 ctgtggtttg atgatgcgct cagtgccatg cgttcgctga aaggcatcgg tgccacgcat 4200 cttcatgaag ggcgcgaccc gcgaatatta acgcgttcgc agttgcagcg attgcaactg 4260 gcctggccgc aacagcaggg gcgatatcct ctgacgtatc atcttttttt gggagtgatt 4320 gctcgtgagt aaacgttatt ttgtcaccgg aacggatacc gaagtgggga aaactgtcgc 4380 cagttgtgca cttttacaag ccgcaaaggc agcaggctac cggacggcag gttataaacc 4440 ggtcgcctct ggcagcgaaa agaccccgga aggtttacgc aatagcgacg cgctggcgtt 4500 acagcgcaac agcagcctgc agctggatta cgcaacagta aatccttaca ccttcgcaga 4560 acccacttcg ccgcacatca tcagcgcgca agagggcaga ccgatagaat cattggtaat 4620 gagcgccgga ttacgcgcgc ttgaacaaca ggctgactgg gtgttagtgg aaggtgctgg 4680 cggctggttt acgccgcttt ctgacacttt cacttttgca gattgggtaa cacaggaaca 4740 actgccggtg atactggtag ttggtgtgaa actcggctgt attaatcacg cgatgttgac 4800 tgcacaggta atacaacacg ccggactgac tctggcgggt tgggtggcga acgatgttac 4860 gcctccggga aaacgtcacg ctgaatatat gaccacgctc acccgcatga ttcccgcgcc 4920 gctgctggga gagatcccct ggcttgcaga aaatccagaa aatgcggcaa ccggaaagta 4980 cataaacctt gccttgttgt agggtcatcg ggcattatct ga 5022 <210> 29 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0015 <400> 29 ataaaccttg ccttgttgta gggtcatcgg gcattatctg a 41 <210> 30 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0016 <400> 30 gctaggtcga ctagcgtgat gccttttttg tcgtgggt 38 <210> 31 <211> 536 <212> DNA <213> Artificial Sequence <220> <223> insAB downstream fragment (536bp) <400> 31 ataaaccttg ccttgttgta gggtcatcgg gcattatctg aacataaaac actatcagta 60 agttggagtc attaccgacc atgtttattt catacattgt gggtattgtt cttattatcg 120 ccgctaatca ataaaatcct gccccatatc tacatggggc agttgttcat tcttttagtg 180 tggtaattca cacgccagca aaaactctgc cgttccttca tcaacaatca ggtccgtgac 240 atatcctccc agcagggcac ccaacgttgc gtcatagcct ctttccccac cagcaaggaa 300 gatcttccgt tcaatctgcc ttagctgagc cagactgatt cccagaatac gctggtcaac 360 atcagccacg acgggcatcc cttccttgtc atagaagcga ccacaaatga cacctactgc 420 gcctaaatcc cgatacgtct gcatttcctt cttattcagc acgcccaccc gaatcagggg 480 attttcatca agcgcgttac ccacgacaaa aaaggcatca cgctagtcga cctagc 536 <210> 32 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_7 <400> 32 ctgcaggaat tcgatttcgc tattgtagcc gtagg 35 <210> 33 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_8 <400> 33 ctgcactacg cagggtggca cggtgttatc cttca 35 <210> 34 <211> 515 <212> DNA <213> Artificial Sequence <220> <223> birA upstream fragment for exogenous insertion <400> 34 ttcgctattg tagccgtagg tctgcgtctg ccaaaagagt ggcaacctgt actaacgtat 60 ggtgacttaa ctcgtctgga tcctacaaca gtaacgccac agcaagtatt taatgcggtg 120 tgtcatatgc gcaccaccaa actccctgat ccaaaagtga atggcaatgc cggtagtttc 180 ttcaaaaacc ctgttgtatc tgccgaaacg gctaaagcat tactgtcaca atttccaaca 240 gcaccaaatt acccccaggc ggatggttca gtaaaactgg cagcaggttg gcttatcgat 300 cagtgccagc taaaagggat gcaaataggt ggggctgcgg tgcaccgtca acaggcgtta 360 gttctcatta atgaagacaa tgcaaaaagc gaagatgttg tacagctggc gcatcatgta 420 agacagaaag ttggtgaaaa atttaatgtc tggcttgagc ctgaagtccg ctttattggt 480 gcatcaggtg aagtgagcgc agtggagaca atttc 515 <210> 35 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_9 <400> 35 gataacaccg tgccaccctg cgtagtgcag aaaaa 35 <210> 36 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_10 <400> 36 gtcgactagc gtgatatgca tcgcctggtg aagtt 35 <210> 37 <211> 512 <212> DNA <213> Artificial Sequence <220> <223> birA downstream fragment for exogenous insertion <400> 37 gaaaggggag tattcgctcc cctgcaaatt atttgcgtag tctgacctct tctaccgcat 60 gattagcact tttcgtcagg attaaactgg cgcgctcacg agtaggtaga atattttgct 120 ttaagttcag ccagttgatc tctttccaca atgtcatggc agtcttaatc gcttcttctt 180 tagttaattt cgcgtagtta tgaaaatagg aatccgggtc ggtaaaagcc ccttcgcgga 240 atttcagaaa acggttgata taccatgtct gaagtaagtc ttccggtgca tcaacatata 300 tcgaaaaatc gacaaaatca gaaacaaata catgatgtgg atcgtgtgga taatccatcc 360 cgctctgtaa gacatttaac ccttcaagaa ttaaaatatc aggctgaaca accgttttat 420 ctccatccgg gatcacatca taaataagat gtgagtaaac aggtgctgta acgtttggca 480 cgccggattt gagatcggaa acaaacttca cc 512 <210> 38 <211> 304 <212> DNA <213> Artificial Sequence <220> <223> cj1 promoter <400> 38 caccgcgggc ttattccatt acatggaatg accaggaatg gcagggaatg cgacgaaatt 60 gactgtgtcg ggagcttctg atccgatgct gccaaccagg agagaaaata atgacatgtg 120 caggcacgct ggtgagctgg agatttatga tctcaagtac cttttttctt gcactcgagg 180 gggctgagtg ccagaatggt tgctgacacc aggttgaggt tggtacacac tcaccaatcc 240 tgccgtcgcg ggcgcctgcg tggaacataa accttgagtg aaacccaatc taggagatta 300 agat 304 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_11 <400> 39 gtcgactagc gtgatatgca tcgcctggtg aagtt 35 <210> 40 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_15 <400> 40 ctttaagggc gacatatctt aatctcctag attgg 35 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_16 <400> 41 aatctaggag attaagatat gtcgccctta aagcg 35 <210> 42 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_17 <400> 42 tctgcactac gcagggttac tgcaggcgaa ggtgc 35 <210> 43 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Corynebacterium glutamicum (861bp) <400> 43 atgtcgccct taaagcgcgc ttttcgacgc gaccccacta cattggcttc catgaacgtt 60 gacatttcac gatccagaga gccgctaaac gttgagctcc tgaaggaaaa attgctccaa 120 aacggtgact ttggccaggt catttacgaa aaagtgacag gctccactaa tgctgacttg 180 ctggcacttg caggttctgg cgctccaaac tggacggtga aaactgtcga gtttcaagat 240 catgcgcgtg ggcgactcgg ccgcccgtgg tctgcccctg agggttccca aacaatcgtg 300 tctgtgctcg ttcaactatc tattgatcaa gtggaccgga ttggcactat tccactcgcg 360 gcgggactcg ctgtcatgga tgcgttgaat gacctcggtg tggaaggtgc cggactgaaa 420 tggcccaacg atgttcaaat ccacggcaag aaactctgcg gcatcctggt ggaagccacc 480 ggctttgatt ccaccccaac agttgtcatc ggttggggca ctaatatcag cctgactaaa 540 gaggagcttc ctgttcctca tgcaacttcc ctcgcattgg aaggtgttga agtcgacaga 600 accacattcc ttattaatat gctcacacat ctgcatactc gactggacca gtggcagggt 660 ccaagtgtgg attggctcga tgattaccgt gcggtatgtt ccagtattgg ccaagatgtt 720 cgagtgcttc tacctgggga taaagaactc ttaggtgaag cgatcggtgt cgcgactggc 780 ggagaaattc gtgttcgcga tgcttcgggc accgttcaca ccctcaacgc cggtgaaatt 840 acgcaccttc gcctgcagta a 861 <110> CJ CheilJedang Corporation <120> Polypeptide variant having biotin synthase activity and biotin production method using the same <130> DPP20205278KR <160> 43 <170> koPatentIn 3.0 <210> 1 <211> 346 <212> PRT <213> Artificial Sequence <220> <223> wild-type biotin synthase (BioB) of Serratia marcescens <400> 1 Met Met Ala Asp Arg Ile His Trp Thr Val Gly Gln Ala Gln Ala Leu 1 5 10 15 Phe Asp Lys Pro Leu Leu Glu Leu Leu Phe Glu Ala Gln Thr Val His 20 25 30 Arg Gln His Phe Asp Pro Arg Gln Val Gln Val Ser Thr Leu Leu Ser 35 40 45 Ile Lys Thr Gly Ala Cys Pro Glu Asp Cys Lys Tyr Cys Pro Gln Ser 50 55 60 Ser Arg Tyr Lys Thr Gly Leu Glu Ser Glu Arg Leu Met Gln Val Glu 65 70 75 80 Gln Val Leu Glu Ser Ala Arg Lys Ala Lys Ala Asn Gly Ser Thr Arg 85 90 95 Phe Cys Met Gly Ala Ala Trp Lys Asn Pro His Glu Arg Asp Met Pro 100 105 110 Tyr Leu Gln Gln Met Val Gln Gly Val Lys Ala Met Gly Met Glu Thr 115 120 125 Cys Met Thr Leu Gly Thr Leu Asp Gly Thr Gln Ala Glu Arg Leu Ala 130 135 140 Glu Ala Gly Leu Asp Tyr Tyr Asn His Asn Leu Asp Thr Ser Pro Glu 145 150 155 160 Phe Tyr Gly Ser Ile Ile Thr Thr Arg Ser Tyr Gln Glu Arg Leu Asp 165 170 175 Thr Leu Asp Lys Val Arg Asp Ala Gly Ile Lys Val Cys Ser Gly Gly 180 185 190 Ile Val Gly Leu Gly Glu Thr Val Arg Asp Arg Ala Gly Leu Leu Val 195 200 205 Gln Leu Ala Asn Leu Pro Lys Pro Pro Glu Ser Val Pro Ile Asn Met 210 215 220 Leu Val Lys Val Lys Gly Thr Pro Leu Ala Asp Asn Asp Asp Val Asp 225 230 235 240 Pro Phe Asp Phe Ile Arg Thr Ile Ala Val Ala Arg Ile Met Met Pro 245 250 255 Ser Ser Tyr Val Arg Leu Ser Ala Gly Arg Glu Gln Met Asn Glu Gln 260 265 270 Thr Gln Ala Met Cys Phe Met Ala Gly Ala Asn Ser Ile Phe Tyr Gly 275 280 285 Cys Lys Leu Leu Thr Thr Pro Asn Pro Glu Glu Asp Lys Asp Leu Gln 290 295 300 Leu Phe Arg Lys Leu Gly Leu Asn Pro Gln Gln Thr Ala Thr Glu His 305 310 315 320 Gly Asp Asn Gln Gln Gln Gln Val Leu Ala Lys Gln Leu Leu Asn Ala 325 330 335 Asp Thr Ala Glu Phe Tyr Asn Ala Ala Leu 340 345 <210> 2 <211> 1041 <212> DNA <213> Artificial Sequence <220> <223> gene encoding wild-type biotin synthase (BioB) of Serratia marcescens <400> 2 atgatggccg accgcattca ctggacagta gggcaagccc aggccctgtt tgataaaccg 60 ctgctggaac tgctgttcga agcgcaaacc gtacaccgcc agcacttcga cccgcgtcag 120 gtgcaggtca gcacgctgct gtcgatcaag accggcgctt g cccggaaga ctgcaaatac 180 tgcccgcaga gctcacgcta caagaccggc ctggagtcgg agcggctgat gcaggtcgag 240 caggtgctgg aatcggcacg caaggccaag gcgaacggtt cgacccgttt ttgcatgggc 300 gcggcgtgga agaacccgca cgagcgcgat atgccttatc tgcagcaaat ggtgcagg gc 360 gtgaaagcga tgggcatgga aacctgcatg acgctgggca cattggatgg cacccaggcc 420 gagcggctgg cggaggccgg gctggattac tacaaccata acctcgacac ctcgccggag 480 ttctacggca gcatcatcac cacccgcagc taccaggagc gcctggatac gctcgacaag 540 gtgcgcgacg ccggcatcaa agtgtgctcc ggcggcatcg tcgggctggg tgaaacggtg 600 cgcgatcgcg ccgggctgct ggtgcagctg gccaacctgc caaaaccacc ggagagcgtg 660 ccgatcaaca tgttggtgaa ggt gaaaggc acgccgctgg cggataacga tgacgtcgat 720 ccgtttgatt tcatccgcac catcgcggtg gcgcgcatca tgatgccatc ttcttatgtc 780 cgtctctccg caggccgcga acagatgaac gaacagacgc aggcgatgtg cttcatggcc 840 ggcgccaact cgatcttcta cggttgcaag ctgctgacca cgccgaatcc ggaagaagac 900 aaagacctgc agctgttccg caagctgggg ctcaacccgc agcagaccgc aaccgaacac 960 ggcgacaacc agcaacagca ggtgctggcc aagcaactgc tgaacgccga taccgccga g 1020 ttttacaacg cggcgccgtg a 1041 <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0001 < 400> 3 gactctagag gatccccggg tgttgtaaac caaattggat 40 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0002 <400> 4 attcgagctc ggtacccggg tcacggcgcc gcgttgtaaa 40 <210> 5 <211> 41 <212> DNA <213> Artificial Sequence <220> < 223> primer_VB07_0003 <400> 5 tgtccagtga atgcggtcgg tcatcatggc gtctccaaaa c 41 <210> 6 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0004 <400> 6 gttttggaga cgccat gatg accgaccgca ttcactggac a 41 <210> 7 <211> 1166 <212> DNA <213> Artificial Sequence <220> <223> wild-type bioB gene fragment of Serratia marcescens (1166bp), wherein atg at positions 106-108 is a start codon for encoding SEQ ID NO: 1 <400> 7 gactctagag gatccccggg tgttgtaaac caaattggat taaaattggt tgacagtata 60 tccacaatat ttaaactggc gacacttttt cgttttggag acgccatgat ggccgaccgc 120 attcactgga cagtagggca agcccaggcc ctgtt tgata aaccgctgct ggaactgctg 180 ttcgaagcgc aaaccgtaca ccgccagcac ttcgacccgc gtcaggtgca ggtcagcacg 240 ctgctgtcga tcaagaccgg cgcttgcccg gaagactgca aatactgccc gcagagctca 300 cgctacaaga ccggcctgga gtcggagcgg ctgatgcagg ggt gctggaatcg 360 gcacgcaagg ccaaggcgaa cggttcgacc cgtttttgca tgggcgcggc gtggaagaac 420 ccgcacgagc gcgatatgcc ttatctgcag caaatggtgc agggcgtgaa agcgatgggc 480 atggaaacct gcatgacgct gggcacattg gatggcaccc aggccgagcg gctggcggag 540 gccgggctgg attactacaa ccataacctc gacacctcgc cggagttcta cggcagcatc 600 atcaccaccc gcagctacca ggagcgcctg gatacgctcg acaaggtgcg cgacgccggc 660 atcaaag tgt gctccggcgg catcgtcggg ctgggtgaaa cggtgcgcga tcgcgccggg 720 ctgctggtgc agctggccaa cctgccaaaa ccaccggaga gcgtgccgat caacatgttg 780 gtgaaggtga aaggcacgcc gctggcggat aacgatgacg tcgatccgtt tgatttcatc 840 cgcaccatcg cggtggcgcg catcatgatg ccatcttctt atgtccgtct ctccgcaggc 900 cgcgaacaga tgaacgaaca gacgcaggcg atgtgcttca tggccggcgc caactcgatc 960 ttctacggtt gcaagctgct gaccacgccg aatccggaag a agacaaaga cctgcagctg 1020 ttccgcaagc tggggctcaa cccgcagcag accgcaaccg aacacggcga caaccagcaa 1080 cagcaggtgc tggccaagca actgctgaac gccgataccg ccgagtttta caacgcggcg 1140 ccgtgacccg ggtaccgagc tcgaat 1166 <210> 8 <211> 132 <212> DNA <213> Artificial Sequence <220> <223> bioB gene mutant (g7a) fragment of Serratia marcescens (132bp), wherein atg at positions 106-108 corresponds to the start codon of SEQ ID NO: 7 <400> 8 gactctagag gatccccggg tgttgtaaac caaattggat taaaattggt tgacagtata 60 tccacaatat ttaaactggc gacacttttt cgttttggag acgccatgat gaccgaccgc 120 attcactgga ca 132 <210> 9 <211 > 1075 <212> DNA <213> Artificial Sequence <220> <223> bioB gene mutant (g7a) fragment of Serratia marcescens (1075bp), wherein atg at positions 15-17 corresponds to the start codon of SEQ ID NO: 7 <400> 9 gttttggaga cgccatgatg accgaccgca ttcactggac agtagggcaa gcccaggccc 60 tgtttgataa accgctgctg gaactgctgt tcgaagcgca aaccgtacac cgccagcact 120 tcgacccgcg tcaggtgcag gtcagcacgc tgctgtcgat caagaccggc gcttgcccgg 180 aagactgcaa atactgcccg cagagctcac gctacaagac cggcctggag tcggagcggc 240 tgatgcaggt cgagcaggtg ctggaatcgg cacgcaaggc caaggcgaac ggttcgaccc 300 gtttttgcat gggcgcggcg tggaagaacc cgcacgagcg cgatatgcct tatctgcagc 360 aaatggtgca gggcgtgaaa gcgatgggca tggaaac ctg catgacgctg ggcacattgg 420 atggcaccca ggccgagcgg ctggcggagg ccgggctgga ttactacaac cataacctcg 480 acacctcgcc ggagttctac ggcagcatca tcaccacccg cagctaccag gagcgcctgg 540 atacgctcga caaggtgcgc gacgccggca tcaaagtgtg ctccggcggc atcgtcgggc 600 tgggtgaaac ggtgcgcgat cgcgccgggc tgctggtgca gctggccaac ctgccaaaac 660 caccggagag cgtgccgatc aacatgttgg tgaaggtgaa aggcacgccg ctggcggata 720 acgatgacgt cgatccgttt gatttcatcc gcaccatcgc ggtggcgcgc atcatgatgc 780 catcttctta tgtccgtctc tccgcaggcc gcgaacagat gaacgaacag acgcaggcga 840 tgtgcttcat ggccggcgcc aactcgatct tctacggttg caagctgctg accacgccga 900 atccggaaga agacaaagac ctgcagctgt tccgcaagct ggggctcaac ccgcagcaga 960 ccgcaaccga acacggcgac aaccagcaac agcaggtgct ggccaagcaa ctgctgaacg 1020 ccgataccgc cgagttttac aacgcggcgc acccgg gtaccgagct cgaat 1075 <210> 10 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0005 <400> 10 gactctagag gatccccggg ttaacgcgcg gcgtcggcca 40 <210> 11 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0006 <400> 11 attcgagctc ggtacccggg tcactgcgcc agcaagctga 40 <210> 12 <211> 5016 <212> DNA <213> Artificial Sequence <220> <223> FCD( Wt) fragment of Serratia marcescens (5016bp) <400> 12 gactctagag gatccccggg ttaacgcgcg gcgtcggcca cggcggcggt caggcggctg 60 agctgttccg cttcgatgat gtaaggcggc atcaggtaaa tcagcttgcc gaacggccgg 120 atccataccc cgcgctcgac gaacccgcgc tgcagctcgg cgacatccac cggttcgcgc 180 atctccacca ccccaatcgc gcccagcacc cgcacgtcgg ccaccttcgg cagcgccgcc 240 aacggcaaca gttcccgctt caactgggtt tcgatggcgc tcacctgcgc ctg ccagcga 300 ttttccgcca gcagcgccag actggcgtcc gccacggcgc aggccagcgg attgcccata 360 aaggtcggcc cgtgcataaa gcagccggcc gcgccgttgc tgatggtctc cgccacgtgg 420 cgggtagtca aggtggcgga aagggtcata tagccgccgg tcagcgcctt gcccagacag 480 agaatgtccg gcaccacctg cgcgtgctcg caggcgaaca gcttgccggt gcggccgaaa 540 ccggtggcga tctcgtcggc gatcagcagc acctgatggc gatcgcacag ctcgcgcacc 600 cgcttgagat aggtcgg atg gtagatgcgc atgccgccgg cgccttgcac caccggttcc 660 agaatcaccg ccgccacttc accggcgtgc tgctccagca gcgcggcgaa cggcgcgata 720 tcctcttcac gccattcctc gtcgaagcgg cactgcggcg cggtggcgaa caggtgcggc 780 gccagatacc cctgatagag gctgtgcatc gagttgtccg gatcgcagac cgacatcgcg 840 ccgaaggtat cgccgtgata gccgtggcgc agcgtcagga tgcgctgccg gcgctcgccg 900 cgcgcctgcc agtactgcag cgccattttc agcgac actt ctaccgccac cgaaccagag 960 tccgccagga acacgcactg cagtgcttcc ggcgtcattt ccaccagccg acggcacaac 1020 gagatggcgg ccggatgggt aatgccgccg aacatcacgt gcgacatctt ctccaactgc 1080 tggctggcgg cctgattcag acgcggat gg ttgtaaccgt ggatcgccgc ccaccaggag 1140 gacatgccgt ccaccagact ccggccgtcc gccagctgca gttcgacgcc gctggccgat 1200 tcgatcgggt aacagggtaa cgggcggctc atggaggtgt aggggtgcca gatatggcgt 1260 tggtcaaac g ccaggtcgga agcggtgaca gacattgttg taaaccaaat tggattaaaa 1320 ttggttgaca gtatatccac aatatttaaa ctggcgacac tttttcgttt tggagacgcc 1380 atgatggccg accgcattca ctggacagta gggcaagccc aggccctgtt tgataaaccg 144 0 ctgctggaac tgctgttcga agcgcaaacc gtacaccgcc agcacttcga cccgcgtcag 1500 gtgcaggtca gcacgctgct gtcgatcaag accggcgctt gcccggaaga ctgcaaatac 1560 tgcccgcaga gctcacgcta caagaccggc ctggagtcgg agc ggctgat gcaggtcgag 1620 caggtgctgg aatcggcacg caaggccaag gcgaacggtt cgacccgttt ttgcatgggc 1680 gcggcgtgga agaacccgca cgagcgcgat atgccttatc tgcagcaaat ggtgcagggc 1740 gtgaaagcga tgggcatgga aacctgcatg acgctgggca cattggatgg cacccaggcc 1800 gagcggctgg cggaggccgg gctggattac tacaaccata acctcgacac ctcgccggag 1860 ttctacggca gcatcatcac cacccgcagc taccaggagc gcctggatac gctcgacaag 1920 gtgcgcgacg ccggcatcaa agtgtgctcc ggcggcatcg tcgggctggg tgaaacggtg 1980 cgcgatcgcg ccgggctgct ggtgcagctg gccaacctgc caaaaccacc ggagagcgtg 2040 ccgatcaaca tgttggtgaa ggtgaaaggc acgccgctgg cggataacga tgacgtcgat 2100 ccgtttgatt tcatccgcac catcgcggtg gcgcgcatca tgatgccatc ttcttatgtc 2160 cgtctctccg caggccgcga acagatgaac gaacagacgc aggcgatgtg cttcatggcc 2220 ggcgccaact cgatctt cta cggttgcaag ctgctgacca cgccgaatcc ggaagaagac 2280 aaagacctgc agctgttccg caagctgggg ctcaacccgc agcagaccgc aaccgaacac 2340 ggcgacaacc agcaacagca ggtgctggcc aagcaactgc tgaacgccga taccgccgag 2400 ttttacaacg cggcgccgtg atgagctggc agcaacgcat cgagcaggcg ctggctgagc 2460 ggcgcctgaa cgccgcctac cgccggcgac agaccaccga gggcggcaac ggccgccaga 2520 tccggctcgg cgatcgtctc tatctgaact tctcgggcaa cgactacctg gg cttgagcc 2580 aggatgcgcg ggtgatcgcc gcctggcagc agggcgcgca gcgttacggc gtcggcagcg 2640 gcggttcggg ccacgtgacc ggttttagcg cggcgcatca ggcgctggaa gagcaactgg 2700 cggcttggct cggctatccg cgcgcgctgc tgttcatctc cggctacgcc gccaaccagg 2760 cggtgctggc ggcgttgatg caaaagggcg atcgcatttt ggccgatcgt ctcagccatg 2820 cctcgctgct ggaggcggcg gcgcagtcgc cggccgagct gcgccggttc cagcacaat c 2880 aaccgcaggc cttggcggat ctgctggcca aaccctgcga cgggcagcgg ctggcggtca 2940 ccgaaggggt gttcagcatg gatggcgacg gcgcgccgtt ggcggagctg catcgcttaa 3000 cccgtgcggc gggcgcctgg ctgatggtgg atgacgccca cggcatcggc gtgcgcggcg 3060 aacaaggccg cggcagttgc tggcagcagg gcgtgcgccc tgaactgctg gtggcgacct 3120 tcggcaaggc gttcggcgtc agcggcgcgg cggtgctgtg cgatgaggcg accgccgagt 3180 atctgctgca gttcgcccgc catctgatct acagcaccgc gatgccgccg gcgcaggcct 3240 gcgcgctgca ggcggcgctg gcccgtattc gagagggtga tgatctgcga gcccggctgc 3300 aggacaacat tcggcgtttc cgtcagggcg cggcgccgtt ggcgctgacc ctgacggatt 3360 ccgacaccgc catccagccg ctgctggtgg gggataatca gcgcgcgctc gatctggcga 3420 cccgcctgcg cgagtgcggc ctgtgggtga gcgccatccg tccgccgacg gtgccccgg 3480 gcggcgcgcg gcgcatt accctgacgg cggcgcatca gtcgcaggat atcgatcgcc 3540 tgctggaggt gctgaatgac gtcagccaat gacacagtga acaaacaggc ggtcgcctcg 3600 gccttcagcc gcgcggccgg cagctacgat gccgccgccg cgctgcagcg c 3660 gagcgcttac tggggatggg gagttcccac ccgggcgaac agctgctgga cgccggctgc 3720 ggcaccggct atttcagccg tatgtggcgt gagcgcggca aacgggtgac cgcgctcgat 3780 ttggcgccgg gcatgctgga cgtcgcccgc caacggcagg cggcgcatca ttatctgctg 3840 ggcgatatcg aacaggtgcc gctgcccgat gcggcgatgg acatctgttt cagcagcctg 3900 gtggtgcagt ggtgcagcga tctgcctgcc gcgctggcag agctgtatcg cgtgacccgt 3960 cccggcggcg tgatcctgtt ttccacgctg gcggcgggct cgctgcagga attgggggac 4020 gcctggcaac aggtggacgg cgaacgtcac gtgaacgcct ttttgccgtt gacgcagatc 4080 cgcaccgcct gcgccgccta tcgacacgag ctggtgacgg agttgcgc ac cctgaactac 4140 ccggacgtga tgacgctgat gcgttcgctc aagggcatcg gggcgacgca tttgcatcag 4200 gggcgtgagg gcggcctgat gtcgcgtggc cgcctcgccg cgctgcaggc ggcttacccg 4260 tgccggcagg gctcagctat catctggctt atggagtgat ttatcgtgag 4320 taaacgttgg ttcgtgaccg gcaccgacac cgaagtgggg aaaaccgtcg ccagcagcgc 4380 cttgctgcag gccgccaacc gggcgggcta ccgcagcgcc ggctataagc cggtggcctc 44 40 cggcagcgag atgaccgccg aggggctgcg caacggcgac gcgctggcgc tgcaggccaa 4500 cagcggtgtg gcgctggatt acgacgaagt gaacccttac gtatttgccg aaccgacctc 4560 gccgcatatc gtcagcgccg atgaaggccg gccgatcgac gcggcgcggc tgtccgacgg 4620 cctgcgccgg ctggagcagc gcgccgactg ggtgctggtc gagggggccg gcgggtggtt 4680 taccccgttg tcggcggagt acaccttcgc cgactgggtg cggcaagagc aactgccggt 4740 gatcctggtg gcatca agctgggctg catcaaccac gcggtgctga cggcccaggc 4800 ggtgcaacag gccgggctga cgctggccgg ttggatcgcc aacgacgtgg cgccgccggg 4860 gcggcggcat caggaatacc tggctacgct gcgccgtatg ctgcccgcgc cgctgctggg 4920 cgaaatcccg cacctgccgc aggccgaacg ggcgccgctg gggcagtatc tggatatcag 4980 cttgctggcg cagtgacccg ggtaccgagc tcgaat 5016 <210> 13 <211> 1407 <212> DNA <220> Artificial Sequence <220> 223> bioAB(g7a)FCD mutant fragment of Serratia marcescens (1407bp) < 400> 13 gactctagag gatccccggg ttaacgcgcg gcgtcggcca cggcggcggt caggcggctg 60 agctgttccg cttcgatgat gtaaggcggc atcaggtaaa tcagcttgcc gaacggccgg 120 atccataccc cgcgctcgac gaacccgcgc tgcagctcgg cgacatccac cggttcgcgc 180 atctccacca ccccaatcgc gcccagcacc cgcacgtcgg ccaccttcgg cagcgccgcc 240 aacggcaaca gttcccgctt caactgggtt tcgatggcgc cctgcgc ctgccagcga 300 ttttccgcca gcagcgccag actggcgtcc gccacggcgc aggccagcgg attgcccata 360 aaggtcggcc cgtgcataaa gcagccggcc gcgccgttgc tgatggtctc cgccacgtgg 420 cgggtagtca aggtggcgga aagggtcata tagccgccgg tcagcgcctt gcccagacag 480 agaatgtccg gcaccacctg cgcgtgctcg caggcgaaca gcttgccggt gcggccgaaa 540 ccggtggcga tctcgtcggc gatcagcagc acctgatggc gatcgcacag ctcgcgcacc 600 cg cttgagat aggtcggatg gtagatgcgc atgccgccgg cgccttgcac caccggttcc 660 agaatcaccg ccgccacttc accggcgtgc tgctccagca gcgcggcgaa cggcgcgata 720 tcctcttcac gccattcctc gtcgaagcgg cactgcggcg cggtggcgaa caggtgcggc 780 gccagatacc cctgatagag gctgtgcatc gagttgtccg gatcgcagac cgacatcgcg 840 ccgaaggtat cgccgtgata gccgtggcgc agcgtcagga tgcgctgccg gcgctcgccg 900 cgcgcctgcc agtactgcag cgccattt tc agcgacactt ctaccgccac cgaaccagag 960 tccgccagga acacgcactg cagtgcttcc ggcgtcattt ccaccagccg acggcacaac 1020 gagatggcgg ccggatgggt aatgccgccg aacatcacgt gcgacatctt ctccaactgc 1080 tggctggcgg g acgcggatgg ttgtaaccgt ggatcgccgc ccaccaggag 1140 gacatgccgt ccaccagact ccggccgtcc gccagctgca gttcgacgcc gctggccgat 1200 tcgatcgggt aacagggtaa cgggcggctc atggaggtgt aggggtgcca gatatggcgt 126 0 tggtcaaacg ccaggtcgga agcggtgaca gacattgttg taaaccaaat tggattaaaa 1320 ttggttgaca gtatatccac aatatttaaa ctggcgacac tttttcgttt tggagacgcc 1380 atgatgaccg accgcattca ctggaca 1407 <210> 14 <211 > 3650 <212> DNA <213> Artificial Sequence <220> <223> bioAB(g7a)FCD mutant fragment of Serratia marcescens (3650bp) <400> 14 gttttggaga cgccatgatg accgaccgca ttcactggac agtagggcaa gcccaggccc 60 tgtttgataa accgctgctg gaactgctgt tcgaagcgca aaccgtacac cgccagcact 120 tcgacccgcg tcaggtgcag gtcagcacgc tgctgtcgat caagaccggc gcttgcccgg 180 aagactgcaa atactgcccg cagagctcac gctacaagac cggcctggag tcggagcggc 240 tgatgcaggt cgagcaggtg ctggaatcgg cacgcaaggc caaggcgaac ggttcgaccc 300 gtttttgcat gggcgcggcg tggaagaacc cgcacgagcg cgatatgcct tatctgcagc 360 aaatggtgca gggcgtgaaa gcgatgggca tggaaacctg catgacgctg ggcacattgg 420 atggcaccca ggccgagcgg ctggcggagg ccgggctgga ttactacaac cataacctcg 480 acacctcgcc ggagttctac ggcagcatca tcaccacccg cagctaccag gagcgcctgg 540 atacgctcga caaggtgcgc gacgccggca tcaaagtgtg ctccggcggc atcgtcgggc 6 00 tgggtgaaac ggtgcgcgat cgcgccgggc tgctggtgca gctggccaac ctgccaaaac 660 caccggagag cgtgccgatc aacatgttgg tgaaggtgaa aggcacgccg ctggcggata 720 acgatgacgt cgatccgttt gatttcatcc gcaccatcgc ggtggcgcgc atcatgatgc 780 catcttctta tgtccgtctc tccgcaggcc gcgaacagat gaacgaacag acgcaggcga 840 tgtgcttcat ggccggcgcc aactcgatct tctacggttg caagctgctg accacgccga 900 atccggaaga agacaaagac ctgcagctgt tccgcaagct ggggctcaac ccgcagcaga 960 ccgcaaccga acacggcgac aaccagcaac agcaggtgct ggccaagcaa ctgctgaacg 1020 ccgataccgc cgagttttac aacgcggcgc cgtgatgagc tggcagcaac gcatcgagca 1080 ggcgctggct gagcggcgcc tgaacgccgc ctaccgccgg cgacagacca ccgagggcgg 1140 caacggccgc cagatccggc tcggcgatcg tctctatctg aacttctcgg gcaacgacta 1200 cctgggcttg agccagggatg cgcgggtgat cgccgcctgg cagcagggcg c gcagcgtta 1260 cggcgtcggc agcggcggtt cgggccacgt gaccggtttt agcgcggcgc atcaggcgct 1320 ggaagagcaa ctggcggctt ggctcggcta tccgcgcgcg ctgctgttca tctccggcta 1380 cgccgccaac caggcggtgc tggcggcgtt gatgcaaaag ggcgatcgca ttttggccga 1440 tcgtctcagc catgcctcgc tgctggaggc ggcggcgcag tcgccggccg agctgcgccg 1500 gttccagcac aatcaaccgc aggccttggc ggatctgctg gccaaac cct gcgacgggca 1560 gcggctggcg gtcaccgaag gggtgttcag catggatggc gacggcgcgc cgttggcgga 1620 gctgcatcgc ttaacccgtg cggcgggcgc ctggctgatg gtggatgacg cccacggcat 1680 cggcgtgcgc ggcgaacaag gccgcggcag ttgctggcag cagggcgtgc gccctgaact 1740 gctggtggcg accttcggca aggcgttcgg cgtcagcggc gcggcggtgc tgtgcgatga 1800 ggcgaccgcc gagtatctgc tgcagttcgc ccgccatctg atctacagca ccgcgat gcc 1860 gccggcgcag gcctgcgcgc tgcaggcggc gctggcccgt attcgagagg gtgatgatct 1920 gcgagcccgg ctgcaggaca acattcggcg tttccgtcag ggcgcggcgc cgttggcgct 1980 gaccctgacg gattccgaca ccgccatc ca gccgctgctg gtgggggata atcagcgcgc 2040 gctcgatctg gcgacccgcc tgcgcgagtg cggcctgtgg gtgagcgcca tccgtccgcc 2100 gacggtgccc ccgggcggcg cgcggctgcg cattaccctg acggcggcgc atcagtcgca 216 0 ggatatcgat cgcctgctgg aggtgctgaa tgacgtcagc caatgacaca gtgaacaaac 2220 aggcggtcgc ctcggccttc agccgcgcgg ccggcagcta cgatgccgcc gccgcgctgc 2280 agcgtgacgt tggcgagcgc ttactgggga tggggagttc ccacccgggc gaacagctgc 2340 tggacgccgg ctgcggcacc ggctatttca gccgtatgtg gcgtgagcgc ggcaaacggg 2400 tgaccgcgct cgatttggcg ccgggcatgc tggacgtcgc ccgccaacgg caggcggcgc 2460 at cattatct gctgggcgat atcgaacagg tgccgctgcc cgatgcggcg atggacatct 2520 gtttcagcag cctggtggtg cagtggtgca gcgatctgcc tgccgcgctg gcagagctgt 2580 atcgcgtgac ccgtcccggc ggcgtgatcc tgttttccac gctggcggcg ggctcgctgc 2640 aggaattggg ggacgcctgg caacaggtgg acggcgaacg tcacgtgaac gcctttttgc 2700 cgttgacgca gatccgcacc gcctgcgccg cctatcgaca cgagctggtg acggagttgc 2760 gcaccctgaa ct acccggac gtgatgacgc tgatgcgttc gctcaagggc atcggggcga 2820 cgcatttgca tcaggggcgt gagggcggcc tgatgtcgcg tggccgcctc gccgcgctgc 2880 aggcggctta cccgtgccgg caggggcagt tcccgctcag ctatcatctg gcttatggag 2940 tgatttatcg tgagtaaacg ttggttcgtg accggcaccg acaccgaagt ggggaaaacc 3000 gtcgccagca gcgccttgct gcaggccgcc aaccgggcgg gctaccgcag cgccggctat 3060 aagccggtgg cctccggcag cgagatgacc gcc gaggggc tgcgcaacgg cgacgcgctg 3120 gcgctgcagg ccaacagcgg tgtggcgctg gattacgacg aagtgaaccc ttacgtattt 3180 gccgaaccga cctcgccgca tatcgtcagc gccgatgaag gccggccgat cgacgcggcg 3240 cggctgtccg acggcctgcg ccggctggag cagcgcgccg actgggtgct ggtcgagggg 3300 gccggcgggt ggtttacccc gttgtcggcg gagtacacct tcgccgactg ggtgcggcaa 3360 gagcaactgc cggtgatcct ggtggtgggc atcaagctgg gctgcatcaa ccacgc ggtg 3420 ctgacggccc aggcggtgca acaggccggg ctgacgctgg ccggttggat cgccaacgac 3480 gtggcgccgc cggggcggcg gcatcaggaa tacctggcta cgctgcgccg tatgctgccc 3540 gcgccgctgc tgggcgaaat cccgcacctg ccgcaggccg aacgggcgcc gctggggcag 3600 tatctggata tcagcttgct ggcgcagtga cccgggtacc gagctcgaat 3650 <210> 15 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0007 < 400> 15 gactctagg gatccccggg aatcgacttg taaaccaaat 40 <210> 16 <211 > 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0008 <400> 16 attcgagctc ggtacccggg tcataatgct gccgcgttgt 40 <210> 17 <211> 1167 <212> DNA <213> Artificial Sequence <220> <223> wild-type bioB fragment of E. coli (1167bp) <400> 17 gactctagag gatccccggg aatcgacttg taaaccaaat tgaaaagatt taggtttaca 60 agtctacacc gaattaacaa caaa aaacac gttttggaga agccccatgg ctcaccgccc 120 acgctggaca ttgtcgcaag tcacagaatt atttgaaaaa ccgttgctgg atctgctgtt 180 tgaagcgcag caggtgcatc gccagcattt cgatcctcgt caggtgcagg tcagcacgtt 240 gctgtcgatt aagaccggag cttgtccgga agattgcaaa tactgcccgc aaagctcgcg 300 ctacaaaacc gggctggaag ccgagcggtt gatggaagtt gaacaggtgc tggagtcggc 360 gcgcaaagcg aaagcggcag gatcgacgcg cttctgtatg ggcgcggcgt ggaagaatcc 420 ccacgaacgc gatatgccgt acctggaaca aatggtgcag ggggtaaaag cgatggggct 480 ggaggcgtgt atgacgctgg gcacgttgag tgaatctcag gcgcagcgcc tcgcgaacgc 540 cgggctggat tactacaacc acaacctgg a cacctcgccg gagttttacg gcaatatcat 600 caccacacgc acttatcagg aacgcctcga tacgctggaa aaagtgcgcg atgccgggat 660 caaagtctgt tctggcggca ttgtgggctt aggcgaaacg gtaaaagatc gcgccggatt 720 attgctgcaa ctggcaaacc t gccgacgcc gccggaaagc gtgccaatca acatgctggt 780 gaaggtgaaa ggcacgccgc ttgccgataa cgatgatgtc gatgcctttg attttattcg 840 caccattgcg gtcgcgcgga tcatgatgcc aacctcttac gtgcgccttt ctgccggacg 900 cgagcagatg aacgaacaga ctcaggcgat gtgctttatg gcaggcgcaa actcgatttt 960 ctacggttgc aaactgctga ccacgccgaa tccggaagaa gataaagacc tgcaactgtt 1020 ccgcaaactg gggctaaatc cgcagcaaac tgccgt gctg gcaggggata acgaacaaca 1080 gcaacgtctt gaacaggcgc tgatgacccc ggacaccgac gaatattaca acgcggcagc 1140 attatgaccc gggtaccgag ctcgaat 1167 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0009 <400> 18 gactctagag gatccccggg ttattggcaa aaaaatgttt 40 <210> 19 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0010 <400> 19 gctc ggtacccggg ctacaacaag gcaaggttta 40 < 210> 20 <211> 5020 <212> DNA <213> Artificial Sequence <220> <223> wold-type bioABFCD(Eco) fragment of E. coli (5020bp) <400> 20 gactctagag gatccccggg ttattggcaa aaaaatgttt catcctgtac cgcgcggtta 60 accgctgcgg tcagacgctg caactgttgc gggagaataa tatagggcgg catcaggtaa 120 atcagtttgc caaaaggccg gatccagaca ccctgttcga caaagaattt ttgcagcgcc 180 gccatattca ccggatgagt ggtttcgacc acgccaatgg cccccagtac gcgcacatcg 240 gcaaccattt cggcatcacg ggcgggggca agttgctcgc gcagctgtac ttcaatatcc 300 gccacctgtt gctgccagtc gccagattcg agaatcgcca ggctggcgtt tgctgccgcg 360 caggccagcg gattgcccat aaaagttggc ccatgcataa agcaaccggc ttcaccgtta 420 ctgatggttt ctgcaacctc gcgcgtggtg agtgtggcgg aaagggtcat tgtgccgccg 480 gttaaggctt taccgaggca caaaatgtcc ggcgcgattt ctgcatgttc acaggcaaac 540 a gtttcccgg tacgaccaaa tccagtggcg atctcgtcgg caatcagcaa gataccttcg 600 cgatcgcata ttttgcggat tcgttttaac cattccggat ggtacatgcg catcccgcct 660 gcgccctgga caatcggctc aatgatcacc gccgcgattt catgacgatg cgccgccatc 720 aggcgggcaa agcccaccat atcgcgctca tcccattcgc catccatgcg gctttgcggg 780 gcgggagcaa acaggttttc tggcaggtag cctttccaca gactgtgcat tgagttatcc 840 ggatcgcaca ccgacatcgc gccaaaggta tcgc catgat aaccattgcg gaaggtcaga 900 aaacgctggc gcgcttcgcc tttggcttgc cagtactgca acgccatttt catcgccact 960 tccaccgcta cggaaccgga gtccgcgaga aaaacgcact ccagcggttg cggcgtcatc 1020 gccaccagtt tgcggcacag ctcaatggct ggcgcatggg tgataccgcc aaacatcaca 1080 tgcgacatgg catcaatttg cgacttcatc gccgcattaa gctgcgggtg attgtagccg 1140 tggatcgccg cccaccagga cgacataccg tcaaccaggc gtctgccgtc agacaaaatc 1200 agctc gcaac cttcggcgct caccaccgga taaaccggca gaggggaggt catggatgtg 1260 tatgggtgcc agatatggcg ttggtcaaag gcaagatcgt ccgttgtcat aatcgacttg 1320 taaaccaaat tgaaaagatt taggtttaca agtctacacc gaattaacaa caaaaaacac 1380 gttttggaga agccccatgg ctcaccgccc acgctggaca ttgtcgcaag tcacagaatt 1440 atttgaaaaa ccgttgctgg atctgctgtt tgaagcgcag caggtgcatc gccagcattt 1500 cgatcctcgt caggtgcagg tcagcacgtt g ctgtcgatt aagaccggag cttgtccgga 1560 agattgcaaa tactgcccgc aaagctcgcg ctacaaaacc gggctggaag ccgagcggtt 1620 gatggaagtt gaacaggtgc tggagtcggc gcgcaaagcg aaagcggcag gatcgacgcg 1680 cttctgtatg ggcgcggcgt ggaagaatcc ccacgaacgc gatatgccgt acctggaaca 1740 aatggtgcag ggggtaaaag cgatggggct ggaggcgtgt atgacgctgg gcacgttgag 1800 tgaatctcag gcgcagcgcc tcgcgaacgc cgggctggat tact acaacc acaacctgga 1860 cacctcgccg gagttttacg gcaatatcat caccacacgc acttatcagg aacgcctcga 1920 tacgctggaa aaagtgcgcg atgccgggat caaagtctgt tctggcggca ttgtgggctt 1980 aggcgaaacg gtaaaagatc gcgccggatt attgctgcaa ctggcaaacc tgccgacgcc 2040 gccggaaagc gtgccaatca acatgctggt gaaggtgaaa ggcacgccgc ttgccgataa 2100 cgatgatgtc gatgcctttg attttattcg caccattgcg gtcgcgcgga tcatgatgcc 2160 aacct cttac gtgcgccttt ctgccggacg cgagcagatg aacgaacaga ctcaggcgat 2220 gtgctttatg gcaggcgcaa actcgatttt ctacggttgc aaactgctga ccacgccgaa 2280 tccggaagaa gataaagacc tgcaactgtt ccgcaaactg gggctaaatc cgcagcaaac 2340 tgccgtgctg gcaggggata acgaacaaca gcaacgtctt gaacaggcgc tgatgacccc 2400 ggacaccgac gaatattaca acgcggcagc attatgagct ggcaggagaa aatcaacgcg 2460 gcgctcgatg cgcggcgtgc tgccgatgcc ctgcgtcgcc gttatccggt ggcgcaagga 2520 gccggacgct ggctggtggc ggatgatcgc cagtatctga acttttccag taacgattat 2580 ttaggtttaa gccatcatcc gcaaattatc cgtgcctggc agcagggggc ggagcaattt 2640 ggcatcggta gcggcggctc cggtcacgtc agcggttata gcgtggtgca tcaggcactg 2700 gaagaagagc tggccgagtg gcttggctat tcgcgggcac tgctgtttat ctctggtttc 2760 gccgctaatc aggcagttat tgccgcgatg atggcgaaag aggac cgtat tgctgccgac 2820 cggcttagcc atgcctcatt gctggaagct gccagtttaa gcccgtcgca gcttcgccgt 2880 tttgctcata acgatgtcac tcatttggcg cgattgcttg cttccccctg tccggggcag 2940 caaatggtgg tgacagaagg cgtgttcagc atggacggcg atagtgcgcc actggcggaa 3000 atccagcagg taacgcaaca gcacaatggc tggttgatgg tcgatgatgc ccacggcacg 3060 ggcgttatcg gggagcaggg gcgcggcagc tgctggctgc aaaaggtaaa accagaattg 3120 ct ggtagtga cttttggcaa aggatttggc gtcagcgggg cagcggtgct ttgctccagt 3180 acggtggcgg attatctgct gcaattcgcc cgccacctta tctacagcac cagtatgccg 3240 cccgctcagg cgcaggcatt acgtgcgtcg ctggcggtca ttcgcagtga tgagggtgat 3300 gcacggcgcg aaaaactggc ggcactcatt acgcgttttc gtgccggagt acaggatttg 3360 ccgtttacgc ttgctgattc atgcagcgcc atccagccat tgattgtcgg tgataacagc 3420 cgtgcgttac aact ggcaga aaaactgcgt cagcaaggct gctgggtcac ggcgattcgc 3480 ccgccaaccg tacccgctgg tactgcgcga ctgcgcttaa cgctaaccgc tgcgcatgaa 3540 atgcaggata tcgaccgtct gctggaggtg ctgcatggca acggttaata aacaagccat 3600 tgcagcggca tttggtcggg cagccgcaca ctatgagcaa catgcagatc tacagcgcca 3660 gagtgctgac gccttactgg caatgcttcc acagcgtaaa tacacccacg tactggacgc 3720 gggttgtgga cctggctgga tgagccgcca ctggcgggaa cgt cacgcgc aggtgacggc 3780 cttagatctc tcgccgccaa tgcttgttca ggcacgccag aaggatgccg cagaccatta 3840 tctggcggga gatatcgaat ccctgccgtt agcgactgcg acgttcgatc ttgcatggag 3900 caatctcgca gtgcagtggt gcggtaattt atccacggca ctccgcgagc tgtatcgggt 3960 ggtgcgcccc aaaggcgtgg tcgcgtttac cacgctggtg cagggatcgt tacccgaact 4020 gcatcaggcg tggcaggcgg tggacgagcg tccgcatgct aatcgct ttt taccgccaga 4080 tgaaatcgaa cagtcgctga acggcgtgca ttatcaacat catattcagc ccatcacgct 4140 gtggtttgat gatgcgctca gtgccatgcg ttcgctgaaa ggcatcggtg ccacgcatct 4200 tcatgaaggg cgcgacccgc gaatattaac gcgttcgcag ttgcagcgat tgcaactggc 4260 ctggccgcaa cagcaggggc gatatcctct gacgtatcat ctttttttgg gagtgattgc 4320 tcgtgagtaa acgttatttt gtcaccggaa cggataccga agtggggaaa actgt cgcca 4380 gttgtgcact tttacaagcc gcaaaggcag caggctaccg gacggcaggt tataaaccgg 4440 tcgcctctgg cagcgaaaag accccggaag gtttacgcaa tagcgacgcg ctggcgttac 4500 agcgcaacag cagcctgcag ctggattacg caacagtaaa tccttacacc ttcgcagaac 4560 ccacttcgcc gcacatcatc agcgcgcaag agggcagacc gatagaatca ttggtaatga 4620 gcgccggatt acgcgcgctt gaacaacagg ctgactgggt gttagtggaa ggtgctggcg 4680 gctggtttac gccgctttct gacactt tca cttttgcaga ttgggtaaca caggaacaac 4740 tgccggtgat actggtagtt ggtgtgaaac tcggctgtat taatcacgcg atgttgactg 4800 cacaggtaat acaacacgcc ggactgactc tggcgggttg ggtggcgaac gatgttacgc 4860 ctccgggaaa acgtcacgct gaatatatga ccacgctcac ccgcatgatt cccgcgccgc 4920 tgctgggaga gatcccctgg cttgcagaaa atccagaaaa tgcggcaacc ggaaagtaca 4980 taaaccttgc cttgttgtag cccgggtacc gagctcgaat 502 0 <210> 21 <211> 346 <212> PRT <213> Artificial Sequence <220> <223> mutant biotin synthase (BioB) of Serratia marcescens <400> 21 Met Met Thr Asp Arg Ile His Trp Thr Val Gly Gln Ala Gln Ala Leu 1 5 10 15 Phe Asp Lys Pro Leu Leu Glu Leu Leu Phe Glu Ala Gln Thr Val His 20 25 30 Arg Gln His Phe Asp Pro Arg Gln Val Gln Val Ser Thr Leu Leu Ser 35 40 45 Ile Lys Thr Gly Ala Cys Pro Glu Asp Cys Lys Tyr Cys Pro Gln Ser 50 55 60 Ser Arg Tyr Lys Thr Gly Leu Glu Ser Glu Arg Leu Met Gln Val Glu 65 70 75 80 Gln Val Leu Glu Ser Ala Arg Lys Ala Lys Ala Asn Gly Ser Thr Arg 85 90 95 Phe Cys Met Gly Ala Ala Trp Lys Asn Pro His Glu Arg Asp Met Pro 100 105 110 Tyr Leu Gln Gln Met Val Gln Gly Val Lys Ala Met Gly Met Glu Thr 115 120 125 Cys Met Thr Leu Gly Thr Leu Asp Gly Thr Gln Ala Glu Arg Leu Ala 130 135 140 Glu Ala Gly Leu Asp Tyr Tyr Asn His Asn Leu Asp Thr Ser Pro Glu 145 150 155 160 Phe Tyr Gly Ser Ile Ile Thr Thr Arg Ser Tyr Gln Glu Arg Leu Asp 165 170 175 Thr Leu Asp Lys Val Arg Asp Ala Gly Ile Lys Val Cys Ser Gly Gly 180 185 190 Ile Val Gly Leu Gly Glu Thr Val Arg Asp Arg Ala Gly Leu Leu Val 195 200 205 Gln Leu Ala Asn Leu Pro Lys Pro Pro Glu Ser Val Pro Ile Asn Met 210 215 220 Leu Val Lys Val Lys Gly Thr Pro Leu Ala Asp Asn Asp Asp Val Asp 225 230 235 240 Pro Phe Asp Phe Ile Arg Thr Ile Ala Val Ala Arg Ile Met Met Pro 245 250 255 Ser Ser Tyr Val Arg Leu Ser Ala Gly Arg Glu Gln Met Asn Glu Gln 260 265 270 Thr Gln Ala Met Cys Phe Met Ala Gly Ala Asn Ser Ile Phe Tyr Gly 275 280 285 Cys Lys Leu Leu Thr Thr Pro Asn Pro Glu Glu Asp Lys Asp Leu Gln 290 295 300 Leu Phe Arg Lys Leu Gly Leu Asn Pro Gln Gln Thr Ala Thr Glu His 305 310 315 320 Gly Asp Asn Gln Gln Gln Gln Val Leu Ala Lys Gln Leu Leu Asn Ala 325 330 335 Asp Thr Ala Glu Phe Tyr Asn Ala Ala Leu 340 345 <210> 22 <211> 1041 <212> DNA <213> Artificial Sequence <220> <223> mutant bioB of Serratia marcescens encoding mutant biotin synthase of SEQ ID NO: 21 <400> 22 atgatgaccg accgcattca ctggacagta gggcaagccc aggccctgtt tgataaaccg 60 ctgctggaac tgctgttcga agcgcaaacc gtacaccgcc agcacttcga gtcag 120 gtgcaggtca gcacgctgct gtcgatcaag accggcgctt gcccggaaga ctgcaaatac 180 tgcccgcaga gctcacgcta caagaccggc ctggagtcgg agcggctgat gcaggtcgag 240 caggtgctgg aatcggcacg caaggccaag gcgaacggtt cgacccgttt ttgcatgggc 300 gcggcgtgga agaacccgca cgagcgcgat atgccttatc tgcagcaaat ggtgcagggc 360 gtgaaagcga tgggcatgga aacctgcatg acgctgggca cattggatgg cacccaggcc 420 gagcggctgg cggaggccgg gctggattac tacaaccata acctcgacac ctcgccggag 480 ttctacggca gcatcatcac cacccgcagc taccaggagc gcctggatac gctcgacaag 540 gtgcgcgacg ccggcatcaa agtgtgctcc ggcggcatcg tcgggctggg tgaaacggtg 600 cgcgatcgcg ccgggct gct ggtgcagctg gccaacctgc caaaaccacc ggagagcgtg 660 ccgatcaaca tgttggtgaa ggtgaaaggc acgccgctgg cggataacga tgacgtcgat 720 ccgtttgatt tcatccgcac catcgcggtg gcgcgcatca tgatgccatc ttcttatgtc 780 cgtctctccg caggccgcga acagatgaac gaacagacgc aggcgatgtg cttcatggcc 840 ggcgccaact cgatcttcta cggttgcaag ctgctgacca cgccgaatcc ggaagaagac 900 aaagacctgc agctgttccg caagctgggg ctcaaccc gc agcagaccgc aaccgaacac 960 ggcgacaacc agcaacagca ggtgctggcc aagcaactgc tgaacgccga taccgccgag 1020 ttttacaacg cggcgccgtg a 1041 <210> 23 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0011 <400> 23 gggctgcagg aattcgatcc agatacgctt tttcca 36 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0012 <400> 24 aaacattttt ccaataa cacgcaagca ccttaaaatc ac 42 <210> 25 <211> 594 <212> DNA <213> Artificial Sequence <220> <223> insAB upstream fragment (594bp) <400> 25 gggctgcagg aattcgatcc agatacgctt tttccagcgc gtttcggcga aacaggtcca 60 ccatcacgcg tttggcgata gtgcagagga aggagcgagg atcgcggatc gtcgagagcg 120 tttcgctgac cattacccgc aaaaaagtgt cctgggcaat gtcatctgca tcaaaagcag 180 actggagttt gcgcgtcagc cagcttttca accagccgtg atgtgtgcca taaagcgact 240 cgaacgttaa ggaagctgtg gtagtggcgc ggtcagacat gcggagtgca tcaaaagtta 300 attatcacgt agtcatatta atatgagaat ggttatcatt acaattggaa ataaaattgt 360 ttccaataga catttttaac atgttgtttt tctaagtgtt ataaggtagg tataaaatgg 420 gatggagcct ctgcttctgg catgtgtcgg tcagaatgac tcatgatgtg gtctgctatt 480 attgacatcc tcactgccct aaaggatggg gatttcggta atgctgccaa cttactgatt 540 tagtgtatga tggtgatttt aaggtgcttg cgtgttattg gcaaaaaaat gttt 594 <210> 26 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0013 <400> 26 gtgattttaa ggtgcttgcg tgttattggc aaaaaaatgt tt 42 <210> 27 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0014 <400> 27 tcagataatg cccgatgacc ctacaacaag gcaaggttta t 41 <210> 28 <211> 5022 <212> DNA <213> Artificial Sequence <220> <223> biotin operon fragment (10044bp) <400> 28 gtgattttaa ggtgcttgcg tgttattggc aaaaaaaatgt ttcatcctgt accgcgcggt 60 taaccgctgc ggtcagacgc tgcaactgtt gcggggagaat aatatagggc ggcatcaggt 120 aaatcagttt gccaaaaggc cggatccaga caccctgtt c gacaaagaat ttttgcagcg 180 ccgccatatt caccggatga gtggtttcga ccacgccaat ggcccccagt acgcgcacat 240 cggcaaccat ttcggcatca cgggcggggg caagttgctc gcgcagctgt acttcaatat 300 ccgccacctg ttgctgccag tcgccagatt cgagaatcgc caggctggcg tttgctgccg 360 cgcaggccag cggattgccc ataaaagttg gcccatgcat aaagcaaccg gcttcaccgt 420 tactgatggt ttctgcaacc tcgcgcgtgg tgagtgtggc ggaaagggtc attgtgccgc 480 c ggttaaggc tttaccgagg cacaaaatgt ccggcgcgat ttctgcatgt tcacaggcaa 540 acagtttccc ggtacgacca aatccagtgg cgatctcgtc ggcaatcagc aagatacctt 600 cgcgatcgca tattttgcgg attcgtttta accattccgg atggtacatg cgcatcccgc 660 ctgcgccctg gacaatcggc tcaatgatca ccgccgcgat ttcatgacga tgcgccgcca 720 tcaggcgggc aaagcccacc atatcgcgct catcccattc gccatccatg cggctttgcg 780 gggcgggagc aaacaggttt tctggcaggt ag cctttcca cagactgtgc attgagttat 840 ccggatcgca caccgacatc gcgccaaagg tatcgccatg ataaccattg cggaaggtca 900 gaaaacgctg gcgcgcttcg cctttggctt gccagtactg caacgccatt ttcatcgcca 960 cttccaccgc tacggaaccg gagtccgcga gaaaaaacgca ctccagcggt tgcggcgtca 1020 tcgccaccag tttgcggcac agctcaatgg ctggcgcatg ggtgataccg ccaaacatca 1080 catgcgacat ggcatcaatt tgcgacttca tcgccgcatt aagctgcggg t gattgtagc 1140 cgtggatcgc cgcccaccag gacgacatac cgtcaaccag gcgtctgccg tcagacaaaa 1200 tcagctcgca accttcggcg ctcaccaccg gataaaccgg cagaggggag gtcatggatg 1260 tgtatgggtg ccagatatgg cgttggtcaa aggcaagatc gtccgttgtc ataatcgact 1320 tgtaaaccaa attgaaaaga tttaggttta caagtctaca ccgaattaac aacaaaaaac 1380 acgttttgga gaagccccat ggctcaccgc ccacgctgga cattgtcgca agtcacagaa 1440 ttattgaaa aaccgt tgct ggatctgctg tttgaagcgc agcaggtgca tcgccagcat 1500 ttcgatcctc gtcaggtgca ggtcagcacg ttgctgtcga ttaagaccgg agcttgtccg 1560 gaagattgca aatactgccc gcaaagctcg cgctacaaaa ccgggctgga agccgagcgg 1620 ttgatggaag ttgaacaggt gctggagtcg gcgcgcaaag cgaaagcggc aggatcgacg 1680 cgcttctgta tgggcgcggc gtggaagaat ccccacgaac gcgatatgcc gtacctggaa 1740 caaatggtgc agggggtaaa agcgat gggg ctggaggcgt gtatgacgct gggcacgttg 1800 agtgaatctc aggcgcagcg cctcgcgaac gccgggctgg attactacaa ccacaacctg 1860 gacacctcgc cggagtttta cggcaatatc atcaccacac gcacttatca ggaacgcctc 1920 aaaaagtgcg cgatgccggg atcaaagtct gttctggcgg cattgtgggc 1980 ttaggcgaaa cggtaaaaga tcgcgccgga ttattgctgc aactggcaaa cctgccgacg 2040 ccgccggaaa gcgtgccaat caacatgctg gtgaaggtga aaggcacgcc gcttgcc gat 2100 aacgatgatg tcgatgcctt tgattttatt cgcaccattg cggtcgcgcg gatcatgatg 2160 ccaacctctt acgtgcgcct ttctgccgga cgcgagcaga tgaacgaaca gactcaggcg 2220 atgtgcttta tggcaggcgc aaactcgatt ttctacggtt gcaaactgct gaccacgccg 2280 aatccggaag aagataaaga cctgcaactg ttccgcaaac tggggctaaa tccgcagcaa 2340 actgccgtgc tggcagggga taacgaacaa cagcaacgtc ttgaacaggc gctgatgacc 2400 ccggacaccg acgaatatta caac gcggca gcattatgag ctggcaggag aaaatcaacg 2460 cggcgctcga tgcgcggcgt gctgccgatg ccctgcgtcg ccgttatccg gtggcgcaag 2520 gagccggacg ctggctggtg gcggatgatc gccagtatct gaacttttcc agtaacgatt 2580 atttaggttt aagccatcat ccgcaaatta tccgtgcctg gcagcagggg gcggagcaat 2640 ttggcatcgg tagcggcggc tccggtcacg tcagcggtta tagcgtggtg catcaggcac 2700 tggaagaaga gctggccgag tggcttggct attcgcgggc actgctgttt atct ctggtt 2760 tcgccgctaa tcaggcagtt attgccgcga tgatggcgaa agaggaccgt attgctgccg 2820 accggcttag ccatgcctca ttgctggaag ctgccagttt aagcccgtcg cagcttcgcc 2880 gttttgctca taacgatgtc actcatttgg cgcgattgct tgcttccccc tgtccggggc 2940 agcaaatggt ggtgacagaa ggcgtgttca gcatggacgg cgatagtgcg ccactggcgg 3000 aaatccagca ggtaacgcaa cagcacaatg gctggttgat ggtcgatgat gcccacggca 3060 c gggcgttat cggggagcag gggcgcggca gctgctggct gcaaaaggta aaaccagaat 3120 tgctggtagt gacttttggc aaaggatttg gcgtcagcgg ggcagcggtg ctttgctcca 3180 gtacggtggc ggattatctg ctgcaattcg cccgccacct tatctacagc accagtatgc 3240 cgcccgctca ggcgcaggca ttacgtgcgt cgctggcggt cattcgcagt gatgagggtg 3300 atgcacggcg cgaaaaactg gcggcactca ttacgcgttt tcgtgccgga gtacaggatt 3360 tgccgtttac gcttgctgat tcat gcagcg ccatccagcc attgattgtc ggtgataaca 3420 gccgtgcgtt acaactggca gaaaaactgc gtcagcaagg ctgctgggtc acggcgattc 3480 gcccgccaac cgtacccgct ggtactgcgc gactgcgctt aacgctaacc gctgcgcatg 3540 aaatgcagga tatcgaccgt ctgctggagg tgctgcatgg caacggttaa taaacaagcc 3600 attgcagcgg catttggtcg ggcagccgca cactatgagc aacatgcaga tctacagcgc 3660 cagagtgctg acgccttact ggcaatgctt ccacagcgta aatacaccca cgtactggac 3720 gcgggttgtg gacctggctg gatgagccgc cactggcggg aacgtcacgc gcaggtgacg 3780 gccttagatc tctcgccgcc aatgcttgtt caggcacgcc agaaggatgc cgcagaccat 3840 tatctggcgg gagatatcga atccctgccg ttagcgactg cgacgttcga tcttgcatgg 3900 agcaatctcg cagtgcagtg gtgcggtaat ttatccacgg cactccgcga gctgtatcgg 3960 gtggtgcgcc ccaaaggcgt ggtcgcgttt accacgctgg tgcagggatc gttacccgaa 4020 ctgcatcagg ggcaggc ggtggacgag cgtccgcatg ctaatcgctt tttaccgcca 4080 gatgaaatcg aacagtcgct gaacggcgtg cattatcaac atcatattca gcccatcacg 4140 ctgtggtttg atgatgcgct cagtgccatg cgttcgctga aaggcatcgg tgccacgcat 42 00 cttcatgaag ggcgcgaccc gcgaatatta acgcgttcgc agttgcagcg attgcaactg 4260 gcctggccgc aacagcaggg gcgatatcct ctgacgtatc atcttttttt gggagtgatt 4320 gctcgtgagt aaacgttatt ttgtcaccgg aacggatacc gaagtgggga aaactgtcgc 4380 cagttgtgca cttttacaag ccgcaaaggc agcaggctac cggacggcag gttataaacc 4440 ggtcgcctct ggcagcgaaa agaccccgga aggtttacgc aatagcgacg cgctggcgtt 4500 acagcgcaac agcagcct gc agctggatta cgcaacagta aatccttaca ccttcgcaga 4560 acccacttcg ccgcacatca tcagcgcgca agagggcaga ccgatagaat cattggtaat 4620 gagcgccgga ttacgcgcgc ttgaacaaca ggctgactgg gtgttagtgg aaggtgctgg 4680 cggctggtt t acgccgcttt ctgacacttt cacttttgca gattgggtaa cacaggaaca 4740 actgccggtg atactggtag ttggtgtgaa actcggctgt attaatcacg cgatgttgac 4800 tgcacaggta atacaacacg ccggactgac tctggcgggt tgggtggcga acgatgttac 4860 gcctccggga aaacgtcacg ctgaatatat gaccacgctc acccgcatga ttcccgcgcc 4920 gctgctggga gagatcccct ggcttgcaga aaatccagaa aatgcggcaa ccggaaagta 4980 cataaacctt gccttgttgt agggtcatcg ggcat tatct ga 5022 <210> 29 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0015 <400> 29 ataaaccttg ccttgttgta gggtcatcgg gcattatctg a 41 <210> 30 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer_VB07_0016 <400> 30 gctaggtcga ctagcgtgat gccttttttg tcgtgggt 38 <210> 31 <211> 536 <212> DNA <213> Artificial Sequence <220> <223> insAB downstream fragment ( 536bp) <400> 31 ataaaccttg ccttgttgta gggtcatcgg gcattatctg aacataaaac actatcagta 60 agttggagtc attaccgacc atgtttattt catacattgt gggtattgtt cttattatcg 120 ccgctaatca ataaaatcct gccccatatc tacatggggc agttgttcat tcttttagtg 180 tggtaattca cacgccagca aaaactctgc cgttccttca tcaacaatca ggtccgtgac 240 atatcctccc agcagggcac ccaacgttgc gtcatagcct ctttccccac cagcaaggaa 300 gatcttccgt tcaatctgcc ttagctgagc cagactgatt c ccagaatac gctggtcaac 360 atcagccacg acgggcatcc cttccttgtc atagaagcga ccacaaatga cacctactgc 420 gcctaaatcc cgatacgtct gcatttcctt cttattcagc acgccccacc gaatcagggg 480 attttcatca agcgcgttac ccacgacaaa aaaggcatca cgctagtcga cctagc 536 <210> 32 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_7 <400> 32 ctgcaggaat tcgatttcgc tattgtagcc gtagg 35 <210> 33 <211> 35 2> DNA < 213> Artificial Sequence <220> <223> primer_VB7_8 <400> 33 ctgcactacg cagggtggca cggtgttatc cttca 35 <210> 34 <211> 515 <212> DNA <213> Artificial Sequence <220> <223> birA upstream fragment for exogenous insertion < 400> 34 ttcgctattg tagccgtagg tctgcgtctg ccaaaagagt ggcaacctgt actaacgtat 60 ggtgacttaa ctcgtctgga tcctacaaca gtaacgccac agcaagtatt taatgcggtg 120 tgtcatatgc gcaccaccaa actccctgat ccaaaagtga atggcaatgc cggtagtt tc 180 ttcaaaaacc ctgttgtatc tgccgaaacg gctaaagcat tactgtcaca atttccaaca 240 gcaccaaatt acccccaggc ggatggttca gtaaaactgg cagcaggttg gcttatcgat 300 cagtgccagc taaaagggat gcaaataggt ggggctgcgg tgcaccgtca acaggcgtta 360 gttctcatta atgaagacaa tgcaaaaagc gaagatgttg tacagctggc gcatcatgta 420 agacagaaag ttggtgaaaa atttaatgtc tggcttgagc ctgaagtccg ctttattggt 480 gcatcaggtg aagtgagcgc agtggagaca atttc 515 <210> 35 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_9 <400> 35 gataacaccg tgccaccctg cgtagtgcag aaaaa 35 <210> 36 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_10 <400> 36 gtcgactagc gtgatatgca tcgcctggtg aagtt 35 <210> 37 <211> 512 <212> DNA <213> Artificial Sequence <220> <223> birA downstream fragment for exogenous insertion <400> 37 gaaaggggag ctcc cctgcaaatt atttgcgtag tctgacctct tctaccgcat 60 gattagcact tttcgtcagg attaaactgg cgcgctcacg agtaggtaga atattttgct 120 ttaagttcag ccagttgatc tctttccaca atgtcatggc agtcttaatc gcttcttctt 180 tagttaattt cgcgtagtta tgaaaatagg aatccgggtc ggtaaaagcc ccttcgcgga 240 atttcagaaa acggttgata taccatgtct gaagtaagtc ttccggtgca tcaacatata 300 tcgaaaaatc gacaaaatca gaaacaaata catgatgtgg atcgtgtgga taatccatcc 360 cgct ctgtaa gacatttaac ccttcaagaa ttaaaatatc aggctgaaca accgttttat 420 ctccatccgg gatcacatca taaataagat gtgagtaaac aggtgctgta acgtttggca 480 cgccggattt gagatcggaa acaaacttca cc 512 <210> 38 <211> 304 <212> DNA <213> Artificial Sequence <220> <223> cj1 promoter <400> 38 caccgcgggc ttattccatt acatggaatg accaggaatg gcagggaatg cgacgaaatt 60 gactgtgtcg ggagcttctg atccgatgct gccaaccagg agagaaaata atgacatgtg 120 caggcac gct ggtgagctgg agatttatga tctcaagtac cttttttctt gcactcgagg 180 gggctgagtg ccagaatggt tgctgacacc aggttgaggt tggtacacac tcaccaatcc 240 tgccgtcgcg ggcgcctgcg tggaacataa accttgagtg aaacccaatc taggagatta 300 agat 304 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_11 <400> 39 gtcgactagc gtgatatgca tcgcctggtg aagtt 35 <210> 40 <211> 35 > DNA < 213> Artificial Sequence <220> <223> primer_VB7_15 <400> 40 ctttaagggc gacatatctt aatctcctag attgg 35 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_16 <400> 41 gag attaagatat gtcgccctta aagcg 35 <210> 42 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_17 <400> 42 tctgcactac gcagggttac tgcaggcgaa ggtgc 35 <210> 43 <211> 861 < 212> DNA < 213> Artificial Sequence <220> <223> birA gene of Corynebacterium glutamicum (861bp) <400> 43 atgtcgccct taaagcgcgc ttttcgacgc gaccccacta cattggcttc catgaacgtt 60 gacatttcac gatccagaga gccgctaaac gttgagctcc tgaaggaaaa attgctccaa 120 aacggtgact ttggccaggt catttacgaa aaagtgacag gctccactaa tgctgacttg 180 ctggcacttg caggttctgg cgctccaaac tggacggtga aaactgtcga gtttcaagat 240 catgcgcgtg ggcgactcggtgg tctgcccctg agggttccca aacaatcgtg 300 tctgtgctcg ttcaactatc tattgatcaa gtggaccgga ttggcactat tccactcgcg 360 gcgggactcg ctgtcatgga tgcgttgaat gacctcggtg tggaaggtgc cggactgaaa 420 tggcccaacg atgttcaaat ccacggcaag aaactctgcg gcatcctggt ggaagccacc 480 ggctttgatt ccaccccaac agttgtcatc ggttggggca ctaatatcag cctgactaaa 540 gaggagcttc ctgttcctca tgcaacttcc ctcgcattgg aaggtgttga ag tcgacaga 600 accacattcc ttattaatat gctcacacat ctgcatactc gactggacca gtggcagggt 660 ccaagtgtgg attggctcga tgattaccgt gcggtatgtt ccagtattgg ccaagatgtt 720 cgagtgcttc tacctgggga taaagaactc ttaggtgaag cgatcggtgt cg cgactggc 780 ggagaaattc gtgttcgcga tgcttcgggc accgttcaca ccctcaacgc cggtgaaatt 840acgcaccttc gcctgcagta a 861

Claims (12)

삭제delete 삭제delete 삭제delete 삭제delete 서열번호 1의 3번째 위치의 아미노산인 알라닌이 쓰레오닌으로 치환된, 바이오틴 신타제(Biotin synthase) 활성을 갖는 폴리펩티드 변이체 및 상기 폴리펩티드 변이체를 암호화하는 폴리뉴클레오티드로 이루어지는 군에서 선택된 1종 이상을 포함하고,
서열번호 1의 폴리펩티드 및 상기 폴리펩티드를 암호화하는 폴리뉴클레오티드로 이루어지는 군에서 선택된 1종 이상을 포함하는 미생물보다 바이오틴 생산 활성이 증가된, 미생물.
Containing at least one selected from the group consisting of a polypeptide variant having biotin synthase activity, in which the amino acid at the third position of sequence number 1, alanine, is substituted with threonine, and a polynucleotide encoding the polypeptide variant;
A microorganism having increased biotin production activity compared to a microorganism comprising at least one member selected from the group consisting of a polypeptide of sequence number 1 and a polynucleotide encoding the polypeptide.
제5항에 있어서, 상기 폴리펩티드 변이체는 서열번호 21의 아미노산 서열을 포함하는, 미생물.In claim 5, a microorganism wherein the polypeptide variant comprises an amino acid sequence of SEQ ID NO: 21. 제5항에 있어서, 상기 미생물은 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase), 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase), 말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase), 및 데티오바이오틴 신테타제(Dethiobiotin synthetase)으로 이루어진 군에서 선택된 1종 이상의 활성이 추가로 강화된, 미생물. In claim 5, the microorganism is a microorganism having at least one activity further enhanced from the group consisting of 7,8-diamino-pelargonic acid aminotransferase, 8-amino-7-oxononanoate synthase, malonyl-ACP O-methyltransferase, and dethiobiotin synthetase. 제5항에 있어서, 상기 미생물은 에스케리키아 속(Escherichia sp.)인, 미생물.In claim 5, the microorganism is a microorganism of the genus Escherichia ( Escherichia sp.). 제8항에 있어서, 상기 에스케리키아 속 미생물은 대장균(Escherichia coli)인, 미생물.In claim 8, the microorganism of the genus Escherichia is Escherichia coli . 제5항 내지 제9항 중 어느 한 항의 미생물을 포함하는, 바이오틴 생산용 조성물. A composition for producing biotin, comprising a microorganism according to any one of claims 5 to 9. 제5항 내지 제9항 중 어느 한 항의 미생물을 배지에서 배양하는 단계를 포함하는, 바이오틴의 생산 방법.A method for producing biotin, comprising a step of culturing a microorganism according to any one of claims 5 to 9 in a medium. 제11항에 있어서, 상기 방법은 배양된 배지 또는 미생물에서 바이오틴을 회수하는 단계를 추가로 포함하는, 바이오틴의 생산 방법.A method for producing biotin, wherein the method further comprises a step of recovering biotin from a cultured medium or microorganism.
KR1020210157042A 2021-11-15 2021-11-15 Polypeptide variant having biotin synthase activity and biotin production method using the same Active KR102712136B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210157042A KR102712136B1 (en) 2021-11-15 2021-11-15 Polypeptide variant having biotin synthase activity and biotin production method using the same
PCT/KR2022/017832 WO2023085874A1 (en) 2021-11-15 2022-11-14 Polypeptide variant having biotin synthase activity and biotin production method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210157042A KR102712136B1 (en) 2021-11-15 2021-11-15 Polypeptide variant having biotin synthase activity and biotin production method using the same

Publications (2)

Publication Number Publication Date
KR20230070943A KR20230070943A (en) 2023-05-23
KR102712136B1 true KR102712136B1 (en) 2024-09-27

Family

ID=86336464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210157042A Active KR102712136B1 (en) 2021-11-15 2021-11-15 Polypeptide variant having biotin synthase activity and biotin production method using the same

Country Status (2)

Country Link
KR (1) KR102712136B1 (en)
WO (1) WO2023085874A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118956783B (en) * 2024-10-18 2024-12-17 北京量维生物科技研究院有限公司 Desulfur biotin synthetase mutant and its application in biotin production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100200542B1 (en) 1992-10-02 1999-06-15 토마스 케플러, 자비네 루츠 Biotechnological Preparation of Biotin
JP2002504338A (en) * 1998-02-19 2002-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing biotin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428078B2 (en) * 1992-09-10 2003-07-22 住友化学工業株式会社 Biotin production method and microorganism used
US5859335A (en) * 1994-12-08 1999-01-12 Novartis Finance Corporation Enhanced biotin biosynthesis in plant tissue
US20220348974A1 (en) * 2019-09-09 2022-11-03 Albert Einstein College Of Medicine Biotin synthases for efficient production of biotin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100200542B1 (en) 1992-10-02 1999-06-15 토마스 케플러, 자비네 루츠 Biotechnological Preparation of Biotin
JP2002504338A (en) * 1998-02-19 2002-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing biotin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GenBank accession CAE7752114.1(2021.10.21.)*

Also Published As

Publication number Publication date
KR20230070943A (en) 2023-05-23
WO2023085874A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
KR102143964B1 (en) Novel branched-chain amino acid aminotranferase variant and a method of producing leucine using thereof
KR102284730B1 (en) Novel soluble pyridine nucleotide transhydrogenase variant and a method for producing L-tryptophan using the same
KR102277408B1 (en) Novel formate-dependent phosphoribosylglycinamide formyltransferase variant and a method for producing IMP using the same
KR102277407B1 (en) Novel glutamate synthase subunit alpha variant and a method for producing L-glutamic acid using the same
KR102756052B1 (en) Novel YhhS variant and method for producing O-phosphoseline, cysteine and its derivatives using the same
KR102527096B1 (en) Prephenate dehydratase variant and method for producing branched amino acid using the same
KR102712136B1 (en) Polypeptide variant having biotin synthase activity and biotin production method using the same
KR20220110412A (en) Novel protein variant and a method for producing L-lysine using the same
KR102688631B1 (en) Microorganism comprising class I type BirA and biotin production method using the same
KR102527895B1 (en) GlxR protein variant or threonine production method using the same
KR102284731B1 (en) Novel isocitrate dehydrogenase kinase/phosphatase variant and a method for producing L-tryptophan using the same
KR102273639B1 (en) Novel bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase variant and a method for producing XMP or GMP using the same
KR102287112B1 (en) Novel copper-exporting P-type ATPase A variant and a method for producing L-tryptophan using the same
KR102267931B1 (en) Novel 5-(carboxyamino)imidazole ribonucleotide synthase variant and a method for producing IMP using the same
KR102273638B1 (en) Novel Phosphoglycerate dehydrogenase variant and a method for producing XMP or GMP using the same
KR102277410B1 (en) Novel bifunctional pyr operon transcriptional regulator/uracil phosphoribosyltransferase variant and a method for producing IMP using the same
KR102273640B1 (en) Novel F0F1 ATP synthase subunit gamma variant and a method for producing XMP or GMP using the same
KR102277409B1 (en) Novel bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase variant and a method for producing IMP using the same
KR102279696B1 (en) Novel L-serine ammonia-lyase variant and a method for producing XMP or GMP using the same
KR102284725B1 (en) Novel ferrochelatase variant and a method for producing L-tryptophan using the same
AU2022302574A1 (en) Strain for producing highly concentrated l-glutamic acid, and l-glutamic acid production method using same
CN117321193A (en) Novel branched-chain amino acid transaminase variants and methods of producing isoleucine using the same
KR102727406B1 (en) Novel Acetohydroxy acid synthase variant and method of producing L-isoleucine using the same
KR102673796B1 (en) Novel Acetohydroxy acid synthase variant and method of producing L-isoleucine using the same
KR102727407B1 (en) Microorganisms for producing l-isoleucine and process for producing l-isoleucine using the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211115

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240221

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240919

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20240925

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20240925

End annual number: 3

Start annual number: 1

PG1601 Publication of registration