KR102576687B1 - 반도체 제조 수율을 향상시키는 방법 - Google Patents
반도체 제조 수율을 향상시키는 방법 Download PDFInfo
- Publication number
- KR102576687B1 KR102576687B1 KR1020217002741A KR20217002741A KR102576687B1 KR 102576687 B1 KR102576687 B1 KR 102576687B1 KR 1020217002741 A KR1020217002741 A KR 1020217002741A KR 20217002741 A KR20217002741 A KR 20217002741A KR 102576687 B1 KR102576687 B1 KR 102576687B1
- Authority
- KR
- South Korea
- Prior art keywords
- tool
- substrate
- results
- training data
- verification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41875—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/7065—Defects, e.g. optical inspection of patterned layer for defects
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70681—Metrology strategies
- G03F7/706833—Sampling plan selection or optimisation, e.g. select or optimise the number, order or locations of measurements taken per die, workpiece, lot or batch
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706839—Modelling, e.g. modelling scattering or solving inverse problems
- G03F7/706841—Machine learning
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4183—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67276—Production flow monitoring, e.g. for increasing throughput
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32193—Ann, neural base quality management
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37224—Inspect wafer
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37448—Inspection process planner
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- General Factory Administration (AREA)
Abstract
Description
도 2는 본 발명의 실시예들과 일치하는, 도 1의 예시적인 전자 빔 검사 시스템의 일부분일 수 있는 예시적인 전자 빔 툴을 나타내는 개략적인 다이어그램이다.
도 3은 반도체 처리 시스템을 나타내는 개략적인 다이어그램이다.
도 4는 반도체 처리를 위한 방법을 나타내는 흐름도이다.
도 5는 본 발명의 실시예들과 일치하는, 예시적인 수율 개선 시스템을 나타내는 개략적인 다이어그램이다.
도 6a 및 도 6b는 본 발명의 실시예들과 일치하는, 기판들 상의 검사 구역들을 나타내는 개략적인 다이어그램들이다.
도 7은 본 발명의 실시예들과 일치하는, 수율 개선을 위한 예시적인 방법을 나타내는 흐름도이다.
Claims (11)
- 수율 개선 시스템에 있어서,
제 1 기판을 검사하여 획득한 1 이상의 검증 결과(verified result)의 수신에 기초하여 트레이닝 데이터(training data)를 생성하도록 구성되는 트레이닝 툴; 및
상기 트레이닝 데이터, 제 2 기판 - 상기 제 2 기판은 상기 제 1 기판과는 상이하면서 상기 제 1 기판에 후속함 - 에 대한 취약 포인트 정보(weak point information), 및 제 2 기판을 패터닝하기 위한 스캐너의 노광 레시피(exposure recipe)에 기초하여, 검사할 제 2 기판 상의 1 이상의 구역을 결정하도록 구성되는 포인트 결정 툴(point determination tool)
을 포함하고,
상기 트레이닝 툴은 상기 노광 레시피에 기초하여 상기 트레이닝 데이터를 생성하도록 더 구성되고, 상기 트레이닝 데이터는 상기 노광 레시피에서의 업데이트에 대응하는 모니터링 레시피를 수정하는 정보를 포함하고,
상기 1 이상의 검증 결과는 상기 제 1 기판의 1 이상의 모니터 결과와 1 이상의 디자인 파라미터의 비교에 기초하여 검증 유닛에 의해 생성되고, 상기 1 이상의 모니터 결과는 공간 패턴 결정 및 패턴 크기 측정에 기초하여 모니터링 툴에 의해 생성되고, 상기 노광 레시피는 상기 1 이상의 모니터 결과에 기초하여 결정되고,
상기 1 이상의 검증 결과가 올바르다고 결정되면, 상기 검증 유닛은 대응하는 웨이퍼에 대해 추가 조치를 취하지 않고, 상기 1 이상의 검증 결과가 올바르지 않다고 결정되면, 상기 검증 유닛은 상기 검증 결과를 상기 트레이닝 툴에 제공하도록 구성된, 수율 개선 시스템. - 제 1 항에 있어서,
상기 트레이닝 툴은 상기 1 이상의 검증 결과를 분석하여 상기 트레이닝 데이터를 생성하기 위해 딥뉴럴 네트워크(deep neural network)를 사용하도록 구성되는 수율 개선 시스템. - 제 1 항에 있어서,
상기 노광 레시피는 고밀도 포커스 맵(high density focus map)을 포함하는 수율 개선 시스템. - 삭제
- 제 1 항에 있어서,
상기 제 1 기판 및 상기 제 2 기판은 스캐너, 현상 툴, 에칭 툴 및 애싱 툴(ash tool)에 의해 처리되는 수율 개선 시스템. - 제 1 기판을 검사하여 획득한 1 이상의 검증 결과를 수신하는 단계;
수신된 검증 결과들에 기초하여 트레이닝 데이터를 생성하는 단계; 및
상기 트레이닝 데이터, 제 1 기판과는 상이하고 후속하는 제 2 기판에 대한 취약 포인트 정보, 및 제 2 기판의 스캐너에 대한 노광 레시피에 기초하여, 검사할 제 2 기판 상의 1 이상의 구역을 결정하는 단계
를 포함하고,
상기 트레이닝 데이터를 생성하는 단계는 상기 노광 레시피에 더 기초하고, 상기 트레이닝 데이터는 상기 노광 레시피에서의 업데이트에 대응하는 모니터링 레시피를 수정하는 정보를 포함하고,
상기 1 이상의 검증 결과는 상기 제 1 기판의 1 이상의 모니터 결과와 1 이상의 디자인 파라미터의 비교에 기초하여 검증 유닛에 의해 생성되고, 상기 1 이상의 모니터 결과는 공간 패턴 결정 및 패턴 크기 측정에 기초하여 모니터링 툴에 의해 생성되고, 상기 노광 레시피는 상기 1 이상의 모니터 결과에 기초하여 결정되고,
상기 1 이상의 검증 결과가 올바르다고 결정되면, 상기 검증 유닛은 대응하는 웨이퍼에 대해 추가 조치를 취하지 않고, 상기 1 이상의 검증 결과가 올바르지 않다고 결정되면, 상기 검증 유닛은 상기 검증 결과를 트레이닝 툴에 제공하도록 구성된, 방법. - 제 6 항에 있어서,
상기 트레이닝 데이터를 생성하는 단계는 상기 1 이상의 검증 결과를 분석하기 위해 딥뉴럴 네트워크를 사용하는 단계를 포함하는 방법. - 제 6 항에 있어서,
상기 노광 레시피는 고밀도 포커스 맵을 포함하는 방법. - 삭제
- 제 6 항에 있어서,
상기 제 1 기판 및 상기 제 2 기판은 스캐너, 현상 툴, 에칭 툴 및 애싱 툴에 의해 처리되는 방법. - 비-일시적(non-transitory) 컴퓨터 판독가능한 저장 매체에 있어서,
1 이상의 프로세서를 포함하는 컴퓨팅 디바이스(computing device)에 의해 실행가능한 명령어들을 저장하여, 상기 명령어들은 상기 컴퓨팅 디바이스로 하여금 제 6 항 내지 제 8 항 및 제 10 항 중 어느 한 항에 의한 방법을 수행하도록 하는, 비-일시적 컴퓨터 판독가능한 저장 매체.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662375257P | 2016-08-15 | 2016-08-15 | |
US62/375,257 | 2016-08-15 | ||
US201762543242P | 2017-08-09 | 2017-08-09 | |
US62/543,242 | 2017-08-09 | ||
PCT/EP2017/070567 WO2018033511A1 (en) | 2016-08-15 | 2017-08-14 | Method for enhancing the semiconductor manufacturing yield |
KR1020197007519A KR20190042616A (ko) | 2016-08-15 | 2017-08-14 | 반도체 제조 수율을 향상시키는 방법 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197007519A Division KR20190042616A (ko) | 2016-08-15 | 2017-08-14 | 반도체 제조 수율을 향상시키는 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210013661A KR20210013661A (ko) | 2021-02-04 |
KR102576687B1 true KR102576687B1 (ko) | 2023-09-08 |
Family
ID=59649706
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217002741A Active KR102576687B1 (ko) | 2016-08-15 | 2017-08-14 | 반도체 제조 수율을 향상시키는 방법 |
KR1020197007519A Ceased KR20190042616A (ko) | 2016-08-15 | 2017-08-14 | 반도체 제조 수율을 향상시키는 방법 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197007519A Ceased KR20190042616A (ko) | 2016-08-15 | 2017-08-14 | 반도체 제조 수율을 향상시키는 방법 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11681279B2 (ko) |
JP (1) | JP7022111B2 (ko) |
KR (2) | KR102576687B1 (ko) |
CN (1) | CN109643106B (ko) |
IL (1) | IL264656B2 (ko) |
TW (1) | TWI659282B (ko) |
WO (1) | WO2018033511A1 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI708128B (zh) * | 2019-09-04 | 2020-10-21 | 中國鋼鐵股份有限公司 | 製程參數的調控方法與電子裝置 |
US12131103B2 (en) | 2020-03-30 | 2024-10-29 | Kla Corporation | Semiconductor fabrication process parameter determination using a generative adversarial network |
CN111830797B (zh) * | 2020-07-27 | 2023-06-09 | 上海华力集成电路制造有限公司 | Opc监控图形生成方法及其生成模块 |
KR20230104170A (ko) | 2020-11-13 | 2023-07-07 | 에이에스엠엘 네델란즈 비.브이. | 능동 학습에 기반한 결함 위치 식별 |
WO2022128694A1 (en) | 2020-12-18 | 2022-06-23 | Asml Netherlands B.V. | Training machine learning models based on partial datasets for defect location identification |
CN120188113A (zh) * | 2022-11-11 | 2025-06-20 | Asml荷兰有限公司 | 创建用于计算引导检查机器学习模型中的密集缺陷概率图 |
WO2024227555A1 (en) * | 2023-05-04 | 2024-11-07 | Asml Netherlands B.V. | Context-based metrology imputation for improved performance of computational guided sampling |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210931A (ja) * | 2006-01-31 | 2006-08-10 | Toshiba Corp | 半導体設計データ修正方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6476913B1 (en) * | 1998-11-30 | 2002-11-05 | Hitachi, Ltd. | Inspection method, apparatus and system for circuit pattern |
US7877722B2 (en) * | 2006-12-19 | 2011-01-25 | Kla-Tencor Corp. | Systems and methods for creating inspection recipes |
CN102027475A (zh) | 2008-02-21 | 2011-04-20 | 明导公司 | 通过对扫描诊断结果的统计学分析确定成品率突发异常的原因 |
US9768082B2 (en) * | 2009-02-13 | 2017-09-19 | Hermes Microvision Inc. | Method and machine for examining wafers |
JP2011040661A (ja) * | 2009-08-18 | 2011-02-24 | Toshiba Corp | 半導体装置の製造方法及び露光装置 |
NL2005997A (en) | 2010-02-19 | 2011-08-22 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method. |
CN102253595B (zh) * | 2010-05-20 | 2013-04-10 | 北大方正集团有限公司 | 一种查找缺陷掩膜版的方法 |
JP5581286B2 (ja) | 2011-09-09 | 2014-08-27 | 株式会社日立ハイテクノロジーズ | 欠陥検査方法および欠陥検査装置 |
NL2009345A (en) | 2011-09-28 | 2013-04-02 | Asml Netherlands Bv | Method of applying a pattern to a substrate, device manufacturing method and lithographic apparatus for use in such methods. |
JP5640943B2 (ja) | 2011-10-07 | 2014-12-17 | 東京エレクトロン株式会社 | 露光装置の設定方法、基板撮像装置及び記憶媒体 |
US9129237B2 (en) * | 2011-12-28 | 2015-09-08 | Elitetech Technology Co., Ltd. | Integrated interfacing system and method for intelligent defect yield solutions |
JP5933985B2 (ja) * | 2012-02-15 | 2016-06-15 | 株式会社日立ハイテクノロジーズ | レシピ実行時間演算装置および半導体検査装置 |
CN104124181A (zh) | 2013-04-23 | 2014-10-29 | 中芯国际集成电路制造(上海)有限公司 | 一种芯片良率调试的方法和晶圆 |
CN105849643B (zh) | 2013-12-17 | 2019-07-19 | Asml荷兰有限公司 | 良品率估计和控制 |
SG11201610106SA (en) * | 2014-06-10 | 2016-12-29 | Asml Netherlands Bv | Computational wafer inspection |
JP6527808B2 (ja) * | 2015-10-27 | 2019-06-05 | 株式会社ニューフレアテクノロジー | 検査方法および検査装置 |
US11580375B2 (en) * | 2015-12-31 | 2023-02-14 | Kla-Tencor Corp. | Accelerated training of a machine learning based model for semiconductor applications |
US10133838B2 (en) * | 2017-01-30 | 2018-11-20 | Dongfang Jingyuan Electron Limited | Guided defect detection of integrated circuits |
US10628935B2 (en) * | 2017-01-30 | 2020-04-21 | Zhongke Jingyuan Electron Limited | Method and system for identifying defects of integrated circuits |
US11275361B2 (en) * | 2017-06-30 | 2022-03-15 | Kla-Tencor Corporation | Systems and methods for predicting defects and critical dimension using deep learning in the semiconductor manufacturing process |
-
2017
- 2017-08-14 WO PCT/EP2017/070567 patent/WO2018033511A1/en active Application Filing
- 2017-08-14 CN CN201780049949.2A patent/CN109643106B/zh active Active
- 2017-08-14 US US16/326,172 patent/US11681279B2/en active Active
- 2017-08-14 IL IL264656A patent/IL264656B2/en unknown
- 2017-08-14 JP JP2019506496A patent/JP7022111B2/ja active Active
- 2017-08-14 KR KR1020217002741A patent/KR102576687B1/ko active Active
- 2017-08-14 KR KR1020197007519A patent/KR20190042616A/ko not_active Ceased
- 2017-08-15 TW TW106127561A patent/TWI659282B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210931A (ja) * | 2006-01-31 | 2006-08-10 | Toshiba Corp | 半導体設計データ修正方法 |
Also Published As
Publication number | Publication date |
---|---|
US20190187670A1 (en) | 2019-06-20 |
JP2019535123A (ja) | 2019-12-05 |
IL264656A (ko) | 2019-04-30 |
CN109643106A (zh) | 2019-04-16 |
WO2018033511A1 (en) | 2018-02-22 |
US11681279B2 (en) | 2023-06-20 |
KR20210013661A (ko) | 2021-02-04 |
KR20190042616A (ko) | 2019-04-24 |
JP7022111B2 (ja) | 2022-02-17 |
TWI659282B (zh) | 2019-05-11 |
TW201820065A (zh) | 2018-06-01 |
CN109643106B (zh) | 2021-09-24 |
IL264656B2 (en) | 2025-03-01 |
IL264656B1 (en) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102576687B1 (ko) | 반도체 제조 수율을 향상시키는 방법 | |
TWI872117B (zh) | 使用機器學習產生用於晶圓檢測之預測影像之系統與方法 | |
TWI733174B (zh) | 時間相依缺陷檢測設備 | |
US20240069450A1 (en) | Training machine learning models based on partial datasets for defect location identification | |
CN117121064A (zh) | 改进的带电粒子图像检测 | |
TW202410111A (zh) | 基於主動學習之缺陷位置識別 | |
US20250117921A1 (en) | Active learning to improve wafer defect classification | |
US20250005739A1 (en) | Systems and methods for defect detection and defect location identification in a charged particle system | |
US11127618B2 (en) | System for dynamically compensating position errors of a sample | |
US20240183806A1 (en) | System and method for determining local focus points during inspection in a charged particle system | |
TW202422241A (zh) | 光罩缺陷偵測 | |
US20240319123A1 (en) | System and method for inspection by failure mechanism classification and identification in a charged particle system | |
KR20250108661A (ko) | 연산 유도 검사 기계 학습 모델에 사용하기 위한 조밀한 결함 확률 맵 생성 | |
KR20250072911A (ko) | 이미지 해상도 특성화를 위한 시스템 및 방법 | |
CN120188113A (zh) | 创建用于计算引导检查机器学习模型中的密集缺陷概率图 | |
TW202520214A (zh) | 使用機器學習產生用於晶圓檢測之預測影像之系統與方法 | |
WO2025016673A1 (en) | Systems and methods for increasing throughput during voltage contrast inspection using points of interest and signals | |
WO2024022843A1 (en) | Training a model to generate predictive data | |
WO2023078628A1 (en) | Wafer edge inspection of charged particle inspection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
PA0104 | Divisional application for international application |
Comment text: Divisional Application for International Patent Patent event code: PA01041R01D Patent event date: 20210127 Application number text: 1020197007519 Filing date: 20190314 |
|
PG1501 | Laying open of application | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20210226 Comment text: Request for Examination of Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210503 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20220808 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20210503 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
X091 | Application refused [patent] | ||
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20220808 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20220502 Comment text: Amendment to Specification, etc. |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20221123 Patent event code: PE09021S02D |
|
PX0701 | Decision of registration after re-examination |
Patent event date: 20230607 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20221109 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20220808 Comment text: Decision to Refuse Application Patent event code: PX07011S01I Patent event date: 20220502 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20230905 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20230906 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |