[go: up one dir, main page]

KR102620032B1 - 전원 장치 - Google Patents

전원 장치 Download PDF

Info

Publication number
KR102620032B1
KR102620032B1 KR1020217039348A KR20217039348A KR102620032B1 KR 102620032 B1 KR102620032 B1 KR 102620032B1 KR 1020217039348 A KR1020217039348 A KR 1020217039348A KR 20217039348 A KR20217039348 A KR 20217039348A KR 102620032 B1 KR102620032 B1 KR 102620032B1
Authority
KR
South Korea
Prior art keywords
battery
voltage
power
current
discharge time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020217039348A
Other languages
English (en)
Other versions
KR20220004163A (ko
Inventor
히데노부 타지마
Original Assignee
도시바 미쓰비시덴키 산교시스템 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 filed Critical 도시바 미쓰비시덴키 산교시스템 가부시키가이샤
Publication of KR20220004163A publication Critical patent/KR20220004163A/ko
Application granted granted Critical
Publication of KR102620032B1 publication Critical patent/KR102620032B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other DC sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from DC input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

전원 장치는, 인버터(10)와, 전압 변환기(7)와, 콘덴서(9)와, 전류 검출기(30)와, 카운터(64)와, 제어부(18)를 구비한다. 인버터(10)는, 직류 전력을 교류 전력으로 변환하여 부하에 공급한다. 전압 변환기(7)는, 배터리(23)로부터의 직류 전압을 전압 변환한다. 콘덴서(9)는, 전압 변환기(7)로부터의 직류 전압을 평활화하여 인버터(10)에 입력한다. 전류 검출기(30)는, 배터리(23)로부터 전압 변환기(7)에 흐르는 배터리 전류를 검출한다. 카운터(64)는, 배터리(23)의 방전 시간을 계측한다. 제어부(18)는, 계측된 배터리(23)의 방전 시간이 방전 허용 시간을 초과했을 때에, 전압 변환기(7)를 정지시키도록 구성된다. 제어부(18)는, 전류 검출기(30)의 출력에 근거하여, 배터리(23)의 방전시에 배터리 전류가 임계값을 초과했을 때에는, 배터리 전류가 커질수록 방전 허용 시간이 짧아지도록 방전 허용 시간을 설정한다.

Description

전원 장치
본 개시는, 전원 장치에 관한 것이다.
일본 특허공개 제2011-72155호 공보(특허문헌 1)에는, 교류 전원이 정상시에는, 교류 전력을 직류 전력으로 변환하고, 또한 직류 전력을 교류 전력으로 변환하는 전력 변환기를 거쳐 부하에 교류 전력을 공급하고, 또한 배터리를 충전하는 무정전 전원 장치가 개시된다. 무정전 전원 장치는, 교류 전원이 정전시에는, 전력 변환기를 거쳐 배터리의 방전 전력을 부하에 공급하도록 구성된다. 무정전 전원 장치는, 배터리의 방전 전압이 방전 종지 전압 이하가 되었을 때에, 배터리의 방전을 정지시킨다.
[특허문헌 1] 일본 특허공개 제2011-72155호 공보
상기 무정전 전원 장치에 있어서, 전력 변환기는, 배터리의 직류 전압을 전압 변환하는 전압 변환기(승강압 초퍼)와, 전압 변환기에 의해 생성된 직류 전압을 평활화하기 위한 콘덴서를 갖고 있다. 배터리의 방전 중에는, 전압 변환기에 포함되는 스위칭 소자의 스위칭 제어에 따라 콘덴서의 충방전이 반복되는 것으로, 콘덴서에는 주기적으로 증감하는 리플 전류가 흐른다. 이 리플 전류가 발생하면, 콘덴서의 내부에서는, ESR(Equivalent Series Resistance:등가 직렬 저항)에 발생하는 전력 손실에 의해 콘덴서가 발열한다.
배터리의 방전 중에 부하에 공급되는 전력이 증가하면, 콘덴서에 충방전되는 전력도 증가하기 때문에, 콘덴서의 리플 전류도 커진다. 그 결과, 콘덴서의 ESR에 있어서의 발열이 증대하여 콘덴서의 온도가 상승하는 것에 의해, 콘덴서의 성능 열화를 촉진시킬 가능성이 있다.
본 개시는 이러한 과제를 해결하기 위해 이루어진 것으로서, 그 목적은, 전압 변환기로부터의 직류 전압을 평활화하는 콘덴서를 구비한 전원 장치에 있어서, 콘덴서의 온도 상승을 억제하는 것이다.
본 개시에 따른 전원 장치는, 인버터와, 전압 변환기와, 콘덴서와, 전류 검출기와, 카운터와, 제어부를 구비한다. 인버터는, 직류 전력을 교류 전력으로 변환하여 부하에 공급한다. 전압 변환기는, 배터리로부터의 직류 전압을 전압 변환한다. 콘덴서는, 전압 변환기로부터의 직류 전압을 평활화하여 인버터에 입력한다. 전류 검출기는, 배터리로부터 전압 변환기에 흐르는 배터리 전류를 검출한다. 카운터는, 배터리의 방전 시간을 계측한다. 제어부는, 전압 변환기를 제어한다. 제어부는, 계측된 배터리의 방전 시간이 방전 허용 시간을 초과했을 때에, 전압 변환기를 정지시키도록 구성된다. 제어부는, 전류 검출기의 출력에 근거하여, 배터리의 방전시에 배터리 전류가 임계값을 초과했을 때에는, 배터리 전류가 커질수록 방전 허용 시간이 짧아지도록 방전 허용 시간을 설정한다.
본 개시에 의하면, 전압 변환기로부터의 직류 전압을 평활화하는 콘덴서를 구비한 전원 장치에 있어서, 콘덴서의 온도 상승을 억제할 수 있다.
도 1은 실시의 형태에 따른 전원 장치가 적용되는 무정전 전원 장치의 구성을 나타내는 회로 블럭도이다.
도 2는 상용 교류 전원의 정전시에 있어서의 전력의 흐름을 설명하기 위한 도면이다.
도 3은 도 1에 나타낸 쌍방향 초퍼의 구성예를 나타내는 회로 블럭도이다.
도 4는 상용 교류 전원의 정전시에 있어서의 쌍방향 초퍼의 동작을 설명하기 위한 파형도이다.
도 5는 도 1에 나타낸 쌍방향 초퍼를 제어하는 제어부의 구성을 나타내는 회로 블럭도이다.
도 6은 배터리 전류의 평균값과 방전 허용 시간의 관계를 모식적으로 나타내는 도면이다.
도 7은 실시의 형태 2에 따른 무정전 전원 장치에 있어서의 쌍방향 초퍼를 제어하는 제어부의 구성을 나타내는 회로 블럭도이다.
도 8은 배터리의 방전 특성의 일례를 모식적으로 나타내는 도면이다.
이하, 본명시된 실시의 형태에 대해 도면을 참조하여 상세하게 설명한다. 또, 이하에서는, 도면 중의 동일 또는 상당하는 부분에는 동일 부호를 부여하고 그 설명은 원칙적으로 반복하지 않는 것으로 한다.
[실시의 형태 1]
(무정전 전원 장치의 구성)
도 1은, 실시의 형태에 따른 전원 장치가 적용되는 무정전 전원 장치의 구성을 나타내는 회로 블럭도이다. 무정전 전원 장치(1)는, 상용 교류 전원(21)으로부터의 삼상 교류 전력을 직류 전력으로 일단 변환하고, 그 직류 전력을 삼상 교류 전력으로 변환하여 부하(22)에 공급하는 것이다. 도 1에서는, 도면 및 설명의 간단화를 위해, 삼상(U상, V상, W상) 중 일상(예를 들면 U상)에 대응하는 부분의 회로만이 나타나고 있다.
도 1에 있어서, 무정전 전원 장치(1)는, 교류 입력 단자 T1, 교류 출력 단자 T2 및 배터리 단자 T3을 구비한다. 교류 입력 단자 T1은, 상용 교류 전원(21)으로부터 상용 주파수의 교류 전력을 받는다. 교류 출력 단자 T2는, 부하(22)에 접속된다. 부하(22)는, 교류 전력에 의해 구동된다. 배터리 단자 T3은, 배터리(23)에 접속된다. 배터리(23)는, 직류 전력을 저장한다.
무정전 전원 장치(1)는, 전자 접촉기(2, 8, 14, 16), 전류 검출기(3, 11), 콘덴서(4, 9, 13), 리액터(5, 12), 컨버터(6), 쌍방향 초퍼(7), 인버터(10), 반도체 스위치(15), 조작부(17), 및 제어 장치(18)를 더 구비한다.
전자 접촉기(2) 및 리액터(5)는, 교류 입력 단자 T1과 컨버터(6)의 입력 노드 사이에 직렬 접속된다. 콘덴서(4)는, 전자 접촉기(2)와 리액터(5) 사이의 노드 N1에 접속된다. 전자 접촉기(2)는, 무정전 전원 장치(1)의 사용시에 온되고, 예를 들어 무정전 전원 장치(1)의 유지관리시에 오프된다.
노드 N1에 나타나는 교류 입력 전압 Vi의 순간값은, 제어 장치(18)에 의해 검출된다. 교류 입력 전압 Vi의 순간값에 근거하여, 정전 발생의 유무 등이 판별된다. 전류 검출기(3)는, 노드 N1에 흐르는 교류 입력 전류 Ii를 검출하고, 그 검출값을 나타내는 신호 Iif를 제어 장치(18)에 부여한다.
콘덴서(4) 및 리액터(5)는, 저역 통과 필터를 구성하고, 상용 교류 전원(21)으로부터 컨버터(6)에 상용 주파수의 교류 전력을 통과시키고, 컨버터(6)에서 발생하는 스위칭 주파수의 신호가 상용 교류 전원(21)에 통과하는 것을 방지한다.
컨버터(6)는, 제어 장치(18)에 의해 제어되고, 상용 교류 전원(21)으로부터 교류 전력이 공급되고 있는 통상시에는, 삼상 교류 전력을 직류 전력으로 변환(순서 변환)하여 직류 라인 L1에 출력한다. 상용 교류 전원(21)으로부터의 교류 전력의 공급이 정지된 정전시에는, 컨버터(6)의 운전은 정지된다. 컨버터(6)의 출력 전압은, 소망의 값으로 제어 가능하게 되어 있다.
콘덴서(9)는, 직류 라인 L1에 접속되고 직류 라인 L1의 전압을 평활화시킨다. 직류 라인 L1에 나타나는 직류 전압 VDC의 순간값은, 제어 장치(18)에 의해 검출된다. 직류 라인 L1은 쌍방향 초퍼(7)의 고전압측 노드에 접속되고, 쌍방향 초퍼(7)의 저전압측 노드는 전자 접촉기(8)를 거쳐 배터리 단자 T3에 접속된다.
전자 접촉기(8)는, 무정전 전원 장치(1)의 사용시에는 온되고, 예를 들어 무정전 전원 장치(1) 및 배터리(23)의 유지관리시에 오프된다. 배터리 단자 T3에 나타나는 배터리(23)의 단자간 전압(이하, 「배터리 전압」이라고도 부름) VB의 순간값은, 제어 장치(18)에 의해 검출된다.
쌍방향 초퍼(7)는, 제어 장치(18)에 의해 제어되고, 상용 교류 전원(21)으로부터 교류 전력이 공급되고 있는 통상시에는, 컨버터(6)에 의해 생성된 직류 전력을 배터리(23)에 저장하고, 정전시에는, 배터리(23)의 직류 전력을, 직류 라인 L1을 거쳐 인버터(10)에 공급한다. 쌍방향 초퍼(7)는 「전압 변환기」의 일 실시예에 대응한다.
쌍방향 초퍼(7)는, 직류 전력을 배터리(23)에 저장하는 경우는, 직류 라인 L1의 직류 전압 VDC를 강압하여 배터리(23)에 부여한다. 또, 쌍방향 초퍼(7)는, 배터리(23)의 직류 전력을 인버터(10)에 공급하는 경우는, 배터리 전압 VB를 승압하여 직류 라인 L1에 출력한다. 직류 라인 L1은, 인버터(10)의 입력 노드에 접속되고 있다.
인버터(10)는, 제어 장치(18)에 의해 제어되고, 컨버터(6) 또는 쌍방향 초퍼(7)로부터 직류 라인 L1을 거쳐 공급되는 직류 전력을 상용 주파수의 교류 전력으로 변환하여 출력한다. 즉, 인버터(10)는, 통상시에는 컨버터(6)로부터 직류 라인 L1을 거쳐 공급되는 직류 전력을 교류 전력으로 변환하고, 정전시에는 배터리(23)로부터 쌍방향 초퍼(7)를 거쳐 공급되는 직류 전력을 교류 전력으로 변환한다. 인버터(10)의 출력 전압은, 소망의 값으로 제어 가능하게 되어 있다.
인버터(10)의 출력 노드(10a)는 리액터(12)의 한쪽 단자에 접속되고, 리액터(12)의 다른 쪽 단자(노드 N2)는 전자 접촉기(14)를 거쳐 교류 출력 단자 T2에 접속된다. 콘덴서(13)는, 노드 N2에 접속된다.
전류 검출기(11)는, 인버터(10)의 출력 전류 Io의 순간값을 검출하고, 그 검출값을 나타내는 신호 Iof를 제어 장치(18)에 부여한다. 노드 N2에 나타나는 교류 출력 전압 Vo의 순간값은, 제어 장치(18)에 의해 검출된다.
리액터(12) 및 콘덴서(13)는, 저역 통과 필터를 구성하고, 인버터(10)에서 생성된 상용 주파수의 교류 전력을 교류 출력 단자 T2에 통과시키고, 인버터(10)에서 발생하는 스위칭 주파수의 신호가 교류 출력 단자 T2에 통과하는 것을 방지한다. 인버터(10), 리액터(12), 및 콘덴서(13)는 역변환기를 구성한다.
전자 접촉기(14)는, 제어 장치(18)에 의해 제어되고, 인버터(10)에 의해 생성된 교류 전력을 부하(22)에 공급하는 인버터 급전 모드시에는 온되고, 상용 교류 전원(21)으로부터의 교류 전력을 부하(22)에 공급하는 바이패스 급전 모드시에는 오프된다.
반도체 스위치(15)는, 사이리스터를 포함하고, 교류 입력 단자 T1과 교류 출력 단자 T2 사이에 접속된다. 전자 접촉기(16)는, 반도체 스위치(15)에 병렬 접속된다. 반도체 스위치(15)는, 제어 장치(18)에 의해 제어되고, 통상은 오프되고, 인버터(10)가 고장난 경우는 순간적으로 온하여, 상용 교류 전원(21)으로부터의 교류 전력을 부하(22)에 공급한다. 반도체 스위치(15)는, 온하고 나서 소정 시간 경과 후에 오프한다.
리액터(12) 및 콘덴서(13)는, 저역 통과 필터를 구성하고, 인버터(10)에서 생성된 상용 주파수의 교류 전력을 교류 출력 단자 T2에 통과시키고, 인버터(10)에서 발생하는 스위칭 주파수의 신호가 교류 출력 단자 T2에 통과하는 것을 방지한다.
전자 접촉기(14)는, 제어 장치(18)에 의해 제어되고, 인버터 급전 모드시에는 온되고, 바이패스 급전 모드시에는 오프된다.
전자 접촉기(16)는, 인버터 급전 모드시에는 오프되고, 바이패스 급전 모드시에는 온된다. 또, 전자 접촉기(16)는, 인버터(10)가 고장난 경우에 온하고, 상용 교류 전원(21)으로부터의 교류 전력을 부하(22)에 공급한다. 즉, 인버터(10)가 고장난 경우는, 반도체 스위치(15)가 순간적으로 소정 시간만 온하고, 또한 전자 접촉기(16)가 온한다. 이것은, 반도체 스위치(15)가 과열되어 파손하는 것을 방지하기 위함이다.
조작부(17)는, 무정전 전원 장치(1)의 사용자에 의해 조작되는 복수의 버튼, 여러 가지의 정보를 표시하는 화상 표시부 등을 포함한다. 사용자가 조작부(17)를조작하는 것에 의해, 무정전 전원 장치(1)의 전원을 온 및 오프하거나 바이패스 급전 모드 및 인버터 급전 모드 중 어느 한쪽의 모드를 선택하는 것이 가능해지고 있다.
제어 장치(18)는, 예를 들면 마이크로컴퓨터 등으로 구성하는 것이 가능하다. 일례로서 제어 장치(18)는, 도시하지 않는 메모리 및 CPU(Central Processing Unit)를 내장하고, 메모리에 미리 저장된 프로그램을 CPU가 실행하는 것에 의한 소프트웨어 처리에 의해, 후술하는 제어 동작을 실행할 수 있다. 또는, 해당 제어 동작의 일부 또는 전부에 대해, 소프트웨어 처리를 대신하여, 내장된 전용 전자 회로 등을 이용한 하드웨어 처리에 의해 실현되는 것도 가능하다.
제어 장치(18)는, 조작부(17)로부터의 신호, 교류 입력 전압 Vi, 교류 입력 전류 Ii, 직류 전압 VDC, 배터리 전압 VB, 교류 출력 전류 Io, 및 교류 출력 전압 Vo 등에 근거하여 무정전 전원 장치(1) 전체를 제어한다. 즉, 제어 장치(18)는, 교류 입력 전압 Vi의 검출값에 근거하여 정전이 발생했는지 여부를 검출하고, 교류 입력 전압 Vi의 위상에 동기하여 컨버터(6) 및 인버터(10)를 제어한다.
또한 제어 장치(18)는, 상용 교류 전원(21)으로부터 교류 전력이 공급되고 있는 통상시에는, 직류 전압 VDC가 소망의 참조 전압 VDCr로 되도록 컨버터(6)를 제어하고, 상용 교류 전원(21)으로부터의 교류 전력의 공급이 정지된 정전시에는, 컨버터(6)의 운전을 정지시킨다.
또한 제어 장치(18)는, 통상시에는, 배터리 전압 VB가 소망의 참조 전압 VBr로 되도록 쌍방향 초퍼(7)를 제어하고, 정전시에는, 직류 전압 VDC가 소망의 참조 전압 VDCr로 되도록 쌍방향 초퍼(7)를 제어한다.
다음에, 이 무정전 전원 장치(1)의 동작에 대해 설명한다. 상용 교류 전원(21)으로부터 교류 전력이 공급되고 있는 통상시에 있어서, 인버터 급전 모드가 선택되면, 반도체 스위치(15) 및 전자 접촉기(16)가 오프하고, 또한, 전자 접촉기(2, 8, 14)가 온한다.
상용 교류 전원(21)으로부터 공급되는 교류 전력은, 컨버터(6)에 의해 직류 전력으로 변환된다. 컨버터(6)에 의해 생성된 직류 전력은, 쌍방향 초퍼(7)에 의해 배터리(23)에 저장할 수 있는 것과 동시에, 인버터(10)에 공급된다. 인버터(10)는, 컨버터(6)로부터 공급되는 직류 전력을 교류 전력으로 변환하여 부하(22)에 공급한다. 부하(22)는, 인버터(10)로부터 공급되는 교류 전력에 의해 구동된다.
도 2는, 상용 교류 전원(21)의 정전시에 있어서의 전력의 흐름을 설명하기 위한 도면이다. 상용 교류 전원(21)으로부터의 교류 전력의 공급이 정지되면, 즉 정전이 발생하면, 컨버터(6)의 운전이 정지되고, 배터리(23)의 직류 전력이 쌍방향 초퍼(7)에 의해 인버터(10)에 공급된다. 인버터(10)는, 쌍방향 초퍼(7)로부터의 직류 전력을 교류 전력으로 변환하여 부하(22)에 공급한다. 따라서, 배터리(23)에 직류 전력이 저장되어 있는 기간에, 부하(22)의 운전을 계속할 수 있다.
구체적으로는, 제어 장치(18)는, 배터리 전압 VB를 승압하여 직류 라인 L1에 출력하도록, 쌍방향 초퍼(7)를 제어한다. 제어 장치(18)는, 또한, 직류 라인 L1로부터 공급되는 직류 전력을 상용 주파수의 삼상 교류 전력으로 변환하도록, 인버터(10)를 제어한다. 이것에 의해, 도 2에 있어서 화살표로 나타내듯이, 배터리(23)의 직류 전력은 상용 주파수의 삼상 교류 전력으로 변환되고, 전자 접촉기(14)를 거쳐 부하(22)에 공급된다. 또, 컨버터(6)의 운전은 정지되어 있다. 제어 장치(18)는, 배터리(23)의 남은 용량이 미리 정해진 하한값에 이르렀을 때에는, 쌍방향 초퍼(7) 및 인버터(10)의 운전을 정지시킨다. 이것에 의해, 무정전 전원 장치(1)는 부하(22)로의 급전을 종료한다.
도 3은, 도 1에 나타낸 쌍방향 초퍼(7)의 구성예를 나타내는 회로 블럭도이다. 도 3에 있어서, 쌍방향 초퍼(7)와 인버터(10) 사이에는, 정측의 직류 라인 L1 및 부측의 직류 라인 L2가 접속되어 있다. 콘덴서(9)는, 직류 라인 L1, L2 사이에 접속되어 있다.
상용 교류 전원(21)으로부터 교류 전력이 공급되고 있는 통상시에는, 쌍방향 초퍼(7)는, 직류 라인 L1, L2 간의 직류 전압 VDC를 강압하여 배터리(23)에 부여한다. 쌍방향 초퍼(7)는, 컨버터(6)에 의해 생성된 직류 전력을 배터리(23)에 저장한다.
한편, 상용 교류 전원(21)의 정전이 발생하면, 쌍방향 초퍼(7)는, 배터리 전압 VB를 승압하여 직류 라인 L1, L2 사이에 출력한다. 쌍방향 초퍼(7)는, 배터리(23)의 직류 전력을, 직류 라인 L1을 거쳐 인버터(10)에 공급한다.
쌍방향 초퍼(7)는, 입력 노드(7a, 7b), 출력 노드(7c, 7d), IGBT(Insulated Gate Bipolar Transistor) Q1, Q2, 다이오드 D1, D2 및 리액터(25)를 갖는다. IGBT 및 다이오드는 「스위칭 소자」의 일 실시예에 대응한다. 스위칭 소자는, 임의의 자기 소호형의 반도체 스위칭 소자에 대해서, FWD(Freewheeling Diode)를 역병렬로 접속하는 것에 의해 구성할 수 있다.
입력 노드(7a)는 배터리(23)의 양극에 접속되고, 입력 노드(7b)는 배터리(23)의 음극에 접속된다. 입력 노드(7c)는 직류 라인 L1에 접속되고, 입력 노드(7d)는 직류 라인 L2에 접속된다.
IGBTQ1의 콜렉터는 직류 라인 L1에 접속되고, 그 이미터는 IGBTQ2의 콜렉터에 접속된다. IGBTQ2의 이미터는 직류 라인 L2에 접속된다. 리액터(25)는, 입력 노드(7a)와 IGBTQ1의 이미터(IGBTQ2의 콜렉터) 사이에 접속된다. IGBTQ1 및 IGBTQ2는, 제어 장치(18)에 의해, 소정의 스위칭 주파수에서 교대로 온 오프하도록 제어된다.
도 4는, 상용 교류 전원(21)의 정전시에 있어서의 쌍방향 초퍼(7)의 동작을 설명하기 위한 파형도이다. 도 4에 있어서, IB는 배터리 전류를 나타내고, I1은 다이오드 D1에 흐르는 전류를 나타낸다. I2는 인버터(10)에 입력되는 전류를 나타내고, I3은 콘덴서(9)에 흐르는 전류를 나타낸다. 도 4에는, IGBTQ2의 온 오프에 의한 전류 IB, I1~I3 및 직류 전압 VDC의 시간적 변화가 모식적으로 나타나고 있다.
상용 교류 전원(21)의 정전시에는, 쌍방향 초퍼(7)는, 배터리 전압 VB를 승압하여 직류 라인 L1, L2 사이에 출력한다. 구체적으로는, IGBTQ2가 온된 기간에 따라 배터리 전압 VB를 승압하여 직류 라인 L1, L2 사이에 출력한다. IGBTQ2의 온 오프의 1 주기 T는, IGBTQ2가 온되는 기간 tON와 IGBTQ2가 오프되는 기간 tOFF의 합에 상당한다. 1 주기 T는 스위칭 주파수에 의해 정해진다. 1 주기 T에서 차지하는 기간 tON의 비율은 「온 듀티」라고도 불린다.
IGBTQ2가 온되는 기간 tON에 있어서 리액터(25)에 전력이 축적되고, IGBTQ2가 오프되는 기간 tOFF에 있어서 리액터(25)에 축적된 전력이 직류 라인 L1, L2 사이에 출력된다. IGBTQ2의 온 듀티를 크게 하는 것에 의해 리액터(25)에 축적되는 전력이 커지기 때문에, 보다 고전압을 출력할 수 있다. 따라서, IGBTQ2의 온 듀티를 제어하는 것으로, 직류 전압 VDC를, 배터리 전압 VB를 하한값으로서 IGBT의 소자 내압 등을 기본으로 설정된 상한값까지의 임의의 전압으로 제어할 수 있다. 이것에 의해, 인버터(10)의 입력 전압 VDC를 부하(22)의 동작 상태에 따라 가변되는 것이 가능해진다.
콘덴서(9)에 있어서는, IGBTQ2가 온되는 기간 tON에 있어서, 전류 I1이 제로가 되기 때문에, 콘덴서(9)에 저장되어 있는 전력이 인버터(10)에 공급된다. 이 콘덴서(9)의 방전에 의해, 콘덴서(9)의 단자간 전압(직류 전압 VDC에 상당)이 저하한다. 기간 tON에서는, 전류 I3과 전류 I2는 동일한 크기로 된다.
한편, IGBTQ2가 오프되는 기간 tOFF에 있어서는, 리액터(25)로부터 출력된 전력에 의해 콘덴서(9)가 충전되기 때문에, 콘덴서(9)의 단자간 전압(직류 전압 VDC에 상당)이 증가한다. 기간 tOFF에서는, 전류 I1은 전류 I2와 전류 I3의 합과 동일해진다.
또, 콘덴서(9)에 흐르는 전류 I3의 파형에 있어서, 면적 S1은 콘덴서(9)에 축적되는 전하에 상당하고, 면적 S2는 콘덴서(9)로부터 방전되는 전하에 상당한다. 면적 S1과 면적 S2는 기본적으로 동일해진다.
IGBTQ1, Q2의 스위칭 제어에 따라 콘덴서(9)의 충방전이 반복되는 것으로, 콘덴서(9)에는 주기적으로 증감하는 리플 전류가 흐른다. 또, 리플 전류가 증감하는 주기는, IGBTQ1, Q2의 제어 주기와 일치하고 있다. 콘덴서(9)의 내부에서는, ESR(Equivalent Series Resistance:등가 직렬 저항)과 리플 전류의 곱으로 주어지는 전압이 발생한다. 이 전압은, 전압 변동으로서 직류 전압 VDC에 중첩한다. 리플 전류가 발생하면, 콘덴서(9)의 ESR에 발생하는 전력 손실에 의해, 콘덴서(9)가 발열한다.
상용 교류 전원(21)의 정전시에는, 인버터(10)로부터 부하(22)에 공급되는 전력이 증가함에 따라, 콘덴서(9)에 충방전되는 전력도 증대한다. 쌍방향 초퍼(7)는, IGBTQ2의 온 듀티를 크게 하는 것에 의해, 리액터(25)에 축적되는 전력을 증대시킨다. 이러한 상황에서는, 콘덴서(9)의 리플 전류도 커지기 때문에, 콘덴서(9)의 ESR에 발생하는 손실이 증대한다. 이 손실에 의한 발열에 의해 콘덴서(9)의 온도가 상승하는 것에 의해, 콘덴서(9)의 성능 열화를 촉진시킬 가능성이 있다.
그래서, 본 실시의 형태에 따른 무정전 전원 장치(1)에서는, 상용 교류 전원(21)의 정전시에는, 부하(22)에 대해서, 콘덴서(9)의 온도 상승을 고려한 전력 공급을 행하는 구성으로 한다. 이것에 의해, 콘덴서(9)의 성능 열화를 억제한다.
도 5는, 도 1에 나타낸 쌍방향 초퍼(7)를 제어하는 제어부의 구성을 나타내는 회로 블럭도이다. 제어부는, 제어 장치(18)에 포함되어 있다. 도 5에 있어서, 무정전 전원 장치(1)는, 전류 검출기(30) 및 전압 검출기(32, 34)를 더 구비한다.
전류 검출기(30)는, 배터리(23)에 흐르는 전류(이하, 「배터리 전류」라고도 부름) IB의 순간값을 검출하고, 그 검출값을 나타내는 신호 IB를 제어부에 부여한다. 전압 검출기(32)는, 직류 라인 L1, L2 사이에 나타나는 직류 전압 VDC의 순간값을 검출하고, 그 검출값을 나타내는 신호 VDC를 제어부에 부여한다. 전압 검출기(34)는, 배터리 전압 VB의 순간값을 검출하고, 그 검출값을 나타내는 신호 VB를 제어부에 부여한다.
제어부는, 감산기(50), 보상기(52), 듀티비 변환 회로(54), 평균 회로(AVG)(60), 설정부(62), 방전 시간 카운터(64), 및 비교기(66)를 갖는다.
감산기(50)는, 참조 전압 VDCr과, 전압 검출기(32)에 의해 검출되는 직류 전압 VDC의 편차를 연산한다.
보상기(52)는, 직류 전압 VDC를 참조 전압 VDCr과 일치시키기 위한 제어량을 연산한다. 보상기(52)는, 예를 들면, 감산기(50)에 의해 연산된 편차의 비례항 및 적분항을 포함하는 제어 연산을 실행한다. 보상기(52)는, 산출된 제어량을, 전압 지령값으로서 듀티비 변환 회로(54)에 부여한다.
듀티비 변환 회로(54)는, 보상기(52)로부터 주어지는 전압 지령값과, 전압 검출기(32)로부터의 신호 VDC와, 전압 검출기(34)로부터의 신호 VB에 근거하여, 직류 전압 VDC를 전압 지령값으로 설정하기 위한 듀티비를 연산한다. 듀티비 변환 회로(54)는, 그 연산한 듀티비에 근거하여, 쌍방향 초퍼(7)의 IGBTQ1, Q2를 온 오프하기 위한 제어 신호 G1, G2를 생성한다. 듀티비 변환 회로(54)는, 생성한 제어 신호 G1, G2를, IGBTQ1, Q2에 각각 출력한다.
평균 회로(60)는, 전류 검출기(30)로부터의 신호 IB를 받는다. 평균 회로(60)는, 신호 IB에 근거하여, 쌍방향 초퍼(7)의 1 스위칭 주기 T에 있어서의 배터리 전류 IB의 평균값 IBAVG를 연산하고, 그 연산한 평균값 IBAVG를 설정부(62)에 출력한다.
설정부(62)는, 평균 회로(60)로부터 주어지는 평균값 IBAVG에 근거하여, 방전 허용 시간 DTlim을 설정한다. 방전 허용 시간 DTlim는, 상용 교류 전원(21)의 정전시에 있어서의, 배터리(23)의 방전 시간의 한계값이다. 상세하게는, 설정부(62)는, 도 6에 나타나는 배터리 전류의 평균값 IBAVG와 방전 허용 시간 DTlim의 관계에 따라, 방전 허용 시간 DTlim을 설정한다.
도 6은, 배터리 전류의 평균값 IBAVG와 방전 허용 시간 DTlim의 관계를 모식적으로 나타내는 도면이다. 도 6에 있어서, 가로축은 배터리 전류의 평균값 IBAVG를 나타내고, 세로축은 방전 허용 시간 DTlim을 나타낸다.
도 6을 참조하여, 배터리 전류의 평균값 IBAVG가 미리 설정한 임계값 Ith를 초과하면, 평균값 IBAVG가 클수록, 방전 허용 시간 DTlim는 짧아진다. 이것은, 부하(22)에 공급되는 전력이 증가함에 따라, 평균값 IBAVG도 커지는 것에 근거하고 있다. 상세하게는, 쌍방향 초퍼(7)의 IGBTQ2가 온되는 기간 tON에 있어서, 배터리 전류 IB는, 리액터(25) 및 다이오드 D1을 경유하여, 콘덴서(9)에 유입되고, 또한, 인버터(10)에 입력된다. 그 때문에, 부하(22)에 공급되는 전력이 증가하여 인버터(10)에 입력되는 전류 I2가 커짐에 따라, 배터리 전류 IB도 커진다. 따라서, 제어부는, 배터리 전류의 평균값 IBAVG를 모니터링하는 것에 의해, 부하(22)에 공급되는 전력의 증가를 판정한다.
도 6의 관계는, 평균값 IBAVG를 갖는 배터리 전류 IB가 연속하여 흘렀을 경우에, ESR에서 발생하는 손실에 의해 상승한 콘덴서(9)의 온도가, 콘덴서(9)의 성능 열화를 일으키게 하는 소정의 허용 온도를 초과하지 않도록 설정된다. 도 6의 관계에서는, 평균값 IBAVG가 임계값 Ith 미만일 때의 방전 시간은 일정하게 하고 있다. 바꾸어 말하면, 임계값 Ith는, 임계값 Ith와 동일한 평균값 IBAVG를 갖는 배터리 전류 IB를 연속하여 흐르게 해도, 콘덴서(9)의 온도가 허용 온도를 초과하는 일이 없도록 설정된다.
설정부(62)는, 도 6에 나타나는 배터리 전류의 평균값 IBAVG와 방전 허용 시간 DTlim의 관계를 미리 방전 허용 시간 설정용 맵으로서 도시하지 않는 기억 영역에 저장해 두고, 평균 회로(60)로부터 평균값 IBAVG가 주어지면, 당해 맵을 이용하여 방전 허용 시간 DTlim을 설정한다.
또, 도 6에 나타나는 관계는, 미리 배터리 전류 IB를 연속해서 흘렸을 때의 콘덴서(9)의 온도를 검출하고, 그 검출한 온도와 콘덴서(9)의 성능 열화의 온도 특성에 근거하여 실험적으로 구해둘 수 있다. 또는, 콘덴서(9)의 ESR에 발생하는 손실을 산출하는 것에 의해 해석적으로 구하도록 해도 좋다.
그리고, 설정부(62)는, 도 6의 관계에 따라 방전 허용 시간 DTlim을 설정하면, 그 설정한 방전 허용 시간 DTlim을 비교기(66)에 출력한다.
방전 시간 카운터(64)는, 배터리(23)의 방전 시간 DT를 계측한다. 상용 교류 전원(21)이 정전하여 배터리(23)의 방전이 개시되면, 방전 시간 카운터(64)는, 방전 시간 DT를 계측하고, 계측한 방전 시간 DT를 비교기(66)에 부여한다.
비교기(66)는, 방전 시간 카운터(64)에 의해 계측되는 방전 시간 DT가, 방전 허용 시간 DTlim을 초과하고 있는지 여부를 판정한다. 이 때, 방전 시간 DT가 방전 허용 시간 DTlim을 초과하지 않은 경우에는, 비교기(66)는, 콘덴서(9)의 온도가 소정의 허용 온도를 하회하고 있고, 콘덴서(9)의 성능이 열화할 가능성이 낮다고 판단한다. 그리고, 비교기(66)는, L(논리 로우) 레벨로 비활성화된 신호 STP를 듀티비 변환 회로(54)로 출력한다. 신호 STP는, 쌍방향 초퍼(7)의 동작을 정지시키기 위한 신호이다.
한편, 방전 시간 DT가 방전 허용 시간 DTlim을 초과하고 있는 경우에는, 비교기(66)는, 콘덴서(9)의 온도가 소정의 허용 온도 이상이며, 콘덴서(9)의 성능이 열화할 가능성이 높다고 판단한다. 그리고, 비교기(66)는, H(논리 하이) 레벨로 활성화된 신호 STP를 듀티비 변환 회로(54)로 출력한다.
듀티비 변환 회로(54)는, 비교기(66)로부터 신호 STP를 받으면, IGBTQ1, Q2를 오프시키기 위한 제어 신호 GB를 생성하여 IGBTQ1, Q2에 출력한다. 제어 신호 GB를 받아 IGBTQ1, Q2가 모두 오프하는 것에 의해 쌍방향 초퍼(7)의 승압 동작이 정지하면, 배터리(23)의 방전도 정지된다.
도 6의 관계에 따라, 배터리 전류의 평균값 IBAVG가 임계값 Ith를 초과하면, 평균값 IBAVG가 클수록, 방전 허용 시간 DTlim는 짧아진다. 이것에 의해, 고부하시에는, 평균값 IBAVG가 커지기 때문에, 방전 시간 DT가 짧아진다. 그 결과, 콘덴서(9)의 온도 상승을 억제하여 콘덴서(9)의 성능 열화를 억제할 수 있다.
또, 방전 허용 시간 설정용 맵은, 도 6에 나타낸 것에 한정하지 않고, 배터리 전류의 평균값 IBAVG가 클수록, 방전 허용 시간 DTlim가 짧아지고 있으면 좋다.
이상 설명한 바와 같이, 실시의 형태 1에 따른 전원 장치에 있어서는, 배터리(23)의 직류 전압을 전압 변환하는 쌍방향 초퍼(7) 및, 쌍방향 초퍼(7)의 출력 전압을 평활화하여 인버터(10)에 출력하는 콘덴서(9)를 구비한 구성에 있어서, 배터리 전류가 임계값을 초과했을 때에는, 배터리 전류가 커질수록 방전 허용 시간을 짧게 한다. 이것에 의해, 콘덴서(9)에 있어서의 전력 손실이 커질수록, 배터리(23)의 방전 시간이 단축되기 때문에, 콘덴서(9)의 온도 상승을 억제하여 콘덴서(9)의 성능 열화를 억제할 수 있다.
[실시의 형태 2]
도 7은, 실시의 형태 2에 따른 무정전 전원 장치에 있어서의 쌍방향 초퍼(7)를 제어하는 제어부의 구성을 나타내는 회로 블럭도이다. 제어부는, 제어 장치(18)에 포함되어 있다.
도 7에 나타내는 제어부는, 도 5에 나타낸 제어부에 대해서, 비교기(70), 타이머(72) 및 논리합 회로(74)를 추가한 것이다. 따라서, 공통되는 부분에 대한 상세한 설명은 생략한다.
비교기(70)는, 전압 검출기(34)에 의해 검출되는 배터리 전압 VB가, 미리 설정된 방전 종지 전압 VL를 하회하고 있는지 여부를 판정한다. 방전 종지 전압 VL은, 안전하게 방전을 행할 수 있는 방전 전압의 최저치에 근거하여 설정할 수 있다. 또, 최저치를 지나 방전하면, 배터리(23)의 축전 성능의 저하로 이어질 우려가 있다.
도 8은, 배터리(23)의 방전 특성의 일례를 모식적으로 나타내는 도면이다. 도 8에 있어서, 가로축은 방전 시간을 나타내고, 세로축은 배터리 전압 VB를 나타낸다.
도 8에 나타내는 바와 같이, 상용 교류 전원(21)의 정전시에는, 배터리(23)를 방전하여 부하(22)에 전력이 공급된다. 배터리(23)의 방전이 진행함에 따라, 배터리 전압 VB가 서서히 저하한다. 배터리(23)가 어느 정도까지 방전하면, 배터리 전압 VB는 급격하게 저하한다. 도면 중의 파형 k1~k3은, 배터리(23)의 방전 전류의 크기가 서로 다르다. 파형 k1이 가장 방전 전류가 크고, 파형 k3이 가장 방전 전류가 작다. 배터리(23)의 방전 전류가 커지면, 배터리 전압 VB의 저하가 빨라진다.
상용 교류 전원(21)의 정전시에 부하(22)에 공급되는 전류가 증가함에 따라, 상술한 바와 같이, 콘덴서(9)의 리플 전류가 증가하는 것과 동시에, 배터리(23)의 방전 전류가 증가한다. 배터리(23)의 방전 전류가 커지면, 배터리 전압 VB의 저하가 빨라진다. 그 때문에, 방전 시간 DT가 방전 허용 시간 DTlim에 도달하기까지 배터리 전압 VB가 방전 종지 전압 VL에 도달하는 경우가 일어날 수 있다.
그 때문에, 실시의 형태 2에서는, 배터리(23)의 방전 시간 DT가, 배터리 전류의 평균값 IBAVG에 따라 설정된 방전 허용 시간 DTlim을 초과했을 때, 또는, 배터리 전압 VB가 방전 종지 전압 VL를 하회했을 때에, 쌍방향 초퍼(7)의 승압 동작을 정지하는 것으로써, 배터리(23)의 방전을 정지시키는 구성으로 한다.
구체적으로는, 도 7에 있어서, 비교기(70)는, 배터리 전압 VB가 방전 종지 전압 VL보다 높은 경우, L 레벨의 신호 DET를 출력한다. 배터리 전압 VB가 저하하고, 배터리 전압 VB가 방전 종지 전압 VL를 하회하면, 비교기(70)는, H 레벨로 활성화된 신호 DET를 출력한다. 타이머(72)는, 비교기(70)의 출력 신호 DET가 L 레벨로부터 H 레벨로 천이하면, 신호 DET가 H 레벨로 유지되는 시간을 계측한다. 타이머(72)에 의한 계측값이 소정의 임계값에 이르렀을 때, H 레벨의 신호 DET를 논리합 회로(74)의 한쪽 단자에 입력한다.
논리합 회로(74)의 다른 쪽 단자에는, 비교기(66)의 출력 신호가 입력된다. 논리합 회로(74)는, 타이머(72)의 출력 신호 DET와 비교기(66)의 출력 신호 STP의 논리합에 근거하여, 신호 STP1을 생성하고, 생성한 신호 STP1을 듀티비 변환 회로(54)로 출력한다. 신호 STP1은, 쌍방향 초퍼(7)의 동작을 정지시키기 위한 신호이다.
구체적으로는, 논리합 회로(74)는, 비교기(66)의 출력 신호 STP가 H 레벨일 때, 또는, 타이머(72)의 출력 신호 DET가 H 레벨일 때에, H 레벨로 활성화된 신호 STP1을 출력한다. 즉, 논리합 회로(74)는, 방전 시간 DT가 방전 허용 시간 DTlim을 초과하고 있는 경우, 또는, 배터리 전압 VB가 방전 종지 전압 VL를 하회하고 있는 경우에, H 레벨의 신호 STP1을 듀티비 변환 회로(54)에 출력하도록 구성된다.
듀티비 변환 회로(54)는, 논리합 회로(74)로부터 신호 STP1을 받으면, IGBTQ1, Q2를 오프시키기 위한 제어 신호 GB를 생성하여 IGBTQ1, Q2에 출력한다. 제어 신호 GB를 받아 IGBTQ1, Q2가 모두 오프하는 것에 의해 쌍방향 초퍼(7)의 승압 동작이 정지하면, 배터리(23)의 방전도 정지된다.
이상 설명한 바와 같이, 실시의 형태 2에 따른 전원 장치에 있어서는, 배터리 전류가 임계값을 초과했을 때에는, 배터리 전류가 커질수록 방전 허용 시간이 짧아지도록 방전 허용 시간을 설정하고, 또한, 배터리(23)의 방전 시간이 방전 허용 시간을 초과했을 때, 또는, 배터리 전압이 방전 종지 전압을 하회했을 때에 쌍방향 초퍼(7)를 정지하는 것에 의해, 배터리(23)의 방전을 정지시킨다.
이에 따르면, 배터리(23)의 방전에 의한 콘덴서(9)의 온도 상승을 억제하는 것과 동시에, 배터리(23)의 과방전을 억제할 수 있다. 그 결과, 콘덴서(9) 및 배터리(23)의 성능 열화를 억제할 수 있다.
이번 개시된 실시의 형태는 모든 점에서 예시이며 제한적인 것은 아니라고 생각되어야 하는 것이다. 본 발명의 범위는 상기한 설명이 아니라 청구의 범위에 의해 나타나고, 청구의 범위와 균등의 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.
1 : 무정전 전원 장치 2, 8, 14, 16 : 전자 접촉기
3, 11, 30 : 전류 검출기 4, 9, 13 : 콘덴서
5, 12, 25 : 리액터 6 : 컨버터
7 : 쌍방향 초퍼 10 : 인버터
15 : 반도체 스위치 17 : 조작부
18 : 제어 장치 21 : 상용 교류 전원
22 : 부하 23 : 배터리
32, 34 : 전압 검출기 50 : 감산기
52 : 보상기 54 : 듀티비 변환 회로
60 : 평균 회로 62 : 설정부
64 : 방전 시간 카운터 66, 70 : 비교기
72 : 타이머 74 : 논리합 회로
T1 : 교류 입력 단자 T2 : 교류 출력 단자
T3 : 배터리 단자 L1, L2 직류 라인
Q1, Q2 : IGBT D1, D2 : 다이오드

Claims (4)

  1. 직류 전력을 교류 전력으로 변환하여 부하에 공급하는 인버터와,
    배터리로부터의 직류 전압을 전압 변환하는 전압 변환기와,
    상기 전압 변환기로부터의 직류 전압을 평활화하여 상기 인버터에 입력하는 콘덴서와,
    상기 배터리로부터 상기 전압 변환기에 흐르는 배터리 전류를 검출하는 전류 검출기와,
    상기 배터리의 방전 시간을 계측하는 카운터와,
    상기 전압 변환기를 제어하는 제어부를 구비하고,
    상기 제어부는, 계측된 상기 배터리의 방전 시간이 방전 허용 시간을 초과했을 때에, 상기 전압 변환기를 정지시키도록 구성되고,
    상기 제어부는, 상기 전류 검출기의 출력에 근거하여, 상기 배터리의 방전시에 상기 배터리 전류가 임계값을 초과했을 때에는, 상기 배터리 전류가 커질수록 상기 방전 허용 시간이 짧아지도록 상기 방전 허용 시간을 설정하는
    전원 장치.
  2. 제 1 항에 있어서,
    상기 배터리의 전압을 검출하는 전압 검출기를 더 구비하고,
    상기 제어부는, 상기 배터리의 방전 시간이 상기 방전 허용 시간을 초과했을 때, 또는, 검출된 상기 배터리의 전압이 방전 종지 전압을 하회했을 때에, 상기 전압 변환기를 정지시키는
    전원 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상용 교류 전원으로부터의 교류 전력을 직류 전력으로 변환하는 컨버터를 더 구비하고,
    상기 제어부는, 상기 상용 교류 전원의 정상시, 상기 컨버터로부터 상기 배터리에 충전하도록 상기 전압 변환기를 제어하는 한편, 상기 상용 교류 전원의 정전시, 상기 배터리로부터 상기 인버터에 방전하도록 상기 전압 변환기를 제어하는
    전원 장치.
  4. 제 1 항에 있어서,
    상기 전압 변환기는, 스위칭 소자와, 상기 스위칭 소자에 의해 스위칭된 전압이 인가되는 리액터를 포함하는 전원 장치.
KR1020217039348A 2019-12-26 2019-12-26 전원 장치 Active KR102620032B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051214 WO2021130981A1 (ja) 2019-12-26 2019-12-26 電源装置

Publications (2)

Publication Number Publication Date
KR20220004163A KR20220004163A (ko) 2022-01-11
KR102620032B1 true KR102620032B1 (ko) 2023-12-29

Family

ID=76310182

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217039348A Active KR102620032B1 (ko) 2019-12-26 2019-12-26 전원 장치

Country Status (5)

Country Link
US (1) US12224621B2 (ko)
JP (1) JP6886082B1 (ko)
KR (1) KR102620032B1 (ko)
CN (1) CN113924709A (ko)
WO (1) WO2021130981A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017130882A1 (de) * 2017-12-21 2019-06-27 Sma Solar Technology Ag Wechselrichter und Betriebsverfahren für einen Wechselrichter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010626A (ja) 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd 直流安定化電源
JP2009017662A (ja) 2007-07-04 2009-01-22 Nissan Motor Co Ltd 電力変換装置
JP2010074878A (ja) 2008-09-16 2010-04-02 Nissan Motor Co Ltd モータ駆動回路

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148043A (en) * 1989-07-25 1992-09-15 Kabushiki Kaisha Toshiba Uninterruptible power supply diagnosing remaining battery capacity during normal external power source operation
JP3433469B2 (ja) * 1993-04-23 2003-08-04 オムロン株式会社 無停電電源装置
JP4511673B2 (ja) * 2000-02-29 2010-07-28 Necフィールディング株式会社 交流無停電電源装置
JP2003052134A (ja) * 2001-08-07 2003-02-21 Mitsubishi Electric Corp 無停電電源装置の制御方法およびこの方法を用いた無停電電源装置
JP2005137054A (ja) * 2003-10-28 2005-05-26 Nec Tokin Corp 電源回路
JP4567405B2 (ja) * 2004-09-16 2010-10-20 東芝三菱電機産業システム株式会社 電力変換装置
JP2006238514A (ja) * 2005-02-22 2006-09-07 Hitachi Ltd 無停電電源装置
JP4951476B2 (ja) * 2007-11-27 2012-06-13 株式会社日立製作所 無停電電源装置
JP4930434B2 (ja) 2008-04-02 2012-05-16 トヨタ自動車株式会社 二次電池モジュール制御装置
CA2740765C (en) * 2008-10-16 2014-12-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
JP4840481B2 (ja) * 2009-07-08 2011-12-21 トヨタ自動車株式会社 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP5572352B2 (ja) 2009-09-28 2014-08-13 東芝三菱電機産業システム株式会社 無停電電源装置
US20130181682A1 (en) * 2010-11-05 2013-07-18 Mitsubishi Electric Corporation Charge/discharge device and charge/discharge controlling method
JP5945233B2 (ja) * 2013-01-22 2016-07-05 東芝三菱電機産業システム株式会社 無停電電源装置
KR101322617B1 (ko) 2013-07-30 2013-10-29 이화전기공업 주식회사 배터리를 구비한 무정전전원장치의 에너지저장시스템 및 그 운전방법
WO2015076819A1 (en) * 2013-11-22 2015-05-28 Schneider Electric It Corporation Lps architecture for ups systems
CA2984331C (en) * 2015-06-02 2019-10-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply device
JP2017063555A (ja) * 2015-09-25 2017-03-30 トヨタ自動車株式会社 充電装置
JP6649239B2 (ja) * 2016-12-15 2020-02-19 東芝三菱電機産業システム株式会社 無停電電源システム
JP6748234B2 (ja) 2017-02-03 2020-08-26 東芝三菱電機産業システム株式会社 無停電電源装置
RU2692468C2 (ru) * 2017-10-26 2019-06-25 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Система бесперебойного питания
JP7006279B2 (ja) * 2018-01-05 2022-01-24 富士電機株式会社 無停電電源装置
DE112019002256T5 (de) * 2018-05-01 2021-03-04 Mitsubishi Electric Corporation Leistungswandler
US11373831B2 (en) * 2019-05-18 2022-06-28 Amber Solutions, Inc. Intelligent circuit breakers
JP7528784B2 (ja) * 2020-12-28 2024-08-06 トヨタ自動車株式会社 電力伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010626A (ja) 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd 直流安定化電源
JP2009017662A (ja) 2007-07-04 2009-01-22 Nissan Motor Co Ltd 電力変換装置
JP2010074878A (ja) 2008-09-16 2010-04-02 Nissan Motor Co Ltd モータ駆動回路

Also Published As

Publication number Publication date
WO2021130981A1 (ja) 2021-07-01
US12224621B2 (en) 2025-02-11
JP6886082B1 (ja) 2021-06-16
JPWO2021130981A1 (ja) 2021-12-23
CN113924709A (zh) 2022-01-11
US20220239146A1 (en) 2022-07-28
KR20220004163A (ko) 2022-01-11

Similar Documents

Publication Publication Date Title
KR101308783B1 (ko) 무정전 전원 장치
JP6730515B2 (ja) 電力変換装置
TWI538351B (zh) 不斷電電源裝置
US9065277B1 (en) Battery backup system for uninterrupted power supply
JP6725647B2 (ja) 無停電電源装置
US20090237016A1 (en) Motor controller
KR102690643B1 (ko) 전력 변환 장치
JP6243552B2 (ja) 無停電電源装置
US20230253815A1 (en) Battery charge/discharge testing device and battery discharge power control method
JP5569249B2 (ja) 無停電電源装置
KR102620032B1 (ko) 전원 장치
JP5313810B2 (ja) 無停電電源装置
US12176752B2 (en) Uninterruptible power supply system
KR101643705B1 (ko) 무정전 전원장치의 제어 장치 및 방법
US20130307462A1 (en) Ac motor drive device
KR102699855B1 (ko) 전력 변환 장치
JP6835967B2 (ja) 電力変換装置
JP5989629B2 (ja) 電力変換装置
JP2021072704A (ja) 放電制御装置

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20211201

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20231017

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20231227

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20231227

End annual number: 3

Start annual number: 1

PG1601 Publication of registration