KR102576375B1 - Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free silicone resin - Google Patents
Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free silicone resin Download PDFInfo
- Publication number
- KR102576375B1 KR102576375B1 KR1020210112976A KR20210112976A KR102576375B1 KR 102576375 B1 KR102576375 B1 KR 102576375B1 KR 1020210112976 A KR1020210112976 A KR 1020210112976A KR 20210112976 A KR20210112976 A KR 20210112976A KR 102576375 B1 KR102576375 B1 KR 102576375B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrically insulating
- filler
- heat
- weight
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000945 filler Substances 0.000 title claims abstract description 50
- 229920002050 silicone resin Polymers 0.000 title claims abstract description 27
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 25
- 229910052712 strontium Inorganic materials 0.000 title abstract description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 title abstract description 3
- 239000005084 Strontium aluminate Substances 0.000 claims abstract description 22
- FNWBQFMGIFLWII-UHFFFAOYSA-N strontium aluminate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Sr+2].[Sr+2] FNWBQFMGIFLWII-UHFFFAOYSA-N 0.000 claims abstract description 22
- -1 sheets Substances 0.000 claims abstract description 19
- 229910003668 SrAl Inorganic materials 0.000 claims abstract description 18
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052582 BN Inorganic materials 0.000 claims abstract description 16
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 15
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 6
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims abstract description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 5
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 4
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 4
- 229920001971 elastomer Polymers 0.000 abstract description 4
- 239000000806 elastomer Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 229920005989 resin Polymers 0.000 abstract description 3
- 239000011347 resin Substances 0.000 abstract description 3
- 229920001296 polysiloxane Polymers 0.000 abstract 1
- 239000011231 conductive filler Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 150000004645 aluminates Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000679 poly(dimethylsiloxane-co-methylphenylsiloxane) Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7737—Phosphates
- C09K11/7738—Phosphates with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/7795—Phosphates
- C09K11/7796—Phosphates with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
- C08K2003/282—Binary compounds of nitrogen with aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 스트론튬 계열 형광소재 전기절연성 필러 및 무용제 실리콘 수지를 포함하는 방열 조성물의 제조와 열전도 기능성 계면소재, 충진제, 시트 및 탄성체 응용에 관한 것으로, 본 발명에 따른 전기절연성 방열 조성물은 1액형 무용제 실리콘 수지를 사용하고, 전기절연성 필러로서 종래에 알려진 알루미나, 질화붕소, 질화알루미늄과 함께 해당 기술분야에서 전기 절연성 필러로서 사용된 바 없는 스트론튬 알루미네이트, 스트론튬 마그네슘 알루미네이트, 유로피움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+), 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Dy3+) 및/또는 유로피움 및 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+,Dy3+)를 추가로 포함함에 따라, 방열 성능이 현저히 향상되는 효과가 있다.The present invention relates to the production of a heat dissipation composition containing an electrically insulating filler of a strontium-based fluorescent material and a solvent-free silicone resin, and to the application of heat-conducting functional interface materials, fillers, sheets, and elastomers. The electrically insulating heat dissipation composition according to the present invention is a one-component solvent-free silicone composition. Resin is used, and alumina, boron nitride, and aluminum nitride, which are conventionally known as electrical insulating fillers, as well as strontium aluminate, strontium magnesium aluminate, and europium-doped strontium aluminate, which have never been used as electrical insulating fillers in the relevant technical field. (SrAl 2 O 4 :Eu 2+ ), dysprosium-doped strontium aluminate (SrAl 2 O 4 :Dy 3+ ) and/or europium and dysprosium-doped strontium aluminate (SrAl 2 By additionally including O 4 :Eu 2+ , Dy 3+ ), heat dissipation performance is significantly improved.
Description
본 발명은 스트론튬 계열 형광소재 전기절연성 필러 및 무용제 실리콘 수지를 포함하는 방열 조성물의 제조와 열전도 기능성 계면소재, 충진제, 시트 및 탄성체 응용에 관한 것이다.The present invention relates to the production of a heat dissipation composition containing a strontium-based fluorescent material electrically insulating filler and a solvent-free silicone resin, and to the application of heat-conducting functional interface materials, fillers, sheets, and elastomers.
최근 LED 조명을 포함한 전자기기의 고성능화, 소형화 및 고기능화로 인해 전자부품 회로에서의 발열량이 증가되고 이로 인해 기기의 내부온도가 상승하여 반도체 소자의 오작동, 저항체 부품의 특성변화 및 부품의 수명이 저하되는 문제점들이 발생하고 있다. 따라서 이러한 문제점을 해결하기 위한 방열대책으로 다양한 열전도성 기능성 계면소재(Gap Filler) 기술이 개발되고 있다.Recently, due to the increased performance, miniaturization, and high functionality of electronic devices, including LED lighting, the amount of heat generated in electronic component circuits increases, which increases the internal temperature of the device, causing malfunction of semiconductor devices, changes in the characteristics of resistive components, and reduced component lifespan. Problems are occurring. Therefore, various thermally conductive functional interface material (Gap Filler) technologies are being developed as heat dissipation measures to solve these problems.
일례로 LED는 입력된 에너지를 빛과 열에너지로 변환하게 되며, 변환된 열에 의하여 발광부 온도가 상승하게 된다. LED의 고유한 장점인 고효율, 장수명 특성은 발광부 온도를 효과적으로 낮추는 방열 기술이 뒷받침되었을 때 비로소 우수한 특성이 나타나므로 고효율 방열 시스템 개발을 위한 핵심 기술이 필요하다.For example, LED converts input energy into light and heat energy, and the converted heat causes the temperature of the light emitting part to rise. LED's unique advantages of high efficiency and long lifespan are only revealed when they are supported by heat dissipation technology that effectively lowers the temperature of the emitting part, so core technologies are needed to develop a high-efficiency heat dissipation system.
다른 예로 PCB기판 또는 방열판과 같이 두 개의 고체 표면이 서로 접촉할 때 각각의 계면이 갖는 고유한 표면 거칠기 때문에 두 면이 만나는 계면에는 미세한 공극 (void)이 존재하게 되고, 이러한 공극은 열저항의 주요한 원인이 된다. 계면 사이의 공극은 열전도가 낮은 공기로 채워지고 계면을 통한 열의 전도에 악영향을 주게 된다. 이를 해결하고자 열전도 특성이 우수한 기능성 소재를 사용하는 열전도성 충진제 (TIM, Thermal interface material)가 개발되고 있다.As another example, when two solid surfaces, such as a PCB board or a heat sink, come into contact with each other, fine voids exist at the interface where the two surfaces meet due to the unique surface roughness of each interface, and these voids are a major factor in thermal resistance. It becomes the cause. The voids between the interfaces are filled with air with low heat conductivity, which adversely affects the conduction of heat through the interface. To solve this problem, thermally conductive fillers (TIM, Thermal interface materials) using functional materials with excellent heat conduction properties are being developed.
열전도성 갭 필러 (Gap Filler)와 관련된 종래 기술들의 경우 통상적으로 2액형 실리콘 수지를 사용하여 약 3 W/mK 수준의 높은 열전도도 특성을 구현되고 있지만, 이는 고출력, 고성능 전기/전자제품에서 발생하는 발열온도가 120~150℃ 수준이어서 일반적인 TIM(열전도 구리스)의 재료나 2액형 타입은 사용이 불가능하다. 여기서, 2액형 타입의 실리콘 수지를 사용한 열전도성 갭 필러의 경우 전기/전자제품에 사용했을 때 제품의 열화로 인한 용제 휘발로 제품 특성에 악영향을 끼친다. 용제 휘발에 따른 필름막 구조 변형(파괴)와 열화(deterioration), 그리고 입자 응집(agglomeration)이 진행되고 필연적으로 열전도 특성의 저하가 발생한다.In the case of conventional technologies related to thermally conductive gap fillers, high thermal conductivity characteristics of about 3 W/mK are typically achieved using a two-component silicone resin, but this is due to the thermal conductivity that occurs in high-output, high-performance electrical/electronic products. Because the heating temperature is around 120~150℃, it is impossible to use general TIM (thermal conductive grease) materials or two-component types. Here, in the case of a thermally conductive gap filler using a two-component type silicone resin, when used in electrical/electronic products, the product characteristics are adversely affected due to solvent volatilization due to product deterioration. Due to solvent volatilization, film film structure deformation (destruction), deterioration (deterioration), and particle agglomeration progress, and heat conduction characteristics inevitably deteriorate.
전자기기 또는 전자부품에 적용되는 열전도성 갭 필러의 경우 우수한 방열 성능과 전기절연성이 요구되어, 열전도성 갭 필러의 구성 요소로 전기 비절연성 필러(예를 들어, 흑연, 금속류 등)는 사용할 수 없고, 전기 절연성 필러(예를 들어, 알루미나, 질화붕소, 질화알루미늄 등의 세라믹 필러)만 선택적으로 사용하여야 한다.In the case of thermally conductive gap fillers applied to electronic devices or electronic components, excellent heat dissipation performance and electrical insulation are required, so electrically non-insulating fillers (e.g. graphite, metals, etc.) cannot be used as components of the thermally conductive gap filler. , only electrically insulating fillers (e.g., ceramic fillers such as alumina, boron nitride, aluminum nitride, etc.) should be used selectively.
이에, 본 발명자는 1액형 무용제 실리콘 수지를 사용하고, 전기절연성 필러로서 종래에 알려진 알루미나, 질화붕소, 질화알루미늄과 함께 해당 기술분야에서 전기 절연성 필러로서 사용된 바 없는 스트론튬 알루미네이트, 스트론튬 마그네슘 알루미네이트, 유로피움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+), 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Dy3+) 및/또는 유로피움 및 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+,Dy3+)를 추가로 구성할 경우, 방열 성능이 현저히 향상될 뿐만 아니라, 전기절연성을 만족함을 확인하고 본 발명을 완성하였다.Accordingly, the present inventor used a one-component solvent-free silicone resin, and used alumina, boron nitride, and aluminum nitride, conventionally known as electrical insulating fillers, as well as strontium aluminate and strontium magnesium aluminate, which have never been used as electrical insulating fillers in the relevant technical field. , europium-doped strontium aluminate (SrAl 2 O 4 :Eu 2+ ), dysprosium-doped strontium aluminate (SrAl 2 O 4 :Dy 3+ ) and/or europium and dysprosium. When this doped strontium aluminate (SrAl 2 O 4 :Eu 2+ , Dy 3+ ) was added, it was confirmed that not only did the heat dissipation performance significantly improve, but the electrical insulation properties were satisfied, and the present invention was completed.
본 발명의 목적은 전기절연성 방열 조성물을 제공하는 것이다.An object of the present invention is to provide an electrically insulating heat dissipating composition.
본 발명의 다른 목적은 전기절연성 방열 조성물을 포함하는 열전도 기능성 계면소재(시트, 탄성체 등), 전자부품, 전자기기, 전력기기, 히트싱크, LED 조명기기 등을 제공하는 것이다.Another object of the present invention is to provide heat-conducting functional interface materials (sheets, elastomers, etc.), electronic components, electronic devices, power devices, heat sinks, LED lighting devices, etc., containing an electrically insulating heat dissipation composition.
전기절연성 방열 조성물Electrically insulating heat dissipating composition
본 발명은 실리콘 수지;The present invention relates to a silicone resin;
전기절연성 열전도 제1필러; 및Electrically insulating heat conductive first filler; and
전기절연성 열전도 제2필러;를 포함하고,Includes an electrically insulating heat conductive second filler,
상기 전기절연성 열전도 제1필러는 스트론튬 알루미네이트, 스트론튬 마그네슘 알루미네이트, 유로피움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+), 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Dy3+) 및 유로피움 및 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+,Dy3+) 중 1종 이상이고,The electrically insulating heat-conducting first filler is strontium aluminate, strontium magnesium aluminate, europium-doped strontium aluminate (SrAl 2 O 4 :Eu 2+ ), and dysprosium-doped strontium aluminate (SrAl 2 O 4 :Dy 3+ ) and europium and dysprosium doped strontium aluminate (SrAl 2 O 4 :Eu 2+ ,Dy 3+ ),
상기 전기절연성 열전도 제2필러는 알루미늄옥사이드, 질화붕소 및 질화알루미늄을 포함하는 것을 특징으로 하는,The electrically insulating heat-conducting second filler is characterized in that it contains aluminum oxide, boron nitride, and aluminum nitride,
전기절연성 방열 조성물을 제공한다.An electrically insulating heat dissipating composition is provided.
본 발명에 따른 전기절연성 방열 조성물은 용제를 포함하지 않는 1액형 무용제 타입으로 사용할 수 있다.The electrical insulating heat dissipation composition according to the present invention can be used as a one-component solvent-free type that does not contain a solvent.
상기 전기절연성 열전도 제1필러는 종래에 형광소재로서 잘 알려져 있으나, 전기절연성 열전도 필러로서는 사용된 적이 없다. 본 발명에서 사용하는 열전도 제1필러는 방열 성능 개선에 주요 구성요소이다. 전자의 이동이 배제된 상태의 열전도 소재(전기절연성 열전도 소재)에서, 열에너지가 전달되는 매질을 구성하는 분자 또는 원자의 격자진동이 열에너지를 전달하는 주요한 원인이 된다. 형광소재는 일반적으로 가시광선, 근자외선, 근적외선 영역의 빛에너지를 흡수하여 형광소재 원소의 내부전자를 여기시킨 후 다시 기저상태로 내려오는 과정에서 형광빛을 방출하는 효과를 보인다. 이러한 전자전이의 진동효과는 격자진동의 형태로 발현되는데 열에너지의 흡수과정에서도 이러한 효과가 크게 나타나서 다른 원소에 비해 격자진동이 효과적이라, 열전도 성능 개선에 주요한 역할을 하는 것으로 사료된다.The electrically insulating first filler is well known as a fluorescent material, but has never been used as an electrically insulating heat conductive filler. The heat conductive first filler used in the present invention is a major component in improving heat dissipation performance. In a heat-conducting material (electrically insulating heat-conducting material) in which the movement of electrons is excluded, the lattice vibration of molecules or atoms constituting the medium through which heat energy is transmitted is the main cause of heat energy transfer. Fluorescent materials generally absorb light energy in the visible, near-ultraviolet, and near-infrared regions, excite the internal electrons of the fluorescent material elements, and then emit fluorescent light in the process of returning to the ground state. This vibrational effect of electronic transition is expressed in the form of lattice vibration. This effect is also greatly evident in the absorption process of heat energy, so lattice vibration is more effective than other elements and is thought to play a major role in improving heat conduction performance.
상기 실리콘 수지는 폴리(디메틸실록산), 폴리(메틸트리메톡시실란), 트리메틸실리-터미네이티드 폴리(디메틸실록산), 폴리(메틸페닐실록산), 폴리(디메틸실록산-co-디페닐실록산), 폴리(디메틸실록산-co-메틸페닐실록산), 폴리(디메틸실록산-co-메틸하이드로실록산), 폴리(페닐-메틸실록산) 등을 사용할 수 있다.The silicone resin is poly(dimethylsiloxane), poly(methyltrimethoxysilane), trimethylsilyl-terminated poly(dimethylsiloxane), poly(methylphenylsiloxane), poly(dimethylsiloxane-co-diphenylsiloxane), poly (dimethylsiloxane-co-methylphenylsiloxane), poly(dimethylsiloxane-co-methylhydrosiloxane), poly(phenyl-methylsiloxane), etc. can be used.
바람직하게,Preferably,
상기 실리콘 수지 10 중량부 기준,Based on 10 parts by weight of the silicone resin,
전기절연성 열전도 제1필러 13-17 중량부,13-17 parts by weight of electrically insulating heat conductive first filler,
알루미늄옥사이드 22.4-26.4 중량부, Aluminum oxide 22.4-26.4 parts by weight,
질화붕소 0.85-1.65 중량부, 및 0.85-1.65 parts by weight of boron nitride, and
질화알루미늄 14.35-18.35 중량부 포함할 수 있다.It may contain 14.35-18.35 parts by weight of aluminum nitride.
더욱 바람직하게,More preferably,
상기 실리콘 수지 10 중량부 기준,Based on 10 parts by weight of the silicone resin,
전기절연성 열전도 제1필러 14-16 중량부,14-16 parts by weight of electrically insulating heat conductive first filler,
알루미늄옥사이드 24-25 중량부, 24-25 parts by weight of aluminum oxide,
질화붕소 1.1-1.4 중량부, 및 1.1-1.4 parts by weight of boron nitride, and
질화알루미늄 16-17 중량부 포함할 수 있다.It may contain 16-17 parts by weight of aluminum nitride.
특히 바람직하게,Especially preferably,
상기 실리콘 수지 10 중량부 기준,Based on 10 parts by weight of the silicone resin,
전기절연성 열전도 제1필러 14.8-15.2 중량부,14.8-15.2 parts by weight of electrically insulating heat conductive first filler,
알루미늄옥사이드 24.2-24.6 중량부, Aluminum oxide 24.2-24.6 parts by weight,
질화붕소 1.15-1.35 중량부, 및 1.15-1.35 parts by weight of boron nitride, and
질화알루미늄 16.15-16.55 중량부 포함할 수 있다.It may contain 16.15-16.55 parts by weight of aluminum nitride.
만약, 상기 구성요소의 함량비를 벗어날 경우, 방열 성능이 저하하는 문제가 있을 수 있고, 총 조성물 중량 중에서 제1필러 및 제2필러의 중량이 86 중량%를 초과할 경우 믹싱이 어려운 문제가 있을 수 있다.If the content ratio of the above components is exceeded, there may be a problem of reduced heat dissipation performance, and if the weight of the first filler and the second filler exceeds 86% by weight of the total composition weight, mixing may be difficult. You can.
전자부품, 전자기기, 전력기기, 히트싱크, LED 조명기기Electronic components, electronic devices, power devices, heat sinks, LED lighting devices
본 발명은 상기 전기절연성 방열 조성물을 포함하는 열전도 기능성 계면소재(시트, 탄성체 등), 전자부품, 전자기기, 전력기기, 히트싱크, LED 조명기기 등을 제공한다.The present invention provides thermally conductive functional interface materials (sheets, elastomers, etc.), electronic components, electronic devices, power devices, heat sinks, LED lighting devices, etc., including the electrical insulating heat dissipation composition.
본 발명에 따른 전기절연성 방열 조성물은 1액형 무용제 실리콘 수지를 사용하고, 전기절연성 필러로서 종래에 알려진 알루미나, 질화붕소, 질화알루미늄과 함께 해당 기술분야에서 전기 절연성 필러로서 사용된 바 없는 스트론튬 알루미네이트, 스트론튬 마그네슘 알루미네이트, 유로피움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+), 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Dy3+) 및 유로피움 및 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+,Dy3+) 중 1종 이상을 추가로 포함함에 따라, 방열 성능이 현저히 향상되는 효과가 있다.The electrical insulating heat dissipation composition according to the present invention uses a one-component solvent-free silicone resin, and includes alumina, boron nitride, and aluminum nitride, which are conventionally known as electrical insulating fillers, as well as strontium aluminate, which has never been used as an electrical insulating filler in the relevant technical field. Strontium magnesium aluminate, europium-doped strontium aluminate (SrAl 2 O 4 :Eu 2+ ), dysprosium-doped strontium aluminate (SrAl 2 O 4 :Dy 3+ ) and europium and dysprosium. As one or more types of sium-doped strontium aluminate (SrAl 2 O 4 :Eu 2+ , Dy 3+ ) is additionally included, heat dissipation performance is significantly improved.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through the following examples. However, the following examples are merely illustrative of the present invention, and the content of the present invention is not limited by the following examples.
<실시예> 전기절연성 및 방열성 조성물의 제조<Example> Preparation of electrically insulating and heat dissipating composition
조성물의 구성요소 출처를 하기 표 1에 나타내었다.The sources of components of the composition are shown in Table 1 below.
상기 실리콘 수지로 사용한 TSE 3251는 폴리디메틸실록산 계열의 실리콘 수지로서, 물성은 다음과 같다.TSE 3251 used as the silicone resin is a polydimethylsiloxane-based silicone resin, and its physical properties are as follows.
실리콘 수지와 전기절연성 열전도 필러를 paste mixer(제조사: 일신오토틀레이브), 3step으로 5회 믹싱을 통해 sample을 제조하였다.Samples were prepared by mixing silicone resin and electrically insulating heat-conducting filler 5 times in 3 steps using a paste mixer (manufacturer: Ilshin Autotleve).
<실험예 1> 방열 성능 평가<Experimental Example 1> Heat dissipation performance evaluation
수직 방열 특성을 평가하기 위하여, 실리콘 수지에 전기절연성 열전도 필러 4종의 함량비를 달리하여 제조한 샘플을 준비하여 수직 열확산도 및 수직 열전도도를 측정하였다.In order to evaluate vertical heat dissipation characteristics, samples prepared by varying the content ratios of four types of electrically insulating heat-conducting fillers in silicone resin were prepared, and vertical thermal diffusivity and vertical thermal conductivity were measured.
Laser flash 법에 기반을 둔 열확산도 분석 장비(모델명: LFA 447, 제조사: Netzsch, Germany)를 사용하여 시료의 수직 열확산도를 측정하였고, 그 결과를 표 2 및 표 3에 나타내었다.The vertical thermal diffusivity of the sample was measured using a thermal diffusivity analysis device based on the laser flash method (model name: LFA 447, manufacturer: Netzsch, Germany), and the results are shown in Tables 2 and 3.
상기 표 2 및 표 3에 나타난 바와 같이, 스트론튬 알루미네이트(Sr aluminate) 또는 유로피움 및 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+,Dy3+) 함량이 증가할수록 수직 열확산도가 증가함을 확인하여, 방열 성능에 핵심적인 구성요소로서 제1필러가 중요함을 알 수 있었다.As shown in Tables 2 and 3, as the content of strontium aluminate (Sr aluminate) or strontium aluminate doped with europium and dysprosium (SrAl 2 O 4 :Eu 2+ , Dy 3+ ) increases, By confirming that the vertical thermal diffusivity increased, it was confirmed that the first filler is important as a key component in heat dissipation performance.
다음으로, Laser flash 법에 기반을 둔 열확산도 분석 장비(모델명: LFA 447, 제조사: Netzsch, Germany)를 사용하여 시료의 수직 열전도도를 측정하였고, 그 결과를 표 4 및 표 5에 나타내었다.Next, the vertical thermal conductivity of the sample was measured using a thermal diffusivity analysis equipment (model name: LFA 447, manufacturer: Netzsch, Germany) based on the laser flash method, and the results are shown in Tables 4 and 5.
(mm2/s)vertical thermal diffusivity
( mm2 /s)
(W/mK)vertical thermal conductivity
(W/mK)
(mm2/s)vertical thermal diffusivity
( mm2 /s)
(W/mK)vertical thermal conductivity
(W/mK)
하기 표 4 및 표 5에 나타난 바와 같이, 전기절연성 열전도 필러의 함량은 고정하고, 실리콘 수지의 함량을 줄인 실시예 7 및 14의 수직 방열 성능이 현저히 향상됨을 확인할 수 있었다. As shown in Tables 4 and 5 below, it was confirmed that the vertical heat dissipation performance of Examples 7 and 14, in which the content of the electrically insulating heat-conducting filler was fixed and the content of the silicone resin was reduced, was significantly improved.
실시예 6 및 13의 경우 조성물 총 중량 69g 중에 전기절연성 열전도 필러의 함량이 82.6 중량%이고,In Examples 6 and 13, the content of electrically insulating heat-conducting filler was 82.6% by weight based on the total weight of 69g of the composition,
실시예 7 및 14의 경우 조성물 총 중량 67g 중에 전기절연성 열전도 필러의 함량이 85 중량%이다.In Examples 7 and 14, the content of the electrically insulating heat-conducting filler was 85% by weight based on the total weight of 67g of the composition.
필러의 함량이 86 중량%를 초과하면 믹싱이 불가하여 샘플 제조가 어려운 문제가 있을 수 있다.If the filler content exceeds 86% by weight, mixing may not be possible, making sample preparation difficult.
<실험예 2> 수직 방열 성능 개선을 위한 실리콘 수지 및 전기절연성 열전도 필러 최적 함량비 도출<Experimental Example 2> Derivation of optimal content ratio of silicone resin and electrically insulating heat conductive filler to improve vertical heat dissipation performance
상술한 실험예 1의 결과를 통해 조성물 중에 전기절연성 열전도 필러의 함량이 약 85 중량%인 샘플이 수직 방열 성능이 가장 우수하고, 또한 물성 역시 만족함을 확인하였다.Through the results of Experimental Example 1 described above, it was confirmed that the sample containing about 85% by weight of electrically insulating heat-conducting filler in the composition had the best vertical heat dissipation performance and also satisfied physical properties.
이에, 본 실험예 2에서는 수직 방열 성능 개선을 위한 실리콘 수지와 전기절연성 열전도 필러의 최적 함량비를 도출하기 위해, 4종 필러의 함량을 달리하여 실험을 실시하였고, 그 결과를 표 6 및 표 7에나타내었다.Therefore, in this Experimental Example 2, in order to derive the optimal content ratio of silicone resin and electrically insulating heat conductive filler to improve vertical heat dissipation performance, experiments were conducted with different contents of four types of fillers, and the results are shown in Tables 6 and 7. It was shown in
(W/mK)vertical thermal conductivity
(W/mK)
(W/mK)vertical thermal conductivity
(W/mK)
상기 표 6 및 7에 나타난 바와 같이, 실리콘 수지 10 중량부 기준, 제1필러 14.8-15.2 중량부, 알루미늄옥사이드 24.2-24.6 중량부, 질화붕소 1.15-1.35 중량부 및 질화알루미늄 16.15-16.55 중량부 포함하는 실시예 조성물에서 수직 열전도도 값이 5 W/mK 내외로 현저히 높게 나타남을 확인할 수 있었다.As shown in Tables 6 and 7, based on 10 parts by weight of silicone resin, it includes 14.8-15.2 parts by weight of the first filler, 24.2-24.6 parts by weight of aluminum oxide, 1.15-1.35 parts by weight of boron nitride, and 16.15-16.55 parts by weight of aluminum nitride. In the example composition, it was confirmed that the vertical thermal conductivity value was significantly high at around 5 W/mK.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만, 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present invention defined in the following claims are also possible. It belongs to invention.
Claims (11)
전기절연성 열전도 제1필러 14.8-15.2 중량부; 및
전기절연성 열전도 제2필러로서 알루미늄옥사이드 24.2-24.6 중량부, 질화붕소 1.15-1.35 중량부 및 질화알루미늄 16.15-16.55 중량부;를 포함하고,
상기 전기절연성 열전도 제1필러는 스트론튬 알루미네이트, 또는 유로피움 및 디스프로시움이 도핑된 스트론튬 알루미네이트(SrAl2O4:Eu2+,Dy3+)인 것을 특징으로 하는, 전기절연성 방열 조성물.
Based on 10 parts by weight of silicone resin;
14.8-15.2 parts by weight of electrically insulating and thermally conductive first filler; and
As an electrically insulating heat conductive second filler, it includes 24.2-24.6 parts by weight of aluminum oxide, 1.15-1.35 parts by weight of boron nitride, and 16.15-16.55 parts by weight of aluminum nitride,
The electrically insulating heat-conducting first filler is strontium aluminate or strontium aluminate doped with europium and dysprosium (SrAl 2 O 4 :Eu 2+ , Dy 3+ ). .
용제를 포함하지 않는 무용제 타입인 것을 특징으로 하는 전기절연성 방열 조성물.
According to paragraph 1,
An electrically insulating heat dissipating composition characterized in that it is a solvent-free type that does not contain a solvent.
상기 실리콘 수지는 폴리(디메틸실록산), 폴리(메틸트리메톡시실란), 트리메틸실리-터미네이티드 폴리(디메틸실록산), 폴리(메틸페닐실록산), 폴리(디메틸실록산-co-디페닐실록산), 폴리(디메틸실록산-co-메틸페닐실록산), 폴리(디메틸실록산-co-메틸하이드로실록산) 및 폴리(페닐-메틸실록산)으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 전기절연성 방열 조성물.
According to paragraph 1,
The silicone resin is poly(dimethylsiloxane), poly(methyltrimethoxysilane), trimethylsilyl-terminated poly(dimethylsiloxane), poly(methylphenylsiloxane), poly(dimethylsiloxane-co-diphenylsiloxane), poly An electrically insulating heat dissipating composition comprising at least one member selected from the group consisting of (dimethylsiloxane-co-methylphenylsiloxane), poly(dimethylsiloxane-co-methylhydrosiloxane), and poly(phenyl-methylsiloxane).
A heat-conducting functional interface material comprising the electrically insulating heat dissipation composition of claim 1.
상기 열전도 기능성 계면소재는 시트(sheet) 또는 탄성체인 것을 특징으로 하는 열전도 기능성 계면소재.
In clause 7,
The heat-conducting functional interface material is a heat-conducting functional interface material, characterized in that it is a sheet or an elastic body.
An electronic component comprising the electrically insulating and heat dissipating composition of claim 1.
A heat sink comprising the electrically insulating heat dissipating composition of claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210112976A KR102576375B1 (en) | 2021-08-26 | 2021-08-26 | Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free silicone resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210112976A KR102576375B1 (en) | 2021-08-26 | 2021-08-26 | Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free silicone resin |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230030830A KR20230030830A (en) | 2023-03-07 |
KR102576375B1 true KR102576375B1 (en) | 2023-09-11 |
Family
ID=85513329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210112976A Active KR102576375B1 (en) | 2021-08-26 | 2021-08-26 | Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free silicone resin |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102576375B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101256626B1 (en) | 2009-11-25 | 2013-04-19 | 성균관대학교산학협력단 | Long phosphorescent phosphors and method of preparating powders of the same |
JP2014145012A (en) * | 2013-01-28 | 2014-08-14 | Mitsubishi Chemicals Corp | Resin composition, wavelength conversion member, light-emitting device, led lighting equipment, and optical member |
KR101936713B1 (en) | 2016-11-28 | 2019-01-09 | 주식회사 아모그린텍 | Composite for heat-radiating elastic body and heat-radiating elastic body formed therefrom |
WO2020203307A1 (en) | 2019-03-29 | 2020-10-08 | ダウ・東レ株式会社 | Curable silicone composition, cured product of same, and method for producing same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI428396B (en) * | 2006-06-14 | 2014-03-01 | Shinetsu Chemical Co | Phosphor-filled curable silicone resin composition and cured product thereof |
KR20200033274A (en) | 2017-07-24 | 2020-03-27 | 다우 도레이 캄파니 리미티드 | Thermal conductive silicone gel composition Thermal conductive member and heat dissipation structure |
-
2021
- 2021-08-26 KR KR1020210112976A patent/KR102576375B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101256626B1 (en) | 2009-11-25 | 2013-04-19 | 성균관대학교산학협력단 | Long phosphorescent phosphors and method of preparating powders of the same |
JP2014145012A (en) * | 2013-01-28 | 2014-08-14 | Mitsubishi Chemicals Corp | Resin composition, wavelength conversion member, light-emitting device, led lighting equipment, and optical member |
KR101936713B1 (en) | 2016-11-28 | 2019-01-09 | 주식회사 아모그린텍 | Composite for heat-radiating elastic body and heat-radiating elastic body formed therefrom |
WO2020203307A1 (en) | 2019-03-29 | 2020-10-08 | ダウ・東レ株式会社 | Curable silicone composition, cured product of same, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
KR20230030830A (en) | 2023-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI457387B (en) | Electrically insulating and thermally conductive composition and electronic device | |
JP5664563B2 (en) | Thermally conductive silicone composition and cured product thereof | |
KR102132243B1 (en) | Thermal conductive silicone composition and cured product, and composite sheet | |
JP5405890B2 (en) | Thermally conductive moldings and their applications | |
JP5353379B2 (en) | Thermosetting resin composition containing anisotropically shaped aluminum nitride filler | |
JP2003158393A (en) | Heat dissipation structure | |
JP3654743B2 (en) | Heat dissipation spacer | |
JP2009138036A (en) | Thermally conductive silicone grease composition | |
JP6314915B2 (en) | Heat dissipation putty sheet | |
JP6739825B2 (en) | Heat conductive composition and heat conductive molded article | |
JP2002138205A (en) | Thermal conductive molding | |
JP2002164481A (en) | Heat conductive sheet | |
JP2014189701A (en) | High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition | |
WO2013069327A1 (en) | Heat transfer sheet | |
KR102576375B1 (en) | Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free silicone resin | |
JPH10298433A (en) | Silicone rubber composition and heat-radiating sheet | |
KR102576371B1 (en) | Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free epoxy resin | |
KR101544190B1 (en) | LED lighting lamp heat conduction sheet and manufacture method thereof | |
JP7485634B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP2023073998A (en) | Thermally conductive sheet and method for manufacturing thermally conductive sheet | |
JP2015167181A (en) | Manufacturing method of heat dissipation sheet | |
JPH0565347A (en) | Production of anisotropically heat-conductive sheet | |
KR101864505B1 (en) | Silicone composition having excellent heat-radiating function | |
KR101241787B1 (en) | Resin Composition Having Enhanced Heat Radiation Property | |
KR102790753B1 (en) | Silicone composite composition for manufacturing thermal pad with excellent thermal conductivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20210826 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230310 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20230802 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20230905 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20230905 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |