[go: up one dir, main page]

KR102626873B1 - Electrode deposition method using HiPIMS - Google Patents

Electrode deposition method using HiPIMS Download PDF

Info

Publication number
KR102626873B1
KR102626873B1 KR1020220059879A KR20220059879A KR102626873B1 KR 102626873 B1 KR102626873 B1 KR 102626873B1 KR 1020220059879 A KR1020220059879 A KR 1020220059879A KR 20220059879 A KR20220059879 A KR 20220059879A KR 102626873 B1 KR102626873 B1 KR 102626873B1
Authority
KR
South Korea
Prior art keywords
hipims
vacuum chamber
silver
power
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020220059879A
Other languages
Korean (ko)
Other versions
KR20230072382A (en
Inventor
이계영
Original Assignee
이계영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계영 filed Critical 이계영
Priority to KR1020220059879A priority Critical patent/KR102626873B1/en
Publication of KR20230072382A publication Critical patent/KR20230072382A/en
Application granted granted Critical
Publication of KR102626873B1 publication Critical patent/KR102626873B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 진공챔버에서 HiPIMS를 이용하여 전극을 형성하는 증착 방법에 있어서, 진공챔버를 포함하는 HiPIMS진공장비를 통해 은증착물이 운동에너지를 갖도록 함에 있어 타겟에 강한 플라즈마를 형성하여 기존에 비해 월등히 많은 수의 은이온을 형성하고, 플라스틱피도물에 높은 전원을 인가하여 은이온의 운동에너지를 극대화하는 (a)단계와; 운동에너지의 충돌에도 불구하고 플라스틱피도물의 열적손상을 최소화하여 플라스틱피도물과 은증착물 사이의 우수한 접착력을 구현하는 (b)단계를 포함하고, (a)단계에서 HiPIMS진공장비는 진공챔버와, 진공챔버 내부로 가스를 주입하는 스프터장비를 포함하여 구성되며, HiPIMS진공장비의 진공챔버 내부에 타겟에는 (-)전원이 인가되고, 진공챔버에는 (+)전원이 접지되는 구조를 가지며, HiPIMS진공장비는 단독으로 사용되지 않고 외부의 직류전원부로부터 인가된 직류 전원을 제공하는 (c)단계와; 직류전원부에서 제공되는 전압 및 직류를 조절함과 동시에 다양한 형태의 진동패턴(modulation & oscillation)을 통해 고출력의 플라즈마 발생을 조절하는 제어부에 의해 진동패턴에 따른 전압 및 전류의 세기를 제어하는 (d)단계를 포함하는 것을 특징으로 HiPIMS 증착 장비를 활용해 전자디바이스의 외부에 노출되는 전극 형성을 위한 전극 증착기술에 대한 것으로, 스마트폰, 태블릿PC, 노트북, 스마트워치 등 전자 디바이스에 있어 외부로부터 전류 및 전파를 효과적으로 받아들이기 위해 필요한 전극을 증착하기 위한 기술이다.The present invention relates to a deposition method of forming an electrode using HiPIMS in a vacuum chamber, in which the silver deposit has kinetic energy through HiPIMS vacuum equipment including a vacuum chamber, thereby forming a strong plasma on the target, significantly increasing the amount of carbon dioxide compared to the existing one. Step (a) of forming silver ions and maximizing the kinetic energy of the silver ions by applying high power to the plastic object; It includes step (b) of realizing excellent adhesion between the plastic coating material and the silver deposit by minimizing thermal damage to the plastic coating material despite the collision of kinetic energy, and in step (a), the HiPIMS vacuum equipment includes a vacuum chamber and a vacuum chamber. It consists of a sputtering device that injects gas into the interior, and has a structure in which (-) power is applied to the target inside the vacuum chamber of the HiPIMS vacuum equipment, and (+) power is grounded to the vacuum chamber. Step (c) of providing direct current power applied from an external direct current power supply rather than being used alone; (d) which controls the intensity of voltage and current according to the vibration pattern by a control unit that regulates the voltage and direct current provided from the DC power supply and at the same time regulates the generation of high-output plasma through various types of vibration patterns (modulation & oscillation) It is about electrode deposition technology for forming electrodes exposed to the outside of electronic devices using HiPIMS deposition equipment, which includes a step. It is used to remove current and current from the outside in electronic devices such as smartphones, tablet PCs, laptops, and smartwatches. This is a technology for depositing the electrodes necessary to effectively receive radio waves.

Description

HiPIMS를 이용한 전극 증착 방법{Electrode deposition method using HiPIMS}Electrode deposition method using HiPIMS}

본 발명은 플라스틱피도물에 전극을 증착하기 위한 전극 증착 방법에 관한 것으로, 보다 구체적으로는 얇고 정밀한 증착 두께로 조절 가능하고, 플라스틱피도물과 은증착물 사이의 우수한 접착력으로 차세대 통신 기술 및 헬스케어 분야에서의 디바이스에 요구되는 외부 전극을 형성할 수 있는 HiPIMS를 이용한 전극 증착 방법에 관한 것이다.The present invention relates to an electrode deposition method for depositing an electrode on a plastic coating. More specifically, it can be adjusted to a thin and precise deposition thickness, and has excellent adhesion between the plastic coating and the silver deposit, making it possible to use it in the fields of next-generation communication technology and healthcare. It relates to an electrode deposition method using HiPIMS that can form external electrodes required for devices.

증착기술은 반도체, 에너지, 회로, 전자통신 등 현대 전자 산업에 있어 핵심이 되는 기술로, 크게 물리적기상증착법(PVD), 화학적기상증착법(CVD)의 건식 증착공정과 도금, 스프레이, 담금 등으로 이루어진 습식 증착공정으로 이루어진다.Deposition technology is a core technology in modern electronics industries such as semiconductors, energy, circuits, and electronic communications. It largely consists of dry deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), plating, spraying, and immersion. It is done through a wet deposition process.

각각의 증착기술은 은증착물 및 플라스틱피도물에 따라 그 장단점이 달라지기 때문에 은증착물과 플라스틱피도물에 맞는 적절한 증착기술을 활용하는 것이 매우 중요하다.Since each deposition technology has different strengths and weaknesses depending on the silver deposit and plastic coating, it is very important to use the appropriate deposition technology for the silver deposit and plastic coating.

기존에는 전자 디바이스의 외부에 안테나 전극을 노출시킬 필요성이 크지 않았으나, 최근 5G, 6G와 같이 전자 통신에 극단파장의 전파가 사용됨에 따라 전파 수신율을 높이기 위해 디바이스의 안테나 전극을 외부로 노출시킬 필요성이 커지고 있다.Previously, there was not much need to expose the antenna electrodes to the outside of the electronic device, but recently, as radio waves of extreme wavelengths are used in electronic communications such as 5G and 6G, there is a need to expose the antenna electrodes of the device to the outside to increase the radio wave reception rate. It's getting bigger.

뿐만 아니라, 헬스케어분야의 응용에 있어서는 디바이스에 외부로부터 전기적 신호를 받아 사용자 및 사용자 주변 환경의 데이터를 인식하는 기능이 요구되고 있으며, 이를 위해서는 필연적으로 디바이스의 외부의 센서 기능을 위한 전극이 필요하게 된다.In addition, in applications in the healthcare field, devices are required to have the ability to recognize data about the user and the user's surroundings by receiving electrical signals from the outside, and for this purpose, electrodes for the external sensor function of the device are inevitably needed. do.

이러한 상황으로 인해 전자 디바이스의 주요 소재인 플라스틱피도물에 은증착물로 구성된 전극을 증착하는 기술의 필요성이 크게 증가하고 있다.Due to this situation, the need for technology to deposit electrodes made of silver deposits on plastic materials, a major material for electronic devices, is greatly increasing.

하지만 기존의 증착기술에 있어 플라스틱피도물은 은증착물과의 접착력이 매우 좋지 않은 문제를 가지고 있다.However, in the existing deposition technology, the plastic coating material has a problem of very poor adhesion to the silver deposition material.

또한, 습식 증착공정은 정밀한 두께의 조절이나 얇은 두께의 구현이 쉽지 않은데, 은증착물의 사용량을 줄이기 위해 뿐만 아니라 조립 단차, 다양한 색상의 구현을 위해서는 수십나노미터의 얇은 두께와 정밀한 증착이 반드시 필요한 상황이다.In addition, the wet deposition process is not easy to precisely control thickness or achieve thin thickness. In order to reduce the amount of silver deposits used, as well as to achieve assembly steps and various colors, a thin thickness of several tens of nanometers and precise deposition are essential. am.

이에 얇고 정밀한 증착이 가능한 건식증착공정이 외부 노출 전극 형성에 가장 효과적인 증착기술로 고려되고 있다.Accordingly, the dry deposition process, which allows for thin and precise deposition, is considered the most effective deposition technology for forming externally exposed electrodes.

하지만, Arc-PVD, CVD와 같은 고에너지, 고온이 필요한 증착기술은 플라스틱피도물과 은증착물 사이의 높은 접착력을 구현할 수 있는 반면 플라스틱피도물에 데미지를 준다는 한계를 가지고 있다.However, while deposition technologies that require high energy and high temperature, such as Arc-PVD and CVD, can achieve high adhesion between the plastic coating and the silver deposit, they have the limitation of causing damage to the plastic coating.

Arc-PVD는 또한, 플라스틱피도물의 형상에 따라 강한 아크 방전이 플라스틱피도물에 발생할 수 있으며 이에 플라스틱피도물이 데미지를 입게 되는 문제 역시 가지고 있다.Arc-PVD also has the problem that, depending on the shape of the plastic coating, a strong arc discharge may occur in the plastic coating, causing damage to the plastic coating.

반면에, 스퍼터링(Sputtering), 증발 증착 등의 저에너지 증착법은 플라스틱피도물과 은증착물 사이의 낮은 접착성 문제를 해결하지 못하고 있는 상황이다.On the other hand, low-energy deposition methods such as sputtering and evaporation deposition are unable to solve the problem of low adhesion between plastic coatings and silver deposits.

한편, 고전력 임펄스 마그네트론 스퍼터링(HiPIMS; High Power Impulse Magnetron Sputtering, 이하, HiPIMS로 기재함.)은 낮은 듀티 사이클에서 수십 마이크로초의 짧은 펄스(임펄스)로 kW·cm-2 정도의 매우 높은 전력 밀도를 갖는 비교적 최신의 기술이다.On the other hand, high power impulse magnetron sputtering (HiPIMS; hereinafter referred to as HiPIMS) has a very high power density of about kW·cm-2 with short pulses (impulses) of tens of microseconds at a low duty cycle. It is a relatively recent technology.

HiPIMS의 두드러진 특징은 수 ~ 수백 us의 펄스(pulse)와 10㎐ ~ 10KHz의 주파수를 사용해 수Acm-2의 높은 피크전류를 만들어 결과적으로 높은 플라즈마를 형성한다는 데 있다.The distinguishing feature of HiPIMS is that it uses pulses of several to hundreds of us and frequencies of 10 Hz to 10 KHz to create a high peak current of several Acm-2, resulting in the formation of high plasma.

이렇게 형성된 높은 플라즈마는 타겟 물질의 이온화를 가속하고, 결과적으로 높은 밀도의 박막을 증착할 수 있게 한다. 하지만 타겟 물질의 높은 이온화율은 단순히 증착된 박막의 밀도를 높일 뿐 아니라 증착 박막의 접착력을 높이는 데 주요한 역할을 할 수 있다.The high plasma formed in this way accelerates the ionization of the target material, resulting in the deposition of a high density thin film. However, the high ionization rate of the target material not only increases the density of the deposited thin film, but can also play a major role in increasing the adhesion of the deposited thin film.

이온화된 타겟 물질은 플라스틱피도물에 인가된 전원에 의해 더욱 강한 힘으로 플라스틱피도물에 이끌리게 되며, 이는 곧 타겟 물질이 강한 운동에너지를 갖고 플라스틱피도물에 충돌하는 것을 뜻한다. The ionized target material is attracted to the plastic object with stronger force by the power applied to the plastic object, which means that the target material collides with the plastic object with strong kinetic energy.

하지만, HiPIMS의 이러한 특징은 상기 언급한 타겟 물질의 높은 운동에너지로 인해 플라스틱피도물에 데미지를 준다는 한계를 가지고 있다.However, this feature of HiPIMS has the limitation of causing damage to plastic objects due to the high kinetic energy of the target material mentioned above.

따라서, 상기 언급된 모든 건식증착법에 있어 플라스틱피도물과 은증착물 간의 높은 접착력을 확보함과 동시에 플라스틱피도물의 낮은 고온 저항성을 해결할 수 있는 기술의 발명이 요구되고 있다. Therefore, in all of the above-mentioned dry deposition methods, there is a need for the invention of a technology that can secure high adhesion between the plastic coated material and the silver deposited material and at the same time solve the low high temperature resistance of the plastic coated material.

KRKR 10-0719805 10-0719805 B1B1 KRKR 10-2002-0011931 10-2002-0011931 AA

상기한 문제점을 해결하기 위하여 본 발명은 HiPIMS에 의한 박막 증착을 통해 얇고 정밀한 증착 두께로 조절 가능하고, 플라스틱피도물과 은증착물 사이의 우수한 접착력으로 차세대 통신 기술 및 헬스케어 분야에서의 디바이스에 요구되는 외부 전극을 형성할 수 있는 HiPIMS를 이용한 전극 증착 방법을 제공하는데 목적이 있다.In order to solve the above problems, the present invention is capable of controlling the deposition thickness to a thin and precise thickness through thin film deposition using HiPIMS, and has excellent adhesion between the plastic coating material and the silver deposition material to provide external protection required for devices in the next-generation communication technology and healthcare fields. The purpose is to provide an electrode deposition method using HiPIMS that can form electrodes.

상기한 목적을 달성하기 위하여, 본 발명은 진공챔버에서 HiPIMS를 이용하여 전극을 형성하는 증착 방법에 있어서, 진공챔버를 포함하는 HiPIMS진공장비를 통해 은증착물이 운동에너지를 갖도록 함에 있어 타겟에 강한 플라즈마를 형성하여 기존에 비해 월등히 많은 수의 은이온을 형성하고, 플라스틱피도물에 높은 전원을 인가하여 은이온의 운동에너지를 극대화하는 (a)단계와; 운동에너지의 충돌에도 불구하고 플라스틱피도물의 열적손상을 최소화하여 플라스틱피도물과 은증착물 사이의 우수한 접착력을 구현하는 (b)단계를 포함하는 것을 특징으로 하는 HiPIMS를 이용한 전극 증착 방법을 제공한다.In order to achieve the above object, the present invention is a deposition method of forming an electrode using HiPIMS in a vacuum chamber, in which silver deposits have kinetic energy through HiPIMS vacuum equipment including a vacuum chamber, and a strong plasma is applied to the target. Step (a) of forming a significantly larger number of silver ions than before and maximizing the kinetic energy of the silver ions by applying high power to the plastic object; Provided is an electrode deposition method using HiPIMS, which includes step (b) of realizing excellent adhesion between the plastic coating material and the silver deposit by minimizing thermal damage to the plastic coating material despite the collision of kinetic energy.

여기서, (a)단계에서 HiPIMS진공장비는 진공챔버와, 진공챔버 내부로 가스를 주입하는 스프터장비를 포함하여 구성되며, HiPIMS진공장비의 진공챔버 내부에 타겟에는 (-)전원이 인가되고, 진공챔버에는 (+)전원이 접지되는 구조를 가지며, HiPIMS진공장비는 단독으로 사용되지 않고 외부의 직류전원부로부터 인가된 직류 전원을 제공하는 (c)단계와; 직류전원부에서 제공되는 전압 및 직류를 조절함과 동시에 다양한 형태의 진동패턴(modulation & oscillation)을 통해 고출력의 플라즈마 발생을 조절하는 제어부에 의해 진동패턴에 따른 전압 및 전류의 세기를 제어하는 (d)단계를 포함하는 것을 특징으로 한다.Here, in step (a), the HiPIMS vacuum equipment includes a vacuum chamber and a sputter device that injects gas into the vacuum chamber, and (-) power is applied to the target inside the vacuum chamber of the HiPIMS vacuum equipment, The vacuum chamber has a structure in which (+) power is grounded, and the HiPIMS vacuum equipment is not used alone, but includes step (c) of providing direct current power applied from an external direct current power supply; (d) which controls the intensity of voltage and current according to the vibration pattern by a control unit that regulates the voltage and direct current provided from the DC power supply and at the same time regulates the generation of high-output plasma through various types of vibration patterns (modulation & oscillation) It is characterized by including steps.

이때, 직류전원부로부터 타겟 인근에 플라즈마를 발생시키는 제어부의 제어조건은 펄스 피크 전력은 0.2 ~ 1.0㎾의 범위를 가지며, 전압은 200 ~ 400V, 전류는 1A ~ 2.5A의 범위를 가지고, 펄스의 길이는 40 ~ 200㎲, 주파수는 300 ~ 500㎐의 범위를 갖고, 증착기판에는 100 ~ 200V의 전원이 인가되는 것을 특징으로 한다.At this time, the control conditions of the control unit that generates plasma near the target from the DC power supply are pulse peak power in the range of 0.2 ~ 1.0 kW, voltage in the range of 200 ~ 400V, current in the range of 1A ~ 2.5A, and pulse length is in the range of 40 to 200 ㎲, the frequency is in the range of 300 to 500 Hz, and a power of 100 to 200 V is applied to the deposition substrate.

한편, (a)단계에서 증착 중에 진공챔버 내부의 기압은 불활성 기체의 주입과 진공펌프에 의해 0.1×10-3 ~ 1.0×10-3 torr의 범위의 압력으로 진공챔버 내부에 존재하는 온도측정기의 기준으로 온도는 50 ~ 100℃의 범위를 갖는 것을 특징으로 한다.Meanwhile, during deposition in step (a), the atmospheric pressure inside the vacuum chamber is in the range of 0.1 × 10 -3 to 1.0 × 10 -3 torr by injection of inert gas and a vacuum pump. As a standard, the temperature is characterized as having a range of 50 to 100°C.

상기와 같이 구성된 본 발명을 제공함으로써, 플라스틱피도물에 은증착물을 증착하여 전극을 형성할 수 있으며, 최적의 증착 조건 하에서 플라스틱피도물, 은증착물 사이의 우수한 접착성을 유지하면서 동시에 기존의 한계였던 플라스틱피도물에 대한 열화를 방지할 수 있는 효과가 있다.By providing the present invention configured as described above, it is possible to form an electrode by depositing a silver deposit on a plastic coating, and maintain excellent adhesion between the plastic coating and the silver deposit under optimal deposition conditions, while at the same time reducing the plastic coating, which was a existing limitation. It has the effect of preventing deterioration.

도 1은 본 발명에 따른 HiPIMS를 이용한 전극 증착 방법을 나타내는 순서도.1 is a flowchart showing an electrode deposition method using HiPIMS according to the present invention.

이하, 본 발명에 대하여 동일한 기술분야에 속하는 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부도면을 참조하여 바람직한 실시 예를 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.

본 발명의 HiPIMS를 이용한 전극 증착 방법은 도 1에 도시된 바와 같이, 각 단계를 통해 진공챔버에서 HiPIMS를 이용하여 전극을 형성하는 증착 방법을 제안할 수 있다.As shown in FIG. 1, the electrode deposition method using HiPIMS of the present invention can propose a deposition method of forming an electrode using HiPIMS in a vacuum chamber through each step.

우선적으로, 하기 언급된 플라스틱피도물과 은증착물 사이의 낮은 접착력을 해결하기 위한 기존의 방법은 증착공정 중 플라스틱피도물의 열적 또는 물리적 데미지로 인하여 효과적인 결과를 얻지 못하는 상황을 파악하여 이에 따른 대안을 제안할 수 있다.First of all, the existing method for solving the low adhesion between the plastic coating material and the silver deposit mentioned below does not provide effective results due to thermal or physical damage to the plastic coating material during the deposition process, and an alternative solution can be proposed accordingly. You can.

즉, 기존의 증착기술은 플라스틱피도물에 강하게 충돌하는 은증착물은 높은 접착력을 보장하지만, 그에 비례하여 약한 플라스틱피도물에 강한 데미지를 입히는 것을 방지할 수 있다.In other words, the existing deposition technology ensures high adhesion for silver deposits that strongly collide with plastic substrates, but can prevent strong damage to relatively weak plastic substrates.

이를 해결함에 있어 HiPIMS진공장비의 효과적인 활용 가능성을 제안함은 물론, 보다 구체적으로 과제를 해결하기 위한 최적의 증착 조건을 제시한다는 데 큰 의의가 있다.In solving this problem, it is significant in that it not only suggests the possibility of effective use of HiPIMS vacuum equipment, but also suggests optimal deposition conditions to solve the problem more specifically.

진공챔버를 포함하는 HiPIMS진공장비를 통해 은증착물이 운동에너지를 갖도록 함에 있어 타겟에 강한 플라즈마를 형성하여 기존에 비해 월등히 많은 수의 은이온을 형성하고, 플라스틱피도물에 높은 전원을 인가하여 은이온의 운동에너지를 극대화하는 (a)단계(S100)를 제공할 수 있다.HiPIMS vacuum equipment including a vacuum chamber allows the silver deposit to have kinetic energy, forming a strong plasma on the target to form a much larger number of silver ions than before, and applying high power to the plastic object to produce silver ions. Step (a) (S100) that maximizes kinetic energy can be provided.

한편, 운동에너지의 충돌에도 불구하고 플라스틱피도물의 열적손상을 최소화하여 플라스틱피도물과 은증착물 사이의 우수한 접착력을 구현하는 (b)단계(S200)를 포함할 수 있다.Meanwhile, step (b) (S200) may be included to achieve excellent adhesion between the plastic coating material and the silver deposit by minimizing thermal damage to the plastic coating material despite the collision of kinetic energy (S200).

이때, (a)단계(S100)에서 HiPIMS진공장비는 진공챔버와, 진공챔버 내부로 가스를 주입하는 스프터장비를 포함하여 구성되며, HiPIMS진공장비의 진공챔버 내부에 타겟에는 (-)전원이 인가되고, 진공챔버에는 (+)전원이 접지되는 구조를 가지며, HiPIMS진공장비는 단독으로 사용되지 않고 외부의 직류전원부로부터 인가된 직류 전원을 제공하는 (c)단계(S300)를 포함할 수 있다.At this time, in step (a) (S100), the HiPIMS vacuum equipment includes a vacuum chamber and a sputter device that injects gas into the vacuum chamber, and the target inside the vacuum chamber of the HiPIMS vacuum equipment is supplied with (-) power. The vacuum chamber has a structure in which (+) power is grounded, and the HiPIMS vacuum equipment is not used alone, but may include step (c) (S300) of providing DC power applied from an external DC power source. .

그리고, 직류전원부에서 제공되는 전압 및 직류를 조절함과 동시에 다양한 형태의 진동패턴(modulation & oscillation)을 통해 고출력의 플라즈마 발생을 조절하는 제어부에 의해 진동패턴에 따른 전압 및 전류의 세기를 제어하는 (d)단계(S400)를 포함할 수 있다.In addition, the intensity of voltage and current according to the vibration pattern is controlled by a control unit that regulates the voltage and direct current provided from the DC power supply and at the same time regulates the generation of high-output plasma through various types of vibration patterns (modulation & oscillation). It may include step d) (S400).

이때, 직류전원부로부터 타겟 인근에 플라즈마를 발생시키는 제어부의 제어조건은 펄스 피크 전력은 0.2 ~ 1.0㎾의 범위를 가지며, 전압은 200 ~ 400V, 전류는 1A ~ 2.5A의 범위를 가지고, 펄스의 길이는 40 ~ 200㎲, 주파수는 300 ~ 500㎐의 범위를 갖고, 증착기판에는 100 ~ 200V의 전원이 인가되는 것이 바람직하다.At this time, the control conditions of the control unit that generates plasma near the target from the DC power supply are pulse peak power in the range of 0.2 ~ 1.0 kW, voltage in the range of 200 ~ 400V, current in the range of 1A ~ 2.5A, and pulse length is in the range of 40 to 200 ㎲, the frequency is in the range of 300 to 500 Hz, and it is preferable that a power of 100 to 200 V is applied to the deposition substrate.

한편, (a)단계(S100)에서 증착 중에 진공챔버 내부의 기압은 불활성 기체의 주입과 진공펌프에 의해 0.1×10-3 ~ 1.0×10-3 torr torr의 범위의 압력으로 진공챔버 내부에 존재하는 온도측정기의 기준으로 온도는 50 ~ 100℃의 범위를 갖는다.Meanwhile, during deposition in step (a) (S100), the air pressure inside the vacuum chamber is in the range of 0.1 × 10 -3 to 1.0 × 10 -3 torr torr by injection of inert gas and a vacuum pump. Based on the temperature measuring instrument used, the temperature ranges from 50 to 100℃.

그리고, HiPIMS진공장비에 전극으로 제공되는 플라스틱피도물은 플라스틱, 폴리머, 천연섬유 중 어느 한가지로 이루어지는 것이 바람직하다.In addition, the plastic coating material provided as an electrode to the HiPIMS vacuum equipment is preferably made of any one of plastic, polymer, and natural fiber.

본 발명은 HiPIMS진공장비를 사용해 은증착물을 플라스틱피도물에 증착함에 있어 외부 직류전원부를 통해 타겟에 펄스화된 전원을 제공함과 동시에 플라스틱피도물에 음(-)의 전원을 가하게 되면 전력 및 펄스 조건은 제공할 수 있다.The present invention provides pulsed power to the target through an external direct current power supply when depositing silver deposits on a plastic substrate using HiPIMS vacuum equipment, and at the same time, when negative (-) power is applied to the plastic substrate, power and pulse conditions are provided. can do.

HiPIMS진공장비의 직류전원부를 통해 타겟에 형성된 플라즈마는 은증착물이 쉽게 이온화된 은이온의 농도를 급격히 높이게 될 수 있다.The plasma formed on the target through the direct current power supply of the HiPIMS vacuum equipment can rapidly increase the concentration of silver ions in which silver deposits are easily ionized.

이와 같은, 은의 높은 이온화율은 플라스틱피도물에 인가된 전원에 강하게 이끌리게 되며, 중성의 은증착물에 비해 플라스틱피도물에 매우 강한 충돌을 일으켜 플라스틱피도물과 은증착물 사이의 높은 접착력을 제공하게 된다.As such, the high ionization rate of silver is strongly attracted to the power applied to the plastic object, causing a very strong collision with the plastic object compared to the neutral silver deposit, thereby providing high adhesion between the plastic object and the silver deposit.

한편, 실험을 통해 본 발명의 증착방법에 따른 성능을 하기에 검증하였다.Meanwhile, the performance of the deposition method of the present invention was verified through experiments as follows.

플라스틱피도물로 ABS와 PC의 복합물로 이루어진 기판에, 은(Ag)을 타겟으로 은(Ag)전극을 형성하는 공정으로 플라스틱피도물을 진공챔버 내에 넣고 5.0×10-5까지 진공펌프를 통해 진공을 제공하고, 설정된 수준의 진공이 만들어지면 질소 또는 아르곤 가스를 진공챔버에 공급하며, 진공펌프는 지속적으로 아래와 같이 압력을 제공한다.This is a process of forming a silver (Ag) electrode with silver (Ag) as a target on a substrate made of a composite of ABS and PC as a plastic coating material. The plastic coating material is placed in a vacuum chamber and a vacuum is provided through a vacuum pump up to 5.0×10 -5 . And when the set level of vacuum is created, nitrogen or argon gas is supplied to the vacuum chamber, and the vacuum pump continuously provides pressure as follows.

진공챔버 내의 기압이 1.0×10-3에 다다르도록 질소 가스의 플로우 레이트를 조절한다. 일단 증착 기압인 1.0×10-3에 다다르면 진공챔버 내 온도를 80℃로 유지시킨다. 이때, 온도는 진공챔버 내에 존재하는 열전쌍(thermocouple)을 사용해 측정한 기준을 제공한다.The flow rate of nitrogen gas is adjusted so that the atmospheric pressure in the vacuum chamber reaches 1.0×10 -3 . Once the deposition pressure of 1.0×10 -3 is reached, the temperature in the vacuum chamber is maintained at 80°C. At this time, the temperature provides a standard measured using a thermocouple present in the vacuum chamber.

설정된 기압과 온도에 도달하면 외부 직류전원부를 작동하여 연결된 컴퓨터의 소프트웨어를 포함하는 제어부를 통해 펄스 주파수, 펄스 길이, 펄스 피크 전력을 설정된 값으로 조절한다.When the set atmospheric pressure and temperature are reached, the external DC power supply is activated and the pulse frequency, pulse length, and pulse peak power are adjusted to the set values through the control unit including the software of the connected computer.

시험 A - 증착 조건은 다음 표 1과 같다.Test A - Deposition conditions are shown in Table 1 below.

[표 1][Table 1]

설정된 펄스 주파수, 펄스 길이, 펄스 피크 전력이 안정적으로 유지되면 플라스틱피도물에 전원을 걸어주고, 타겟을 가리던 타겟가림막을 제거한다.When the set pulse frequency, pulse length, and pulse peak power remain stable, turn on the power to the plastic object and remove the target shield that was blocking the target.

타겟가림막을 제거하면서 타겟은 빠르게 이온화 되고, 플라스틱피도물에 걸린 전원에 의해 운동에너지를 가지고 플라스틱피도물에 충돌하게 된다.When the target shield is removed, the target is quickly ionized and collides with the plastic object with kinetic energy due to the power applied to the plastic object.

[그림 1][Figure 1]

시험 B - 증착 조건은 다음 표 2와 같다.Test B - Deposition conditions are shown in Table 2 below.

[표 2][Table 2]

[그림 2][Figure 2]

[그림 3][Figure 3]

밀착력 테스트 결과 Cross-cut 시험에서 Classification 4B 수준임을 확인할 수 있습니다.As a result of the adhesion test, it can be confirmed that it is Classification 4B level in the cross-cut test.

이상의 설명과 실험을 통해 알 수 있듯이, HiPIMS 증착기술을 활용한 전극 증착기술에 대한 것으로, 플라스틱피도물에 은증착물을 증착해 전극을 형성하는 할 수 있다.As can be seen through the above explanation and experiment, this is about electrode deposition technology using HiPIMS deposition technology, and it is possible to form electrodes by depositing silver deposits on plastic coated materials.

기존의 전극 증착기술은 상기에 언급된 플라스틱피도물과 은증착물 사이의 낮은 접착성 문제를 해결하지 못하거나, 플라스틱피도물의 낮은 열저항성에 의해 그 적용에 한계가 있어왔으며, Arc-PVD와 같은 기존의 기술은 너무 높은 운동에너지로 인해 발생하는 높은 온도로 플라스틱피도물이 열화되는 문제로 플라스틱과 같은 플라스틱피도물에 적용에 어려움이 있었지만, HiPIMS 장비를 활용해 청구항에 기재된 최적의 증착 조건하에서 플라스틱피도물, 은증착물 사이의 우수한 접착성을 유지하면서 동시에 기존의 한계였던 플라스틱피도물에 대한 열화를 방지할 수 있는 증착기술을 개발하였다는 점에서 발명의 의의가 있다.Existing electrode deposition technology has not been able to solve the problem of low adhesion between the plastic coating material and the silver deposit mentioned above, or has had limitations in its application due to the low heat resistance of the plastic coating material, and existing electrode deposition technologies such as Arc-PVD have been limited in application. The technology had difficulties in applying it to plastic coating materials such as plastic due to the problem of deterioration of the plastic coating material due to high temperature caused by too high kinetic energy, but using HiPIMS equipment, plastic coating materials and silver deposits were developed under the optimal deposition conditions described in the claims. The significance of the invention is that it developed a deposition technology that can prevent deterioration of plastic materials, which was a existing limitation, while maintaining excellent adhesion between materials.

따라서, 상기와 같이 구성된 본 발명을 제공함으로써, 플라스틱피도물에 은증착물을 증착하여 전극을 형성할 수 있으며, 최적의 증착 조건 하에서 플라스틱피도물, 은증착물 사이의 우수한 접착성을 유지하면서 동시에 기존의 한계였던 플라스틱피도물에 대한 열화를 방지할 수 있는 효과가 있다.Therefore, by providing the present invention configured as described above, it is possible to form an electrode by depositing a silver deposit on a plastic coating material, and maintain excellent adhesion between the plastic coating material and the silver deposition material under optimal deposition conditions, while at the same time reducing the existing limitations. It has the effect of preventing deterioration of plastic materials.

이상에 설명한 본 명세서 및 청구범위에 사용되는 용어 및 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 본 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the specification and claims described above should not be construed as limited to their usual or dictionary meanings, and the inventor has appropriately used the concept of terms to explain his invention in the best way. It must be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined clearly.

따라서, 본 명세서에 기재된 도면 및 실시 예에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the configuration shown in the drawings and examples described in this specification is only one of the most preferred embodiments of the present invention, and does not represent the entire technical idea of the present invention, so they cannot be replaced at the time of filing the present application. It should be understood that various equivalents and variations may exist.

Claims (1)

불활성 기체의 주입과 진공펌프에 의해 4.0×10-3 torr의 압력범위 및 내부에 존재하는 온도측정기의 기준으로 80℃의 온도범위를 갖는 진공챔버를 포함하며, 플라스틱피도물로 이루어진 전극을 갖는 HiPIMS진공장비를 통해 은(Ag)으로 이루어진 은증착물이 운동에너지를 갖도록 플라스틱피도물의 은타켓에 플라즈마를 형성하여 다수의 은이온을 형성하고, 플라스틱피도물에 전원을 인가하여 은이온의 운동에너지를 증가시키는 (a)단계(S100)와;
상기 (a)단계(S100)에서 상기 HiPIMS진공장비는 진공챔버와, 진공챔버 내부로 가스를 주입하는 스프터장비를 포함하여 구성되며, 상기 HiPIMS진공장비의 진공챔버 내부에 플라스틱피도물의 은타켓에는 (-)전원이 인가되고, 진공챔버에는 (+)전원이 접지되는 구조를 가지며, HiPIMS진공장비는 단독으로 사용되지 않고 외부의 직류전원부로부터 인가된 직류 전원을 제공하는 (c)단계(S300)와;
운동에너지의 충돌을 통해 플라스틱피도물과 은증착물 사이에 접착력을 구현하는 (b)단계(S200)와;
상기 직류전원부에서 제공되는 전압 및 직류를 조절함과 동시에 다양한 형태의 진동패턴을 통해 고출력의 플라즈마 발생을 조절하는 제어부에 의해 진동패턴에 따른 전압 및 전류의 세기를 제어하는 (d)단계(S400)를 포함하며,
상기 직류전원부로부터 플라스틱피도물의 은(Ag)타켓으로 타켓직경은 300mm, 타켓두께는 50mm, HiPIMS 펄스 주파수는 400Hz, HiPIMS 펄스 길이는 100㎲ec, 펄스 피크 전력은 1.0kW, 피도물bias는 -150V, 증착시간은 30s, 증착시 기압은 4.0×10-3 torr, 챔버내 평균 온도는 80℃의 조건을 포함하는 것을 특징으로 하는 HiPIMS를 이용한 전극 증착 방법.
HiPIMS vacuum includes a vacuum chamber with a pressure range of 4.0 Through the equipment, plasma is formed on the silver target of the plastic coated object so that the silver deposit made of silver (Ag) has kinetic energy, forming a large number of silver ions, and applying power to the plastic coated object to increase the kinetic energy of the silver ions ( a) step (S100);
In step (a) (S100), the HiPIMS vacuum equipment includes a vacuum chamber and a sputter device for injecting gas into the vacuum chamber, and the silver target of the plastic object is placed inside the vacuum chamber of the HiPIMS vacuum equipment. (-) power is applied and the (+) power is grounded in the vacuum chamber. HiPIMS vacuum equipment is not used alone, but provides DC power applied from an external DC power source (S300). and;
Step (b) (S200) of implementing adhesion between the plastic coating and the silver deposit through collision of kinetic energy;
Step (d) of controlling the intensity of voltage and current according to the vibration pattern by a control unit that adjusts the voltage and direct current provided from the DC power supply and at the same time controls the generation of high-output plasma through various types of vibration patterns (S400) Includes,
From the DC power supply to the silver (Ag) target of the plastic coated object, the target diameter is 300mm, the target thickness is 50mm, the HiPIMS pulse frequency is 400Hz, the HiPIMS pulse length is 100㎲ec, the pulse peak power is 1.0kW, the bias of the coated object is -150V, An electrode deposition method using HiPIMS, characterized in that the deposition time is 30 s, the atmospheric pressure during deposition is 4.0×10 -3 torr, and the average temperature in the chamber is 80°C.
KR1020220059879A 2021-11-17 2022-05-17 Electrode deposition method using HiPIMS Active KR102626873B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220059879A KR102626873B1 (en) 2021-11-17 2022-05-17 Electrode deposition method using HiPIMS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210158131 2021-11-17
KR1020220059879A KR102626873B1 (en) 2021-11-17 2022-05-17 Electrode deposition method using HiPIMS

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020210158131 Division 2021-11-17 2021-11-17

Publications (2)

Publication Number Publication Date
KR20230072382A KR20230072382A (en) 2023-05-24
KR102626873B1 true KR102626873B1 (en) 2024-01-17

Family

ID=86540714

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220059879A Active KR102626873B1 (en) 2021-11-17 2022-05-17 Electrode deposition method using HiPIMS

Country Status (1)

Country Link
KR (1) KR102626873B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003806A1 (en) 2013-07-09 2015-01-15 Oerlikon Trading Ag, Trübbach Target for the reactive sputter deposition of electrically insulating layers
US20190136363A1 (en) 2016-04-22 2019-05-09 Oerlikon Surface Solutions Ag, Pfäffikon TICN Having Reduced Growth Defects by Means of HIPIMS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440495B1 (en) 2000-08-03 2002-08-27 Applied Materials, Inc. Chemical vapor deposition of ruthenium films for metal electrode applications
KR100719805B1 (en) 2005-12-30 2007-05-18 주식회사 아이피에스 Capacitor electrode deposition method with transition metal added

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003806A1 (en) 2013-07-09 2015-01-15 Oerlikon Trading Ag, Trübbach Target for the reactive sputter deposition of electrically insulating layers
US20160141157A1 (en) 2013-07-09 2016-05-19 Oerlikon Surface Solutions Ag, Trübbach Target for the reactive sputter deposition of electrically insulating layers
US20190136363A1 (en) 2016-04-22 2019-05-09 Oerlikon Surface Solutions Ag, Pfäffikon TICN Having Reduced Growth Defects by Means of HIPIMS

Also Published As

Publication number Publication date
KR20230072382A (en) 2023-05-24

Similar Documents

Publication Publication Date Title
US6066826A (en) Apparatus for plasma treatment of moving webs
EP2727658B1 (en) A method of coating a surface with a water and oil repellant polymer layer
US4039416A (en) Gasless ion plating
US4420386A (en) Method for pure ion plating using magnetic fields
JP4452333B2 (en) Surface coating method using apparatus equipped with sputter electrode
CN102912306B (en) High-power pulsed magnetron sputtering equipment and process automatically controlled by computer
CN108914076A (en) Utilize the method for sputtering of the technique of precondition plasma
US20060191783A1 (en) Method and apparatus for forming adherent metal film on a polymer substrate
JP2023153825A5 (en)
CN108781500A (en) plasma generator
EP0310656B1 (en) Surface treatment of polymers
USRE30401E (en) Gasless ion plating
US20040058088A1 (en) Processing method for forming thick film having improved adhesion to surface-modified substrate and apparatus thereof
KR102626873B1 (en) Electrode deposition method using HiPIMS
KR101055396B1 (en) Solid element plasma ion implantation method and apparatus
US20040194988A1 (en) EMI-shielding assembly and method for making same
CN1656244A (en) Sputter method or device for the production of natural voltage optimized coatings
KR101020773B1 (en) Arc ion plating device
JPWO2008032627A1 (en) Dry etching method
EP4071269A1 (en) Coating equipment
CN115332036A (en) Ion implantation device and method
JP4138971B2 (en) Surface treatment method for plastic substrate and coated plastic article
JP4370949B2 (en) Deposition method
JPS6350463A (en) Method and apparatus for ion plating
CN115323335B (en) Magnetron sputtering system

Legal Events

Date Code Title Description
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20220517

Patent event code: PA01071R01D

Filing date: 20211117

Application number text: 1020210158131

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20230510

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20231017

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20240115

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20240115

End annual number: 3

Start annual number: 1

PG1601 Publication of registration