[go: up one dir, main page]

KR102688631B1 - Microorganism comprising class I type BirA and biotin production method using the same - Google Patents

Microorganism comprising class I type BirA and biotin production method using the same Download PDF

Info

Publication number
KR102688631B1
KR102688631B1 KR1020210157043A KR20210157043A KR102688631B1 KR 102688631 B1 KR102688631 B1 KR 102688631B1 KR 1020210157043 A KR1020210157043 A KR 1020210157043A KR 20210157043 A KR20210157043 A KR 20210157043A KR 102688631 B1 KR102688631 B1 KR 102688631B1
Authority
KR
South Korea
Prior art keywords
bira
microorganism
biotin
leu
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210157043A
Other languages
Korean (ko)
Other versions
KR20230070944A (en
Inventor
임보람
김문정
임수빈
김현아
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020210157043A priority Critical patent/KR102688631B1/en
Priority to PCT/KR2022/017833 priority patent/WO2023085875A1/en
Publication of KR20230070944A publication Critical patent/KR20230070944A/en
Application granted granted Critical
Publication of KR102688631B1 publication Critical patent/KR102688631B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/185Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system
    • C12P17/186Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system containing a 2-oxo-thieno[3,4-d]imidazol nucleus, e.g. Biotin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04015Biotin-[acetyl-CoA-carboxylase] ligase (6.3.4.15)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 출원은 클래스 I 타입의 BirA를 포함하는 미생물 또는 이를 이용한 바이오틴 생산방법에 관한 것으로, 일 예에 따른 미생물은 내재적 클래스 II 타입의 BirA의 활성이 약화되고, 클래스 I 타입의 BirA을 포함하여 바이오틴 생산능이 증가된 것일 수 있다.This application relates to a microorganism containing class I type BirA or a biotin production method using the same. In one example, the microorganism has the activity of the endogenous class II type BirA weakened and contains class I type BirA to produce biotin. The ability may be increased.

Description

클래스 I 타입의 BirA를 포함하는 미생물 및 이를 이용한 바이오틴 생산방법{Microorganism comprising class I type BirA and biotin production method using the same}Microorganism comprising class I type BirA and biotin production method using the same {Microorganism comprising class I type BirA and biotin production method using the same}

본 출원은 클래스 I 타입의 BirA를 포함하는 미생물 또는 이를 이용한 바이오틴 생산방법에 관한 것이다.This application relates to a microorganism containing class I type BirA or a method for producing biotin using the same.

바이오틴(Biotin) 은 세포 성장 및 단백질 생성, 활성에 중요한 역할을 하는 비타민 B군 (Vitamin B7)에 속하며, 동식물 그리고 미생물에 있어 필수적인 영양소이다. 황을 포함하는 1개의 링 구조가 또 다른 링 구조에 연결되어 있는 구조를 갖는 바이오틴은 멀티 카복실라제 (carboxylase)의 조효소로써 기능하며 포도당 대사를 비롯하여 아미노산과 지방산 대사 과정에서도 중요한 역할을 수행한다. Biotin belongs to the vitamin B group (Vitamin B7), which plays an important role in cell growth, protein production, and activity, and is an essential nutrient for animals, plants, and microorganisms. Biotin, which has a structure in which one ring structure containing sulfur is connected to another ring structure, functions as a coenzyme for multi-carboxylase and plays an important role in glucose metabolism as well as amino acid and fatty acid metabolism.

바이오틴은 많은 미생물 종이 생합성을 할 수 있는데 반해 대부분의 동물들은 스스로 합성할 수 없기 때문에 필수 비타민으로 분류되어 식품이나 사료 첨가제, 혹은 다른 의약품의 합성 및 생산의 원료로 이용되는 등 그 유용성이 매우 큰 물질이다. 특히 최근에는 항생제 규제확대로 인한 비타민 수요가 증가되는 추세를 보이며 판가가 점차 상승되고 있다. 그러나 시장에 판매되고 있는 대부분의 바이오틴은 다단계 화학 공법을 통한 생산으로만 진행되고 있어 필환경시대가 도래한 현재 생물학적 생산 기술공법에 대한 요구도가 높아지고 있다. 그러나, 생물학적 생산 기술공법은 2000년대 이후 거의 진보된 문헌이나 특허가 없는 것으로 보여지며, 생산 효율도 높지 않다. 따라서 바이오틴의 생물학적 생산 기술공법을 다수 확보하는 것은 중요하다.Biotin can be biosynthesized by many microbial species, but most animals cannot synthesize it on their own, so it is classified as an essential vitamin and is very useful, as it is used as a food or feed additive, or as a raw material for the synthesis and production of other medicines. am. In particular, the demand for vitamins has recently increased due to expanded antibiotic regulations, and sales prices are gradually rising. However, most biotin sold on the market is produced only through multi-step chemical methods, and with the advent of the environmentally friendly era, the demand for biological production technology is increasing. However, biological production technology appears to have had little advanced literature or patents since the 2000s, and production efficiency is not high. Therefore, it is important to secure multiple biological production technologies for biotin.

따라서, 이러한 배경 하에 바이오틴 생산능 증가를 위한 연구가 여전히 필요한 실정이다.Therefore, under this background, research to increase biotin production capacity is still needed.

본 출원의 하나의 목적은 클래스 II 타입의 BirA의 활성이 약화되고, 클래스 I 타입의 BirA를 포함하는, 에스케리키아 속(Escherichia sp.) 또는 세라티아 속(Serratia sp.) 미생물을 제공하는 것이고, 상기 미생물은 바이오틴 생산능을 갖는 것일 수 있다. One object of the present application is to provide a microorganism of Escherichia sp. or Serratia sp., which contains BirA of class I type and wherein the activity of BirA of class II type is attenuated. , the microorganism may have the ability to produce biotin.

본 출원의 다른 하나의 목적은 상기 미생물을 포함하는 바이오틴 생산용 조성물을 제공하는 것이다. Another object of the present application is to provide a composition for producing biotin containing the above microorganisms.

본 출원의 또 다른 하나의 목적은 상기 미생물을 배지에서 배양하는 단계를 포함하는, 바이오틴 생산방법을 제공하는 것이다.Another object of the present application is to provide a method for producing biotin, which includes culturing the microorganism in a medium.

이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.This is explained in detail as follows. Meanwhile, each description and embodiment disclosed in this application may also be applied to each other description and embodiment. That is, all combinations of the various elements disclosed in this application fall within the scope of this application. Additionally, the scope of the present application cannot be considered limited by the specific description described below. Additionally, numerous papers and patent documents are referenced and citations are indicated throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to more clearly explain the content of the present invention and the level of technical field to which the present invention pertains.

본 출원에서 용어, "균주(또는, 미생물)"는 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 폴리펩티드, 단백질 또는 산물의 생산을 위하여 유전적 변형(modification)을 포함하는 미생물일 수 있다.In this application, the term "strain (or microorganism)" includes both wild-type microorganisms and microorganisms that have undergone natural or artificial genetic modification, and can be caused by insertion of foreign genes or enhanced or inactivated activity of intrinsic genes. It is a microorganism whose specific mechanism is weakened or strengthened, and may be a microorganism that includes genetic modification for the production of a desired polypeptide, protein, or product.

본 출원에서 “벡터"는 적합한 숙주 내에서 목적 폴리펩티드(예를 들면, 클래스 I 타입의 BirA)를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.In the present application, “vector” refers to a vector encoding a polypeptide of interest operably linked to a suitable expression control region (or expression control sequence) to enable expression of the polypeptide of interest (e.g., class I type BirA) in a suitable host. The expression control region may include a DNA preparation containing a polynucleotide base sequence, a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, and a sequence encoding a suitable mRNA ribosome binding site. and sequences that regulate the termination of transcription and translation. After being transformed into a suitable host cell, the vector can replicate or function independently of the host genome and can be integrated into the genome itself.

본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.The vector used in this application is not particularly limited, and any vector known in the art can be used. Examples of commonly used vectors include plasmids, cosmids, viruses, and bacteriophages in a natural or recombinant state. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors can be used. , pBluescriptII series, pGEM series, pTZ series, pCL series, and pET series can be used. Specifically, pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors, etc. can be used.

일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.For example, a polynucleotide encoding a target polypeptide can be inserted into a chromosome using a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome may be accomplished by any method known in the art, for example, homologous recombination, but is not limited thereto. A selection marker may be additionally included to confirm whether the chromosome has been inserted. The selection marker is used to select cells transformed with a vector, that is, to confirm the insertion of the target nucleic acid molecule, and to display selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or expression of surface polypeptides. Markers that provide may be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or show other expression traits, so transformed cells can be selected.

본 출원에서, 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.In this application, the term “transformation” refers to introducing a vector containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoding the polynucleotide can be expressed within the host cell. As long as the transformed polynucleotide can be expressed in the host cell, it can include both of these, regardless of whether it is inserted into the chromosome of the host cell or located outside the chromosome. Additionally, the polynucleotide includes DNA and/or RNA encoding the polypeptide of interest. The polynucleotide can be introduced in any form as long as it can be introduced and expressed into a host cell. For example, the polynucleotide can be introduced into the host cell in the form of an expression cassette, which is a genetic structure containing all elements necessary for self-expression. The expression cassette may typically include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal that are operably linked to the polynucleotide. The expression cassette may be in the form of an expression vector capable of self-replication. Additionally, the polynucleotide may be introduced into the host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.

또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 폴리뉴클레오티드(예를 들면, 클래스 I 타입의 BirA)의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다.In addition, the term "operably linked" as used herein means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates transcription of the polynucleotide of the subject of the present application (e.g., class I type BirA). It means that there is.

이하, 본 출원을 상세히 설명한다. Hereinafter, this application will be described in detail.

상기 목적을 달성하기 위한 본 출원의 일 양상은 클래스 I 타입의 BirA 을 포함하는, 에스케리키아 속(Escherichia sp.) 또는 세라티아 속(Serratia sp.) 미생물을 제공할 수 있다. 상기 미생물은 클래스 II 타입의 BirA의 활성이 약화된 것일 수 있다. One aspect of the present application for achieving the above object may provide a microorganism of the genus Escherichia ( Escherichia sp.) or the genus Serratia ( Serratia sp.) containing BirA of class I type. The microorganism may have a weakened activity of class II type BirA.

본 출원에서, “클래스 II 타입의 BirA”는 N terminal 위치에 DNA binding domain을 포함하고 있어 바이오틴 생합성 유전자 및 수송 유전자의 전사 조절 기능을 포함하고 있는 바이오틴 단백질 리가아제(Biotin protein ligase; BPL)를 의미할 수 있다. 본 출원에서 상기 클래스 II 타입의 BirA는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. AP009048.1, 또는 NP418404.1 등 일 수 있다. 일 예에서, 상기 클래스 II 타입의 BirA은 에스케리키아 속 또는 세라티아 속 미생물 유래의 birA 유전자에 의해 코딩되는 것일 수 있다.In this application, “class II type BirA” refers to biotin protein ligase (BPL), which contains a DNA binding domain at the N terminal and thus has the function of regulating the transcription of biotin biosynthetic genes and transport genes. can do. In the present application, the sequence of the class II type BirA can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be AP009048.1, or NP418404.1. In one example, the class II type BirA may be encoded by a birA gene derived from a microorganism of the genus Escherichia or Serratia.

본 출원에서, “클래스 I 타입의 BirA”는 조절 도메인을 포함하지 않은 오로지 바이오틴 리가아제(biotin ligase)의 기능만 갖는 단백질을 의미할 수 있다. 본 출원에서 상기 클래스 I 타입의 BirA는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. NZ_CP025534.1 또는 NP599941.1 등 일 수 있다. 일 예에서, 상기 클래스 I 타입의 BirA은 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자에 의해 코딩되는 것일 수 있다.In the present application, “BirA of class I type” may refer to a protein that does not contain a regulatory domain and has only the function of biotin ligase. In the present application, the sequence of BirA of the class I type can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be NZ_CP025534.1 or NP599941.1, etc. In one example, the class I type BirA may be encoded by a birA gene derived from a microorganism of the genus Mycobacterium or Corynebacterium.

본 출원에서 용어, 폴리펩티드의 “약화”는 내재적 활성에 비하여 활성이 감소되거나 또는 활성이 없는 것을 모두 포함하는 개념이다. 상기 약화는 불활성화(inactivation), 결핍(deficiency), 하향조절(down-regulation), 감소(decrease), 저하(reduce), 감쇠(attenuation) 등의 용어와 혼용될 수 있다. In this application, the term “weakening” of a polypeptide is a concept that includes both reduced activity or no activity compared to the intrinsic activity. The attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, and attenuation.

상기 약화는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드의 변이 등으로 폴리펩티드 자체의 활성이 본래 미생물이 가지고 있는 폴리펩티드의 활성에 비해 감소 또는 제거된 경우, 이를 코딩하는 폴리뉴클레오티드의 유전자의 발현 저해 또는 폴리펩티드로의 번역(translation) 저해 등으로 세포 내에서 전체적인 폴리펩티드 활성 정도 및/또는 농도(발현량)가 천연형 균주에 비하여 낮은 경우, 상기 폴리뉴클레오티드의 발현이 전혀 이루어지지 않은 경우, 및/또는 폴리뉴클레오티드의 발현이 되더라도 폴리펩티드의 활성이 없는 경우 역시 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주, 야생형 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “불활성화, 결핍, 감소, 하향조절, 저하, 감쇠”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성에 비하여 낮아진 것을 의미한다. The weakening occurs when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide originally possessed by the microorganism due to mutation of the polynucleotide encoding the polypeptide, inhibition of expression of the gene of the polynucleotide encoding the polypeptide, or translation into a polypeptide. When the overall polypeptide activity level and/or concentration (expression amount) in the cell is lower than that of the natural strain due to (translation) inhibition, etc., when the polynucleotide is not expressed at all, and/or when the polynucleotide expression is low Even if there is no activity of the polypeptide, it may also be included. The “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain, wild type, or unmodified microorganism before the change in trait when the trait changes due to genetic mutation caused by natural or artificial factors. This can be used interchangeably with “activity before modification.” The fact that the activity of a polypeptide is “inactivated, depleted, reduced, down-regulated, lowered, or attenuated” compared to the intrinsic activity means that the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the transformation was lowered.

이러한 폴리펩티드의 활성의 약화는, 당업계에 알려진 임의의 방법에 의하여 수행될 수 있으나 이로 제한되는 것은 아니며, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다(예컨대, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012 등).Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by applying various methods well known in the art (e.g., Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. 2014;15(2):2773-2793, Molecular Cloning 2012, etc.

구체적으로, 본 출원의 폴리펩티드의 약화는Specifically, the attenuation of the polypeptide of the present application is

1) 폴리펩티드를 코딩하는 유전자 전체 또는 일부의 결손;1) Deletion of all or part of the gene encoding the polypeptide;

2) 폴리펩티드를 코딩하는 유전자의 발현이 감소하도록 발현조절영역(또는 발현조절서열)의 변형;2) Modification of the expression control region (or expression control sequence) to reduce the expression of the gene encoding the polypeptide;

3) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 구성하는 아미노산 서열의 변형(예컨대, 아미노산 서열 상의 1 이상의 아미노산의 삭제/치환/부가);3) modification of the amino acid sequence constituting the polypeptide (e.g., deletion/substitution/addition of one or more amino acids on the amino acid sequence) such that the activity of the polypeptide is eliminated or weakened;

4) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 코딩하는 유전자 서열의 변형(예를 들어, 폴리펩티드의 활성이 제거 또는 약화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 핵산염기 서열 상의 1 이상의 핵산염기의 삭제/치환/부가);4) Modification of the gene sequence encoding the polypeptide to eliminate or weaken the activity of the polypeptide (e.g., one or more nucleotide bases on the nucleotide sequence of the polypeptide gene to encode a polypeptide modified to eliminate or weaken the activity of the polypeptide) deletion/substitution/addition of);

5) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;5) Modification of the base sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide;

6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입;6) Introduction of an antisense oligonucleotide (eg, antisense RNA) that binds complementary to the transcript of the gene encoding the polypeptide;

7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가;7) Addition of a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene encoding the polypeptide to form a secondary structure to which ribosome attachment is impossible;

8) 폴리펩티드를 코딩하는 유전자 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE); 또는8) Addition of a promoter transcribed in the opposite direction to the 3' end of the open reading frame (ORF) of the gene sequence encoding the polypeptide (reverse transcription engineering, RTE); or

9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more selected from 1) to 8) above, but is not particularly limited.

예컨대, for example,

상기 1) 폴리펩티드를 코딩하는 상기 유전자 일부 또는 전체의 결손은, 염색체 내 내재적 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드 전체의 제거, 일부 뉴클레오티드가 결실된 폴리뉴클레오티드로의 교체 또는 마커 유전자로 교체일 수 있다.1) Deletion of part or all of the gene encoding the polypeptide may be removal of the entire polynucleotide encoding the target polypeptide endogenous in the chromosome, replacement with a polynucleotide with some nucleotides deleted, or replacement with a marker gene.

또한, 상기 2) 발현조절영역(또는 발현조절서열)의 변형은, 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 발현조절영역(또는 발현조절서열) 상의 변이 발생, 또는 더욱 약한 활성을 갖는 서열로의 교체일 수 있다. 상기 발현조절영역에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.In addition, the above 2) modification of the expression control region (or expression control sequence) is a mutation in the expression control region (or expression control sequence) caused by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, or a weaker mutation. It may be replacement with an active sequence. The expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence that regulates the termination of transcription and translation.

또한, 상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 낮은 다른 개시코돈을 코딩하는 염기서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.In addition, 3) the base sequence modification encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another start codon with a lower polypeptide expression rate compared to the internal start codon. It may be a substitution by sequence, but is not limited thereto.

또한, 상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은 폴리펩티드의 활성을 약화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 약한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 없도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 폴리뉴클레오티드 서열 내 변이를 도입하여 종결 코돈을 형성시킴으로써, 유전자의 발현을 저해하거나 약화시킬 수 있으나, 이에 제한되지 않는다.In addition, the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) includes deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide. Alternatively, a combination thereof may result in a mutation in the sequence, or a replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity, or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto. For example, gene expression can be inhibited or weakened by introducing a mutation in the polynucleotide sequence to form a stop codon, but is not limited thereto.

상기 6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입은 예를 들어 문헌 [Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986]을 참고할 수 있다.6) Introduction of an antisense oligonucleotide (e.g., antisense RNA) that binds complementary to the transcript of the gene encoding the polypeptide is described, for example, in Weintraub, H. et al., Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].

상기 7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가는 mRNA 번역을 불가능하게 하거나 속도를 저하시키는 것일 수 있다.7) In order to form a secondary structure to which ribosomes cannot attach, the addition of a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene encoding the polypeptide is carried out through mRNA translation. This may make it impossible or slow it down.

상기 8) 폴리펩티드를 코딩하는 유전자서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE)는 상기 폴리펩티드를 코딩하는 유전자의 전사체에 상보적인 안티센스 뉴클레오티드를 만들어 활성을 약화하는 것일 수 있다.8) The addition of a promoter transcribed in the opposite direction (Reverse transcription engineering, RTE) to the 3' end of the ORF (open reading frame) of the gene sequence encoding the polypeptide is an antisense complementary to the transcript of the gene encoding the polypeptide. It may be that the activity is weakened by creating nucleotides.

일 예에서, 상기 미생물은 내재적 birA 유전자가 결실되고, 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자가 도입된 것일 수 있다. In one example, the microorganism may be one in which the endogenous birA gene has been deleted and the birA gene derived from a microorganism of the genus Mycobacterium or Corynebacterium has been introduced.

일 예에서, 상기 미생물은 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase), 바이오틴 신타제(Biotin synthase), 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase), 말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase), 및 데티오바이오틴 신테타제(Dethiobiotin synthetase)으로 이루어진 군에서 선택된 1종 이상의 활성이 추가로 강화된 것일 수 있다. 일 예에서, bioABFCD 오페론(예를 들면, 대장균 유래의 bioABFCD 오페론)이 도입된 것일 수 있다. 일 예에서 상기 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제, 바이오틴 신타제, 8-아미노-7-옥소노나노에이트 신타아제, 말로닐-ACP O-메틸트랜스퍼라제, 및 데티오바이오틴 신테타제는 세라티아 속(Serratia sp.; 예를 들면 세라티아 마르세센스(Serratia marcescens)) 또는 에스케리키아 속(Escherichia sp.; 예를 들면 대장균(Escherichia coli)) 미생물 유래일 수 있다.In one example, the microorganism is 7,8-diamino-pelargonic acid aminotransferase, biotin synthase, 8-amino-7-oxononanoate. One or more activities selected from the group consisting of synthase (8-amino-7-oxononanoate synthase), malonyl-ACP O-methyltransferase, and Dethiobiotin synthetase This may have been further strengthened. In one example, the bioABFCD operon (for example, the bioABFCD operon derived from E. coli) may be introduced. In one example, the 7,8-diamino-pelargonic acid aminotransferase, biotin synthase, 8-amino-7-oxononanoate synthase, malonyl-ACP O-methyltransferase, and dethiobiotin synthetase The other enzyme may be derived from a microorganism of the genus Serratia ( Serratia sp.; e.g., Serratia marcescens ) or Escherichia sp. (e.g., Escherichia coli ).

본 출원에서, “바이오틴 신타제(biotin synthase; EC 2.8.1.6)”는 데티오바이오틴(dethiobiotin, DTB;)로부터 바이오틴으로의 전환을 촉매하는 효소로서, 라디칼 메커니즘을 이용하여, 데티오바이오틴을 티올화(thiolate)하여 바이오틴으로 전환하는 SAM 의존 효소를 의미할 수 있다. 상기 바이오틴 신타제는 상기 활성을 갖는 효소면 미생물 유래에 상관없이 포함될 수 있다. 상기 바이오틴 신타제는 BioB 단백질 또는 BioB와 혼용하여 사용될 수 있다.In this application, “biotin synthase (EC 2.8.1.6)” is an enzyme that catalyzes the conversion of dethiobiotin (DTB) to biotin, using a radical mechanism to convert dethiobiotin into thiol. It may refer to a SAM-dependent enzyme that thiolates and converts to biotin. The biotin synthase may be included regardless of its microbial origin as long as it is an enzyme having the above activity. The biotin synthase can be used interchangeably with BioB protein or BioB.

본 출원에서, “7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase)”는 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase)의 활성으로 생산된 8-amino-7-oxononanoate (7-Keto-8-aminopelargonic acid; KAPA)에 SAM 또는 라이신 같은 아민기를 가진 효소 특이적 특정 물질로부터 얻은 alpha-amino group을 결합시켜 7,8-diamino-pelargonic acid (DAPA)를 생성하는 단백질을 의미할 수 있다. In this application, “7,8-diamino-pelargonic acid aminotransferase” refers to 8-amino-7-oxononanoate synthase (8-amino-7- By combining 8-amino-7-oxononanoate (7-Keto-8-aminopelargonic acid; KAPA) produced by the activity of oxononanoate synthase with an alpha-amino group obtained from a specific enzyme-specific substance with an amine group such as SAM or lysine, 7 , It may refer to a protein that produces 8-diamino-pelargonic acid (DAPA).

본 출원에서, “8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase)”는 6-carboxyhexanoyl-CoA (Pimeloyl-coA/ACP)와 알라닌의 탈탄산 축합반응을 촉매하는 단백질을 의미할 수 있다. In this application, “8-amino-7-oxononanoate synthase” catalyzes the decarboxylation condensation reaction of 6-carboxyhexanoyl-CoA (Pimeloyl-coA/ACP) and alanine. It can refer to a protein that

본 출원에서, “말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase 또는 Malonyl-[acyl-carrier protein] O-methyltransferase)”는 지방산 생합성 경로 중의 탄소 중합체를 pimeloyl-coA/ACP 로 전환하는 효소로 malonyl thioester의 카복시 그룹을 메틸 에스터 화 시키는 단백질을 의미할 수 있다. In this application, “Malonyl-ACP O-methyltransferase (Malonyl-[acyl-carrier protein] O-methyltransferase)” converts carbon polymers in the fatty acid biosynthesis pathway into pimeloyl-coA/ACP. This enzyme can refer to a protein that methylates the carboxy group of malonyl thioester.

본 출원에서, “데티오바이오틴 신테타제(Dethiobiotin synthetase)”는 바이오틴 생산 전구물질인 데티오바이오틴을 7,8-diamino-pelargonic acid (DAPA)로부터 전환시키는 효소를 의미할 수 있다. In this application, “Dethiobiotin synthetase” may refer to an enzyme that converts dethiobiotin, a biotin production precursor, from 7,8-diamino-pelargonic acid (DAPA).

본 출원에서 용어, 폴리펩티드(단백질) 활성의 “강화”는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “강화”, “상향조절”, “과발현” 또는 “증가”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다. In this application, the term “enhancement” of polypeptide (protein) activity means that the activity of the polypeptide is increased compared to the intrinsic activity. The enhancement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase. Here, activation, enhancement, upregulation, overexpression, and increase may include showing an activity that it did not originally have, or showing improved activity compared to the intrinsic activity or activity before modification. The “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the change in trait when the trait changes due to genetic mutation caused by natural or artificial factors. This can be used interchangeably with “activity before modification.” “Enhanced,” “upregulated,” “overexpressed,” or “increased” in the activity of a polypeptide compared to its intrinsic activity means the activity and/or concentration (expression) of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the transformation. It means improvement compared to the amount).

상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량)를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.The enhancement can be achieved by introducing an exogenous polypeptide or enhancing the activity and/or concentration (expression amount) of the endogenous polypeptide. Whether the activity of the polypeptide is enhanced can be confirmed by increasing the activity level of the polypeptide, the expression level, or the amount of product released from the polypeptide.

상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).Enhancement of the activity of the polypeptide can be done by applying various methods well known in the art, and is not limited as long as the activity of the target polypeptide can be enhanced compared to that of the microorganism before modification. Specifically, genetic engineering and/or protein engineering well known to those skilled in the art, which are routine methods of molecular biology, may be used, but are not limited thereto (e.g., Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology 2010, Vol. 2. 1-16, Molecular Cloning 2012, etc.

구체적으로, 본 출원의 폴리펩티드의 강화는Specifically, the reinforcement of the polypeptide of the present application is

1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가; 1) Increased intracellular copy number of the polynucleotide encoding the polypeptide;

2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체; 2) Replacement of the gene expression control region on the chromosome encoding the polypeptide with a highly active sequence;

3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형; 3) Modification of the base sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide;

4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;4) modifying the amino acid sequence of the polypeptide to enhance its activity;

5) 폴리펩티드 활성이 강화도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);5) modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide (e.g., modification of the polynucleotide sequence of the polypeptide gene to encode a polypeptide modified to enhance the activity of the polypeptide);

6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입; 6) Introduction of a foreign polypeptide exhibiting the activity of the polypeptide or a foreign polynucleotide encoding the same;

7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화; 7) Codon optimization of the polynucleotide encoding the polypeptide;

8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는8) Analyzing the tertiary structure of the polypeptide, select exposed sites and modify or chemically modify them; or

9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more selected from 1) to 8) above, but is not particularly limited.

보다 구체적으로,More specifically,

상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.Above 1) the increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by the introduction into the host cell of a vector capable of replicating and functioning independently of the host to which the polynucleotide encoding the polypeptide is operably linked. It may be possible. Alternatively, this may be achieved by introducing one or two or more copies of the polynucleotide encoding the polypeptide into the chromosome of the host cell. The introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome of the host cell into the host cell, but is not limited to this. The vector is the same as described above.

상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.2) Replacement of the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a highly active sequence, for example, by deletion, insertion, non-conservative or Sequence variation may occur due to conservative substitution or a combination thereof, or replacement may occur with a sequence with stronger activity. The expression control region is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence that regulates the termination of transcription and translation. As an example, the original promoter may be replaced with a strong promoter, but the method is not limited thereto.

공지된 강력한 프로모터의 예에는 CJ1 내지 CJ7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.Examples of known strong promoters include CJ1 to CJ7 promoters (US Patent US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13. (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but is not limited thereto.

상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.3) The base sequence modification encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base sequence encoding another start codon with a higher polypeptide expression rate than the internal start codon. It may be a substitution, but is not limited thereto.

상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.The modification of the amino acid sequence or polynucleotide sequence of 4) and 5) includes deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide. The combination of these may result in a mutation in the sequence, or a replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity, or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto. The replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto. The vector used at this time may additionally include a selection marker to check whether chromosome insertion has occurred. The selection marker is as described above.

상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.6) Introduction of a foreign polynucleotide showing the activity of the polypeptide may be introduction into the host cell of a foreign polynucleotide encoding a polypeptide showing the same/similar activity as the polypeptide. There are no restrictions on the origin or sequence of the foreign polynucleotide as long as it exhibits the same/similar activity as the polypeptide. The method used for the introduction can be performed by appropriately selecting a known transformation method by a person skilled in the art, and by expressing the introduced polynucleotide in the host cell, a polypeptide can be produced and its activity can be increased.

상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.7) Codon optimization of the polynucleotide encoding the polypeptide is codon optimization of the native polynucleotide to increase transcription or translation within the host cell, or optimized transcription and translation of the foreign polynucleotide within the host cell. It may be that the codons have been optimized to allow this.

상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.8) Analyzing the tertiary structure of a polypeptide and selecting exposed sites to modify or chemically modify the sequence information, for example, by comparing the sequence information of the polypeptide to be analyzed with a database storing sequence information of known proteins to determine the degree of sequence similarity. Accordingly, a template protein candidate may be determined, the structure confirmed based on this, and an exposed site to be modified or chemically modified may be selected and modified or modified.

이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도 발현량이 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.Such enhancement of polypeptide activity means that the activity or concentration of the corresponding polypeptide is increased based on the activity or concentration of the polypeptide expressed in the wild type or unmodified microbial strain, or the amount of the product produced from the polypeptide is increased. However, it is not limited to this.

본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다. Modification of part or all of the polynucleotide in the microorganism of the present application is (a) homologous recombination using a vector for chromosome insertion into the microorganism or genome editing using engineered nuclease (e.g., CRISPR-Cas9) and/or (b) It may be induced by, but is not limited to, light and/or chemical treatment, such as ultraviolet rays and radiation. The method of modifying part or all of the gene may include a method using DNA recombination technology. For example, a nucleotide sequence or vector containing a nucleotide sequence homologous to the gene of interest is injected into the microorganism to cause homologous recombination, thereby causing deletion of part or the entire gene. The injected nucleotide sequence or vector may include, but is not limited to, a dominant selection marker.

일 예에 따른 본 출원의 균주는 바이오틴 생산능을 가진 균주일 수 있다.In one example, the strain of the present application may be a strain with biotin production ability.

본 출원의 균주는 자연적으로 클래스 II 타입의 BirA의 활성을 가지고 있는 미생물(모균주)에 클래스 I 타입의 BirA 또는 이를 코딩하는 폴리뉴클레오티드(또는 상기 폴리뉴클레오티드를 포함하는 벡터)가 도입 및/또는 클래스 II 타입의 BirA의 활성이 약화되어, 바이오틴 생산능이 증가 및/또는 바이오틴 생산능이 부여된 미생물일 수 있으나 이에 제한되지 않는다.The strain of the present application is a microorganism (parent strain) that naturally has the activity of class II type BirA, where class I type BirA or a polynucleotide encoding it (or a vector containing the polynucleotide) is introduced and/or class The activity of type II BirA is weakened, the biotin production ability is increased, and/or the microorganism may be endowed with biotin production ability, but is not limited thereto.

일 예로, 본 출원의 미생물(균주)은 클래스 I 타입의 BirA, 이를 코딩하는 폴리뉴클레오티드, 및/또는 상기 폴리뉴클레오티드를 포함하는 벡터가 도입(형질전환) 및/또는 클래스 II 타입의 BirA의 활성이 약화되고, 바이오틴을 생산할 수 있는 미생물을 모두 포함할 수 있다. 예를 들어, 본 출원의 미생물은 천연의 야생형 미생물 또는 바이오틴을 생산하는 미생물에 클래스 I 타입의 BirA, 이를 코딩하는 폴리뉴클레오티드, 및/또는 상기 폴리뉴클레오티드를 포함하는 벡터가 도입(형질전환, 또는 발현); 및/또는 클래스 II 타입의 BirA의 활성이 약화되어, 바이오틴 생산능이 증가된 재조합 균주일 수 있다. 상기 바이오틴 생산능이 증가된 재조합 균주는, 천연의 야생형 미생물 또는 비변형 미생물(예를 들면, 클래스 II 타입의 BirA를 포함하는 미생물)에 비하여 바이오틴 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다. 그 예로, 상기 바이오틴 생산능의 증가 여부를 비교하는 대상 균주인, 비변형 미생물은 야생형 대장균 (예를 들면, W3110 균주), 대장균 유래 바이오틴 오페론이 과발현된 대장균, 야생형 세라티아 마르세센스, 세라티아 마르세센스 유래 바이오틴 생산 균주인 TA5027(US 5374554 A; 문헌 전체가 본 명세서에 참조로서 포함됨)일 수 있으나, 이에 제한되지 않는다.As an example, the microorganism (strain) of the present application is introduced (transformed) with a class I type BirA, a polynucleotide encoding it, and/or a vector containing the polynucleotide, and/or the activity of class II type BirA is introduced (transformed). It can contain all microorganisms that are weakened and capable of producing biotin. For example, the microorganism of the present application is a natural wild-type microorganism or a microorganism that produces biotin, where class I type BirA, a polynucleotide encoding it, and/or a vector containing the polynucleotide are introduced (transformed or expressed) ); And/or it may be a recombinant strain in which the activity of class II type BirA is weakened and biotin production ability is increased. The recombinant strain with increased biotin production ability may be a microorganism with increased biotin production ability compared to a natural wild-type microorganism or an unmodified microorganism (for example, a microorganism containing class II type BirA), but is not limited thereto. . For example, the unmodified microorganisms that are the target strains for comparing the increase in biotin production ability are wild-type E. coli (e.g., W3110 strain), E. coli overexpressing the E. coli-derived biotin operon, wild-type Serratia marcescens, and Serratia marce. It may be, but is not limited to, TA5027 (US 5374554 A; incorporated herein by reference in its entirety), a biotin-producing strain derived from Sense.

일 예로, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물의 바이오틴 생산량(또는 생산능)에 비해 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.5% 이상, 약 29% 이상, 약 29.5% 이상, 약 30% 이상, 약 31% 이상, 약 32% 이상, 약 33% 이상, 약 34% 이상, 또는 약 35% 이상+ (상한값은 특별한 제한은 없으며, 예컨대, 약 500% 이하, 약 400% 이하, 약 300% 이하, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 또는 약 35% 이하일 수 있음) 증가된 것일 수 있다. 다른 예에서, 상기 생산량(또는 생산능)이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, 바이오틴 생산량(또는 생산능)이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 1.16배 이상, 1.17배 이상, 1.18배 이상, 1.19배 이상, 약 1.2 배 이상, 1.25배 이상, 약 1.3배 이상, 약 1.4배 이상, 또는 약 1.5배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있으나, 이에 제한되지 않는다. 상기 용어 “약(about)”은 ±0.5, ±0.4, ±0.3, ±0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다.As an example, the recombinant strain with increased production capacity has a biotin production (or production capacity) of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more compared to the biotin production (or production capacity) of the parent strain or unmodified microorganism before mutation. 7% or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.5% or more, about 29% or more, about 29.5% or more, about 30% or more, about 31% or more, about 32% or more, about 33% or more, about 34% or more, or about 35% or more+ (the upper limit is a special limit) There is no, for example, about 500% or less, about 400% or less, about 300% or less, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, or may be about 35% or less). In another example, the recombinant strain with increased production (or production capacity) has a biotin production (or production capacity) of about 1.1 times more, about 1.12 times more, or about 1.13 times more than that of the parent strain or unmodified microorganism before mutation. , 1.15 times or more, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, about 1.3 times or more, about 1.4 times or more, or about 1.5 times or more (the upper limit is a special limit) may be increased (for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less), but is not limited thereto. The term “about” is a range that includes ±0.5, ±0.4, ±0.3, ±0.2, ±0.1, etc., and includes all values in a range that are equivalent or similar to the value that appears after the term “about.” Not limited.

본 출원에서, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 클래스 II 타입의 BirA 를 약화 및/또는 클래스 I 타입의 BirA 가 도입되지 않거나 클래스 II 타입의 BirA 를 약화 및/또는 클래스 I 타입의 BirA 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 “변형 전 균주”, “변형 전 미생물”, “비변이 균주”, “비변형 균주”, “비변이 미생물” 또는 “기준 미생물”과 혼용될 수 있다.In this application, “unmodified microorganism” does not exclude strains containing mutations that may occur naturally in microorganisms, and is a wild-type strain or a natural strain itself, or whose characteristics change due to genetic mutation caused by natural or artificial factors. It may refer to a strain before becoming a strain. For example, the unmodified microorganism may have an attenuated class II type of BirA described herein and/or no class I type of BirA introduced, or a class II type of BirA attenuated and/or a class I type of BirA prior to introduction. It may mean a strain. The “non-modified microorganism” may be used interchangeably with “pre-transformed strain”, “pre-transformed microorganism”, “non-mutated strain”, “non-modified strain”, “non-mutated microorganism” or “reference microorganism”.

상기 미생물은 에스케리키아 속(Escherichia sp.) 미생물일 수 있으며, 상기 에스케리키아 속 미생물은 대장균(Escherichia coli), 에세리키아 알버티 (Escherichia albertii), 에세리키아 패컬리스 (Escherichia faecalis), 에세리키아 페르구소니 (Escherichia fergusonii), 에세리키아 마모태 (Escherichia marmotae), 에세리키아 루이지애 (Escherichia ruysiae), 에세리키아 세네갈렌시스 (Escherichia senegalensis) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.The microorganism may be a microorganism of the genus Escherichia ( Escherichia sp.), and the microorganism of the genus Escherichia includes Escherichia coli, Escherichia albertii, Escherichia faecalis, It may be one or more species selected from the group consisting of Escherichia fergusonii, Escherichia marmotae, Escherichia ruysiae, and Escherichia senegalensis. there is.

상기 상기 미생물은 세라티아 속 미생물일 수 있으며, 상기 세라티아 속 미생물은 세라티아 마르세센스(Serratia marcescens), 세라티아 아쿠아틸리스 (Serratia aquatilis), 세라티아 보클마니 (Serratia bockelmannii), 세라티아 보조엔시스 (Serratia bozhouensis), 세라티아 엔토모필라 (Serratia entomophila), 세라티아 피카리아 (Serratia ficaria), 세라티아 폰티콜라 (Serratia fonticola), 세라티아 그리메시 (Serratia grimesii), 세라티아 리쿼파시엔스 (Serratia liquefaciens), 세라티아 마이크로해모리티카 (Serratia microhaemolytica), 세라티아 미오티스 (Serratia myotis), 세라티아 네마토디필리아 (Serratia nematodiphila), 세라티아 오리재 (Serratia oryzae), 세라티아 플리무티카 (Serratia plymuthica) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.The microorganism may be a microorganism of the Serratia genus, and the microorganisms of the Serratia genus include Serratia marcescens , Serratia aquatilis, Serratia bockelmannii, and Serratia bozoiensis. (Serratia bozhouensis), Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens ), Serratia microhaemolytica, Serratia myotis, Serratia nematodiphila, Serratia oryzae, Serratia plymuthica It may be one or more types selected from the group consisting of etc.

상기 코리네박테리움 속 균주는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris), 코리네박테리움 플라베스센스(Corynebacterium flavescens) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. The strains of the Corynebacterium genus include Corynebacterium glutamicum , Corynebacterium crudilactis , Corynebacterium deserti , and Corynebacterium eph. Corynebacterium efficiens , Corynebacterium callunae , Corynebacterium stationis , Corynebacterium singulare , Corynebacterium halotolerans ), Corynebacterium striatum , Corynebacterium ammoniagenes, Corynebacterium pollutisoli , Corynebacterium imitans , Corynebacterium It may be one or more species selected from the group consisting of Bacteria testudinoris ( Corynebacterium testudinoris ), Corynebacterium flavescens ( Corynebacterium flavescens ), etc.

상기 미코박테리움 속 미생물은 미코박테리움 스메그마티스(Mycobacterium smegmatis), 미코박테리움 알비칸스 (Mycobacterium albicans), 미코박테리움 알붐 (Mycobacterium album), 미코박테리움 알센스 (Mycobacterium alsense), 미코박테리움 안젤리쿰 (Mycobacterium angelicum), 미코박테리움 안타라세니쿠 (Mycobacterium anthracenicu), 미코박테리움 아쿠아티쿰 (Mycobacterium aquaticum), 미코박테리움 아퀴테래 (Mycobacterium aquiterrae), 미코박테리움 어테뉴아툼 (Mycobacterium attenuatum), 미코박테리움 아로시엔스 (Mycobacterium arosiense), 미코박테리움 레프래 (Mycobacterium leprae), 미코박테리움 헤케소넨스 (Mycobacterium heckeshornense), 미코박테리움 헬베티쿰 (Mycobacterium helveticum), 미코박테리움 효리니스 (Mycobacterium hyorhinis), 미코박테리움 이노센스 (Mycobacterium innocens), 미코박테리움 이소니아시니 (Mycobacterium isoniacini), 미코박테리움 자쿠지 (Mycobacterium jacuzzii), 미코박테리움 칸사시 (Mycobacterium kansasii), 미코박테리움 마리눔 (Mycobacterium marinum), 미코박테리움 튜버쿨로시스 (Mycobacterium tuberculosis) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. The microorganisms in the Mycobacterium genus include Mycobacterium smegmatis , Mycobacterium albicans, Mycobacterium album, Mycobacterium alsense, and Mycobacterium albicans. Mycobacterium angelicum, Mycobacterium anthracenicu, Mycobacterium aquaticum, Mycobacterium aquiterrae, Mycobacterium attenuatum, Mycobacterium Mycobacterium arosiense, Mycobacterium leprae, Mycobacterium heckeshornense, Mycobacterium helveticum, Mycobacterium hyorhinis ), Mycobacterium innocens, Mycobacterium isoniacini, Mycobacterium jacuzzii, Mycobacterium kansasii, Mycobacterium marinum It may be one or more species selected from the group consisting of Mycobacterium tuberculosis, Mycobacterium tuberculosis, etc.

N-말단에 DNA 결합 부위를 포함하지 않는 외래의 클래스 I 타입의 BirA를 포함 및/또는 내재적 클래스II 타입의 BirA의 활성이 약화된 일 예에 따른 미생물은 내재적으로 클래스 II 타입의 BirA를 포함하거나 N-말단 DNA 결합 부위(N-terminal DNA bindig domain) 결손시킨 클래스 II 타입의 BirA를 포함하는 경우 보다 바이오틴 미첨가 배지에서 배양시 생장속도가 빠르고/빠르거나, 바이오틴 생성능(또는 생산량)이 증가된 것일 수 있다. Microorganisms according to one example include an exogenous class I type of BirA that does not contain a DNA binding site at the N-terminus and/or the activity of the endogenous class II type of BirA is weakened, or When cultured in biotin-free media, the growth rate is faster and/or biotin production ability (or production) is increased compared to the case containing class II type BirA with the N-terminal DNA bindig domain deleted. It could be.

다른 양상은 상기 미생물을 포함하는, 바이오틴 생산용 조성물을 제공한다.Another aspect provides a composition for producing biotin comprising the microorganism.

일 예에서, 상기 생산용 조성물은 바이오틴 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.In one example, the composition for production may further comprise any suitable excipients commonly used in compositions for biotin production, such as preservatives, wetting agents, dispersants, suspending agents, buffers, stabilizers, or It may be a topical topic, etc., but is not limited to this.

다른 양상은 클래스 II 타입의 BirA 를 약화 및/또는 클래스 I 타입의 BirA, 이를 암호화하는 폴리뉴클레오티드, 및/또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 미생물에 도입(예를 들면, 형질전환)시키는 단계를 포함하는, 상기 미생물의 바이오틴 생산능 증가 방법 또는 상기 미생물에 바이오틴 생산능을 부여하는 방법을 제공할 수 있다.Another aspect includes attenuating class II type BirA and/or introducing (e.g., transforming) a class I type BirA, a polynucleotide encoding the same, and/or a recombinant vector containing the polynucleotide into a microorganism. It is possible to provide a method of increasing the biotin production ability of the microorganism or a method of imparting the biotin production ability to the microorganism, including.

본 출원의 또 다른 하나의 양태는 본 출원의 미생물을 배지에서 배양하는 단계를 포함하는, 바이오틴 생산방법을 제공한다. Another aspect of the present application provides a method for producing biotin, comprising culturing the microorganism of the present application in a medium.

본 출원에서, "배양"은 본 출원의 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.In the present application, “culturing” means growing the microorganism of the present application under appropriately controlled environmental conditions. The culture process of the present application can be carried out according to appropriate media and culture conditions known in the art. This culture process can be easily adjusted and used by a person skilled in the art depending on the strain selected. Specifically, the culture may be batch, continuous, and/or fed-batch, but is not limited thereto.

본 출원에서, "배지"는 본 출원의 미생물을 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다. 구체적으로, 미생물에 대한 배양 배지는 문헌["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)] 등에서 찾아볼 수 있다.In this application, “medium” refers to a material that is mainly mixed with nutrients necessary for cultivating the microorganisms of this application, and supplies nutrients and growth factors, including water, which are essential for survival and development. Specifically, the medium and other culture conditions used for cultivating the microorganisms of the present application can be any medium used for cultivating ordinary microorganisms without particular restrictions, but the microorganisms of the present application can be grown with an appropriate carbon source, nitrogen source, personnel, and inorganic substances. It can be cultured under aerobic conditions in a typical medium containing compounds, amino acids, and/or vitamins while controlling temperature, pH, etc. Specifically, culture media for microorganisms can be found in the literature ["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)].

본 출원에서 상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.In the present application, the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, etc.; Sugar alcohols such as mannitol, sorbitol, etc., organic acids such as pyruvic acid, lactic acid, citric acid, etc.; Amino acids such as glutamic acid, methionine, lysine, etc. may be included. Additionally, natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice bran, cassava, bagasse and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e. converted to reducing sugars). Carbohydrates such as molasses) can be used, and various other carbon sources in an appropriate amount can be used without limitation. These carbon sources may be used alone or in combination of two or more types, but are not limited thereto.

상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.The nitrogen source includes inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Organic nitrogen sources such as amino acids such as glutamic acid, methionine, and glutamine, peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its decomposition products, defatted soybean cake or its decomposition products, etc. can be used These nitrogen sources may be used individually or in combination of two or more types, but are not limited thereto.

상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.The agent may include monopotassium phosphate, dipotassium phosphate, or the corresponding sodium-containing salt. Inorganic compounds may include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. In addition, amino acids, vitamins, and/or appropriate precursors may be included. These components or precursors can be added to the medium batchwise or continuously. However, it is not limited to this.

또한, 본 출원의 미생물의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.In addition, during the cultivation of the microorganism of the present application, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. can be added to the medium in an appropriate manner to adjust the pH of the medium. Additionally, during culturing, foam generation can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester. In addition, to maintain the aerobic state of the medium, oxygen or oxygen-containing gas can be injected into the medium, or to maintain the anaerobic and microaerobic state, nitrogen, hydrogen, or carbon dioxide gas can be injected without gas injection, and is limited thereto. That is not the case.

본 출원의 배양에서 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃ 를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다. In the culture of the present application, the culture temperature can be maintained at 20 to 45°C, specifically 25 to 40°C, and culture can be performed for about 10 to 160 hours, but is not limited thereto.

본 출원의 배양에 의하여 생산된 바이오틴은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.Biotin produced by the culture of the present application may be secreted into the medium or remain within the cells.

본 출원의 바이오틴 생산방법은, 본 출원의 미생물을 준비하는 단계, 상기 미생물을 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관, in any order)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다. The biotin production method of the present application includes preparing the microorganism of the present application, preparing a medium for culturing the microorganism, or a combination thereof (in any order), for example, cultivating the microorganism. It may be additionally included before the step.

본 출원의 바이오틴 생산방법은, 상기 배양에 따른 배지(배양이 수행된 배지) 또는 상기 미생물로부터 바이오틴을 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.The biotin production method of the present application may further include the step of recovering biotin from the culture medium (medium in which the culture was performed) or the microorganism. The recovering step may be additionally included after the culturing step.

상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 바이오틴을 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 바이오틴을 회수할 수 있다.The recovery may be to collect the desired biotin using a suitable method known in the art according to the microorganism culture method of the present application, such as a batch, continuous, or fed-batch culture method. For example, centrifugation, filtration, crystallization, treatment with a protein precipitant (salting out), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity. Various chromatography such as chromatography, HPLC, or a combination of these methods can be used, and the desired biotin can be recovered from the medium or microorganism using a suitable method known in the art.

또한, 본 출원의 바이오틴 생산방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 바이오틴 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 이시적(또는 연속적)으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.Additionally, the biotin production method of the present application may additionally include a purification step. The purification can be performed using a suitable method known in the art. In one example, when the biotin production method of the present application includes both a recovery step and a purification step, the recovery step and the purification step are performed interchronously (or sequentially) regardless of the order, simultaneously, or integrated into one step. may be performed, but is not limited thereto.

본 출원의 방법에서, 본 출원의 미생물 등에 대해서는 전술한 바와 같다.In the method of the present application, the microorganisms, etc. of the present application are as described above.

일 예에 따른 미생물은 내재적 클래스 II 타입의 BirA의 활성이 약화되고, 클래스 I 타입의 BirA을 포함하여 바이오틴 생산능이 증가된 것일 수 있다. In one example, the microorganism may have weakened activity of the endogenous class II type BirA and increased biotin production capacity, including class I type BirA.

도 1은 클래스 I 타입 및 클래스 II 타입의 BirA의 도메인 및 유래를 나타낸 것이다.
도 2는 바이오틴 무첨가 M9 최소배지 또는 바이오틴이 첨가된 M9 배지에서 시간에 따라 대조군 및 본원발명 균주의 생장속도를 측정한 결과를 나타낸다.
Figure 1 shows the domains and origins of class I type and class II type BirA.
Figure 2 shows the results of measuring the growth rate of the control group and the strain of the present invention over time in M9 minimal medium without biotin or M9 medium with added biotin.

이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present application will be described in more detail through examples. However, these examples are for illustrative purposes only and the scope of the present application is not limited to these examples.

실시예 1. 대장균 birA 결손 및 외래 birA 유전자 치환 벡터 제작Example 1. Construction of E. coli birA deletion and foreign birA gene replacement vectors

본 실시예에서 미코박테리움 스메그마티스(Mycobacterium smegmatis 또는 M.sm)와 코리네박테리움 글루타미쿰(Corynebacterium glutamicum 또는 C.gl) 유래의 birA가 코딩하는 단백질(각각 서열번호 3, 4)이 대장균 균주의 생장과 바이오틴 생산에 미치는 영향을 확인하고자 하였다. In this example, the proteins encoded by birA from Mycobacterium smegmatis ( Mycobacterium smegmatis or M.sm) and Corynebacterium glutamicum (C.gl) (SEQ ID NOs: 3 and 4, respectively) We sought to determine the effect on the growth and biotin production of E. coli strains.

대장균 BirA (서열번호 1)의 N-말단 DNA 결합 부위(아미노산 서열순서 8부터 68까지)를 제외한 활성 도메인 (Catalytic domain)을 암호화하는 birA 유전자 (서열번호 5)와 외래 유래의 birA 유전자들을 각각 기공지된 대장균 유래 cj1 프로모터(대한민국 공개특허공보 제10-2006-0068505호; 이하, Pcj1, 서열번호 9)로 발현했다. The birA gene (SEQ ID NO: 5) encoding the catalytic domain excluding the N-terminal DNA binding site (amino acid sequence 8 to 68) of E. coli BirA (SEQ ID NO: 1) and the foreign birA genes are respectively described. It was expressed using the known E. coli-derived cj1 promoter (Korean Patent Publication No. 10-2006-0068505; hereinafter referred to as Pcj1, SEQ ID NO: 9).

우선, 대장균 유래 cj1 프로모터를 이용하여, 대장균 BirA에서 N-말단 DNA 결합 부위(N-terminal DNA bindig domain)가 결손된 나머지 활성 도메인(Catalytic domain)의 발현을 위해, 개시코돈 (ATG)이 삽입된 birA 유전자 확보를 위한 벡터를 제작하였다. 벡터를 제작하기 위해 대장균 W3110를 주형으로 birA 업스트림 (Upstream) 및 다운스트림 (Downstream) 지역과 합성 cj1 프로모터 DNA를 주형으로 cj1 프로모터 단편을 수득하였다. 구체적으로, PCR 수행을 통해 대장균 W3110 염색체 DNA를 주형으로 하여 VB7-1 (서열번호 10)과 VB7-2 (서열번호 11)의 프라이머를 이용하여 업스트림 (Upstream) 지역 약 0.5 kb (서열번호 12), VB7-3 (서열번호 13)과 VB7-4 (서열번호 14)의 프라이머를 이용하여 다운스트림 (Downstream) 지역 약 0.5 kb의 (서열번호 15) 유전자 단편을 수득하고, 합성 cj1 프로모터 DNA를 주형으로 VB7-5 (서열번호 16)과 VB7-6 (서열번호 17)의 프라이머를 이용하여 약 0.3 kb의 cj1 프로모터 단편 (서열번호 9)을 수득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 60초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하여 각각의 단편을 PCR 산물로서 수득하였다. 수득한 PCR 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 증폭된 업스트림과 다운스트림 및 cj1 프로모터 단편을 이용하여 벡터를 제작하였다. PCT 공개특허 WO2020032590A1에 기재된 방법대로, sacB 유전자를 포함하는 R6K origin 기반의 유전자 치환 벡터 pSKH를 EcoRⅤ 제한효소로 절단한 뒤 상기 준비된 PCR 산물을 깁슨 어셈블리(DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법으로 클로닝하여 N-말단 DNA 결합 부위가 결손된 BirA를 코딩하는 birA 유전자를 발현할 수 있는 벡터 pSKHΔbirADB(E.co)::Pci1_ATG를 제작하였다. 클로닝은 깁슨 어셈블리 시약과 각 유전자 단편들을 혼합 후 50℃에 1시간 보존함으로써 수행하였다. First, using the E. coli-derived cj1 promoter, an initiation codon (ATG) was inserted to express the remaining catalytic domain (Catalytic domain) lacking the N-terminal DNA binding site (N-terminal DNA bindig domain) in E. coli BirA. A vector was created to secure the birA gene. To construct the vector, a cj1 promoter fragment was obtained using E. coli W3110 as a template, birA upstream and downstream regions, and synthetic cj1 promoter DNA as a template. Specifically, through PCR, using E. coli W3110 chromosomal DNA as a template, primers VB7-1 (SEQ ID NO: 10) and VB7-2 (SEQ ID NO: 11) were used to purify about 0.5 kb of the upstream region (SEQ ID NO: 12). , a gene fragment of approximately 0.5 kb in the downstream region (SEQ ID NO: 15) was obtained using primers of VB7-3 (SEQ ID NO: 13) and VB7-4 (SEQ ID NO: 14), and the synthetic cj1 promoter DNA was used as a template. A cj1 promoter fragment (SEQ ID NO: 9) of about 0.3 kb was obtained using primers VB7-5 (SEQ ID NO: 16) and VB7-6 (SEQ ID NO: 17). SolgTM Pfu-X DNA polymerase was used as a polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 60 seconds, and polymerization at 72°C for 30 seconds for 30 minutes. After repeating the process several times, polymerization was performed at 72°C for 5 minutes to obtain each fragment as a PCR product. The obtained PCR product was purified using QIAGEN's PCR Purification kit, and then a vector was constructed using the amplified upstream, downstream, and cj1 promoter fragments. According to the method described in PCT published patent WO2020032590A1, the R6K origin-based gene replacement vector pSKH containing the sacB gene was digested with EcoRⅤ restriction enzyme, and the prepared PCR product was subjected to Gibson assembly (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) method to create a vector pSKHΔbirADB(E.co)::Pci1_ATG capable of expressing the birA gene encoding BirA with a missing N-terminal DNA binding site. did. Cloning was performed by mixing Gibson assembly reagent and each gene fragment and storing them at 50°C for 1 hour.

또한 대장균 birA 유전자를 상기 기재한 외래 유래의 Class Ⅰ birA 유전자들로 치환하기 위하여 우선 birA 유전자 결손 및 타켓 유전자 삽입 벡터를 제작하였다. 벡터를 제작하기 위해, PCR을 수행하여 대장균 W3110를 주형으로 birA 업스트림과 다운스트림 지역을 수득하였다. 구체적으로 대장균 W3110 염색체 DNA를 주형으로 하여 VB7_7 (서열번호 18)과 VB7_8 (서열번호 19)의 프라이머를 이용하여 업스트림 (Upstream) 지역 약 0.5 kb (서열번호 20), VB7_9 (서열번호 21)와 VB7_10 (서열번호 22)의 프라이머를 이용하여 다운스트림 (Downstream) 지역 약 0.5 kb의 (서열번호 23) 유전자 단편을 PCR 수행을 통해 수득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 60초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하여 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 증폭된 birA 업스트림 및 다운스트림 단편, 그리고 EcoRⅤ 제한효소로 절단된 염색체 형질전환용 벡터 pSKH vector를 깁슨 어셈블리 (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법을 이용하여 클로닝함으로써 birA 유전자 결손 및 타겟 유전자 삽입용 벡터 pSKHΔbirA(E.co)를 제작하였다. 다음으로 birA 유전자 결손 벡터 pSKHΔbirA(E.co)를 기반으로 기공지된 cj1 프로모터를 포함한 미코박테리움 스메그마티스와 코리네박테리움 글루타미쿰 유래 birA 유전자를 삽입하는 벡터를 제작하였다. 우선 기공지된 cj1 프로모터를 확보하기 위해서 합성 cj1 프로모터 DNA를 주형으로 VB7_11 (서열번호 24)과 VB7_12 (서열번호 25)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을 PCR 수행을 통해 수득하였고, 미코박테리움 스메그마티스 MC2155 염색체 DNA를 주형으로 하여 VB7_13 (서열번호 26)과 서 VB7_14 (서열번호 27)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였고(서열번호 7)마찬가지로 cj1 프로모터를 포함한 코리네박테리움 글루타미쿰 유래 birA 유전자를 확보하기 위해서 합성 cj1 프로모터 DNA를 주형으로 VB7_11 (서열번호 24)과 VB7_15 (서열번호 28)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을PCR 수행을 통해 수득하였고, 코리네박테리움 글루타미쿰 ATCC13032 염색체 DNA를 주형으로 하여 VB7_16 (서열번호 29)과 VB7_17 (서열번호 30)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였다(서열번호 8). 수득한 DNA 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 cj1 프로모터와 각 각의 birA 유전자 단편, 그리고 ScaⅠ제한효소로 절단된 pSKHΔbirA(E.co) 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝함으로써 재조합 플라스미드를 획득하였으며, 각각 pSKHΔbirA(E.co)::Pcj1_birA(M.sm), SKHΔbirA(E.co)::Pcj1_birA(C.gl) 로 명명하였다. In addition, in order to replace the E. coli birA gene with the foreign Class I birA genes described above, birA gene deletion and target gene insertion vectors were first constructed. To construct the vector, PCR was performed to obtain birA upstream and downstream regions using E. coli W3110 as a template. Specifically, using E. coli W3110 chromosomal DNA as a template, primers VB7_7 (SEQ ID NO: 18) and VB7_8 (SEQ ID NO: 19) were used to purify approximately 0.5 kb of the upstream region (SEQ ID NO: 20), VB7_9 (SEQ ID NO: 21), and VB7_10. A gene fragment of approximately 0.5 kb in the downstream region (SEQ ID NO: 23) was obtained through PCR using the primer (SEQ ID NO: 22). SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 60 seconds, and polymerization at 72°C for 30 seconds for 30 minutes. After repeating the process several times, the polymerization reaction was performed at 72°C for 5 minutes to obtain the product. The obtained DNA product was purified using QIAGEN's PCR Purification kit, and then the amplified birA upstream and downstream fragments and the pSKH vector for chromosome transformation cut with EcoRⅤ restriction enzyme were used as Gibson assembly (DG Gibson et al., NATURE). Vector pSKHΔbirA (E.co) for birA gene deletion and target gene insertion was created by cloning using the (METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) method. Next, based on the birA gene deletion vector pSKHΔbirA (E.co), a vector was constructed to insert the birA gene from Mycobacterium smegmatis and Corynebacterium glutamicum containing the known cj1 promoter. First, in order to secure the known cj1 promoter, a cj1 promoter fragment of about 0.3 kb was obtained through PCR using the synthetic cj1 promoter DNA as a template and primers VB7_11 (SEQ ID NO: 24) and VB7_12 (SEQ ID NO: 25). Using Mycobacterium smegmatis MC2155 chromosomal DNA as a template, a birA gene fragment of about 0.8 kb was obtained through PCR using primers VB7_13 (SEQ ID NO: 26) and VB7_14 (SEQ ID NO: 27) (SEQ ID NO: 7 ) Likewise, in order to secure the birA gene derived from Corynebacterium glutamicum containing the cj1 promoter, primers VB7_11 (SEQ ID NO: 24) and VB7_15 (SEQ ID NO: 28) were used using the synthetic cj1 promoter DNA as a template to produce about 0.3 kb of cj1. The promoter fragment was obtained through PCR, and a birA gene fragment of about 0.8 kb was generated using Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template and primers VB7_16 (SEQ ID NO: 29) and VB7_17 (SEQ ID NO: 30). Obtained through PCR (SEQ ID NO: 8). The obtained DNA product was purified using QIAGEN's PCR Purification kit, and then recombined by cloning the cj1 promoter, each birA gene fragment, and the pSKHΔbirA (E.co) vector cut with ScaI restriction enzyme using the Gibson assembly method. Plasmids were obtained and named pSKHΔbirA(E.co)::Pcj1_birA(M.sm) and SKHΔbirA(E.co)::Pcj1_birA(C.gl), respectively.

실시예 2. 대장균 Example 2. E. coli birAbirA 결손 및 외래 Defects and outpatients birAbirA 유전자 도입 균주 개발 Development of gene-introduced strains

실시예 1에서 수득된 pSKHΔbirADB(E.co)::Pcj1_ATG, pSKHΔbirA(E.co)::Pcj1_birA(M.sm), pSKHΔbirA(E.co)::Pcj1_birA(C.gl) 를 각각 대장균 야생형 W3110 electro-competent cell에 전기천공법으로 형질전환(transformation) 후, 2차 교차 과정을 거쳐 CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG), CV04-0004 (W3110 ΔbirA(E.co)::Pcj1_birA(M.sm)), CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl))를 각각 수득하였다. CV04-0003 균주는 대장균 염색체 상에서 N-말단 DNA 결합 부위가 파쇄된 BirA를 코딩하도록 birA 유전자가 변형되었고, CV04-0004 및 CV04-0002 균주는 각각 대장균 염색체 상의 birA 유전자가 미코박테리움 스메그마티스 및 코리네박테리움 글루타미쿰 유래의 birA 유전자로 치환된 균주이다. 각각의 재조합 균주에서 해당 유전자가 삽입된 상동재조합 업스트림 지역과 다운스트림 지역의 외부 부위를 각각 증폭할 수 있는 VB7_18 (서열번호 31)과 VB7_19 (서열번호 32)의 프라이머를 이용한 PCR 법과 게놈 시퀀싱을 통해 해당 유전적 조작을 확인하였다. pSKHΔbirADB(E.co)::Pcj1_ATG, pSKHΔbirA(E.co)::Pcj1_birA(M.sm), and pSKHΔbirA(E.co)::Pcj1_birA(C.gl) obtained in Example 1 were each incubated with E. coli wild type W3110. After transformation of electro-competent cells by electroporation, CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG), CV04-0004 (W3110 ΔbirA(E.co): :Pcj1_birA(M.sm)) and CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl)) were obtained, respectively. In the CV04-0003 strain, the birA gene was modified to encode BirA with a disrupted N-terminal DNA binding site on the E. coli chromosome, and in the CV04-0004 and CV04-0002 strains, the birA gene on the E. coli chromosome was modified for Mycobacterium smegmatis and Mycobacterium smegmatis, respectively. It is a strain substituted with the birA gene from Corynebacterium glutamicum. Through PCR and genome sequencing using primers VB7_18 (SEQ ID NO: 31) and VB7_19 (SEQ ID NO: 32), which can amplify the external regions of the homologous recombination upstream and downstream regions where the corresponding gene is inserted in each recombinant strain, respectively. The genetic manipulation was confirmed.

실시예 3. 대장균 재조합 균주의 생장속도 확인Example 3. Confirmation of growth rate of E. coli recombinant strain

야생형 대장균에서의 birA 유전자 결손 및 치환에 따른 생장속도 변화를 확인하기 위하여 야생형 대장균 균주와 재조합 균주들의 생장속도를 비교하였다. 지수생장기(exponential phase)에서 생장하고 있는 대장균 세포들의 생장곡선을 측정하기 위하여 0.3%의 포도당이 탄소원으로 첨가된 M9 최소배지(M9 minimal medium supplemented with 0.3 % glucose)에 접종하여, 15시간 이상(overnight) 37℃, 200rpm 조건에서 1차 배양하였다. 배양된 세포들은 25㎖ 부피의 M9 최소배지에 바이오틴 무첨가, 또는 0.2mg/L의 바이오틴 첨가 조건에서 초기 흡광도(Optical density 562nm, O.D562)가 0.1이 되도록 접종하여 15시간 이상(overnight) 37℃, 200rpm 배양시키면서, O.D562에서 흡광도를 측정하고, 그 결과를 도 2에 나타내었다. To determine changes in growth rate due to deletion and substitution of the birA gene in wild-type E. coli, the growth rates of the wild-type E. coli strain and the recombinant strain were compared. To measure the growth curve of E. coli cells growing in the exponential growth phase, they were inoculated into M9 minimal medium supplemented with 0.3% glucose as a carbon source and incubated for over 15 hours (overnight). ) Primary culture was performed at 37°C and 200rpm. Cultured cells were inoculated into 25 ml of M9 minimal medium without biotin or with 0.2 mg/L of biotin added so that the initial absorbance (Optical density 562 nm, OD562) was 0.1 and incubated at 37°C for more than 15 hours (overnight). , while culturing at 200 rpm, the absorbance was measured in OD562, and the results are shown in Figure 2.

도 2에 나타난 바와 같이, 대장균의 야생형 birA 유전자가 N-말단 DNA 결합 부위가 결손된 BirA를 코딩하는 birA 유전자로 치환된 균주(CV04-0003)보다, 대장균 birA 유전자가 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래 birA 유전자로 치환된 CV04-0004과 CV04-0002 균주가 바이오틴 미첨가시에도 빠른 생육 속도를 나타내었고, 바이오틴 첨가시 모든 균주가 동등 수준의 생장속도를 나타내었다. 특히, CV04-0002 균주는 바이오틴 미첨가 시에도 높은 수준의 생장속도를 보였다. As shown in Figure 2, the Escherichia coli birA gene is better than the strain (CV04-0003) in which the wild-type birA gene of E. coli is replaced with the birA gene encoding BirA with a defect in the N-terminal DNA binding site, Mycobacterium smegmatis or CV04-0004 and CV04-0002 strains substituted with the birA gene derived from Corynebacterium glutamicum showed fast growth rates even when biotin was not added, and when biotin was added, all strains showed equivalent growth rates. In particular, strain CV04-0002 showed a high growth rate even when biotin was not added.

바이오틴이 첨가되지 않은 M9 최소배지에서 대장균 균주의 생장 속도는 바이오틴의 생산량과 연관이 있으므로, 상기 결과에서 birA 유전자가 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래 birA 유전자로 치환된 대장균 균주의 생장 속도가 빨라졌다는 결과는 대장균에서 N 말단 DNA 결합부위가 결손된 BirA 단백질의 활성보다는 미코박테리움이나 코리네박테리움 유래의 BirA 단백질의 활성이 바이오틴 생산에 더 유리하다는 것을 보여준다.Since the growth rate of E. coli strains in M9 minimal medium without biotin is related to the production of biotin, the above results show that E. coli in which the birA gene was replaced with the birA gene derived from Mycobacterium smegmatis or Corynebacterium glutamicum The result of the accelerated growth rate of the strain shows that the activity of the BirA protein from Mycobacterium or Corynebacterium is more advantageous for biotin production than the activity of the BirA protein with a missing N-terminal DNA binding site in E. coli.

실시예 4. birA 치환 균주 기반 바이오틴 생합성 강화 균주 제작 및 바이오틴 생산능 평가Example 4. Production of biotin biosynthesis enhanced strain based on birA substitution strain and evaluation of biotin production ability

대장균 birA 유전자 결손 및 외래 birA 유전자 도입이 바이오틴 생산능에 미치는 영향을 알아 보고자 상기 실시예 3에서 제작한 3종의 재조합 균주 CV04-0003(W3110 ΔbirADB(E.co)::Pcj1_ATG), CV04-0004(W3110 ΔbirA(E.co)::Pcj1_birA(M.sm)), CV04-00025(W3110 ΔbirA(E.co)::Pcj1_birA(C.gl))에 각각 대장균 바이오틴 오페론을 포함한 과발현 벡터를 도입하였다. To determine the effect of E. coli birA gene deletion and foreign birA gene introduction on biotin production ability, three recombinant strains prepared in Example 3, CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG) and CV04-0004 ( Overexpression vectors containing the E. coli biotin operon were introduced into W3110 ΔbirA(E.co)::Pcj1_birA(M.sm)) and CV04-00025 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl)), respectively.

바이오틴을 고생산하기 위한 목적으로 pCL1920 벡터(GenBank No AB236930) 기반으로 대장균 바이오틴 오페론이 모두 포함된 유전자 bioABFCDbioABFCD의 자가 프로모터를 이용하여 과발현 벡터를 제작하였다. 벡터를 제작하기 위해 대장균 W3110 염색체를 주형으로 하여 VB7_20 (서열번호 33)와 VB7_21 (서열번호 34)의 프라이머 쌍을 이용하여 PCR하여 bioABFCD 오페론 유전자를 획득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건으로서, 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 30초 어닐링, 72℃ 180초 중합을 30회 반복한 후, 72℃에서 10분간 중합반응을 수행하였다. 그 결과 5020bp의 야생형 대장균의 bioABFCD 오페론 유전자 단편조각 bioABFCD(Eco) (서열번호 46)을 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 SmaI의 제한효소로 처리된 pCL1920 벡터와 깁슨 어셈블리 방법으로 클로닝하여 재조합 플라스미드를 획득하였으며, pCL1920-bioABFCD(Eco)로 명명하였다. For the purpose of high biotin production, an overexpression vector was created based on the pCL1920 vector (GenBank No AB236930) using the genes bioABFCD and the autologous promoter of bioABFCD, which contains all of the E. coli biotin operon. To construct the vector, the bioABFCD operon gene was obtained by PCR using the E. coli W3110 chromosome as a template and the primer pair VB7_20 (SEQ ID NO: 33) and VB7_21 (SEQ ID NO: 34). SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C for 180 seconds. After repeating 30 times, polymerization reaction was performed at 72°C for 10 minutes. As a result, a 5020bp wild-type E. coli bioABFCD operon gene fragment bioABFCD (Eco) (SEQ ID NO: 46) was obtained. The obtained DNA product was purified using QIAGEN's PCR Purification kit, and then cloned into the pCL1920 vector treated with SmaI restriction enzyme using the Gibson assembly method to obtain a recombinant plasmid, which was named pCL1920-bioABFCD (Eco).

상기 제작된 바이오틴 오페론 과발현 벡터(pCL1920-bioABFCD(Eco))를 실시예 3에서 제조한 재조합 균주 3종 CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG), CV04-0004 (W3110 ΔbirA(E.co)::Pcj1_birA(M.sm)), CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl))에 각각 열충격 도입법을 이용하여 도입하였다. 대조군으로 오페론 과발현 벡터(pCL1920-bioABFCD (Eco))를 W3110에 도입하였다. The above-constructed biotin operon overexpression vector (pCL1920-bioABFCD(Eco)) was used in the three recombinant strains prepared in Example 3, CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG), CV04-0004 (W3110 ΔbirA(E) .co)::Pcj1_birA(M.sm)) and CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl)), respectively, using the heat shock introduction method. As a control, an operon overexpression vector (pCL1920-bioABFCD (Eco)) was introduced into W3110.

각각의 균주를 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 하기 표 1의 조성을 갖는 역가 배지 25 mL에 접종한 다음, 이를 30℃, 200 rpm의 배양기에서 40 시간 배양하고, MS-MS 방법으로 배양액 중의 바이오틴 농도를 측정하여 이 결과를 하기 표 2에 기재하였다. 세포의 생장도는 562nm에서 흡광도를 측정하여 OD로 나타내었고, 소모당 측정은 당분석기 (YSI 2900)를 활용하여 잔당을 측정하고 초기 투입량과의 차이로 나타내었다. Each strain was plated on LB solid medium and cultured overnight in an incubator at 30°C. The strain cultured overnight on LB solid medium was inoculated into 25 mL of titer medium with the composition shown in Table 1 below, then cultured in an incubator at 30°C and 200 rpm for 40 hours, and the biotin concentration in the culture medium was measured by MS-MS method. These results are shown in Table 2 below. Cell growth was expressed as OD by measuring absorbance at 562 nm, and residual sugar was measured using a sugar analyzer (YSI 2900) and expressed as the difference from the initial input amount.

조성Furtherance 농도(g/L)Concentration (g/L) 포도당 glucose 3030 KH2PO4 KH 2 PO 4 0.30.3 K2HPO4 K 2 HPO 4 0.60.6 효모액기스yeast extract 2.52.5 (NH4)2SO4 (NH 4 ) 2 SO 4 1515 MgSO4,7H2OMgSO 4 ,7H 2 O 1One FeSO4,7H2O FeSO4,7H2O 0.030 0.030 NaClNaCl 2.52.5 탄산칼슘 calcium carbonate 4040

균주명Strain name OD562nmOD562nm 소모당(g/L)Sugar consumed (g/L) 바이오틴(mg/L)Biotin (mg/L) E.coli W3110/ pCL1920-bioABFCD (Eco)E.coli W3110/pCL1920-bioABFCD (Eco) 36.536.5 3030 0.00.0 E.coli CV04-0003 /pCL1920-bioABFCD (Eco)E.coli CV04-0003/pCL1920-bioABFCD (Eco) 25.125.1 22.922.9 0.520.52 E.coli CV04-0004 /pCL1920-bioABFCD (Eco)E.coli CV04-0004/pCL1920-bioABFCD (Eco) 35.135.1 3030 1.081.08 E.coli CV04-0002 /pCL1920-bioABFCD (Eco)E.coli CV04-0002/pCL1920-bioABFCD (Eco) 33.133.1 3030 1.301.30

상기 표 2에 나타난 바와 같이, 대장균 birA 유전자가 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래의 birA로 치환된 E. coli CV04-0004 /pCL1920-bioABFCD (Eco) 및 E. coli CV04-0002/pCL1920-bioABFCD (Eco) 균주는, E. coli W3110/pCL1920-bioABFCD (Eco) 및 E. coli CV04-0003/pCL1920-bioABFCD (Eco) 보다 바이오틴 생산량이 현저히 증가하였다. As shown in Table 2, E. coli CV04-0004 /pCL1920-bioABFCD (Eco) and E. coli CV04 in which the E. coli birA gene was replaced with birA from Mycobacterium smegmatis or Corynebacterium glutamicum The biotin production of the -0002/pCL1920-bioABFCD (Eco) strain was significantly increased compared to E. coli W3110/pCL1920-bioABFCD (Eco) and E. coli CV04-0003/pCL1920-bioABFCD (Eco).

실시예 5. 세라티아 마르세센스(Example 5. Serratia marcescens ( Serratia marcescensSerratia marcescens ) 바이오틴 생합성 강화 균주 기반 birA 치환 균주 제작 및 바이오틴 생산능 평가) Production of birA substitution strain based on biotin biosynthesis enhanced strain and evaluation of biotin production ability

대장균 이외의 Class II birA 결손 및 Class I birA 유전자의 도입치환이 바이오틴 생산능에 미치는 영향을 알아보고자, 세라티아 마르세센스 유래 바이오틴 생산 균주 TA5027(미국 특허 US 5374554 A)를 기반으로, birA 유전자 결손 및 Class I birA 유전자 도입된 재조합 균주를 제작하였다. To investigate the effect of Class II birA deletion and Class I birA gene substitution other than E. coli on biotin production ability, based on the biotin-producing strain TA5027 (US Patent US 5374554 A) derived from Serratia marcescens, birA gene deletion and Class I birA gene deletion were investigated. A recombinant strain into which the I birA gene was introduced was constructed.

birA 유전자 결손 및 외래 birA 유전자 도입 벡터를 제작하기 위해, 상기 실시예 2와 동일한 방법으로, TA5027 균주의 염색체를 주형으로 하여 birA 유전자 결손 및 타켓 유전자 삽입 벡터를 제작하였다. 구체적으로 세라티아 TA5027 염색체 DNA를 주형으로 하여 VB7_22 (서열번호 35)과 VB7_23 (서열번호 36)의 프라이머를 이용하여 업스트림 (Upstream) 지역 약 0.5 kb (서열번호 37), VB7_24 (서열번호 38)와 VB7_25 (서열번호 39)의 프라이머를 이용하여 다운스트림 (Downstream) 지역 약 0.5 kb의 유전자 단편(서열번호 40)을 PCR 수행을 통해 수득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 60초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하여 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 증폭된 birA 업스트림 및 다운스트림 단편, 그리고 EcoRⅤ 제한효소로 절단된 염색체 형질전환용 벡터 pSKH vector를 깁슨 어셈블리 (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법을 이용하여 클로닝함으로써 birA 유전자 결손 및 타겟 유전자 삽입용 벡터 pSKHΔbirA(S.ma)를 제작하였다. To construct a birA gene deletion and foreign birA gene insertion vector, a birA gene deletion and target gene insertion vector was constructed using the chromosome of strain TA5027 as a template in the same manner as in Example 2. Specifically, using Serratia TA5027 chromosomal DNA as a template, primers VB7_22 (SEQ ID NO: 35) and VB7_23 (SEQ ID NO: 36) were used to clone approximately 0.5 kb of the upstream region (SEQ ID NO: 37), VB7_24 (SEQ ID NO: 38), and A gene fragment of approximately 0.5 kb in the downstream region (SEQ ID NO: 40) was obtained through PCR using primers of VB7_25 (SEQ ID NO: 39). SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 60 seconds, and polymerization at 72°C for 30 seconds for 30 minutes. After repeating the process several times, the polymerization reaction was performed at 72°C for 5 minutes to obtain the product. The obtained DNA product was purified using QIAGEN's PCR Purification kit, and then the amplified birA upstream and downstream fragments and the pSKH vector for chromosome transformation cut with EcoRⅤ restriction enzyme were used as Gibson assembly (DG Gibson et al., NATURE). Vector pSKHΔbirA (S.ma) for birA gene deletion and target gene insertion was created by cloning using the (METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) method.

다음으로 birA 유전자 결손 벡터 pSKHΔbirA(S.ma)를 기반으로 기공지된 cj1 프로모터를 포함한 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래 birA 유전자를 삽입하는 벡터를 제작하였다. 기공지된 cj1 프로모터를 확보하기 위해서 합성 cj1 프로모터 DNA를 주형으로 VB7_26 (서열번호 41)과 VB7_12 (서열번호 25)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을 PCR 수행을 통해 수득하였고, 미코박테리움 스메그마티스 MC2155 (http://www.lgcpromochem.com/atcc/) 염색체 DNA를 주형으로 하여 VB7_13 (서열번호 26)과 VB7_27 (서열번호 42)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였다. 마찬가지로 cj1 프로모터를 포함한 코리네박테리움 글루타미쿰 유래 birA 유전자를 확보하기 위해서 합성 cj1 프로모터 DNA를 주형으로 VB7_26 (서열번호 41)과 VB7_15 (서열번호 28)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을 PCR 수행을 통해 수득하였고, 코리네박테리움 글루타미쿰 ATCC13032 염색체 DNA를 주형으로 하여 VB7_16 (서열번호 29)과 VB7_28 (서열번호 43)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였다. 수득한 DNA 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 cj1 프로모터와 각 각의 birA 유전자 단편, 그리고 ScaⅠ제한효소로 절단된 pSKHΔbirA(S.ma) 벡터를 깁슨 어셈블리 방법으로 클로닝하여 재조합 플라스미드를 획득하였으며, 각각 pSKHΔbirA(S.ma)::Pcj1_birA(M.sm), pSKHΔbirA(S.ma)::Pcj1_birA(C.gl)로 명명하였다. Next, based on the birA gene deletion vector pSKHΔbirA (S.ma), a vector was constructed to insert the birA gene derived from Mycobacterium smegmatis or Corynebacterium glutamicum containing the known cj1 promoter. In order to secure the known cj1 promoter, a cj1 promoter fragment of about 0.3 kb was obtained through PCR using the synthetic cj1 promoter DNA as a template and primers VB7_26 (SEQ ID NO: 41) and VB7_12 (SEQ ID NO: 25). Using Bacterium smegmatis MC 2 155 (http://www.lgcpromochem.com/atcc/) chromosomal DNA as a template, primers VB7_13 (SEQ ID NO: 26) and VB7_27 (SEQ ID NO: 42) were used to produce about 0.8 kb of DNA. The birA gene fragment was obtained through PCR. Similarly, in order to secure the birA gene derived from Corynebacterium glutamicum containing the cj1 promoter, primers VB7_26 (SEQ ID NO: 41) and VB7_15 (SEQ ID NO: 28) were used as a template using the synthetic cj1 promoter DNA, and about 0.3 kb of the cj1 promoter was generated. The fragment was obtained through PCR. Using Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template, the birA gene fragment of about 0.8 kb was PCR-processed using primers VB7_16 (SEQ ID NO: 29) and VB7_28 (SEQ ID NO: 43). Obtained through practice. The obtained DNA product was purified using QIAGEN's PCR Purification kit, and then the cj1 promoter, each birA gene fragment, and the pSKHΔbirA (S.ma) vector cut with ScaI restriction enzyme were cloned using the Gibson assembly method to create a recombinant plasmid. were obtained, and were named pSKHΔbirA(S.ma)::Pcj1_birA(M.sm) and pSKHΔbirA(S.ma)::Pcj1_birA(C.gl), respectively.

상기 제작한 벡터를 실시예 3과 같은 방법을 통해 세라티아 마르세센스 TA5027 균주의 competent cell에 전기천공법을 이용하여 형질전환(transformation) 후, 2차 교차 과정을 거쳐 TA5027 균주의 염색체 상에서 birA 유전자가 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래의 birA 유전자로 치환된 균주를 얻었고, 이를 각각 CV04-9991 (TA5027 ΔbirA(S.ma)::Pcj1_birA(M.sm)), CV04-9992 (TA5027 ΔbirA(S.ma)::Pcj1_birA(C.gl))로 명명하였다. 해당 유전자가 삽입된 상동재조합 업스트림 지역과 다운스트림 지역의 외부 부위를 각각 증폭할 수 있는 VB7_29 (서열번호 44)과 VB7_30 (서열번호 45)의 프라이머를 이용한 PCR 법과 게놈 시퀀싱을 통해 해당 유전적 조작을 확인하였다.The vector produced above was transformed into competent cells of the Serratia marcescens TA5027 strain using electroporation using the same method as in Example 3, and then the birA gene was transferred to the chromosome of the TA5027 strain through a second crossover process. Strains substituted with the birA gene from Mycobacterium smegmatis or Corynebacterium glutamicum were obtained, and these were designated CV04-9991 (TA5027 ΔbirA(S.ma)::Pcj1_birA(M.sm)), CV04-, respectively. It was named 9992 (TA5027 ΔbirA(S.ma)::Pcj1_birA(C.gl)). The genetic manipulation was performed through PCR and genome sequencing using primers VB7_29 (SEQ ID NO: 44) and VB7_30 (SEQ ID NO: 45), which can amplify the external regions of the homologous recombination upstream and downstream regions where the gene was inserted, respectively. Confirmed.

상기 제작한 균주 2종 CV04-9991, CV04-9992 와 대조군으로 사용할 TA5027 균주를 각각 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 하기 표 3의 조성을 갖는 역가 배지 25㎖에 접종한 다음, 이를 30℃, 200 rpm의 배양기에서 40 시간 배양하였고, 배양액 중의 바이오틴 농도는 MS-MS 방법으로 분석하여 그 결과를 하기 표 4에 나타내었다. 세포의 생장도는 562nm에서 흡광도를 측정하여 OD로 나타내었고, 소모당 측정은 당분석기 (YSI 2900)를 활용하여 잔당을 측정하고 초기 투입량과의 차이로 나타내었다.The two strains prepared above, CV04-9991 and CV04-9992, and the TA5027 strain to be used as a control were each plated on LB solid medium and cultured in an incubator at 30°C overnight. The strain cultured overnight on LB solid medium was inoculated into 25 ml of titer medium with the composition shown in Table 3 below, and then cultured for 40 hours in an incubator at 30°C and 200 rpm, and the biotin concentration in the culture medium was analyzed by MS-MS method. The results are shown in Table 4 below. Cell growth was expressed as OD by measuring absorbance at 562 nm, and residual sugar was measured using a sugar analyzer (YSI 2900) and expressed as the difference from the initial input amount.

조성Furtherance 농도(g/L)Concentration (g/L) 포도당 glucose 3030 KH2PO4 KH 2 PO 4 0.30.3 K2HPO4 K 2 HPO 4 0.60.6 효모액기스yeast extract 2.52.5 (NH4)2SO4 (NH 4 ) 2 SO 4 1515 MgSO4,7H2OMgSO 4 ,7H 2 O 1One FeSO4,7H2OFeSO 4 ,7H 2 O 0.030 0.030 NaClNaCl 2.52.5 탄산칼슘 calcium carbonate 4040

균주명Strain name OD562nmOD562nm 소모당(g/L)Sugar consumed (g/L) 바이오틴(mg/L)Biotin (mg/L) TA5027TA5027 37.337.3 30.030.0 32.532.5 CV04-9991 CV04-9991 25.125.1 22.922.9 35.835.8 CV04-9992CV04-9992 25.125.1 22.922.9 39.739.7

상기 표 4에 나타난 같이, 세라티아 마르세센스의 birA 유전자를 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래의 birA 유전자로 각각 치환한 CV04-9991, CV04-9992 균주의 바이오틴 생산량은 모균주인 TA5027 대비 현저히 높은 것을 확인할 수 있었다.As shown in Table 4 above, the biotin production of CV04-9991 and CV04-9992 strains in which the birA gene of Serratia marcescens was replaced with the birA gene from Mycobacterium smegmatis or Corynebacterium glutamicum, respectively, was It was confirmed that it was significantly higher than the strain TA5027.

<110> CJ CheilJedang Corporation <120> Microorganism comprising class I type BirA and biotin production method using the same <130> DPP20210313KR <160> 46 <170> koPatentIn 3.0 <210> 1 <211> 255 <212> PRT <213> Artificial Sequence <220> <223> BirA of Escherichia coli (255aa) <400> 1 Met Lys Asp Asn Thr Val Pro Leu Lys Leu Ile Ala Leu Leu Ala Asn 1 5 10 15 Gly Glu Phe His Ser Gly Glu Gln Leu Gly Glu Thr Leu Gly Met Ser 20 25 30 Arg Ala Ala Ile Asn Lys His Ile Gln Thr Leu Arg Asp Trp Gly Val 35 40 45 Asp Val Phe Thr Val Pro Gly Lys Gly Tyr Ser Leu Pro Glu Pro Ile 50 55 60 Gln Leu Leu Asn Ala Lys Gln Ile Leu Gly Gln Leu Asp Gly Gly Ser 65 70 75 80 Val Ala Val Leu Pro Val Ile Asp Ser Thr Asn Gln Tyr Leu Leu Asp 85 90 95 Arg Ile Gly Glu Leu Lys Ser Gly Asp Ala Cys Ile Ala Glu Tyr Gln 100 105 110 Gln Ala Gly Arg Gly Arg Arg Gly Arg Lys Trp Phe Ser Pro Phe Gly 115 120 125 Ala Asn Leu Tyr Leu Ser Met Phe Trp Arg Leu Glu Gln Gly Pro Ala 130 135 140 Ala Ala Ile Gly Leu Ser Leu Val Ile Gly Ile Val Met Ala Glu Val 145 150 155 160 Leu Arg Lys Leu Gly Ala Asp Lys Val Arg Val Lys Trp Pro Asn Asp 165 170 175 Leu Tyr Leu Gln Asp Arg Lys Leu Ala Gly Ile Leu Val Glu Leu Thr 180 185 190 Gly Lys Thr Gly Asp Ala Ala Gln Ile Val Ile Gly Ala Gly Ile Asn 195 200 205 Met Ala Met Arg Arg Val Glu Glu Ser Val Val Asn Gln Gly Trp Ile 210 215 220 Thr Leu Gln Glu Ala Gly Ile Asn Leu Asp Arg Asn Thr Leu Ala Ala 225 230 235 240 Met Leu Ile Arg Glu Leu Arg Ala Ala Leu Glu Leu Phe Glu Gln 245 250 255 <210> 2 <211> 160 <212> PRT <213> Artificial Sequence <220> <223> BirA of Serratia marcescens (160aa) <400> 2 Met Arg Asp Thr Lys Val Pro Leu Lys Leu Ile Ala Leu Leu Ala Asp 1 5 10 15 Gly Glu Phe His Ser Gly Glu Gln Leu Gly Glu Ser Leu Gly Met Ser 20 25 30 Arg Ala Ala Ile Asn Lys His Ile Gln Thr Val Arg Glu Trp Gly Leu 35 40 45 Asp Val Phe Thr Val Pro Gly Lys Gly Tyr Ser Leu Pro Ala Pro Met 50 55 60 Gln Leu Leu Glu Ala Glu Arg Ile Leu Arg Gly Leu Asp Asp Lys Arg 65 70 75 80 Val Thr Val Leu Pro Val Val Asp Ser Thr Asn Gln Tyr Leu Leu Asp 85 90 95 Arg Ile Glu Thr Leu Gln Ser Gly Asp Ala Cys Ile Ala Glu Tyr Gln 100 105 110 Leu Ala Gly Arg Gly Arg Arg Gly Arg Gln Trp Ile Ser Pro Phe Gly 115 120 125 Ala Asn Leu Tyr Leu Ser Met Phe Trp Arg Leu Glu Gln Gly Pro Ala 130 135 140 Ala Ala Met Gly Leu Ser Leu Val Ile Gly Met Val Met Ala Glu Val 145 150 155 160 <210> 3 <211> 286 <212> PRT <213> Artificial Sequence <220> <223> BirA of Corynebacterium glutamicum (286aa) <400> 3 Met Ser Pro Leu Lys Arg Ala Phe Arg Arg Asp Pro Thr Thr Leu Ala 1 5 10 15 Ser Met Asn Val Asp Ile Ser Arg Ser Arg Glu Pro Leu Asn Val Glu 20 25 30 Leu Leu Lys Glu Lys Leu Leu Gln Asn Gly Asp Phe Gly Gln Val Ile 35 40 45 Tyr Glu Lys Val Thr Gly Ser Thr Asn Ala Asp Leu Leu Ala Leu Ala 50 55 60 Gly Ser Gly Ala Pro Asn Trp Thr Val Lys Thr Val Glu Phe Gln Asp 65 70 75 80 His Ala Arg Gly Arg Leu Gly Arg Pro Trp Ser Ala Pro Glu Gly Ser 85 90 95 Gln Thr Ile Val Ser Val Leu Val Gln Leu Ser Ile Asp Gln Val Asp 100 105 110 Arg Ile Gly Thr Ile Pro Leu Ala Ala Gly Leu Ala Val Met Asp Ala 115 120 125 Leu Asn Asp Leu Gly Val Glu Gly Ala Gly Leu Lys Trp Pro Asn Asp 130 135 140 Val Gln Ile His Gly Lys Lys Leu Cys Gly Ile Leu Val Glu Ala Thr 145 150 155 160 Gly Phe Asp Ser Thr Pro Thr Val Val Ile Gly Trp Gly Thr Asn Ile 165 170 175 Ser Leu Thr Lys Glu Glu Leu Pro Val Pro His Ala Thr Ser Leu Ala 180 185 190 Leu Glu Gly Val Glu Val Asp Arg Thr Thr Phe Leu Ile Asn Met Leu 195 200 205 Thr His Leu His Thr Arg Leu Asp Gln Trp Gln Gly Pro Ser Val Asp 210 215 220 Trp Leu Asp Asp Tyr Arg Ala Val Cys Ser Ser Ile Gly Gln Asp Val 225 230 235 240 Arg Val Leu Leu Pro Gly Asp Lys Glu Leu Leu Gly Glu Ala Ile Gly 245 250 255 Val Ala Thr Gly Gly Glu Ile Arg Val Arg Asp Ala Ser Gly Thr Val 260 265 270 His Thr Leu Asn Ala Gly Glu Ile Thr His Leu Arg Leu Gln 275 280 285 <210> 4 <211> 270 <212> PRT <213> Artificial Sequence <220> <223> BirA of Mycobacterium smegmatis (270aa) <400> 4 Met Asn Ser Asp Thr Glu Arg Pro Ala Leu Asp Ala Asp Ala Ile Arg 1 5 10 15 Ser Ala Val Val Arg Pro Arg Gly Ser Trp Arg Ser Phe Asp Val Val 20 25 30 Ala Glu Thr Gly Ser Thr Asn Ala Asp Leu Leu Ala Arg Ala Arg Ser 35 40 45 Gly Thr Asp Ile Asn Gly Ala Val Leu Ala Ala Glu His Gln Thr Ala 50 55 60 Gly Arg Gly Arg Asn Gly Arg Gln Trp Thr Thr Pro Pro Arg Ser Gln 65 70 75 80 Ile Ala Val Ser Val Gly Ile Asp Thr Thr Gly Val Pro Ser Thr Ala 85 90 95 Trp Gly Leu Leu Pro Leu Ala Thr Gly Val Ala Val Val Asp Ala Ile 100 105 110 Ser Ala Val Thr Gly Val Glu Ala Lys Leu Lys Trp Pro Asn Asp Val 115 120 125 Leu Val Asp Thr Gly Lys Leu Ala Gly Ile Leu Ala Glu Val Ala Ser 130 135 140 Pro Ala Pro Thr Val Val Ile Gly Thr Gly Leu Asn Val Ser Val Met 145 150 155 160 Pro Asp Asp Val Pro Asp Ser Val Ala Thr Ser Leu Ala Met Leu Thr 165 170 175 Asp Ala Pro Val Asp Arg Ser Ala Leu Leu Thr Glu Phe Leu Thr Arg 180 185 190 Leu Ala Asp Arg Val Glu Ser Trp Arg Ala Ala Gly Gly Ala Asp Asp 195 200 205 Arg Leu Leu Asp Asp Tyr Arg Gln Cys Ser Gly Thr Leu Gly Thr Ala 210 215 220 Val Arg Val Leu Leu Pro Gly Asp Arg Gln Leu Leu Gly Asp Ala Val 225 230 235 240 Asp Ile Asp Glu Ser Gly Arg Leu Leu Ile Asp Ser Glu Gly Glu Arg 245 250 255 Ile Thr Val Ala Ala Gly Asp Val Thr His Leu Arg Pro Ala 260 265 270 <210> 5 <211> 966 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Escherichia coli (966bp) <400> 5 atgaaggata acaccgtgcc actgaaattg attgccctgt tagcgaacgg tgaatttcac 60 tctggcgagc agttgggtga aacgctggga atgagccggg cggctattaa taaacacatt 120 cagacactgc gtgactgggg cgttgatgtc tttaccgttc cgggtaaagg atacagcctg 180 cctgagccta tccagttact taatgctaaa cagatattgg gtcagctgga tggcggtagt 240 gtagccgtgc tgccagtgat tgactccacg aatcagtacc ttcttgatcg tatcggagag 300 cttaaatcgg gcgatgcttg cattgcagaa taccagcagg ctggccgtgg tcgccggggt 360 cggaaatggt tttcgccttt tggcgcaaac ttatatttgt cgatgttctg gcgtctggaa 420 caaggcccgg cggcggcgat tggtttaagt ctggttatcg gtatcgtgat ggcggaagta 480 ttacgcaagc tgggtgcaga taaagttcgt gttaaatggc ctaatgacct ctatctgcag 540 gatcgcaagc tggcaggcat tctggtggag ctgactggca aaactggcga tgcggcgcaa 600 atagtcattg gagccgggat caacatggca atgcgccgtg ttgaagagag tgtcgttaat 660 caggggtgga tcacgctgca ggaagcgggg atcaatctcg atcgtaatac gttggcggcc 720 atgctaatac gtgaattacg tgctgcgttg gaactcttcg aacaagaagg attggcacct 780 tatctgtcgc gctgggaaaa gctggataat tttattaatc gcccagtgaa acttatcatt 840 ggtgataaag aaatatttgg catttcacgc ggaatagaca aacagggggc tttattactt 900 gagcaggatg gaataataaa accctggatg ggcggtgaaa tatccctgcg tagtgcagaa 960 aaataa 966 <210> 6 <211> 998 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Serratia marcescens (wheren the CDS is 1~963bp) <400> 6 atgagagata ccaaggtccc gttaaaactg atcgcgctat tggccgacgg tgaattccat 60 tccggggaac agctcggtga gtcattgggc atgagccgtg ccgcgatcaa taagcatatt 120 caaaccgttc gcgagtgggg gctggatgtc tttactgtac cggggaaagg atacagcttg 180 cctgctccca tgcagctatt ggaggcggaa cgcattctta gagggctgga cgacaagcga 240 gttaccgtgc tgccggtcgt agactctacc aatcaatatt tgctggatcg tatcgaaacg 300 ctgcaatctg gcgacgcctg catcgctgag taccaactgg ccggccgcgg tcgtcgtggg 360 cgtcagtgga tttcgccgtt tggcgccaat ttatacctgt cgatgttttg gcgattggaa 420 caggggccgg ctgcggcgat ggggctgagc ctggtgatcg gcatggtgat ggcggaggtc 480 ttgcagcgtc ttggcgctaa agacgtgcga gtcaaatggc ccaacgatct ttacctgaac 540 gatcgcaaat tggcagggat cttggtcgag ttgacgggga aaaccggcga tgcggctcag 600 ttggtcatcg gcgccggcat taatttggcg atgcgggata ccaatgcgag tgggatcaat 660 caaggttgga tcaacctgca agaagccggt attaacatcg atcgtaatga gctcaccgcc 720 actctgctta atgaattgcg gcagtcatta aaacaattcg agatagatgg gctggcgcca 780 ttcattggcc gttggcgcac gctggataat tttatcgaca gaccggtcaa actgctgatt 840 ggcgagcgac agattgtggg tatcgcccgg ggtatcgacg cgcaaggtgc actcctgctg 900 gaacaagaag gggaaatcaa accctttatc ggcggagaga tatcgctgcg cagcgcggaa 960 taggctgcag gaattcgatt tcgctattgt agccgtag 998 <210> 7 <211> 813 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Mycobacterium smegmatis (813bp) <400> 7 atgaacagcg ataccgagcg cccggcgctc gatgccgacg ccatccgttc cgcagtggtg 60 cgaccgcgcg ggtcgtggcg cagtttcgat gtcgtcgcgg agaccgggtc gacgaatgcc 120 gacctgctgg cacgcgcgag atcgggtacc gacatcaacg gtgcggtgtt ggccgccgaa 180 caccagaccg cgggccgcgg tcgcaacggc agacagtgga ccacgccgcc gcgatcgcag 240 atcgcggtct cggtggggat cgacacgacc ggtgttccgt cgacagcgtg gggcctgctc 300 ccgctcgcga ccggcgtggc ggtggtcgac gccatctcgg cggtcaccgg ggtcgaagcg 360 aaactcaagt ggcccaacga tgttctggtc gacaccggca agctggccgg catcctggcc 420 gaggtcgcct cgcccgcacc gaccgtggtg atcggcaccg gcctgaacgt ctctgtcatg 480 ccggacgacg tgcccgattc ggtcgcgacg tcactggcga tgctgaccga cgcccccgtg 540 gatcgttcgg cactgctgac ggagttcctg acccgactgg ccgaccgggt cgaaagctgg 600 cgtgcggcag gcggagccga cgacaggctg ctcgacgact accggcagtg cagcggcacg 660 ctgggcaccg cggtccgggt gctgcttccg ggagatcggc aactgctggg cgacgcggtg 720 gacatcgacg aatccggaag actgctgatc gactccgagg gtgagcgcat caccgtggcc 780 gcaggcgacg tgacgcatct gcgccccgcg tga 813 <210> 8 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Corynebacterium glutamicum (861bp) <400> 8 atgtcgccct taaagcgcgc ttttcgacgc gaccccacta cattggcttc catgaacgtt 60 gacatttcac gatccagaga gccgctaaac gttgagctcc tgaaggaaaa attgctccaa 120 aacggtgact ttggccaggt catttacgaa aaagtgacag gctccactaa tgctgacttg 180 ctggcacttg caggttctgg cgctccaaac tggacggtga aaactgtcga gtttcaagat 240 catgcgcgtg ggcgactcgg ccgcccgtgg tctgcccctg agggttccca aacaatcgtg 300 tctgtgctcg ttcaactatc tattgatcaa gtggaccgga ttggcactat tccactcgcg 360 gcgggactcg ctgtcatgga tgcgttgaat gacctcggtg tggaaggtgc cggactgaaa 420 tggcccaacg atgttcaaat ccacggcaag aaactctgcg gcatcctggt ggaagccacc 480 ggctttgatt ccaccccaac agttgtcatc ggttggggca ctaatatcag cctgactaaa 540 gaggagcttc ctgttcctca tgcaacttcc ctcgcattgg aaggtgttga agtcgacaga 600 accacattcc ttattaatat gctcacacat ctgcatactc gactggacca gtggcagggt 660 ccaagtgtgg attggctcga tgattaccgt gcggtatgtt ccagtattgg ccaagatgtt 720 cgagtgcttc tacctgggga taaagaactc ttaggtgaag cgatcggtgt cgcgactggc 780 ggagaaattc gtgttcgcga tgcttcgggc accgttcaca ccctcaacgc cggtgaaatt 840 acgcaccttc gcctgcagta a 861 <210> 9 <211> 304 <212> DNA <213> Artificial Sequence <220> <223> cj1 promoter <400> 9 caccgcgggc ttattccatt acatggaatg accaggaatg gcagggaatg cgacgaaatt 60 gactgtgtcg ggagcttctg atccgatgct gccaaccagg agagaaaata atgacatgtg 120 caggcacgct ggtgagctgg agatttatga tctcaagtac cttttttctt gcactcgagg 180 gggctgagtg ccagaatggt tgctgacacc aggttgaggt tggtacacac tcaccaatcc 240 tgccgtcgcg ggcgcctgcg tggaacataa accttgagtg aaacccaatc taggagatta 300 agat 304 <210> 10 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_1 <400> 10 gctgcaggaa ttcgatttcg ctattgtagc cgtag 35 <210> 11 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_2 <400> 11 gaataagccc gcggtgtggc acggtgttat ccttc 35 <210> 12 <211> 536 <212> DNA <213> Artificial Sequence <220> <223> birA upstream fragment <400> 12 ttcgctattg tagccgtagg tctgcgtctg ccaaaagagt ggcaacctgt actaacgtat 60 ggtgacttaa ctcgtctgga tcctacaaca gtaacgccac agcaagtatt taatgcggtg 120 tgtcatatgc gcaccaccaa actccctgat ccaaaagtga atggcaatgc cggtagtttc 180 ttcaaaaacc ctgttgtatc tgccgaaacg gctaaagcat tactgtcaca atttccaaca 240 gcaccaaatt acccccaggc ggatggttca gtaaaactgg cagcaggttg gcttatcgat 300 cagtgccagc taaaagggat gcaaataggt ggggctgcgg tgcaccgtca acaggcgtta 360 gttctcatta atgaagacaa tgcaaaaagc gaagatgttg tacagctggc gcatcatgta 420 agacagaaag ttggtgaaaa atttaatgtc tggcttgagc ctgaagtccg ctttattggt 480 gcatcaggtg aagtgagcgc agtggagaca atttcatgaa ggataacacc gtgcca 536 <210> 13 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_3 <400> 13 tgaaggataa caccgtgcca caccgcgggc ttatt 35 <210> 14 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_4 <400> 14 cattaagtaa ctggatcata tcttaatctc ctagat 36 <210> 15 <211> 560 <212> DNA <213> Artificial Sequence <220> <223> birA downstream fragment <400> 15 atccagttac ttaatgctaa acagatattg ggtcagctgg atggcggtag tgtagccgtg 60 ctgccagtga ttgactccac gaatcagtac cttcttgatc gtatcggaga gcttaaatcg 120 ggcgatgctt gcattgcaga ataccagcag gctggccgtg gtcgccgggg tcggaaatgg 180 ttttcgcctt ttggcgcaaa cttatatttg tcgatgttct ggcgtctgga acaaggcccg 240 gcggcggcga ttggtttaag tctggttatc ggtatcgtga tggcggaagt attacgcaag 300 ctgggtgcag ataaagttcg tgttaaatgg cctaatgacc tctatctgca ggatcgcaag 360 ctggcaggca ttctggtgga gctgactggc aaaactggcg atgcggcgca aatagtcatt 420 ggagccggga tcaacatggc aatgcgccgt gttgaagaga gtgtcgttaa tcaggggtgg 480 atcacgctgc aggaagcggg gatcaatctc gatcgtaata cgttggcggc catgctaata 540 cgtgaattac gtgctgcgtt 560 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_5 <400> 16 tgaaggataa caccgtgcca caccgcgggc ttatt 35 <210> 17 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_6 <400> 17 cattaagtaa ctggatcata tcttaatctc ctagat 36 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_7 <400> 18 ctgcaggaat tcgatttcgc tattgtagcc gtagg 35 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_8 <400> 19 ctgcactacg cagggtggca cggtgttatc cttca 35 <210> 20 <211> 515 <212> DNA <213> Artificial Sequence <220> <223> birA upstream fragment for exogenous insertion <400> 20 ttcgctattg tagccgtagg tctgcgtctg ccaaaagagt ggcaacctgt actaacgtat 60 ggtgacttaa ctcgtctgga tcctacaaca gtaacgccac agcaagtatt taatgcggtg 120 tgtcatatgc gcaccaccaa actccctgat ccaaaagtga atggcaatgc cggtagtttc 180 ttcaaaaacc ctgttgtatc tgccgaaacg gctaaagcat tactgtcaca atttccaaca 240 gcaccaaatt acccccaggc ggatggttca gtaaaactgg cagcaggttg gcttatcgat 300 cagtgccagc taaaagggat gcaaataggt ggggctgcgg tgcaccgtca acaggcgtta 360 gttctcatta atgaagacaa tgcaaaaagc gaagatgttg tacagctggc gcatcatgta 420 agacagaaag ttggtgaaaa atttaatgtc tggcttgagc ctgaagtccg ctttattggt 480 gcatcaggtg aagtgagcgc agtggagaca atttc 515 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_9 <400> 21 gataacaccg tgccaccctg cgtagtgcag aaaaa 35 <210> 22 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_10 <400> 22 gtcgactagc gtgatatgca tcgcctggtg aagtt 35 <210> 23 <211> 512 <212> DNA <213> Artificial Sequence <220> <223> birA downstream fragment for exogenous insertion <400> 23 gaaaggggag tattcgctcc cctgcaaatt atttgcgtag tctgacctct tctaccgcat 60 gattagcact tttcgtcagg attaaactgg cgcgctcacg agtaggtaga atattttgct 120 ttaagttcag ccagttgatc tctttccaca atgtcatggc agtcttaatc gcttcttctt 180 tagttaattt cgcgtagtta tgaaaatagg aatccgggtc ggtaaaagcc ccttcgcgga 240 atttcagaaa acggttgata taccatgtct gaagtaagtc ttccggtgca tcaacatata 300 tcgaaaaatc gacaaaatca gaaacaaata catgatgtgg atcgtgtgga taatccatcc 360 cgctctgtaa gacatttaac ccttcaagaa ttaaaatatc aggctgaaca accgttttat 420 ctccatccgg gatcacatca taaataagat gtgagtaaac aggtgctgta acgtttggca 480 cgccggattt gagatcggaa acaaacttca cc 512 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_11 <400> 24 gtcgactagc gtgatatgca tcgcctggtg aagtt 35 <210> 25 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_12 <400> 25 tcggtatcgc tgttcatatc ttaatctcct agat 34 <210> 26 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_13 <400> 26 atctaggaga ttaagatatg aacagcgata ccga 34 <210> 27 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_14 <400> 27 atctgcgccc cgcgtgaccc tgcgtagtgc aga 33 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_15 <400> 28 ctttaagggc gacatatctt aatctcctag attgg 35 <210> 29 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_16 <400> 29 aatctaggag attaagatat gtcgccctta aagcg 35 <210> 30 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_17 <400> 30 tctgcactac gcagggttac tgcaggcgaa ggtgc 35 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_18 <400> 31 gttgattctg ttgaactggc 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_19 <400> 32 ggaacatcgt cgtgttgaac 20 <210> 33 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_20 <400> 33 gactctagag gatccccggg ttattggcaa aaaaatgttt 40 <210> 34 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_21 <400> 34 attcgagctc ggtacccggg ctacaacaag gcaaggttta 40 <210> 35 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_22 <400> 35 ggctgcagga attcgatctg ggtctgcgtc tgag 34 <210> 36 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_23 <400> 36 gtcttttctc aagtactgac agcaccacca cagcg 35 <210> 37 <211> 500 <212> DNA <213> Artificial Sequence <220> <223> birA upstream fragment of Serratia marcescens <400> 37 ctgggtctgc gtctgagcaa gcagtggcaa cccaagttga gctatggcga tctggccaag 60 ctggatcccg ccacggtgac gccacttcag gtattcgagt ccgtatgtgc catgcgccgc 120 agcaagctgc cggacccgcg cgaaaccggt aatgccggca gtttcttcaa gaatccgctg 180 gtgaacgcgg ggaaagccgc agaactcatc acacaatatc ccggcatgcc gcattatccg 240 cagcaggatg gtcaggtgaa gctggccgct ggctggctga tcgatcagtg cgaactgaag 300 gggtatcgca tcggtggcgc agccgtacac cgccagcagg cgctggtgct ggtgaatatc 360 gataatgcgc atagtcagga tgtggtggct ctggcgcgcc atgtccgtaa gactgtggcc 420 gataaatttg gcgtatggct ggaacctgag gtgcgtttca ttggcgcaac tggcgaattg 480 aacgctgtgg tggtgctgtc 500 <210> 38 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_24 <400> 38 cgctgtggtg gtgctgtcag tacttgagaa aagac 35 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_25 <400> 39 aggtcgacta gcgtgatcca aacgtgtcac cgccc 35 <210> 40 <211> 500 <212> DNA <213> Artificial Sequence <220> <223> birA downstream fragment of Serratia marcescens <400> 40 tgagaaaaga caaggggacg gcagcgtccc cttgatcgtt cggtaggctt attttcttaa 60 acgcacgctt tcaacggcat ggttggcgct tttggtcata atcaggctcg cgcgttcgcg 120 ggtaggcagt atgttctgct gcaaattcaa tccattgatt tcattccata attgcgtggc 180 gatattaatc gcctccggtt ccggcaattt tgaataatta tggaaataag aatcaggatt 240 ggaaaatgcg ccctgacgga atttcaggaa acggttgata taccagcttt gcaatagcgt 300 ctccggcgca tcgacatata tagagaagtc gacaaagtcg gaaacgaata cgcgatgcgg 360 atcgtgagga taatccatac cgctttgcaa tacgttaagc ccttccagga taagaatgtc 420 cggctgttcg atgactttat taccttcggg cacaacgtca tagatcaaat gggaataaac 480 cggggcggtg acacgtttgg 500 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_26 <400> 41 gtggtggtgc tgtcagtcac cgcgggctta ttcca 35 <210> 42 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_27 <400> 42 ccttgtcttt tctcaagttc acgcggggcg cagat 35 <210> 43 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_28 <400> 43 cttgtctttt ctcaagttta ctgcaggcga aggtg 35 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_29 <400> 44 atgggtactg aacgttatgt 20 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_30 <400> 45 tttcccaacc tgcgttaa 18 <210> 46 <211> 5016 <212> DNA <213> Artificial Sequence <220> <223> biotin operon of Escherichia coli (5016bp) <400> 46 gactctagag gatccccggg ttaacgcgcg gcgtcggcca cggcggcggt caggcggctg 60 agctgttccg cttcgatgat gtaaggcggc atcaggtaaa tcagcttgcc gaacggccgg 120 atccataccc cgcgctcgac gaacccgcgc tgcagctcgg cgacatccac cggttcgcgc 180 atctccacca ccccaatcgc gcccagcacc cgcacgtcgg ccaccttcgg cagcgccgcc 240 aacggcaaca gttcccgctt caactgggtt tcgatggcgc tcacctgcgc ctgccagcga 300 ttttccgcca gcagcgccag actggcgtcc gccacggcgc aggccagcgg attgcccata 360 aaggtcggcc cgtgcataaa gcagccggcc gcgccgttgc tgatggtctc cgccacgtgg 420 cgggtagtca aggtggcgga aagggtcata tagccgccgg tcagcgcctt gcccagacag 480 agaatgtccg gcaccacctg cgcgtgctcg caggcgaaca gcttgccggt gcggccgaaa 540 ccggtggcga tctcgtcggc gatcagcagc acctgatggc gatcgcacag ctcgcgcacc 600 cgcttgagat aggtcggatg gtagatgcgc atgccgccgg cgccttgcac caccggttcc 660 agaatcaccg ccgccacttc accggcgtgc tgctccagca gcgcggcgaa cggcgcgata 720 tcctcttcac gccattcctc gtcgaagcgg cactgcggcg cggtggcgaa caggtgcggc 780 gccagatacc cctgatagag gctgtgcatc gagttgtccg gatcgcagac cgacatcgcg 840 ccgaaggtat cgccgtgata gccgtggcgc agcgtcagga tgcgctgccg gcgctcgccg 900 cgcgcctgcc agtactgcag cgccattttc agcgacactt ctaccgccac cgaaccagag 960 tccgccagga acacgcactg cagtgcttcc ggcgtcattt ccaccagccg acggcacaac 1020 gagatggcgg ccggatgggt aatgccgccg aacatcacgt gcgacatctt ctccaactgc 1080 tggctggcgg cctgattcag acgcggatgg ttgtaaccgt ggatcgccgc ccaccaggag 1140 gacatgccgt ccaccagact ccggccgtcc gccagctgca gttcgacgcc gctggccgat 1200 tcgatcgggt aacagggtaa cgggcggctc atggaggtgt aggggtgcca gatatggcgt 1260 tggtcaaacg ccaggtcgga agcggtgaca gacattgttg taaaccaaat tggattaaaa 1320 ttggttgaca gtatatccac aatatttaaa ctggcgacac tttttcgttt tggagacgcc 1380 atgatggccg accgcattca ctggacagta gggcaagccc aggccctgtt tgataaaccg 1440 ctgctggaac tgctgttcga agcgcaaacc gtacaccgcc agcacttcga cccgcgtcag 1500 gtgcaggtca gcacgctgct gtcgatcaag accggcgctt gcccggaaga ctgcaaatac 1560 tgcccgcaga gctcacgcta caagaccggc ctggagtcgg agcggctgat gcaggtcgag 1620 caggtgctgg aatcggcacg caaggccaag gcgaacggtt cgacccgttt ttgcatgggc 1680 gcggcgtgga agaacccgca cgagcgcgat atgccttatc tgcagcaaat ggtgcagggc 1740 gtgaaagcga tgggcatgga aacctgcatg acgctgggca cattggatgg cacccaggcc 1800 gagcggctgg cggaggccgg gctggattac tacaaccata acctcgacac ctcgccggag 1860 ttctacggca gcatcatcac cacccgcagc taccaggagc gcctggatac gctcgacaag 1920 gtgcgcgacg ccggcatcaa agtgtgctcc ggcggcatcg tcgggctggg tgaaacggtg 1980 cgcgatcgcg ccgggctgct ggtgcagctg gccaacctgc caaaaccacc ggagagcgtg 2040 ccgatcaaca tgttggtgaa ggtgaaaggc acgccgctgg cggataacga tgacgtcgat 2100 ccgtttgatt tcatccgcac catcgcggtg gcgcgcatca tgatgccatc ttcttatgtc 2160 cgtctctccg caggccgcga acagatgaac gaacagacgc aggcgatgtg cttcatggcc 2220 ggcgccaact cgatcttcta cggttgcaag ctgctgacca cgccgaatcc ggaagaagac 2280 aaagacctgc agctgttccg caagctgggg ctcaacccgc agcagaccgc aaccgaacac 2340 ggcgacaacc agcaacagca ggtgctggcc aagcaactgc tgaacgccga taccgccgag 2400 ttttacaacg cggcgccgtg atgagctggc agcaacgcat cgagcaggcg ctggctgagc 2460 ggcgcctgaa cgccgcctac cgccggcgac agaccaccga gggcggcaac ggccgccaga 2520 tccggctcgg cgatcgtctc tatctgaact tctcgggcaa cgactacctg ggcttgagcc 2580 aggatgcgcg ggtgatcgcc gcctggcagc agggcgcgca gcgttacggc gtcggcagcg 2640 gcggttcggg ccacgtgacc ggttttagcg cggcgcatca ggcgctggaa gagcaactgg 2700 cggcttggct cggctatccg cgcgcgctgc tgttcatctc cggctacgcc gccaaccagg 2760 cggtgctggc ggcgttgatg caaaagggcg atcgcatttt ggccgatcgt ctcagccatg 2820 cctcgctgct ggaggcggcg gcgcagtcgc cggccgagct gcgccggttc cagcacaatc 2880 aaccgcaggc cttggcggat ctgctggcca aaccctgcga cgggcagcgg ctggcggtca 2940 ccgaaggggt gttcagcatg gatggcgacg gcgcgccgtt ggcggagctg catcgcttaa 3000 cccgtgcggc gggcgcctgg ctgatggtgg atgacgccca cggcatcggc gtgcgcggcg 3060 aacaaggccg cggcagttgc tggcagcagg gcgtgcgccc tgaactgctg gtggcgacct 3120 tcggcaaggc gttcggcgtc agcggcgcgg cggtgctgtg cgatgaggcg accgccgagt 3180 atctgctgca gttcgcccgc catctgatct acagcaccgc gatgccgccg gcgcaggcct 3240 gcgcgctgca ggcggcgctg gcccgtattc gagagggtga tgatctgcga gcccggctgc 3300 aggacaacat tcggcgtttc cgtcagggcg cggcgccgtt ggcgctgacc ctgacggatt 3360 ccgacaccgc catccagccg ctgctggtgg gggataatca gcgcgcgctc gatctggcga 3420 cccgcctgcg cgagtgcggc ctgtgggtga gcgccatccg tccgccgacg gtgcccccgg 3480 gcggcgcgcg gctgcgcatt accctgacgg cggcgcatca gtcgcaggat atcgatcgcc 3540 tgctggaggt gctgaatgac gtcagccaat gacacagtga acaaacaggc ggtcgcctcg 3600 gccttcagcc gcgcggccgg cagctacgat gccgccgccg cgctgcagcg tgacgttggc 3660 gagcgcttac tggggatggg gagttcccac ccgggcgaac agctgctgga cgccggctgc 3720 ggcaccggct atttcagccg tatgtggcgt gagcgcggca aacgggtgac cgcgctcgat 3780 ttggcgccgg gcatgctgga cgtcgcccgc caacggcagg cggcgcatca ttatctgctg 3840 ggcgatatcg aacaggtgcc gctgcccgat gcggcgatgg acatctgttt cagcagcctg 3900 gtggtgcagt ggtgcagcga tctgcctgcc gcgctggcag agctgtatcg cgtgacccgt 3960 cccggcggcg tgatcctgtt ttccacgctg gcggcgggct cgctgcagga attgggggac 4020 gcctggcaac aggtggacgg cgaacgtcac gtgaacgcct ttttgccgtt gacgcagatc 4080 cgcaccgcct gcgccgccta tcgacacgag ctggtgacgg agttgcgcac cctgaactac 4140 ccggacgtga tgacgctgat gcgttcgctc aagggcatcg gggcgacgca tttgcatcag 4200 gggcgtgagg gcggcctgat gtcgcgtggc cgcctcgccg cgctgcaggc ggcttacccg 4260 tgccggcagg ggcagttccc gctcagctat catctggctt atggagtgat ttatcgtgag 4320 taaacgttgg ttcgtgaccg gcaccgacac cgaagtgggg aaaaccgtcg ccagcagcgc 4380 cttgctgcag gccgccaacc gggcgggcta ccgcagcgcc ggctataagc cggtggcctc 4440 cggcagcgag atgaccgccg aggggctgcg caacggcgac gcgctggcgc tgcaggccaa 4500 cagcggtgtg gcgctggatt acgacgaagt gaacccttac gtatttgccg aaccgacctc 4560 gccgcatatc gtcagcgccg atgaaggccg gccgatcgac gcggcgcggc tgtccgacgg 4620 cctgcgccgg ctggagcagc gcgccgactg ggtgctggtc gagggggccg gcgggtggtt 4680 taccccgttg tcggcggagt acaccttcgc cgactgggtg cggcaagagc aactgccggt 4740 gatcctggtg gtgggcatca agctgggctg catcaaccac gcggtgctga cggcccaggc 4800 ggtgcaacag gccgggctga cgctggccgg ttggatcgcc aacgacgtgg cgccgccggg 4860 gcggcggcat caggaatacc tggctacgct gcgccgtatg ctgcccgcgc cgctgctggg 4920 cgaaatcccg cacctgccgc aggccgaacg ggcgccgctg gggcagtatc tggatatcag 4980 cttgctggcg cagtgacccg ggtaccgagc tcgaat 5016 <110> CJ CheilJedang Corporation <120> Microorganism comprising class I type BirA and biotin production method using the same <130> DPP20210313KR <160> 46 <170> koPatentIn 3.0 <210> 1 <211> 255 <212> PRT <213> Artificial Sequence <220> <223> BirA of Escherichia coli (255aa) <400> 1 Met Lys Asp Asn Thr Val Pro Leu Lys Leu Ile Ala Leu Leu Ala Asn 1 5 10 15 Gly Glu Phe His Ser Gly Glu Gln Leu Gly Glu Thr Leu Gly Met Ser 20 25 30 Arg Ala Ala Ile Asn Lys His Ile Gln Thr Leu Arg Asp Trp Gly Val 35 40 45 Asp Val Phe Thr Val Pro Gly Lys Gly Tyr Ser Leu Pro Glu Pro Ile 50 55 60 Gln Leu Leu Asn Ala Lys Gln Ile Leu Gly Gln Leu Asp Gly Gly Ser 65 70 75 80 Val Ala Val Leu Pro Val Ile Asp Ser Thr Asn Gln Tyr Leu Leu Asp 85 90 95 Arg Ile Gly Glu Leu Lys Ser Gly Asp Ala Cys Ile Ala Glu Tyr Gln 100 105 110 Gln Ala Gly Arg Gly Arg Arg Gly Arg Lys Trp Phe Ser Pro Phe Gly 115 120 125 Ala Asn Leu Tyr Leu Ser Met Phe Trp Arg Leu Glu Gln Gly Pro Ala 130 135 140 Ala Ala Ile Gly Leu Ser Leu Val Ile Gly Ile Val Met Ala Glu Val 145 150 155 160 Leu Arg Lys Leu Gly Ala Asp Lys Val Arg Val Lys Trp Pro Asn Asp 165 170 175 Leu Tyr Leu Gln Asp Arg Lys Leu Ala Gly Ile Leu Val Glu Leu Thr 180 185 190 Gly Lys Thr Gly Asp Ala Ala Gln Ile Val Ile Gly Ala Gly Ile Asn 195 200 205 Met Ala Met Arg Arg Val Glu Glu Ser Val Val Asn Gln Gly Trp Ile 210 215 220 Thr Leu Gln Glu Ala Gly Ile Asn Leu Asp Arg Asn Thr Leu Ala Ala 225 230 235 240 Met Leu Ile Arg Glu Leu Arg Ala Ala Leu Glu Leu Phe Glu Gln 245 250 255 <210> 2 <211> 160 <212> PRT <213> Artificial Sequence <220> <223> BirA of Serratia marcescens (160aa) <400> 2 Met Arg Asp Thr Lys Val Pro Leu Lys Leu Ile Ala Leu Leu Ala Asp 1 5 10 15 Gly Glu Phe His Ser Gly Glu Gln Leu Gly Glu Ser Leu Gly Met Ser 20 25 30 Arg Ala Ala Ile Asn Lys His Ile Gln Thr Val Arg Glu Trp Gly Leu 35 40 45 Asp Val Phe Thr Val Pro Gly Lys Gly Tyr Ser Leu Pro Ala Pro Met 50 55 60 Gln Leu Leu Glu Ala Glu Arg Ile Leu Arg Gly Leu Asp Asp Lys Arg 65 70 75 80 Val Thr Val Leu Pro Val Val Asp Ser Thr Asn Gln Tyr Leu Leu Asp 85 90 95 Arg Ile Glu Thr Leu Gln Ser Gly Asp Ala Cys Ile Ala Glu Tyr Gln 100 105 110 Leu Ala Gly Arg Gly Arg Arg Gly Arg Gln Trp Ile Ser Pro Phe Gly 115 120 125 Ala Asn Leu Tyr Leu Ser Met Phe Trp Arg Leu Glu Gln Gly Pro Ala 130 135 140 Ala Ala Met Gly Leu Ser Leu Val Ile Gly Met Val Met Ala Glu Val 145 150 155 160 <210> 3 <211> 286 <212> PRT <213> Artificial Sequence <220> <223> BirA of Corynebacterium glutamicum (286aa) <400> 3 Met Ser Pro Leu Lys Arg Ala Phe Arg Arg Asp Pro Thr Thr Leu Ala 1 5 10 15 Ser Met Asn Val Asp Ile Ser Arg Ser Arg Glu Pro Leu Asn Val Glu 20 25 30 Leu Leu Lys Glu Lys Leu Leu Gln Asn Gly Asp Phe Gly Gln Val Ile 35 40 45 Tyr Glu Lys Val Thr Gly Ser Thr Asn Ala Asp Leu Leu Ala Leu Ala 50 55 60 Gly Ser Gly Ala Pro Asn Trp Thr Val Lys Thr Val Glu Phe Gln Asp 65 70 75 80 His Ala Arg Gly Arg Leu Gly Arg Pro Trp Ser Ala Pro Glu Gly Ser 85 90 95 Gln Thr Ile Val Ser Val Leu Val Gln Leu Ser Ile Asp Gln Val Asp 100 105 110 Arg Ile Gly Thr Ile Pro Leu Ala Ala Gly Leu Ala Val Met Asp Ala 115 120 125 Leu Asn Asp Leu Gly Val Glu Gly Ala Gly Leu Lys Trp Pro Asn Asp 130 135 140 Val Gln Ile His Gly Lys Lys Leu Cys Gly Ile Leu Val Glu Ala Thr 145 150 155 160 Gly Phe Asp Ser Thr Pro Thr Val Val Ile Gly Trp Gly Thr Asn Ile 165 170 175 Ser Leu Thr Lys Glu Glu Leu Pro Val Pro His Ala Thr Ser Leu Ala 180 185 190 Leu Glu Gly Val Glu Val Asp Arg Thr Thr Phe Leu Ile Asn Met Leu 195 200 205 Thr His Leu His Thr Arg Leu Asp Gln Trp Gln Gly Pro Ser Val Asp 210 215 220 Trp Leu Asp Asp Tyr Arg Ala Val Cys Ser Ser Ile Gly Gln Asp Val 225 230 235 240 Arg Val Leu Leu Pro Gly Asp Lys Glu Leu Leu Gly Glu Ala Ile Gly 245 250 255 Val Ala Thr Gly Gly Glu Ile Arg Val Arg Asp Ala Ser Gly Thr Val 260 265 270 His Thr Leu Asn Ala Gly Glu Ile Thr His Leu Arg Leu Gln 275 280 285 <210> 4 <211> 270 <212> PRT <213> Artificial Sequence <220> <223> BirA of Mycobacterium smegmatis (270aa) <400> 4 Met Asn Ser Asp Thr Glu Arg Pro Ala Leu Asp Ala Asp Ala Ile Arg 1 5 10 15 Ser Ala Val Val Arg Pro Arg Gly Ser Trp Arg Ser Phe Asp Val Val 20 25 30 Ala Glu Thr Gly Ser Thr Asn Ala Asp Leu Leu Ala Arg Ala Arg Ser 35 40 45 Gly Thr Asp Ile Asn Gly Ala Val Leu Ala Ala Glu His Gln Thr Ala 50 55 60 Gly Arg Gly Arg Asn Gly Arg Gln Trp Thr Thr Pro Pro Arg Ser Gln 65 70 75 80 Ile Ala Val Ser Val Gly Ile Asp Thr Thr Gly Val Pro Ser Thr Ala 85 90 95 Trp Gly Leu Leu Pro Leu Ala Thr Gly Val Ala Val Val Val Asp Ala Ile 100 105 110 Ser Ala Val Thr Gly Val Glu Ala Lys Leu Lys Trp Pro Asn Asp Val 115 120 125 Leu Val Asp Thr Gly Lys Leu Ala Gly Ile Leu Ala Glu Val Ala Ser 130 135 140 Pro Ala Pro Thr Val Val Ile Gly Thr Gly Leu Asn Val Ser Val Met 145 150 155 160 Pro Asp Asp Val Pro Asp Ser Val Ala Thr Ser Leu Ala Met Leu Thr 165 170 175 Asp Ala Pro Val Asp Arg Ser Ala Leu Leu Thr Glu Phe Leu Thr Arg 180 185 190 Leu Ala Asp Arg Val Glu Ser Trp Arg Ala Ala Gly Gly Ala Asp Asp 195 200 205 Arg Leu Leu Asp Asp Tyr Arg Gln Cys Ser Gly Thr Leu Gly Thr Ala 210 215 220 Val Arg Val Leu Leu Pro Gly Asp Arg Gln Leu Leu Gly Asp Ala Val 225 230 235 240 Asp Ile Asp Glu Ser Gly Arg Leu Leu Ile Asp Ser Glu Gly Glu Arg 245 250 255 Ile Thr Val Ala Ala Gly Asp Val Thr His Leu Arg Pro Ala 260 265 270 <210> 5 <211> 966 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Escherichia coli (966bp) <400> 5 atgaaggata acaccgtgcc actgaaattg attgccctgt tagcgaacgg tgaatttcac 60 tctggcgagc agttgggtga aacgctggga atgagccggg cggctattaa taaacacatt 120 cagacactgc gtgactgggg cgttgatgtc tttaccgttc cgggtaaagg atacagcctg 180 cctgagcc ta tccagttact taatgctaaa cagatattgg gtcagctgga tggcggtagt 240 gtagccgtgc tgccagtgat tgactccacg aatcagtacc ttcttgatcg tatcggagag 300 cttaaatcgg gcgatgcttg cattgcagaa taccagcagg ctggccgtgg tcgccggggt 360 cggaa atggt tttcgccttt tggcgcaaac ttatatttgt cgatgttctg gcgtctggaa 420 caaggcccgg cggcggcgat tggtttaagt ctggttatcg gtatcgtgat ggcggaagta 480 ttacgcaagc tgggtgcaga taaagttcgt gttaaatggc ctaatgacct ctatctgcag 540 gatcgcaagc tggcaggcat tctggtggag ctgactggca aaactggcga tgcggcgcaa 600 atagtcat tg gagccgggat caacatggca atgcgccgtg ttgaagagag tgtcgttaat 660 caggggtgga tcacgctgca ggaagcgggg atcaatctcg atcgtaatac gttggcggcc 720 atgctaatac gtgaattacg tgctgcgttg gaactcttcg aacaagaagg attggcacct 780 ta tctgtcgc gctgggaaaa gctggataat tttattaatc gcccagtgaa acttatcatt 840 ggtgataaag aaatatttgg catttcacgc ggaatagaca aacagggggc tttattactt 900 gagcaggatg gaataataaa accctggatg ggcggtgaaa tatccctgcg tagtgcagaa 960 aaataa 966 <210> 6 <211> 998 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Serratia marcescen s (wheren the CDS is 1~963bp) <400> 6 atgagagata ccaaggtccc gttaaaactg atcgcgctat tggccgacgg tgaattccat 60 tccggggaac agctcggtga gtcattgggc atgagccgtg ccgcgatcaa taagcatatt 120 caaaccgttc gcgagtgggg gctggatgtc tttactgtac cggggaaag atac agcttg 180 cctgctccca tgcagctatt ggaggcggaa cgcattctta gagggctgga cgacaagcga 240 gttaccgtgc tgccggtcgt agactctacc aatcaatatt tgctggatcg tatcgaaacg 300 ctgcaatctg gcgacgcctg catcgctgag taccaactgg t cgtcgtggg 360 cgtcagtgga tttcgccgtt tggcgccaat ttatacctgt cgatgttttg gcgattggaa 420 caggggccgg ctgcggcgat ggggctgagc ctggtgatcg gcatggtgat ggcggaggtc 480 ttgcagcgtc ttggcgctaa agacgtgcga gtcaaatggc ccaacgatct ttacctgaac 540 gatcgcaaat gat cttggtcgag ttgacgggga aaaccggcga tgcggctcag 600 ttggtcatcg gcgccggcat taatttggcg atgcgggata ccaatgcgag tgggatcaat 660 caaggttgga tcaacctgca agaagccggt attaacatcg atcgtaatga gctcaccgcc 720 actctgctta atga attgcg gcagtcatta aaacaattcg agatagatgg gctggcgcca 780 ttcattggcc gttggcgcac gctggataat tttatcgaca gaccggtcaa actgctgatt 840 ggcgagcgac agattgtggg tatcgcccgg ggtatcgacg cgcaaggtgc actcctgctg 900 gaacaagaag gggaaatcaa accctttatc ggcggagaga tatcgctgcg cagcgcggaa 960 taggctgcag gaattcgatt tcgctattgt agcc gtag 998 <210> 7 <211> 813 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Mycobacterium smegmatis ( 813bp) <400> 7 atgaacagcg ataccgagcg cccggcgctc gatgccgacg ccatccgttc cgcagtggtg 60 cgaccgcgcg ggtcgtggcg cagtttcgat gtcgtcgcgg agaccgggtc gacgaatgcc 120 gacctgctgg cacgcgcgag atcgggtacc gacatcaacg gtgcggtgtt ggccgccgaa 180 caccagaccg cgggccgcgg tcgcaacggc agacagtgga ccacgccgcc gcgatcgcag 240 atcgcggtct cggtggggat cgacacgacc ggtgttccgt cgacagcgtg gggcctgctc 300 ccgctcgcga ccggcgtggc ggtggtcgac gccatctcgg cggtcaccgg ggtcgaagcg 360 aaactcaagt ggcccaacga tgttctggtc gacaccggca agctggccgg catcctggcc 420 gaggtcgcct cgcccgcacc gaccgtggtg atcggcaccg gcctgaacgt ctctgtcatg 480 ccggacgacg tgcccgattc ggtcgcgacg tcactggcga tgctgaccga cgcccccgtg 540 g atcgttcgg cactgctgac ggagttcctg acccgactgg ccgaccgggt cgaaagctgg 600 cgtgcggcag gcggagccga cgacaggctg ctcgacgact accggcagtg cagcggcacg 660 ctgggcaccg cggtccgggt gctgcttccg ggagatcggc aactgctggg c gacgcggtg 720 gacatcgacg aatccggaag actgctgatc gactccgagg gtgagcgcat caccgtggcc 780 gcaggcgacg tgacgcatct gcgccccgcg tga 813 <210> 8 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> birA gene of Corynebacterium glutamicum (861bp) <400> 8 atgtcgccct taaagcgcgc ttttcgacgc gaccccacta cattggcttc catgaacgtt 60 gacattt cac gatccagaga gccgctaaac gttgagctcc tgaaggaaaa attgctccaa 120 aacggtgact ttggccaggt catttacgaa aaagtgacag gctccactaa tgctgacttg 180 ctggcacttg caggttctgg cgctccaaac tggacggtga aaactgtcga gtttcaagat 240 catgcgcgtg ggcgactcgg ccgcccgtgg tctgcccctg agggtt ccca aacaatcgtg 300 tctgtgctcg ttcaactatc tattgatcaa gtggaccgga ttggcactat tccactcgcg 360 gcgggactcg ctgtcatgga tgcgttgaat gacctcggtg tggaaggtgc cggactgaaa 420 tggcccaacg atgttcaaat ccacggcaag aa actctgcg gcatcctggt ggaagccacc 480 ggctttgatt ccaccccaac agttgtcatc ggttggggca ctaatatcag cctgactaaa 540 gaggagcttc ctgttcctca tgcaacttcc ctcgcattgg aaggtgttga agtcgacaga 600 accacattcc ttattaatat gctcacacat ctgcatactc gactggacca gtggcagggt 660 ccaagtgtgg attggctcga tgattaccgt gcggtatgtt ccagtattgg ccaagatgtt 720 cgagtgcttc tacctgggga taaagaactc ttaggtgaag cgatcggtgt cgcgactggc 780 ggagaaattc gtgttcgcga tgcttcgggc accgttcaca ccctcaacgc cggtgaaatt 840 acgcaccttc gcctgcagta a 861 <210> 9 <21 1> 304 <212> DNA <213> Artificial Sequence <220> <223> cj1 promoter <400> 9 caccgcgggc ttattccatt acatggaatg accaggaatg gcagggaatg cgacgaaatt 60 gactgtgtcg ggagcttctg atccgatgct gccaaccagg agagaaaata atgacatgtg 120 caggcacgct ggtgagctgg agatttatga tctcaagtac cttttttctt gcactcgagg 18 0 gggctgagtg ccagaatggt tgctgacacc aggttgaggt tggtacacac tcaccaatcc 240 tgccgtcgcg ggcgcctgcg tggaacataa accttgagtg aaacccaatc taggagatta 300 agat 304 <210> 10 <211> 35 <212> DNA < 213> Artificial Sequence <220> <223> primer_VB7_1 <400> 10 gctgcaggaa ttcgatttcg ctattgtagc cgtag 35 <210> 11 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_2 <400> 11 agccc gcggtgtggc acggtgttat ccttc 35 <210> 12 <211> 536 <212> DNA <213> Artificial Sequence <220> <223> birA upstream fragment <400> 12 ttcgctattg tagccgtagg tctgcgtctg ccaaaagagt ggcaacctgt actaacgtat 60 ggtgacttaa ct cgtctgga tcctacaaca gtaacgccac agcaagtatt taatgcggtg 120 tgtcatatgc gcaccaaccaa actccctgat ccaaaagtga atggcaatgc cggtagtttc 180 ttcaaaaacc ctgttgtatc tgccgaaacg gctaaagcat tactgtcaca atttccaaca 240 gcaccaaatt acccccaggc ggatggttca gtaaaactgg cagcaggttg gcttatcgat 300 cagtgccagc taaaagggat ggt ggggctgcgg tgcaccgtca acaggcgtta 360 gttctcatta atgaagacaa tgcaaaaagc gaagatgttg tacagctggc gcatcatgta 420 agacagaaag ttggtgaaaa atttaatgtc tggcttgagc ctgaagtccg ctttattggt 480 gcatcaggtg aagtgagcg c agtggagaca atttcatgaa ggataacacc gtgcca 536 <210> 13 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_3 <400> 13 tgaaggataa caccgtgcca caccgcgggc ttatt 35 <210> 14 <211> 36 <212> DNA <213> Artificial Sequence <220> < 223> primer_VB7_4 <400> 14 cattaagtaa ctggatcata tcttaatctc ctagat 36 <210> 15 <211> 560 <212> DNA <213> Artificial Sequence <220> <223> birA fragment downstream <400> 15 atccagttac ttaatgctaa acagatattg ggtcagctgg atggcggtag tgtagccgtg 60 ctgccagtga ttgactccac gaatcagtac cttcttgatc gtatcggaga gcttaaatcg 120 ggcgatgctt gcattgcaga ataccagcag gctggccgtg gtcgccgggg tcggaaatgg 180 ttttcgcctt ttggcgcaaa cttatatttg tcgatgttct ggcgtctgga cccg 240 gcggcggcga ttggtttaag tctggttatc ggtatcgtga tggcggaagt attacgcaag 300 ctgggtgcag ataaagttcg tgttaaatgg cctaatgacc tctatctgca ggatcgcaag 360 ctggcaggca ttctggtgga gctgactggc aaaactggcg cgca aatagtcatt 420 ggagccggga tcaacatggc aatgcgccgt gttgaagaga gtgtcgttaa tcaggggtgg 480 atcacgctgc aggaagcggg gatcaatctc gatcgtaata cgttggcggc catgctaata 540 cgtgaattac gtgctgcgtt 560 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_5 <400> 16 tgaaggataa caccgtgcca caccgc gggc ttatt 35 <210> 17 <211> 36 < 212> DNA <213> Artificial Sequence <220> <223> primer_VB7_6 <400> 17 cattaagtaa ctggatcata tcttaatctc ctagat 36 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_7 <400 > 18 ctgcaggaat tcgatttcgc tattgtagcc gtagg 35 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_8 <400> 19 ctgcactacg cagggtggca cggtgttatc cttca 35 <210> <211> 515 <212 > DNA <213> Artificial Sequence <220> <223> birA upstream fragment for exogenous insertion <400> 20 ttcgctattg tagccgtagg tctgcgtctg ccaaaagagt ggcaacctgt actaacgtat 60 ggtgacttaa ctcgtctgga tcctacaaca gtaacgccac agcaagtatt taatgcgg tg 120 tgtcatatgc gcaccaccaa actccctgat ccaaaagtga atggcaatgc cggtagtttc 180 ttcaaaaacc ctgttgtatc tgccgaaacg gctaaagcat tactgtcaca atttccaaca 240 gcaccaaatt acccccaggc ggatggttca gtaaaactgg cagcaggttg gcttatcgat 300 cagtgccagc taaaagggat gcaaataggt ggggctgcgg tgcaccgtca acaggcgtta 360 gttctcatta atgaagacaa tgcaaaaagc gaagatgttg tacagctggc gcatcatg ta 420 agacagaaag ttggtgaaaa atttaatgtc tggcttgagc ctgaagtccg ctttatggt 480 gcatcaggtg aagtgagcgc agtggagaca atttc 515 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_9 <400> 21 gataacaccg tgccaccctg cgtagtgcag aaaaa 35 <210> 22 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_10 <400> 22 gtcgactagc tatgca tcgcctggtg aagtt 35 <210> 23 <211> 512 <212> DNA <213> Artificial Sequence <220> <223> birA downstream fragment for exogenous insertion <400> 23 gaaaggggag tattcgctcc cctgcaaatt atttgcgtag tctgacctct tctaccgcat 60 gattagcact tttcgtcagg attaaactgg cg cgctcacg agtaggtaga atattttgct 120 ttaagttcag ccagttgatc tctttccaca atgtcatggc agtcttaatc gcttcttctt 180 tagttaattt cgcgtagtta tgaaaatagg aatccgggtc ggtaaaagcc ccttcgcgga 240 atttcagaaa acggttgata taccatgtct gaagtaagtc ttccggtgca tcaacatata 300 tcgaaaaatc gacaaaatca gaaac aaata catgatgtgg atcgtgtgga taatccatcc 360 cgctctgtaa gacatttaac ccttcaagaa ttaaaatatc aggctgaaca accgttttat 420 ctccatccgg gatcacatca taaataagat gtgagtaaac aggtgctgta acgtttggca 480 cgccggattt gagatcggaa ca cc 512 <210> 24 <211 > 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_11 <400> 24 gtcgactagc gtgatatgca tcgcctggtg aagtt 35 <210> 25 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_12 <400> 25 tcggtatcgc tgttcatatc ttaatctcct agat 34 <210> 26 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_13 <400> 26 atctaggaga ttaagatatg aacagcgata ccga 34 <210> 27 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_14 <400> 27 atctgcgccc tgcgtagtgc aga 33 < 210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_15 <400> 28 ctttaagggc gacatatctt aatctcctag attgg 35 <210> 29 <211> 35 <212> DNA <213> Artificial Sequence < 220> <223> primer_VB7_16 <400> 29 aatctaggag attaagatat gtcgccctta aagcg 35 <210> 30 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_17 <400> 30 tctgcactac gcagggttac t gcaggcgaa ggtgc 35 <210 > 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_18 <400> 31 gttgattctg ttgaactggc 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> < 223> primer_VB7_19 <400> 32 ggaacatcgt cgtgttgaac 20 <210> 33 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_20 <400> 33 gactctagag gatccccggg ttattggcaa aaaaatgttt 40 <210> 34 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_21 <400> 34 attcgagctc ggtacccggg ctacaacaag gcaaggttta 40 <210> 35 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7 _22 <400> 35 ggctgcagga attcgatctg ggtctgcgtc tgag 34 <210> 36 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_23 <400> 36 gtcttttctc aagtactgac agcaccacca cagcg 35 < 210> 37 <211> 500 <212> DNA <213> Artificial Sequence <220> <223> birA upstream fragment of Serratia marcescens <400> 37 ctgggtctgc gtctgagcaa gcagtggcaa cccaagttga gctatggcga tctggccaag 60 ctggatcccg ccacggtgac gccacttcag gtattcgagt ccg tatgtgc catgcgccgc 120 agcaagctgc cggacccgcg cgaaaccggt aatgccggca gtttcttcaa gaatccgctg 180 gtgaacgcgg ggaaagccgc agaactcatc acacaatatc ccggcatgcc gcattatccg 240 cagcaggatg gtcaggtgaa gctggccgct ggctggctga tcgatcagtg cgaactgaag 300 gggtatcgca tcggtggcgc agccgtacac cgccagcagg cgctggtgct ggtgaatatc 360 gataatgcgc atagtcagga ct ctggcgcgcc atgtccgtaa gactgtggcc 420 gataaatttg gcgtatggct ggaacctgag gtgcgtttca ttggcgcaac tggcgaattg 480 aacgctgtgg tggtgctgtc 500 <210> 38 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_24 <400> 38 cgctgtggtg gtgctgtcag tacttgagaa aagac 35 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_25 <400> 39 aggtcgacta gcgtgatcca aacgtgtcac cgccc 35 <210> 40 <211> 500 <212> DNA <213> Artificial Sequence <220> <223> birA downstream fragment of Serratia marcescens <400> 40 tgagaaaaga caaggggacg gcagcgtccc cttgatcgtt cggtaggctt attttcttaa 60 acgcacgctt tcaacggcat ggttggcgct tttggtcata atcaggctcg cgcgttcgcg 120 ggtaggcagt atgttctgct gcaaattcaa tccattgatt tcattccata attgcgtggc 180 gatattaatc gcctccggtt ccggcaattt tgaataatta tggaaataag aatcaggatt 240 ggaaaatgcg ccctgacgga atttcaggaa acggttgata taccagcttt gcaatagcgt 300 ctccggcgca tcgacatata tagagaagtc agtcg gaaacgaata cgcgatgcgg 360 atcgtgagga taatccatac cgctttgcaa tacgttaagc ccttccagga taagaatgtc 420 cggctgttcg atgactttat taccttcggg cacaacgtca tagatcaaat gggaataaac 480 cggggcggtg acacgtttgg 500 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_26 <400> 41 gtggtggtgc tgtcagtcac cgcgggctta ttcca 35 <210> 42 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_2 7 < 400> 42 ccttgtcttt tctcaagttc acgcggggcg cagat 35 <210> 43 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_28 <400> 43 cttgtctttt ctcaagttta ctgcaggcga aggtg 35 <210> 44 <211> 20 < 212> DNA <213> Artificial Sequence <220> <223> primer_VB7_29 <400> 44 atgggtactg aacgttatgt 20 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer_VB7_30 <400> 45 tttcccaacc tgcgttaa 18 <210> 46 <211> 5016 <212> DNA <213> Artificial Sequence <220> <223> biotin operon of Escherichia coli (5016bp) <400> 46 gactctagag gatccccggg ttaacgcgcg gcgtcggcca cggcggcggt cagg cggctg 60 agctgttccg cttcgatgat gtaaggcggc atcaggtaaa tcagcttgcc gaacggccgg 120 atccataccc cgcgctcgac gaacccgcgc tgcagctcgg cgacatccac cggttcgcgc 180 atctccacca ccccaatcgc gcccagcacc cgcacgtcgg ccaccttcgg cagcgccgcc 240 aacggcaaca gttcccgctt caactgggtt ggcgc tcacctgcgc ctgccagcga 300 ttttccgcca gcagcgccag actggcgtcc gccacggcgc aggccagcgg attgcccata 360 aaggtcggcc cgtgcataaa gcagccggcc gcgccgttgc tgatggtctc cgccacgtgg 420 cgggtagtca a aagggtcata tagccgccgg tcagcgcctt gcccagacag 480 agaatgtccg gcaccacctg cgcgtgctcg caggcgaaca gcttgccggt gcggccgaaa 540 ccggtggcga tctcgtcggc gatcagcagc acctgatggc gatcgcacag ctcgcgcacc 600 cgcttgagat aggtcggatg gtagatgcgc atgccgccgg cgccttgcac caccggttcc 660 agaatcaccg ccgccacttc accggcgtgc tgctccag ca gcgcggcgaa cggcgcgata 720 tcctcttcac gccattcctc gtcgaagcgg cactgcggcg cggtggcgaa caggtgcggc 780 gccagatacc cctgatagag gctgtgcatc gagttgtccg gatcgcagac cgacatcgcg 840 ccgaaggtat cgccgtgata gccg tggcgc agcgtcagga tgcgctgccg gcgctcgccg 900 cgcgcctgcc agtactgcag cgccattttc agcgacactt ctaccgccac cgaaccagag 960 tccgccagga acacgcactg cagtgcttcc ggcgtcattt ccaccagccg acggcacaac 1020 gagatggcgg ccggatgggt aatgccgccg aacatcacgt gcgacatctt ctccaactgc 1080 tggctggcgg cctgattcag acgcggatgg ttgtaaccgt ggatcgccg c ccaccaggag 1140 gacatgccgt ccaccagact ccggccgtcc gccagctgca gttcgacgcc gctggccgat 1200 tcgatcgggt aacagggtaa cgggcggctc atggaggtgt aggggtgcca gatatggcgt 1260 tggtcaaacg ccaggtcgga agcggtgaca g acattgttg taaaccaaat tggattaaaa 1320 ttggttgaca gtatatccac aatatttaaa ctggcgacac tttttcgttt tggagacgcc 1380 atgatggccg accgcattca ctggacagta gggcaagccc aggccctgtt tgataaaccg 1440 ctgctggaac tgctgttcga agcgcaaacc gtacaccgcc agcacttcga cccgcgtcag 1500 gtgcaggtca gcacgctgct gtcgatcaag accggcgctt gcccggaaga ctgcaa atac 1560 tgcccgcaga gctcacgcta caagaccggc ctggagtcgg agcggctgat gcaggtcgag 1620 caggtgctgg aatcggcacg caaggccaag gcgaacggtt cgacccgttt ttgcatgggc 1680 gcggcgtgga agaacccgca cgagcgcgat atgcctta tc tgcagcaaat ggtgcagggc 1740 gtgaaagcga tgggcatgga aacctgcatg acgctgggca cattggatgg cacccaggcc 1800 gagcggctgg cggaggccgg gctggattac tacaaccata acctcgacac ctcgccggag 1860 ttctacggca gcatcatcac cacccgcagc taccaggagc gcctggatac gctcgacaag 1920 gtgcgcgacg ccggcatcaa agtgtgctcc ggcggcatcg tcgggctggg tgaaacggtg 1980 cgcgatc gcg ccgggctgct ggtgcagctg gccaacctgc caaaaccacc ggagagcgtg 2040 ccgatcaaca tgttggtgaa ggtgaaaggc acgccgctgg cggataacga tgacgtcgat 2100 ccgtttgatt tcatccgcac catcgcggtg gcgcgcatca tgatgccatc ttcttatgtc 2160 cgtctctccg caggccgcga acagatgaac gaacagacgc aggcgatgtg cttcatggcc 2220 ggcgccaact cgatcttcta cggttgcaag ctgctgacca cgccgaatcc ggaagaagac 2280 aaagacctgc agctgttccg caagctgggg ctcaacccgc agcagaccgc aaccgaacac 2340 ggcgacaacc agcaacagca ggtgctggcc aagcaactgc tgaacgccga taccgccgag 2400 ttttacaacg cggcgccgt g atgagctggc agcaacgcat cgagcaggcg ctggctgagc 2460 ggcgcctgaa cgccgcctac cgccggcgac agaccaccga gggcggcaac ggccgccaga 2520 tccggctcgg cgatcgtctc tatctgaact tctcgggcaa cgactacctg ggcttgagcc 2580 aggatg cgcg ggtgatcgcc gcctggcagc agggcgcgca gcgttacggc gtcggcagcg 2640 gcggttcggg ccacgtgacc ggttttagcg cggcgcatca ggcgctggaa gagcaactgg 2700 cggcttggct cggctatccg cgcgcgctgc tgttcatctc cggctacgcc gccaaccagg 2760 cggtgctggc ggcgttgatg caaaagggcg atcgcatttt ggccgatcgt ctcagccatg 2820 cctcgctgct ggaggcggcg gcgcagtcgc cggccgagct gcgccggttc cagcacaatc 2880 aaccgcaggc cttggcggat ctgctggcca aaccctgcga cgggcagcgg ctggcggtca 2940 ccgaaggggt gttcagcatg gatggcgacg gcgcgccgtt ggccatcgcttaa 3000 cccgtgcggc gggcgcctgg ctgatggtgg atgacgccca cggcatcggc gtgcgcggcg 3060 aacaaggccg cggcagttgc tggcagcagg gcgtgcgccc tgaactgctg gtggcgacct 3120 tcggcaaggc gttcggcgtc agcggcgcgg cggtgctgtg cgatgaggcg accgccgagt 3180 atctgctgca gttcgcccgc catctgatct acagcaccgc gatgccgccg gcgcaggcct 3240 gcgcgctgca ggcggcg ctg gcccgtattc gagagggtga tgatctgcga gcccggctgc 3300 aggacaacat tcggcgtttc cgtcagggcg cggcgccgtt ggcgctgacc ctgacggatt 3360 ccgacaccgc catccagccg ctgctggtgg gggataatca gcgcgcgctc gatctggcga 342 0 cccgcctgcg cgagtgcggc ctgtgggtga gcgccatccg tccgccgacg gtgcccccgg 3480 gcggcgcgcg gctgcgcatt accctgacgg cggcgcatca gtcgcaggat atcgatcgcc 3540 tgctggaggt gctgaatgac gtcagccaat gacacagtga acaaacaggc ggtcgcctcg 3600 gccttcagcc gcgcggccgg cagctacgat gccgccgccg cgctgcagcg tgacgttggc 3660 gagcgcttac tggggatggg gagttcccac ccgggcga ac agctgctgga cgccggctgc 3720 ggcaccggct atttcagccg tatgtggcgt gagcgcggca aacgggtgac cgcgctcgat 3780 ttggcgccgg gcatgctgga cgtcgcccgc caacggcagg cggcgcatca ttatctgctg 3840 ggcgatatcg tgcc gctgcccgat gcggcgatgg acatctgttt cagcagcctg 3900 gtggtgcagt ggtgcagcga tctgcctgcc gcgctggcag agctgtatcg cgtgacccgt 3960 cccggcggcg tgatcctgtt ttccacgctg gcggcgggct cgctgcagga attgggggac 4020 gcctggcaac aggtggacgg cgaacgtcac gtgaacgcct ttttgccgtt gacgcagatc 4080 cgcaccgcct gcgccgccta tcgacacgag ctggtgacgg a gttgcgcac cctgaactac 4140 ccggacgtga tgacgctgat gcgttcgctc aagggcatcg gggcgacgca tttgcatcag 4200 gggcgtgagg gcggcctgat gtcgcgtggc cgcctcgccg cgctgcaggc ggcttacccg 4260 tgccggcagg cagttccc gctcagctat catctggctt atggagtgat ttatcgtgag 4320 taaacgttgg ttcgtgaccg gcaccgacac cgaagtgggg aaaaccgtcg ccagcagcgc 4380 cttgctgcag gccgccaacc gggcgggcta ccgcagcgcc ggctataagc cggtggcctc 4440 cggcagcgag atgaccgccg aggggctgcg caacggcgac gcgctggcgc tgcaggccaa 4500 cagcggtgtg gcgctggatt acgacgaagt gaacccttac gtatttgccg aaccgacc tc 4560 gccgcatatc gtcagcgccg atgaaggccg gccgatcgac gcggcgcggc tgtccgacgg 4620 cctgcgccgg ctggagcagc gcgccgactg ggtgctggtc gagggggccg gcgggtggtt 4680 taccccgttg tcggcggagt acaccttcgc c gactgggtg cggcaagagc aactgccggt 4740 gatcctggtg gtgggcatca agctgggctg catcaaccac gcggtgctga cggcccaggc 4800 ggtgcaacag gccgggctga cgctggccgg ttggatcgcc aacgacgtgg cgccgccggg 4860 gcggcggcat caggaatacc tggctacgct gcgccgtatg ctgcccgcgc cgctgctggg 4920 cgaaatcccg cacctgccgc aggccgaacg ggcgccgctg gggcagtatc tggatatcag 498 0cttgctggcg cagtgacccg ggtaccgagc tcgaat 5016

Claims (12)

클래스 II 타입의 내재적 BirA의 활성이 약화되고, 클래스 I 타입의 BirA 을 포함하고,
상기 클래스 I 타입의 BirA은 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자에 의해 코딩되는 것인,
에스케리키아 속(Escherichia sp.) 미생물.
The activity of the class II type of intrinsic BirA is attenuated and includes the class I type of BirA,
BirA of the class I type is encoded by the birA gene derived from a microorganism of the genus Mycobacterium or Corynebacterium,
Escherichia sp. Microorganisms.
제1항에 있어서, 내재적 birA 유전자가 결실되고, 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자가 도입된, 미생물. The microorganism according to claim 1, wherein the endogenous birA gene is deleted and a birA gene derived from a microorganism of the genus Mycobacterium or Corynebacterium is introduced. 제1항에 있어서, 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase), 바이오틴 신타제(Biotin synthase), 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase), 말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase), 및 데티오바이오틴 신테타제(Dethiobiotin synthetase)으로 이루어진 군에서 선택된 1종 이상의 활성이 추가로 강화된, 미생물.The method of claim 1, wherein 7,8-diamino-pelargonic acid aminotransferase, biotin synthase, 8-amino-7-oxononanoate syntha At least one activity selected from the group consisting of 8-amino-7-oxononanoate synthase, malonyl-ACP O-methyltransferase, and Dethiobiotin synthetase Additional enhanced microorganisms. 제1항에 있어서, 상기 에스케리키아 속 미생물은 대장균인, 미생물.The microorganism according to claim 1, wherein the Escherichia genus microorganism is Escherichia coli. 제1항에 있어서, 바이오틴 생산능을 갖는, 미생물.The microorganism according to claim 1, which has the ability to produce biotin. 클래스 II 타입의 내재적 BirA의 활성이 약화되고, 클래스 I 타입의 BirA을 포함하고,
상기 클래스 I 타입의 BirA은 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자에 의해 코딩되는 것인,
세라티아 속(Serratia sp.) 미생물.
The activity of class II type endogenous BirA is attenuated, including class I type BirA,
BirA of the class I type is encoded by the birA gene derived from a microorganism of the genus Mycobacterium or Corynebacterium,
Serratia sp. Microorganisms.
제6항에 있어서, 내재적 birA 유전자가 결실되고, 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자가 도입된, 미생물.The microorganism according to claim 6, wherein the endogenous birA gene is deleted and a birA gene derived from a microorganism of the genus Mycobacterium or Corynebacterium is introduced. 제6항에 있어서, 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase), 바이오틴 신타제(Biotin synthase), 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase), 말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase), 및 데티오바이오틴 신테타제(Dethiobiotin synthetase)으로 이루어진 군에서 선택된 1종 이상의 활성이 추가로 강화된, 미생물. The method of claim 6, wherein 7,8-diamino-pelargonic acid aminotransferase, biotin synthase, 8-amino-7-oxononanoate syntha At least one activity selected from the group consisting of 8-amino-7-oxononanoate synthase, malonyl-ACP O-methyltransferase, and Dethiobiotin synthetase Additional enhanced microorganisms. 제6항에 있어서, 상기 세라티아 속 미생물은 세라티아 마르세센스인, 미생물.The microorganism according to claim 6, wherein the microorganism of the Serratia genus is Serratia marcescens. 제6항에 있어서, 바이오틴 생산능을 갖는, 미생물.The microorganism according to claim 6, which has the ability to produce biotin. 제1항 내지 제10항 중 어느 한 항의 미생물을 포함하는, 바이오틴 생산용 조성물A composition for producing biotin, comprising the microorganism of any one of claims 1 to 10. 제1항 내지 제10항 중 어느 한 항의 미생물을 배양하는 단계를 포함하는, 바이오틴 생산 방법.A method for producing biotin, comprising culturing the microorganism of any one of claims 1 to 10.
KR1020210157043A 2021-11-15 2021-11-15 Microorganism comprising class I type BirA and biotin production method using the same Active KR102688631B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210157043A KR102688631B1 (en) 2021-11-15 2021-11-15 Microorganism comprising class I type BirA and biotin production method using the same
PCT/KR2022/017833 WO2023085875A1 (en) 2021-11-15 2022-11-14 Microorganism comprising class i type bira and biotin production method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210157043A KR102688631B1 (en) 2021-11-15 2021-11-15 Microorganism comprising class I type BirA and biotin production method using the same

Publications (2)

Publication Number Publication Date
KR20230070944A KR20230070944A (en) 2023-05-23
KR102688631B1 true KR102688631B1 (en) 2024-07-24

Family

ID=86336320

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210157043A Active KR102688631B1 (en) 2021-11-15 2021-11-15 Microorganism comprising class I type BirA and biotin production method using the same

Country Status (2)

Country Link
KR (1) KR102688631B1 (en)
WO (1) WO2023085875A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118956783B (en) * 2024-10-18 2024-12-17 北京量维生物科技研究院有限公司 Desulfur biotin synthetase mutant and its application in biotin production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110731A (en) * 1985-08-26 1992-05-05 Amgen, Inc. System for biotin synthesis
JP4329129B2 (en) * 1997-03-03 2009-09-09 住友化学株式会社 DNA fragment containing biotin biosynthesis gene and use thereof
DE19731274A1 (en) * 1997-07-22 1999-01-28 Basf Ag Process for the production of biotin
US20220348974A1 (en) * 2019-09-09 2022-11-03 Albert Einstein College Of Medicine Biotin synthases for efficient production of biotin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Plos One, Vol.9, pp.e96757(1-13) (2014)*

Also Published As

Publication number Publication date
WO2023085875A1 (en) 2023-05-19
KR20230070944A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
KR102277408B1 (en) Novel formate-dependent phosphoribosylglycinamide formyltransferase variant and a method for producing IMP using the same
KR102688631B1 (en) Microorganism comprising class I type BirA and biotin production method using the same
JP2024506841A (en) Prephenate dehydratase mutant and branched chain amino acid production method using the same
EP4059951A1 (en) Novel membrane protein terc variant, and method for producing l-lysine using same
KR102712136B1 (en) Polypeptide variant having biotin synthase activity and biotin production method using the same
KR102267931B1 (en) Novel 5-(carboxyamino)imidazole ribonucleotide synthase variant and a method for producing IMP using the same
KR102277410B1 (en) Novel bifunctional pyr operon transcriptional regulator/uracil phosphoribosyltransferase variant and a method for producing IMP using the same
KR102273639B1 (en) Novel bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase variant and a method for producing XMP or GMP using the same
KR102277409B1 (en) Novel bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase variant and a method for producing IMP using the same
KR102273640B1 (en) Novel F0F1 ATP synthase subunit gamma variant and a method for producing XMP or GMP using the same
JP2023553135A (en) Novel branched-chain amino acid aminotransferase mutant and method for producing isoleucine using the same
KR102673796B1 (en) Novel Acetohydroxy acid synthase variant and method of producing L-isoleucine using the same
RU2794550C1 (en) New gamma subunits of dna polymerase iii and tau variant and method for producing l-lysine
RU2794484C1 (en) New option of dahp synthases and a method for obtaining l-lysine with its use
RU2795053C1 (en) NEW VARIANT OF THE Co/Zn/Cd OUTFLOW SYSTEM COMPONENT AND A METHOD FOR OBTAINING L-LYSINE WITH ITS USE
RU2826456C1 (en) Variant of aldolase arog and method of producing branched-chain amino acid using same
KR102495918B1 (en) Phospho-2-dehydro-3-deoxyheptonate aldolase variant and method for producing branched amino acid using the same
RU2793368C1 (en) New version of the transcription regulator and a method for obtaining l-valine with its use
RU2793441C1 (en) New variant of primosome assembly protein and method for obtaining l-lysine with its use
RU2791243C1 (en) A new variant of soluble pyridine nucleotide transhydrogenase and a method of producing l-tryptophan using the soluble pyridine nucleotide transhydrogenase
RU2827315C1 (en) Variant of prephenate dehydratase and method of producing branched-chain amino acids using same
KR102727406B1 (en) Novel Acetohydroxy acid synthase variant and method of producing L-isoleucine using the same
KR102727407B1 (en) Microorganisms for producing l-isoleucine and process for producing l-isoleucine using the same
RU2843581C2 (en) Purine nucleotides producing microorganism, and method for producing purine nucleotides using same
EP4067484B1 (en) Novel galactoside o-acetyltransferase variant, and method for producing l-glutamic acid using same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211115

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20231024

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240710

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20240722

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20240722

End annual number: 3

Start annual number: 1

PG1601 Publication of registration