[go: up one dir, main page]

KR102707545B1 - Method for manufacturing positive electrode active material for solid secondary battery - Google Patents

Method for manufacturing positive electrode active material for solid secondary battery Download PDF

Info

Publication number
KR102707545B1
KR102707545B1 KR1020210146130A KR20210146130A KR102707545B1 KR 102707545 B1 KR102707545 B1 KR 102707545B1 KR 1020210146130 A KR1020210146130 A KR 1020210146130A KR 20210146130 A KR20210146130 A KR 20210146130A KR 102707545 B1 KR102707545 B1 KR 102707545B1
Authority
KR
South Korea
Prior art keywords
active material
coating layer
sulfide
secondary battery
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210146130A
Other languages
Korean (ko)
Other versions
KR20230061171A (en
Inventor
박종환
양아름
김미진
이진희
백현우
Original Assignee
주식회사 에코프로비엠
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로비엠, 삼성에스디아이 주식회사 filed Critical 주식회사 에코프로비엠
Priority to KR1020210146130A priority Critical patent/KR102707545B1/en
Publication of KR20230061171A publication Critical patent/KR20230061171A/en
Application granted granted Critical
Publication of KR102707545B1 publication Critical patent/KR102707545B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명의 일 실시예에 의한 고체 이차전지용 양극활물질 제조방법은 황화물계 고체 전해질; 및 리튬, 니켈 및 산소를 포함하는 리튬 복합 산화물;을 포함하고, 상기 리튬 복합 산화물 표면 중 적어도 일부에 Nb를 포함하는 산화물 코팅층을 형성시키는 제조방법에 있어서, 니켈을 포함하는 수산화물 전구체를 제조하는 단계; 상기 수산화물 전구체에 Nb 염용액과 산을 동시에 첨가하여 Nb를 포함하는 코팅층을 형성시키는 단계; 및 상기 코팅층이 형성된 수산화물 전구체 및 리튬 화합물을 혼합하여 700 내지 850℃에서 소성하여 Nb를 포함하는 산화물 코팅층을 형성시키는 단계;를 포함한다. According to one embodiment of the present invention, a method for manufacturing a cathode active material for a solid secondary battery comprises: a sulfide-based solid electrolyte; and a lithium composite oxide comprising lithium, nickel, and oxygen; and a manufacturing method for forming an oxide coating layer comprising Nb on at least a portion of a surface of the lithium composite oxide, the method comprising: a step of manufacturing a hydroxide precursor comprising nickel; a step of simultaneously adding a Nb salt solution and an acid to the hydroxide precursor to form a coating layer comprising Nb; and a step of mixing the hydroxide precursor on which the coating layer has been formed and a lithium compound and firing the mixture at 700 to 850°C to form an oxide coating layer comprising Nb.

Description

고체 이차전지용 양극활물질 제조방법{Method for manufacturing positive electrode active material for solid secondary battery}Method for manufacturing positive electrode active material for solid secondary battery

본 발명은 고체 이차전지용 양극활물질 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a cathode active material for a solid secondary battery.

리튬 이온 전지는 단위 부피 당 에너지 밀도가 다른 전지 시스템에 비해 월등히 높아 현재 전자 기기 등에 널리 사용되고 있으며, 소형 전지의 형태에서 탈피하여, 자동차 및 에너지 저장 장치로 그 응용 범위를 넓혀가고 있다.Lithium-ion batteries have a much higher energy density per unit volume than other battery systems, and are currently widely used in electronic devices. They are expanding their application range beyond small batteries to include automobiles and energy storage devices.

그러나, 일반적으로 알려진 리튬 이온 전지는 기본적으로 액체 전해질을 사용하고 있기 때문에, 폭발 또는 발화와 관련된 안전성의 문제가 지속적으로 발생되고 있다.However, since lithium-ion batteries, which are commonly known, basically use liquid electrolytes, safety issues related to explosion or ignition continue to arise.

이러한 액체 전해질 대체재로, 크게 황화물계, 고분자계, 및 산화물계의 3가지 종류로 분류되는 고체 전해질을 사용하는 고체 이차전지가 제안되고 있다. 특히, 황화물계 고체 전해질은 고체전해질 중에서 Li 이온 전도성이 높으므로, 종래부터 다양한 연구가 이루어졌다. As a substitute for these liquid electrolytes, solid secondary batteries using solid electrolytes, which are broadly classified into three types: sulfide-based, polymer-based, and oxide-based, have been proposed. In particular, sulfide-based solid electrolytes have high Li ion conductivity among solid electrolytes, and thus have been the subject of extensive research.

이러한 고체 이차전지의 성능 향상을 도모하기 위해, 양극활물질 및 고체 전해질의 계면에 관한 연구가 있었다. 일 예로, 양극활물질을 LiNbO3로 코팅함으로서, 양극활물질과 고체 전해질 사이의 계면 저항을 억제하는 연구가 진행되었다. In order to improve the performance of these solid secondary batteries, there has been research on the interface between the positive electrode active material and the solid electrolyte. For example, research has been conducted to suppress the interfacial resistance between the positive electrode active material and the solid electrolyte by coating the positive electrode active material with LiNbO3.

본 발명은 황화물계 고체 전해질과의 계면 저항을 억제시키면서 양극활물질층의 이온 전도성을 보다 향상시켜, 고율 특성 및 수명 특성을 향상시키는 것을 목적으로 한다. The purpose of the present invention is to improve the ion conductivity of a cathode active material layer while suppressing the interfacial resistance with a sulfide-based solid electrolyte, thereby improving high-rate characteristics and life characteristics.

본 발명은 황화물계 고체 전해질과 함께 포함되는 리튬 복합 산화물의 표면을 LiNbO3로 코팅하는 공정법에 관한 것으로, 황화물계 고체 전해질과의 계면 저항이 억제되면서 안정성이 향상되도록 리튬 복합 산화물의 표면에 코팅층이 박리없이 형성되도록 하는 것을 목적으로 한다. The present invention relates to a process for coating the surface of a lithium composite oxide included together with a sulfide-based solid electrolyte with LiNbO3, and aims to form a coating layer on the surface of a lithium composite oxide without peeling so as to improve stability while suppressing the interfacial resistance with the sulfide-based solid electrolyte.

본 발명의 일 실시예에 의한 고체 이차전지용 양극활물질 제조방법은 황화물계 고체 전해질; 및 리튬, 니켈 및 산소를 포함하는 리튬 복합 산화물;을 포함하고, 상기 리튬 복합 산화물 표면 중 적어도 일부에 Nb를 포함하는 산화물 코팅층을 형성시키는 제조방법에 있어서, 니켈을 포함하는 수산화물 전구체를 제조하는 단계; 상기 수산화물 전구체에 Nb 염용액과 산을 동시에 첨가하여 Nb를 포함하는 코팅층을 형성시키는 단계; 및 상기 코팅층이 형성된 수산화물 전구체 및 리튬 화합물을 혼합하여 700 내지 850℃에서 소성하여 Nb를 포함하는 산화물 코팅층을 형성시키는 단계;를 포함한다. According to one embodiment of the present invention, a method for manufacturing a cathode active material for a solid secondary battery comprises: a sulfide-based solid electrolyte; and a lithium composite oxide comprising lithium, nickel, and oxygen; and a manufacturing method for forming an oxide coating layer comprising Nb on at least a portion of a surface of the lithium composite oxide, the method comprising: a step of manufacturing a hydroxide precursor comprising nickel; a step of simultaneously adding a Nb salt solution and an acid to the hydroxide precursor to form a coating layer comprising Nb; and a step of mixing the hydroxide precursor on which the coating layer has been formed and a lithium compound and firing the mixture at 700 to 850°C to form an oxide coating layer comprising Nb.

일 구현예로서, 상기 리튬 복합 산화물은 하기 화학식 1로 표시될 수 있다. As an example, the lithium composite oxide may be represented by the following chemical formula 1.

[화학식 1] LiaNibCocM1dM2eOf [Chemical Formula 1] LiaNibCocM1dM2eOf

상기 화학식 1에서 M1 은 Mn 또는 Al이고, M2는 Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si, Bi 및 F 중에서 선택되는 적어도 어느 하나 이상이고, 상기 M2는 반드시 Nb를 포함하고, 0.8≤a≤1.2, 0.01≤b≤0.99, 0≤c≤0.5, 0≤d≤0.5, 0.001≤e≤0.1 및 0.5≤e≤2.5이다.In the chemical formula 1, M1 is Mn or Al, M2 is at least one selected from Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si, Bi and F, and M2 necessarily includes Nb, and 0.8≤a≤1.2, 0.01≤b≤0.99, 0≤c≤0.5, 0≤d≤0.5, 0.001≤e≤0.1 and 0.5≤e≤2.5.

일 구현예로서, 상기 리튬 복합 산화물 전체 대비 Nb는 0.5 내지 10몰% 만큼 포함될 수 있다. As an example, Nb may be included in an amount of 0.5 to 10 mol% relative to the entire lithium composite oxide.

일 구현예로서, 상기 Nb를 포함하는 산화물 코팅층은 하기 화학식 2로 표시되는 화합물을 포함할 수 있다. As an embodiment, the oxide coating layer including Nb may include a compound represented by the following chemical formula 2.

[화학식 2][Chemical formula 2]

LiNbmOnLiNbmOn

상기 화학식 2에서 1≤m≤2 및 1≤n≤5이다.In the above chemical formula 2, 1≤m≤2 and 1≤n≤5.

일 구현예로서, 상기 Nb를 포함하는 산화물 코팅층은 황화물계 고체 전해질을 더 포함할 수 있다. As an embodiment, the oxide coating layer including Nb may further include a sulfide-based solid electrolyte.

일 구현예로서, 상기 황화물계 고체 전해질 입자는 표면 중 적어도 일부를 점유하는 Nb를 포함하는 산화물 코팅층을 포함할 수 있다. As an embodiment, the sulfide-based solid electrolyte particles may include an oxide coating layer including Nb occupying at least a portion of the surface.

일 구현예로서, 상기 황화물계 고체 전해질은 아지로다이트(Argyrodite)형 결정구조를 가질 수 있다. As an example, the sulfide-based solid electrolyte may have an argyrodite-type crystal structure.

본 발명의 일 실시예에 의한 고체 이차전지는 상기 고체 이차전지용 양극활물질 제조방법에 의해 제조된 양극활물질을 포함하는 양극활물질층; 음극활물질을 포함하는 음극활물질층; 및 상기 양극활물질층 및 상기 음극활물질층 사이에 황화물계 고체 전해질층을 포함한다. A solid secondary battery according to one embodiment of the present invention includes a positive electrode active material layer including a positive electrode active material manufactured by the above method for manufacturing a positive electrode active material for a solid secondary battery; an anode active material layer including an anode active material; and a sulfide-based solid electrolyte layer between the positive electrode active material layer and the anode active material layer.

본 발명은 황화물계 고체 전해질과의 계면 저항을 억제시키면서 양극활물질층의 이온 전도성을 보다 향상시켜, 고율 특성 및 수명 특성을 향상시킬 수 있다. The present invention can improve the ion conductivity of a cathode active material layer while suppressing the interfacial resistance with a sulfide-based solid electrolyte, thereby improving high-rate characteristics and life characteristics.

본 발명은 황화물계 고체 전해질과 함께 포함되는 리튬 복합 산화물의 표면을 LiNbO3로 코팅하는 공정법에 관한 것으로, 황화물계 고체 전해질과의 계면 저항이 억제되면서 안정성이 향상되도록 리튬 복합 산화물의 표면에 코팅층이 박리없이 형성되도록 할 수 있다. The present invention relates to a process for coating the surface of a lithium composite oxide included together with a sulfide-based solid electrolyte with LiNbO3, wherein a coating layer can be formed on the surface of a lithium composite oxide without peeling so as to improve stability while suppressing interfacial resistance with the sulfide-based solid electrolyte.

도 1은 본 발명의 황화물계 고체 전지의 구조를 도시한 것이다. Figure 1 illustrates the structure of a sulfide-based solid-state battery of the present invention.

본 명세서에서 사용되는 "포함하는"과 같은 표현은 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.The terms “comprising” and “including” as used herein should be understood as open-ended terms implying the possibility of including other embodiments.

본 명세서에서 사용되는 "바람직한" 및 "바람직하게"는 소정 환경하에서 소정의 이점을 제공할 수 있는 본 발명의 실시 형태를 지칭하는 것이며, 본 발명의 범주로부터 다른 실시 형태를 배제하고자 하는 것은 아니다.As used herein, the terms “preferred” and “preferably” refer to embodiments of the present invention that can provide certain advantages under certain circumstances, and are not intended to exclude other embodiments from the scope of the present invention.

본 발명의 고체 이차전지용 양극활물질은 황화물계 고체 전해질; 및 리튬, 니켈 및 산소를 포함하는 리튬 복합 산화물;을 포함한다. The cathode active material for a solid secondary battery of the present invention includes a sulfide-based solid electrolyte; and a lithium composite oxide containing lithium, nickel, and oxygen.

상기 황화물계 고체 전해질은 Li2S-P2S5, Li2S-P2S5-LiCl, Li2S-P2S5-LiBr, Li2S-P2S5-LiCl-LiBr, Li2S-P2S5-Li2O, Li2S-P2S5-Li2O-LiI, Li2S-SiS2, Li2S-SiS2-LiI, Li2S-SiS2-LiBr, Li2S-SiS2-LiCl, Li2S-SiS2-B2S3-LiI, Li2S-SiS2-P2S5-LiI, Li2S-B2S3, Li2S-P2S5-ZmSn, m, n은 양의 수, Z는 Ge, Zn 또는 Ga 중 하나, Li2S-GeS2, Li2S-SiS2-Li3PO4, Li2S-SiS2-LipMOq, p, q는 양의 수, M은 P, Si, Ge, B, Al, Ga In 중 하나, Li7-xPS6-xClx, 0≤x≤2, Li7-xPS6-xBrx, 0≤x≤2, 및 Li7-xPS6-xIx, 0≤x≤2, 중에서 선택된 것일 수 있으나, 이에 한정되는 것은 아니다. The above sulfide-based solid electrolyte is Li2S-P2S5, Li2S-P2S5-LiCl, Li2S-P2S5-LiBr, Li2S-P2S5-LiCl-LiBr, Li2S-P2S5-Li2O, Li2S-P2S5-Li2O-LiI, Li2S-SiS2, Li2S-SiS2-LiI, Li2S-SiS2-LiBr, Li2S-SiS2-LiCl, Li2S-SiS2-B2S3-LiI, Li2S-SiS2-P2S5-LiI, Li2S-B2S3, Li2S-P2S5-ZmSn, m, n are positive numbers, Z is one of Ge, Zn or Ga, Li2S-GeS2, Li2S-SiS2-Li3PO4, Li2S-SiS2-LipMOq, p, q are positive numbers, M may be selected from, but is not limited to, one of P, Si, Ge, B, Al, Ga In, Li7-xPS6-xClx, 0≤x≤2, Li7-xPS6-xBrx, 0≤x≤2, and Li7-xPS6-xIx, 0≤x≤2.

보다 바람직하게는 상기 황화물계 고체 전해질은 Li7-xPS6-xClx, 0≤x≤2, Li7-xPS6-xBrx, 0≤x≤2, 및 Li7-xPS6-xIx, 0≤x≤2, 중에서 선택된 것일 수 있다. 특히, 염소가 LiPS6 조성에서 다른 원소의 일부를 대체함으로써, 또 다른 결정 구조를 형성시켜 활성화 에너지를 낮출 수 있으므로, 이온의 이동에 있어서 새로운 경로를 확보할 수 있다. 보다 바람직한 일 예로서, 1≤x≤2일 수 있고, 보다 바람직하게는 1.3≤x≤1.7일 수 있고, 가장 바람직하게는 x=1.5일 수 있다. More preferably, the sulfide-based solid electrolyte may be selected from Li7-xPS6-xClx, 0≤x≤2, Li7-xPS6-xBrx, 0≤x≤2, and Li7-xPS6-xIx, 0≤x≤2. In particular, since chlorine can form another crystal structure by replacing some of the other elements in the LiPS6 composition, thereby lowering the activation energy, a new path can be secured for the movement of ions. As a more preferable example, 1≤x≤2 may be satisfactorily, more preferably 1.3≤x≤1.7 may be satisfactorily, and most preferably x=1.5.

본 발명의 리튬 복합 산화물이 아지로다이트형 결정구조를 가지는 황화물계 고체 전해질과 함께 혼합되어 양극활물질을 형성하는 경우, 제조되는 고체 전지의 내부 저항을 감소시킬 수 있고, 입계 저항이 낮아 전극과 고체 전해질의 접촉 문제를 개선할 수 있다. When the lithium composite oxide of the present invention is mixed with a sulfide-based solid electrolyte having an argyrodite-type crystal structure to form a cathode active material, the internal resistance of the solid battery produced can be reduced, and the contact problem between the electrode and the solid electrolyte can be improved because the grain boundary resistance is low.

상기 리튬 복합 산화물은 상기 고체 이차전지용 양극활물질이 포함되는 양극활물질층의 10 내지 99중량%로 포함될 수 있다. The above lithium composite oxide may be included in an amount of 10 to 99 wt% of the cathode active material layer including the cathode active material for the solid secondary battery.

상기 리튬 복합 산화물 표면 중 적어도 일부에 Nb를 포함하는 산화물 코팅층이 형성된다. An oxide coating layer containing Nb is formed on at least a portion of the surface of the lithium composite oxide.

일 예로서, 상기 리튬 복합 산화물은 니켈을 더 포함할 수 있으며, 황화물계 고체 전지의 용량을 향상시키기 위해 포함되는 전이금속 전체 함량 대비 60몰%이상, 70몰% 이상, 보다 바람직하게는 80몰%이상일 수 있다. As an example, the lithium composite oxide may further include nickel, and the amount may be 60 mol% or more, 70 mol% or more, and more preferably 80 mol% or more relative to the total content of transition metals included to improve the capacity of the sulfide-based solid-state battery.

일 예로서, 상기 리튬 복합 산화물은 코발트를 더 포함할 수 있으며, 상기 코발트의 함량은 전이금속 전체 함량 대비 30몰%이하, 20몰%이하, 또는 10몰%이하일 수 있다. 반면, 또 다른 일 예로서, 상기 리튬 복합 산화물은 코발트를 포함하지 않을 수 있다. As an example, the lithium composite oxide may further include cobalt, and the content of the cobalt may be 30 mol% or less, 20 mol% or less, or 10 mol% or less relative to the total content of the transition metal. On the other hand, as another example, the lithium composite oxide may not include cobalt.

일 예로서, 상기 리튬 복합 산화물은 망간 및/또는 알루미늄을 더 포함할 수 있으며, 상기 망간 및/또는 알루미늄의 함량은 전이금속 전체 함량 대비 30몰%이하, 20몰%이하, 또는 10몰%이하일 수 있다.As an example, the lithium composite oxide may further include manganese and/or aluminum, and the content of the manganese and/or aluminum may be 30 mol% or less, 20 mol% or less, or 10 mol% or less relative to the total content of the transition metal.

일 예로서, 상기 리튬 복합 산화물은 하기 화학식 1에서 M2원소를 더 포함할 수 있으며, 상기 M2원소는 전이금속 전체 함량 대비 20몰%이하, 10몰%이하, 5몰%이하, 3몰%이하, 또는 2몰%이하일 수 있다.As an example, the lithium composite oxide may further include an M2 element in the following chemical formula 1, and the M2 element may be 20 mol% or less, 10 mol% or less, 5 mol% or less, 3 mol% or less, or 2 mol% or less relative to the total transition metal content.

일 구현예로서, 상기 리튬 복합 산화물은 하기 화학식 1로 표시될 수 있다. As an example, the lithium composite oxide may be represented by the following chemical formula 1.

[화학식 1] LiaNibCocM1dM2eOf 상기 화학식 1에서 M1 은 Mn 또는 Al이고, M2는 Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si, Bi 및 F 중에서 선택되는 적어도 어느 하나 이상이고, 상기 M2는 반드시 Nb를 포함하고, 0.8≤a≤1.2, 0.01≤b≤0.99, 0≤c≤0.5, 0≤d≤0.5, 0.001≤e≤0.1 및 0.5≤e≤2.5이다.[Chemical Formula 1] LiaNibCocM1dM2eOf In the chemical formula 1, M1 is Mn or Al, M2 is at least one selected from Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si, Bi and F, and M2 necessarily includes Nb, and 0.8≤a≤1.2, 0.01≤b≤0.99, 0≤c≤0.5, 0≤d≤0.5, 0.001≤e≤0.1 and 0.5≤e≤2.5.

보다 바람직한 일 예로서, 상기 리튬 복합산화물은 층상구조이고, 상기 층상구조의 층을 이루는 면은 C축에 수직한 방향으로 결정 배향성을 가질 수 있는데, 이 경우, 상기 양극활물질 내 포함되는 이온의 이동성이 향상되고, 상기 양극활물질의 구조 안정성이 향상될 수 있다. As a more preferable example, the lithium composite oxide has a layered structure, and the planes forming the layers of the layered structure may have a crystal orientation in a direction perpendicular to the C-axis. In this case, the mobility of ions included in the positive electrode active material may be improved, and the structural stability of the positive electrode active material may be improved.

일 구현예로서, 상기 리튬 복합 산화물 전체 대비 Nb는 0.5 내지 10몰% 만큼 포함될 수 있다. As an example, Nb may be included in an amount of 0.5 to 10 mol% relative to the entire lithium composite oxide.

일 구현예로서, 상기 Nb를 포함하는 산화물 코팅층은 하기 화학식 2로 표시되는 화합물을 포함할 수 있다. As an embodiment, the oxide coating layer including Nb may include a compound represented by the following chemical formula 2.

[화학식 2][Chemical formula 2]

LiNbmOnLiNbmOn

상기 화학식 2에서 1≤m≤2 및 1≤n≤5이다.In the above chemical formula 2, 1≤m≤2 and 1≤n≤5.

본 발명은 이와 같이 리튬 복합 산화물 표면 상에 Nb를 포함하는 산화물 코팅층을 포함함으로서, 황화물계 고체 전해질과의 계면 저항을 억제시키면서 양극활물질층의 이온 전도성을 보다 향상시킬 수 있다. The present invention can further improve the ion conductivity of the cathode active material layer by including an oxide coating layer containing Nb on the surface of a lithium composite oxide, thereby suppressing the interfacial resistance with a sulfide-based solid electrolyte.

일 예로서, 상기 고체 이차전지용 양극활물질은 바인더를 더 포함할 수 있다. 상기 바인더는 통상적으로 사용되는 바인더 고분자가 제한 없이 사용될 수 있다. 예를 들면, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (PVDF-co-HFP), 폴리비닐리덴 플루오라이드 (polyvinylidene fluoride, PVDF), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 스티렌-부타디엔 고무 (SBR, styrene butadiene rubber), 카르복실 메틸 셀룰로오스 (CMC, carboxyl methyl cellulose) 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.As an example, the cathode active material for the solid secondary battery may further include a binder. The binder may be any binder polymer that is commonly used without limitation. For example, various types of binder polymers such as polyvinylidene fluoride-hexafluoropropylene (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate, styrene butadiene rubber (SBR), and carboxyl methyl cellulose (CMC) may be used.

상기 도전재는 전기화학소자에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일 예로서, 카본블랙(carbon black), 흑연, 탄소섬유, 카본나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다.There is no particular limitation on the above conductive material as long as it is an electronically conductive material that does not cause a chemical change in the electrochemical device. For example, carbon black, graphite, carbon fiber, carbon nanotube, metal powder, conductive metal oxide, organic conductive material, etc. can be used. Current commercially available conductive materials include acetylene black series (products from Chevron Chemical Company or Gulf Oil Company, etc.), Ketjen Black EC series (product from Armak Company), Vulcan XC-72 (product from Cabot Company), and Super P (product from MMM).

본 발명의 일 실시예에 의한 고체 이차전지용 양극활물질 제조방법은 니켈을 포함하는 수산화물 전구체를 제조하는 단계를 수행한다. 상기 니켈을 포함하는 수산화물 전구체를 제조하는 방법으로는 공침법으로 수행될 수 있으나, 이에 한정되는 것은 아니다. A method for producing a cathode active material for a solid secondary battery according to one embodiment of the present invention performs a step of producing a hydroxide precursor containing nickel. The method for producing the hydroxide precursor containing nickel may be performed by a co-precipitation method, but is not limited thereto.

다음으로, 상기 수산화물 전구체에 Nb 염용액과 산을 동시에 첨가하여 Nb를 포함하는 코팅층을 형성시키는 단계를 수행한다. 본 발명은 상기 수산화물 전구체를 슬러리로 하고, Nb 염용액과 산을 동시에 첨가하는 공정을 통해 효율적인 Nb 코팅층을 형성할 수 있었다. Next, a step of forming a coating layer including Nb is performed by simultaneously adding a Nb salt solution and an acid to the hydroxide precursor. The present invention was able to form an efficient Nb coating layer through a process of making the hydroxide precursor into a slurry and simultaneously adding a Nb salt solution and an acid.

상기 Nb 염용액으로서는 물로의 용해도가 충분히 높은 Nb 염을 포함한 용액이면 특별히 한정되지 않는다. 상기 Nb 염용액 중의 Nb 농도는 5~35 g/L이 바람직하다. The above Nb salt solution is not particularly limited as long as it is a solution containing a Nb salt having sufficiently high solubility in water. The Nb concentration in the above Nb salt solution is preferably 5 to 35 g/L.

이 때, 상기 슬러리의 pH는 5 내지 11.7로 유지시키는 것이 바람직하다. At this time, it is preferable to maintain the pH of the slurry at 5 to 11.7.

다음으로, 상기 코팅층이 형성된 수산화물 전구체 및 리튬 화합물을 혼합하여 700 내지 850℃에서 소성하여 Nb를 포함하는 산화물 코팅층을 형성시키는 단계;를 수행한다. Next, a step of mixing the hydroxide precursor and the lithium compound on which the coating layer is formed and calcining at 700 to 850°C to form an oxide coating layer including Nb is performed.

일 구현예로서, 상기 Nb를 포함하는 산화물 코팅층은 황화물계 고체 전해질을 더 포함할 수 있다. 이 때, 상기 황화물계 고체 전해질은 전술한 바와 같다. 이와 같이 리튬 복합 산화물의 표면상에 존재하는 코팅층에 Nb를 포함하는 산화물 뿐만 아니라 황화물계 고체 전해질을 더 포함함으로써, 본 발명의 리튬 복합 산화물과 황화물계 고체 전해질과의 계면 저항이 억제되면서, 양극활물질층의 이온 전도성이 보다 향상시킬 수 있다.In one embodiment, the oxide coating layer including Nb may further include a sulfide-based solid electrolyte. At this time, the sulfide-based solid electrolyte is as described above. By further including the sulfide-based solid electrolyte as well as the oxide including Nb in the coating layer present on the surface of the lithium composite oxide in this way, the interfacial resistance between the lithium composite oxide of the present invention and the sulfide-based solid electrolyte is suppressed, and the ion conductivity of the positive electrode active material layer can be further improved.

일 구현예로서, 상기 황화물계 고체 전해질 입자는 표면 중 적어도 일부를 점유하는 Nb를 포함하는 산화물 코팅층을 포함할 수 있다. 상기 Nb를 포함하는 산화물 코팅층은 리튬 복합 산화물에서 전술한 바와 같다. 이와 같이, 리튬 복합 산화물 입자 표면뿐 아니라 양극활물질에 포함되는 황화물계 고체 전해질 입자 상에도 Nb를 포함하는 산화물 코팅층을 포함함으로써, 본 발명의 리튬 복합 산화물과 황화물계 고체 전해질과의 계면 저항이 억제되면서, 양극활물질층의 이온 전도성이 보다 향상시킬 수 있다.As an embodiment, the sulfide-based solid electrolyte particle may include an oxide coating layer including Nb occupying at least a portion of the surface. The oxide coating layer including Nb is as described above in the lithium composite oxide. In this way, by including the oxide coating layer including Nb not only on the surface of the lithium composite oxide particle but also on the sulfide-based solid electrolyte particle included in the cathode active material, the interfacial resistance between the lithium composite oxide of the present invention and the sulfide-based solid electrolyte can be suppressed, and the ion conductivity of the cathode active material layer can be further improved.

일 구현예로서, 상기 리튬 복합 산화물의 2차 입자의 평균입경은 2 내지 50μm, 또는 10 내지 30μm 일 수 있다. 상기 평균입경은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50 %에 해당하는 입경으로 정의할 수 있다. 상기 평균입경은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다.As an example, the average particle diameter of the secondary particles of the lithium composite oxide may be 2 to 50 μm, or 10 to 30 μm. The average particle diameter may be defined as a particle diameter corresponding to 50% of the volume accumulation amount in a particle diameter distribution curve of the particles. The average particle diameter may be measured using, for example, a laser diffraction method.

상기 리튬 복합 산화물의 비표면적은 2.0 내지 8.0m2/g 일 수 있다. The specific surface area of the above lithium composite oxide can be 2.0 to 8.0 m2/g.

상기 양극활물질층에 포함되는 양극활물질은 전술한 바와 같다. The cathode active material included in the above cathode active material layer is as described above.

전술한 본 발명의 상기 기술적 특징을 제외하고는, 상기 고체 이차전지의 양극활물질층, 음극활물질층 및 황화물계 고체 전해질층에 대해서는 고체 이차전지에 적용될 수 있다면, 구조, 재료, 및 제조방법에 관해서 특별히 제한이 있는 것이 아니다. Except for the above-described technical features of the present invention, there are no particular limitations with respect to the structure, material, and manufacturing method of the positive electrode active material layer, the negative electrode active material layer, and the sulfide-based solid electrolyte layer of the solid secondary battery, as long as they can be applied to the solid secondary battery.

이하, 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples.

<실시예 1> <Example 1>

공침법(co-precipitation method)을 구형의 Ni0.92Co0.08(OH)2 수산화물 전구체를 합성하였다. 90L 급의 반응기에서 NiSO4·7H2O 및 CoSO4·7H2O 를 92:8의 몰비로 혼합한 1.5 M의 복합 전이금속 황산 수용액에 25 wt%의 NaOH와 30 wt%의 NH4OH를 투입하였다. 반응기 내의 pH는 11.5를 유지시켰고 이때의 반응기 온도는 60 ℃로 유지하였으며, 불활성 가스인 N2를 반응기에 투입하여, 제조된 전구체가 산화되지 않도록 하였다. 합성 교반 완료 후, Filter press (F/P) 장비를 이용하여 세척 및 탈수를 진행하여, Ni0.92Co0.08(OH)2 수산화물 전구체를 수득하였다.A spherical Ni0.92Co0.08(OH)2 hydroxide precursor was synthesized by a co-precipitation method. In a 90 L reactor, 25 wt% NaOH and 30 wt% NH4OH were added to a 1.5 M complex transition metal sulfate aqueous solution in which NiSO4·7H2O and CoSO4·7H2O were mixed in a molar ratio of 92:8. The pH in the reactor was maintained at 11.5 and the reactor temperature at this time was maintained at 60 ℃. An inert gas, N2, was introduced into the reactor to prevent the prepared precursor from being oxidized. After the synthetic stirring was completed, washing and dehydration were performed using a filter press (F/P) device, thereby obtaining Ni0.92Co0.08(OH)2 hydroxide precursor.

다음으로, 상기 수산화물 전구체에 Nb2O5 분말을 알칼리성 용액에 Nb 농도가 30g/L이 되도록 용해시켜 Nb 염용액을 제조한 다음, 이를 상기 전구체 슬러리에 25 질량% 황산 수용액을 함께 투입하여 Nb 산화물 코팅층을 형성하였다. Next, Nb2O5 powder was dissolved in the above hydroxide precursor in an alkaline solution so that the Nb concentration was 30 g/L to prepare a Nb salt solution, and then a 25 mass% sulfuric acid aqueous solution was added together to the precursor slurry to form a Nb oxide coating layer.

다음으로, 상기 제조된 수산화물과 LiOH를 Li/Me가 1.02이 되도록 혼합하여 500℃까지 승온해 500℃에서 3시간동안 유지시킨 후 775℃까지 승온하여 12시간 동안 소성하여, Li1.02Ni0.9Co0.05Al0.02Nb0.03O2 리튬 복합 산화물을 제조하였다.Next, the above-mentioned manufactured hydroxide and LiOH were mixed so that the Li/Me ratio was 1.02, heated to 500°C, maintained at 500°C for 3 hours, then heated to 775°C and calcined for 12 hours to manufacture Li1.02Ni0.9Co0.05Al0.02Nb0.03O2 lithium composite oxide.

<비교예 1> <Comparative Example 1>

상기 실시예 1에서 코팅층을 형성하는 단계를 수행하지 않은 것을 제외하고, 상기 실시예 1과 동일한 방법으로 리튬 복합 산화물을 제조하였다.A lithium composite oxide was manufactured in the same manner as in Example 1, except that the step of forming a coating layer in Example 1 was not performed.

<제조예> 고체 이차전지의 제조<Manufacturing Example> Manufacturing of a solid secondary battery

양극anode

상기 실시예 및 비교예에 의한 리튬 복합 산화물에 Li6PS5Cl 고체 전해질, 바인더로서 폴리테트라플루오르에틸렌(PTFE), 도전재로서 탄소나노섬유(CNF)를 89:8.8:1.2:1.0의 중량비로 자일렌(xylene) 용매와 혼합한 양극활물질 조성물을 시트 형태로 성형한 후, 40℃에서 8 시간 동안 진공 건조시켜 양극 활물질층을 제조하였다. The lithium composite oxide according to the above examples and comparative examples was mixed with Li6PS5Cl solid electrolyte, polytetrafluoroethylene (PTFE) as a binder, and carbon nanofibers (CNF) as a conductive material in a weight ratio of 89:8.8:1.2:1.0 and a xylene solvent to form a positive electrode active material composition in the form of a sheet, and then vacuum dried at 40°C for 8 hours to produce a positive electrode active material layer.

상기 제조된 양극 활물질층을 탄소 코팅된 Al(Carbon-coated Al) 집전체에 적층하고 롤 프레스로 압착하여 양극을 준비하였다.The above-mentioned manufactured positive electrode active material layer was laminated on a carbon-coated Al current collector and pressed using a roll press to prepare a positive electrode.

음극cathode

음극 집전체로서 SUS 박(foil)을 준비한 후, 카본 블랙(CB) 6g을 용기에 넣고, 여기에 PVDF 바인더가 5중량%를 포함된 NMP 용액을 8g을 투입하고 혼합하여 슬러리를 제조하였다. 제조된 슬러리를 Ni 집전체 상부에 바 코터(bar coater)를 이용하여 도포하고, 공기 중에서 80℃에서 10분간 건조시켜 카본블랙과 은을 함유한 카본층을 형성하였다. After preparing SUS foil as a negative current collector, 6 g of carbon black (CB) was placed in a container, 8 g of NMP solution containing 5 wt% of PVDF binder was added thereto, and mixed to prepare a slurry. The prepared slurry was applied to the upper part of a Ni current collector using a bar coater, and dried in the air at 80°C for 10 minutes to form a carbon layer containing carbon black and silver.

고체전해질층Solid electrolyte layer

Li6PS5Cl 99 중량부, 아크릴계 바인더인 폴리(스티렌-co-부틸 아크릴레이트)(poly(styrene-co-butyl acrylate)(8:2 몰비) 1 중량부, 자일렌 495 중량부를 혼합하여 슬러리를 제조하였다. 상기 슬러리를 이형 폴리에틸렌테레프탈레이트(PET) 상에 바코터기(Bar coater)를 이용해서 막을 만들고, 오븐에서 건조하여 고체전해질층을 준비하였다.A slurry was prepared by mixing 99 parts by weight of Li6PS5Cl, 1 part by weight of poly(styrene-co-butyl acrylate) (8:2 molar ratio), which is an acrylic binder, and 495 parts by weight of xylene. The slurry was applied onto a polyethylene terephthalate (PET) film using a bar coater, and dried in an oven to prepare a solid electrolyte layer.

고체 이차전지Solid secondary battery

상기 제조된 양극, 고체전해질층, 음극을 순서대로 적층하여, 500 MPa의 압력으로 1 min 동안 평판 가압 (plate press) 처리하여 단위 셀을 제조하였다. The above-mentioned manufactured positive electrode, solid electrolyte layer, and negative electrode were sequentially laminated and plate pressed at a pressure of 500 MPa for 1 min to manufacture a unit cell.

<실험예> <Experimental example>

상기 실시예 및 비교예에서 제조된 고체 이차전지의 수명 특성을 평가하기 위하여, 1C의 전류로 4.25 V에 도달할 때까지 정전류 충전후 0.05C 의 전류에 도달할 때까지 정전압 충전을 실시하였다. 충전이 완료된 셀은 약 10 분간의 휴지기간을 거친 후, 1C의 전류로 전압이 2.5 V에 이를 때까지 정전류 방전을 실시하는 사이클을 100회 반복적으로 실시하여 수명 특성을 평가하였다.In order to evaluate the life characteristics of the solid secondary batteries manufactured in the above examples and comparative examples, constant current charging was performed until the voltage reached 4.25 V with a current of 1 C, and then constant voltage charging was performed until the current reached 0.05 C. After the charging was completed, the cell was rested for about 10 minutes, and then constant current discharge was performed until the voltage reached 2.5 V with a current of 1 C. This cycle was repeated 100 times to evaluate the life characteristics.

ITEMITEM 실시예1Example 1 비교예1Comparative Example 1 수명 유지율(%,100회)Lifespan (%, 100 times) 91.291.2 72.372.3

1 양극활물질층
2 황화물계 고체 전해질층
3 음극활물질층
1. Bipolar active material layer
2 Sulfide-based solid electrolyte layer
3 Negative active material layer

Claims (8)

황화물계 고체 전해질; 및 리튬, 니켈 및 산소를 포함하는 리튬 복합 산화물;을 포함하고, 상기 리튬 복합 산화물 표면 중 적어도 일부에 Nb를 포함하는 산화물 코팅층을 형성시키는 제조방법에 있어서,
니켈을 포함하는 수산화물 전구체를 제조하는 단계;
상기 수산화물 전구체에 Nb 염용액과 산을 동시에 첨가하여 Nb를 포함하는 코팅층을 형성시키는 단계;
상기 코팅층이 형성된 수산화물 전구체 및 리튬 화합물을 혼합하여 700 내지 850℃에서 소성하여 Nb를 포함하는 산화물 코팅층을 형성시키는 단계; 및
상기 황화물계 고체 전해질이 Nb를 포함하는 코팅층을 표면 중 적어도 일부에 포함하고 상기 코팅층이 황화물계 고체 전해질을 포함하도록, 상기 Nb를 포함하는 산화물 코팅층이 형성된 산화물 및 황화물계 고체 전해질을 혼합하고, 건조하는 단계;를 포함하는,
고체 이차전지용 양극활물질 제조방법.
A method for manufacturing a lithium composite oxide comprising a sulfide-based solid electrolyte; and lithium, nickel and oxygen; and forming an oxide coating layer comprising Nb on at least a portion of the surface of the lithium composite oxide,
A step of preparing a hydroxide precursor containing nickel;
A step of forming a coating layer including Nb by simultaneously adding a Nb salt solution and an acid to the above hydroxide precursor;
A step of mixing the hydroxide precursor and the lithium compound on which the coating layer is formed and firing them at 700 to 850°C to form an oxide coating layer containing Nb; and
A step of mixing and drying an oxide and a sulfide-based solid electrolyte, wherein the oxide coating layer including Nb is formed so that the sulfide-based solid electrolyte includes a coating layer including Nb on at least a portion of the surface, and the coating layer includes a sulfide-based solid electrolyte;
Method for manufacturing a cathode active material for a solid secondary battery.
제 1 항에 있어서,
상기 리튬 복합 산화물은 하기 화학식 1로 표시되는,
고체 이차전지용 양극활물질 제조방법:
[화학식 1] LiaNibCocM1dM2eOf 상기 화학식 1에서 M1 은 Mn 또는 Al이고, M2는 Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si, Bi 및 F 중에서 선택되는 적어도 어느 하나 이상이고, 상기 M2는 반드시 Nb를 포함하고, 0.8≤a≤1.2, 0.01≤b≤0.99, 0≤c≤0.5, 0≤d≤0.5, 0.001≤e≤0.1 및 0.5≤f≤2.5이다.
In paragraph 1,
The above lithium composite oxide is represented by the following chemical formula 1:
Method for manufacturing positive electrode active material for solid secondary battery:
[Chemical Formula 1] LiaNibCocM1dM2eOf In the chemical formula 1, M1 is Mn or Al, M2 is at least one selected from Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si, Bi and F, and M2 necessarily includes Nb, and 0.8≤a≤1.2, 0.01≤b≤0.99, 0≤c≤0.5, 0≤d≤0.5, 0.001≤e≤0.1 and 0.5≤f≤2.5.
제 1 항에 있어서,
상기 리튬 복합 산화물 전체 대비 Nb는 0.5 내지 10몰% 만큼 포함되는,
고체 이차전지용 양극활물질 제조방법.
In paragraph 1,
Nb is contained in an amount of 0.5 to 10 mol% relative to the total lithium composite oxide.
Method for manufacturing a cathode active material for a solid secondary battery.
제 1 항에 있어서,
상기 Nb를 포함하는 산화물 코팅층은 하기 화학식 2로 표시되는 화합물을 포함하는,
고체 이차전지용 양극활물질 제조방법:
[화학식 2]
LiNbmOn
상기 화학식 2에서 1≤m≤2 및 1≤n≤5이다.
In paragraph 1,
The oxide coating layer containing the above Nb comprises a compound represented by the following chemical formula 2:
Method for manufacturing positive electrode active material for solid secondary battery:
[Chemical formula 2]
LiNbmOn
In the above chemical formula 2, 1≤m≤2 and 1≤n≤5.
삭제delete 삭제delete 제 1 항에 있어서,
상기 황화물계 고체 전해질은 아지로다이트(Argyrodite)형 결정구조를 가지는,
고체 이차전지용 양극활물질 제조방법.
In paragraph 1,
The above sulfide-based solid electrolyte has an argyrodite-type crystal structure.
Method for manufacturing a cathode active material for a solid secondary battery.
제 1 항의 고체 이차전지용 양극활물질 제조방법에 의해 제조된 양극활물질을 포함하는 양극활물질층;
음극활물질을 포함하는 음극활물질층; 및
상기 양극활물질층 및 상기 음극활물질층 사이에 황화물계 고체 전해질층을 포함하는,
고체 이차전지.


A cathode active material layer comprising a cathode active material manufactured by the method for manufacturing a cathode active material for a solid secondary battery according to claim 1;
A negative electrode active material layer including a negative electrode active material; and
Including a sulfide-based solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer,
Solid secondary battery.


KR1020210146130A 2021-10-28 2021-10-28 Method for manufacturing positive electrode active material for solid secondary battery Active KR102707545B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210146130A KR102707545B1 (en) 2021-10-28 2021-10-28 Method for manufacturing positive electrode active material for solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210146130A KR102707545B1 (en) 2021-10-28 2021-10-28 Method for manufacturing positive electrode active material for solid secondary battery

Publications (2)

Publication Number Publication Date
KR20230061171A KR20230061171A (en) 2023-05-08
KR102707545B1 true KR102707545B1 (en) 2024-09-13

Family

ID=86381660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210146130A Active KR102707545B1 (en) 2021-10-28 2021-10-28 Method for manufacturing positive electrode active material for solid secondary battery

Country Status (1)

Country Link
KR (1) KR102707545B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152077A (en) 2007-12-20 2009-07-09 Sumitomo Electric Ind Ltd Lithium battery
JP2020057503A (en) 2018-10-01 2020-04-09 Jx金属株式会社 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery
JP2020061338A (en) * 2018-10-12 2020-04-16 Jx金属株式会社 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713454B1 (en) * 2012-08-28 2017-03-07 스미토모 긴조쿠 고잔 가부시키가이샤 Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
DE102017204852A1 (en) * 2017-03-22 2018-09-27 Robert Bosch Gmbh Lithium-cell cathode with different sulfide lithium-ion conductors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152077A (en) 2007-12-20 2009-07-09 Sumitomo Electric Ind Ltd Lithium battery
JP2020057503A (en) 2018-10-01 2020-04-09 Jx金属株式会社 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery
JP2020061338A (en) * 2018-10-12 2020-04-16 Jx金属株式会社 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery

Also Published As

Publication number Publication date
KR20230061171A (en) 2023-05-08

Similar Documents

Publication Publication Date Title
JP7254875B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
KR102014983B1 (en) Cathode and lithium battery using same
KR101458676B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
CN106602054B (en) Kalium ion battery positive electrode and preparation method thereof, application
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
CN110931797A (en) High-nickel positive electrode material with composite coating layer and preparation method thereof
KR20160149862A (en) Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same
CN107369815B (en) Lithium ion secondary battery composite positive electrode material and preparation method thereof
KR102770494B1 (en) Active Material For Zinc-based Secondary Battery And Secondary Battery Having The Same
KR20080054708A (en) Cathode active material for lithium battery, cathode comprising same and lithium battery employing same
EP3627607B1 (en) Electrode material for zinc secondary batteries
KR102563239B1 (en) Negative electrode active material, negative electrode and lithium secondary battery comprising the same
CN118553892B (en) Modified lithium-rich manganese-based material, preparation method, positive electrode material, positive electrode plate and battery
KR101295974B1 (en) Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same
KR20250023432A (en) Positive active material for rechargeable lithium battery, positive electrode including the same, and rechargeable lithium battery including the same
CN116835670A (en) Sodium ion positive electrode material and preparation method thereof
KR101554692B1 (en) Precursor of positive active material, positive active material, method for manufacturing the same and lithium secondary battery using the same
KR102707544B1 (en) Positive electrode active material for solid secondary battery and solid secondary battery comprising same
KR102707545B1 (en) Method for manufacturing positive electrode active material for solid secondary battery
KR101708361B1 (en) Composite negative electrode active material, method for preparing the same, and lithium battery including the same
KR102707546B1 (en) Method for manufacturing positive electrode active material for solid secondary battery
CN114864911A (en) Modified high-nickel ternary cathode material and preparation method and application thereof
US20170324085A1 (en) Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby
KR102724568B1 (en) Manufacturing method of metal-lithium fluoride composite for cathode additive for pre-doping of anode and lithium ion capacitor including the same
KR20240159203A (en) Positive active material for lithium secondary battery and method of manufacturing positive active material

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211028

PA0201 Request for examination
PN2301 Change of applicant

Patent event date: 20220706

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20231219

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240709

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20240911

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20240911

End annual number: 3

Start annual number: 1

PG1601 Publication of registration