[go: up one dir, main page]

KR102340036B1 - Titanium alloy and manufacturing method thereof - Google Patents

Titanium alloy and manufacturing method thereof Download PDF

Info

Publication number
KR102340036B1
KR102340036B1 KR1020207026577A KR20207026577A KR102340036B1 KR 102340036 B1 KR102340036 B1 KR 102340036B1 KR 1020207026577 A KR1020207026577 A KR 1020207026577A KR 20207026577 A KR20207026577 A KR 20207026577A KR 102340036 B1 KR102340036 B1 KR 102340036B1
Authority
KR
South Korea
Prior art keywords
content
titanium alloy
phase
corrosion resistance
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020207026577A
Other languages
Korean (ko)
Other versions
KR20200118878A (en
Inventor
히로시 가미오
가즈히로 다카하시
Original Assignee
닛폰세이테츠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛폰세이테츠 가부시키가이샤 filed Critical 닛폰세이테츠 가부시키가이샤
Publication of KR20200118878A publication Critical patent/KR20200118878A/en
Application granted granted Critical
Publication of KR102340036B1 publication Critical patent/KR102340036B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

질량%로, C: 0.10 내지 0.30%, N: 0.001 내지 0.03%, S: 0.001 내지 0.03%, P: 0.001 내지 0.03%, Si: 0.001 내지 0.10%, Fe: 0.01 내지 0.3%, H: 0.015% 이하, O: 0.25% 이하이고, 잔부가 Ti 및 불가피적 불순물이며, 표층이 α단상인 것을 특징으로 하는 티타늄 합금.In % by mass, C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03%, Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H: 0.015% Hereinafter, O: 0.25% or less, the balance is Ti and unavoidable impurities, and the surface layer is a titanium alloy, characterized in that the α single phase.

Description

티타늄 합금 및 그의 제조 방법Titanium alloy and manufacturing method thereof

본 발명은 티타늄 합금 및 그의 제조 방법에 관한 것이다.The present invention relates to a titanium alloy and a method for producing the same.

공업용 순티타늄은, SUS304 등의 범용 스테인리스강은 부식되어 버리는 해수에서도 우수한 내식성을 나타낸다. 이 높은 내식성을 활용하여 해수 담수화 플랜트 등에서 사용되고 있다.Industrial pure titanium exhibits excellent corrosion resistance even in seawater that is corroded by general-purpose stainless steels such as SUS304. Utilizing this high corrosion resistance, it is used in seawater desalination plants, etc.

한편, 화학 플랜트용 재료는, 염산 등의 해수 이상으로 부식성이 높은 환경 하에서 사용되는 경우가 있다. 이러한 환경 하에서는, 공업용 순티타늄도 현저하게 부식된다.On the other hand, materials for chemical plants may be used in environments with high corrosiveness than seawater such as hydrochloric acid. Under these circumstances, even industrial grade titanium is remarkably corroded.

이러한 부식성이 높은 환경 하에서의 사용을 기도하여, 공업용 순티타늄보다도 부식성이 높은 환경 하에서의 내식성이 우수한 내식 티타늄 합금이 개발되어 왔다.In order to be used in such a highly corrosive environment, a corrosion-resistant titanium alloy excellent in corrosion resistance under a highly corrosive environment than industrial pure titanium has been developed.

특허문헌 1에는, Pd 등의 백금족 원소를 첨가한 합금이 개시되어 있다. 특허문헌 2 및 비특허문헌 1에는, 백금족 원소 첨가에 더하여 금속간 화합물을 석출시킨 합금이 개시되어 있다.Patent Document 1 discloses an alloy to which a platinum group element such as Pd is added. Patent Document 2 and Non-Patent Document 1 disclose an alloy in which an intermetallic compound is deposited in addition to addition of a platinum group element.

이들 티타늄 합금은, Pd 등의 희소 원소를 사용하기 때문에, 소재 비용을 향상시킨다. 그 때문에, 고가의 희소 원소를 사용하지 않고, 티타늄의 내식성을 향상시킨다는 과제를 갖고 있다. 그래서, 희소 원소를 사용하지 않고, 범용 원소를 활용한 티타늄 합금에 관하여, 다양한 제안이 이루어지고 있다.Since these titanium alloys use rare elements, such as Pd, the material cost is improved. Therefore, it has the subject of improving the corrosion resistance of titanium without using an expensive rare element. Therefore, various proposals have been made regarding a titanium alloy utilizing a general-purpose element without using a rare element.

그래서, 특허문헌 3에는, C를 사용하여 Ti의 내식성과 강도를 향상시킨 발명이 개시되어 있다. 그러나, 도 4에 도시하는 바와 같이, 특허문헌 3에 기재된 티타늄 합금은, TiC가 석출되어, 가공성에 과제가 있으며, 실제로 열 교환기나 플랜트 부재에 적용하는 경우에 문제가 된다.Then, in patent document 3, the invention which improved the corrosion resistance and strength of Ti using C is disclosed. However, as shown in FIG. 4, TiC precipitates in the titanium alloy described in Patent Document 3, and there is a problem in workability, and it becomes a problem when actually applied to a heat exchanger or a plant member.

국제 공개 제2007/077645호International Publication No. 2007/077645 일본 특허 공개 평6-25779호 공보Japanese Patent Laid-Open No. 6-25779 일본 특허 공표 제제2009-509038호 공보Japanese Patent Publication No. 2009-509038 Publication

「철과 강」, vol.80, No.4(1994), P353-358「Iron and Steel」, vol.80, No.4(1994), P353-358

본 발명은 희소 원소 대신에, C를 첨가함으로써, 높은 가공성을 유지하면서, 내식성을 향상시킨 티타늄 합금을 제공하는 것을 과제로 한다.An object of the present invention is to provide a titanium alloy with improved corrosion resistance while maintaining high workability by adding C instead of a rare element.

본 발명자들이 연구를 진행시킨 결과, 0.10 내지 0.30%의 C를 첨가한 티타늄 합금을, 750 내지 820℃에서 열처리를 실시하고, 0.001℃/sec 이상의 속도로 냉각함으로써, 표면 조직을 α단상으로 할 수 있고, 우수한 가공성을 유지하면서, 내식성도 향상시킬 수 있음을 알아냈다.As a result of the research conducted by the present inventors, the surface structure of the titanium alloy containing 0.10 to 0.30% C is heat-treated at 750 to 820°C and cooled at a rate of 0.001°C/sec or more, so that the surface structure can be made into an α single phase. It has been found that corrosion resistance can also be improved while maintaining excellent workability.

본 발명의 요지는 이하와 같다.The gist of the present invention is as follows.

(1) 질량%로, C: 0.10 내지 0.30%, N: 0.001 내지 0.03%, S: 0.001 내지 0.03%, P: 0.001 내지 0.03%, Si: 0.001 내지 0.10%, Fe: 0.01 내지 0.3%, H: 0.015% 이하, O: 0.25% 이하이고, 잔부가 Ti 및 불가피적 불순물이며, 표면 조직이 α단상인 티타늄 합금.(1) in mass%, C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03%, Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H : 0.015% or less, O: 0.25% or less, the balance is Ti and unavoidable impurities, and the surface structure is a titanium alloy of α single phase.

(2) 질량%로, C: 0.10 내지 0.30%, N: 0.001 내지 0.03%, S: 0.001 내지 0.03%, P: 0.001 내지 0.03%, Si: 0.001 내지 0.10%, Fe: 0.01 내지 0.3%, H: 0.015% 이하, O: 0.25% 이하이고, 잔부가 Ti 및 불가피적 불순물인 티타늄 합금에 750 내지 820℃에서 마무리 열처리를 실시하고, 0.001℃/sec 이상의 속도로 냉각하는 티타늄 합금의 제조 방법.(2) in mass%, C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03%, Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H : 0.015% or less, O: 0.25% or less, the balance is Ti and an unavoidable impurity, the titanium alloy is subjected to a finish heat treatment at 750 to 820°C, and a method for producing a titanium alloy in which the titanium alloy is cooled at a rate of 0.001°C/sec or more.

본 발명에 따르면, 높은 가공성을 유지하면서 내식성이 양호한 티타늄 합금을 제공할 수 있다. 구체적으로는, 본 발명의 조성 범위의 티타늄 합금을, 본 발명의 제조 방법으로 제조하면, 표면 조직이 α단상으로 되고, 가공성과 내식성 양쪽이 향상되었다.According to the present invention, it is possible to provide a titanium alloy having good corrosion resistance while maintaining high workability. Specifically, when a titanium alloy having a composition range of the present invention was manufactured by the manufacturing method of the present invention, the surface structure became α single phase, and both workability and corrosion resistance were improved.

도 1은 염산 침지 시험에 있어서의 부식 속도와 C 첨가량의 관계를 도시한 도면이다.
도 2는 염산 침지 시험에 있어서의 부식 속도와 열처리 온도의 관계를 도시한 도면이다.
도 3은 본 발명의 제조 방법으로 제조된 티타늄 합금의 금속 조직 사진의 일례이다.
도 4는 종래의 제조 방법으로 제조된 티타늄 합금의 금속 사진의 일례이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the relationship between the corrosion rate and C addition amount in a hydrochloric acid immersion test.
2 is a diagram showing the relationship between the corrosion rate and the heat treatment temperature in the hydrochloric acid immersion test.
3 is an example of a photograph of the metal structure of the titanium alloy manufactured by the manufacturing method of the present invention.
4 is an example of a metal photograph of a titanium alloy manufactured by a conventional manufacturing method.

(성분 조성)(Ingredient composition)

본 발명의 티타늄 합금은, C: 0.10 내지 0.30%, N: 0.001 내지 0.03%, S: 0.001 내지 0.03%, P: 0.001 내지 0.03%, Si: 0.001 내지 0.10%, Fe: 0.01 내지 0.3%, H: 0.015% 이하(0%를 포함함), O: 0.25% 이하(0%를 포함함)이며, 잔부가 Ti 및 불가피적 불순물이다. 또한, 이하의 설명에서 「%」로 표시되는 함유량은, 모두 「질량%」를 나타낸다.Titanium alloy of the present invention, C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03%, Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H : 0.015% or less (including 0%), O: 0.25% or less (including 0%), the balance being Ti and unavoidable impurities. In addition, all content represented by "%" in the following description shows "mass %".

<C: 0.10 내지 0.30%><C: 0.10 to 0.30%>

C는, 본 발명에서 내식성 향상에 중요한 역할을 한다. C의 함유량 증대에 따라 부식 속도는 저하되고, 내식성이 향상된다(도 1). C 함유에 의한 내식성 향상 효과는 0.10% 이상인 경우에 현저하게 발현한다. 한편, 후술하는 바와 같이, C 첨가에 의한 내식성 향상 효과는 α단상 조직을 형성하고, C가 α상에 침입형 고용 원소로서 존재하는 경우에 가장 현저해진다. 또한, 다량의 C 첨가는 가공성에 악영향을 미치는 TiC의 석출을 촉진하기 때문에 바람직하지 않다. 다량의 C 첨가는, 가공성에 악영향을 미치는 것에 더하여, 내식성 향상 효과가 충분히 발현되지는 않는다. 따라서, C의 함유량은 0.10 내지 0.30%로 한다. 또한, 더 바람직한 고용 C의 함유량의 하한은 0.12%, 더 바람직한 고용 C의 함유량의 상한은 0.28%이다. C가 침입형 고용 원소로서 고용되는 α상은, 후술하는 표면 조직의 α상이다.C plays an important role in improving corrosion resistance in the present invention. As the C content increases, the corrosion rate decreases and the corrosion resistance improves ( FIG. 1 ). The effect of improving the corrosion resistance by containing C is remarkably expressed when it is 0.10% or more. On the other hand, as will be described later, the effect of improving corrosion resistance by the addition of C becomes most remarkable when an α single-phase structure is formed and C exists as an interstitial solid solution element in the α phase. In addition, the addition of a large amount of C is not preferable because it promotes the precipitation of TiC which adversely affects the workability. In addition to adversely affecting workability, addition of a large amount of C does not fully exhibit the effect of improving corrosion resistance. Therefore, the content of C is set to 0.10 to 0.30%. Moreover, the lower limit of the content of the more preferable solid solution C is 0.12%, and the upper limit of the content of the more preferable solid solution C is 0.28%. The α phase in which C is dissolved as an interstitial solid solution element is the α phase of the surface structure described later.

<N: 0.001 내지 0.03%><N: 0.001 to 0.03%>

N은 강도 향상에 유효한 필수 원소이지만, 그 함유량의 증대에 따라 연성 및 인성이 열화된다. 또한, N은, 본 발명에서 내식성 향상에 중요한 역할을 하는 C와 동일하게, 침입형 고용 원소이다. 그 때문에, N 함유량의 증가에 의해 C의 고용 함유량이 저하될 우려가 있다. 따라서, N의 함유량은 0.001 내지 0.03%로 한다. 더 바람직한 N의 함유량의 상한은 0.025%이다.Although N is an essential element effective for strength improvement, ductility and toughness deteriorate as the content increases. In addition, N is an interstitial solid solution element similarly to C which plays an important role in improving corrosion resistance in this invention. Therefore, there exists a possibility that the solid solution content of C may fall with an increase in N content. Therefore, the N content is set to 0.001 to 0.03%. More preferably, the upper limit of the content of N is 0.025%.

<S: 0.001 내지 0.03%><S: 0.001 to 0.03%>

S는 강도 향상에 유효한 필수 원소이지만, 그 함유량의 증대에 따라 연성 및 인성이 열화된다. 또한, S는, 본 발명에서 내식성 향상에 중요한 역할을 하는 C와 동일하게, 침입형 고용 원소이다. 그 때문에, S 함유량의 증가에 의해 C의 고용 함유량이 저하될 우려가 있다. 따라서, S의 함유량은 0.001 내지 0.03%로 한다. 더 바람직한 S의 함유량의 상한은 0.025%이다.Although S is an essential element effective for strength improvement, ductility and toughness deteriorate as the content increases. In addition, S is an interstitial solid solution element similarly to C which plays an important role in improving corrosion resistance in this invention. Therefore, there exists a possibility that the solid solution content of C may fall with the increase of S content. Therefore, the content of S is set to 0.001 to 0.03%. More preferably, the upper limit of the content of S is 0.025%.

<P: 0.001 내지 0.03%><P: 0.001 to 0.03%>

P는 강도 향상에 유효한 필수 원소이지만, 그 함유량의 증대에 따라 연성 및 인성이 열화된다. 또한, P는, 본 발명에 있어서 내식성 향상에 중요한 역할을 하는 C와 동일하게, 침입형 고용 원소이다. 그 때문에, P 함유량의 증가에 의해 C의 고용 함유량이 저하될 우려가 있다. 따라서, P의 함유량은 0.001 내지 0.03%로 한다. 더 바람직한 P의 함유량의 상한은 0.025%이다.Although P is an essential element effective for strength improvement, as its content increases, ductility and toughness deteriorate. In addition, P is an interstitial solid solution element similarly to C which plays an important role in improving corrosion resistance in this invention. Therefore, there exists a possibility that the solid solution content of C may fall with an increase in P content. Therefore, the content of P is set to 0.001 to 0.03%. More preferably, the upper limit of the content of P is 0.025%.

<Si: 0.001 내지 0.10%><Si: 0.001 to 0.10%>

Si는 비교적 저렴한 원소이며, 내열성(내산화성, 고온 강도) 향상에 유효한 원소이지만, 다량의 첨가는 화합물 석출을 촉구하여, 연성 및 인성을 열화시킨다. 따라서, Si의 함유량은 0.001 내지 0.10%로 한다. 더 바람직한 Si의 함유량의 하한은 0.003%, 더 바람직한 Si의 함유량의 상한은 0.08%이다.Si is a relatively inexpensive element and is an element effective for improving heat resistance (oxidation resistance, high temperature strength), but adding a large amount of Si promotes compound precipitation and deteriorates ductility and toughness. Therefore, the Si content is set to 0.001 to 0.10%. The lower limit of the more preferable Si content is 0.003%, and the more preferable upper limit of the Si content is 0.08%.

<Fe: 0.01 내지 0.3%><Fe: 0.01 to 0.3%>

Fe는 강도 향상에 유효한 원소이지만, 그 함유량의 증대에 따라 연성 및 인성이 열화된다. 또한, Fe는, 본 발명의 티타늄 합금에 함유되는 원소 중에서는 강력한 β 안정화 원소이며, 다량으로 첨가하면, 후술하는 α단상 조직을 얻기 어려워진다. 따라서, Fe의 함유량은 0.01 내지 0.30%로 한다. 더 바람직한 Fe의 함유량의 하한은 0.03%, 더 바람직한 Fe의 함유량의 상한은 0.25%이다.Although Fe is an element effective for strength improvement, as its content increases, ductility and toughness deteriorate. In addition, Fe is a strong β stabilizing element among the elements contained in the titanium alloy of the present invention, and when it is added in a large amount, it becomes difficult to obtain an α single-phase structure described later. Therefore, the Fe content is set to 0.01 to 0.30%. The lower limit of the more preferable Fe content is 0.03%, and the more preferable upper limit of the Fe content is 0.25%.

<H: 0.015% 이하><H: 0.015% or less>

H는, 티타늄 수소화물을 형성해 소재의 연성 및 인성을 열화시키는 원소이다. 그 때문에 함유량은 적은 쪽이 바람직하지만, 제조 공정에서 H의 증가는 불가피하다. 또한, H는 본 발명에 있어서 내식성 향상에 중요한 역할을 하는 C와 동일하게, 침입형 고용 원소이다. 그 때문에, H 함유량의 증가에 의해 C의 고용 함유량이 저하될 우려가 있다. 따라서, H의 함유량은 0.015% 이하로 제한한다. 또한, 이와 같은 저H의 티타늄 합금을 얻는 경우에는 고순도 스폰지 티타늄을 사용하면 되지만, 고순도의 스폰지 티타늄을 너무 많이 사용하면 비용 증가가 된다. 본 발명에 있어서, H는 불순물 원소이며, 0%여도 되지만, 비용면에서 H는 0.001% 이상이 바람직하다. 더 바람직한 H의 함유량의 상한은 0.005%이다.H is an element that forms titanium hydride and deteriorates the ductility and toughness of the material. Therefore, although the one with less content is preferable, the increase of H in a manufacturing process is unavoidable. In addition, H is an interstitial solid solution element similarly to C which plays an important role in improving corrosion resistance in this invention. Therefore, there exists a possibility that the solid solution content of C may fall with an increase in H content. Therefore, the content of H is limited to 0.015% or less. In addition, in the case of obtaining such a low-H titanium alloy, high-purity sponge titanium may be used, but if too much high-purity sponge titanium is used, the cost increases. In the present invention, H is an impurity element and may be 0%, but from the viewpoint of cost, H is preferably 0.001% or more. More preferably, the upper limit of the content of H is 0.005%.

<O: 0.25% 이하><O: 0.25% or less>

O는, 강도 향상에 유효한 필수 원소이지만, 그 함유량의 증대에 따라 연성 및 인성이 열화된다. 또한, O는 본 발명에 있어서 내식성 향상에 중요한 역할을 하는 C와 동일하게, 침입형 고용 원소이다. 그 때문에, O 함유량의 증가에 의해 C의 고용 함유량이 저하될 우려가 있다. 따라서, O의 함유량은 0.25% 이하로 한다. 또한, 이와 같은 저O의 티타늄 합금을 얻는 경우에는 고순도 스폰지 티타늄을 사용하면 되지만, 고순도의 스폰지 티타늄을 너무 많이 사용하면 비용 증가가 된다. 본 발명에 있어서, O는 불순물 원소이며, 0%이어도 되고, 비용면에서는 O는 0.01% 이상이 바람직하다. 더 바람직한 O의 함유량의 상한은 0.20%이다.Although O is an essential element effective for strength improvement, ductility and toughness deteriorate as the content increases. In addition, O is an interstitial solid solution element similarly to C which plays an important role in improving corrosion resistance in this invention. Therefore, there exists a possibility that the solid solution content of C may fall with an increase in O content. Therefore, the content of O is made 0.25% or less. In addition, when obtaining such a low-O titanium alloy, high-purity sponge titanium may be used, but if too much high-purity sponge titanium is used, the cost increases. In the present invention, O is an impurity element and may be 0%, and from the viewpoint of cost, O is preferably 0.01% or more. More preferably, the upper limit of the content of O is 0.20%.

<표층이 α단상><Surface layer is α single phase>

표층이 α단상이란, 표층의 조직이 α상이며, TiC의 X선 회절 피크의 강도가 백 그라운드의 강도와 비교하여 10% 이하인 것을 의미한다. 여기서, 표층이란, 표면으로부터 깊이 5㎛까지의 범위이다. α상에는, α' 상이나 바늘형 α상은 포함되지 않는다. 도 3은, 본원 발명의 제조 방법으로 제조된 티타늄 합금의 표면의 상태이다.The α single phase of the surface layer means that the structure of the surface layer is α phase, and the intensity of the X-ray diffraction peak of TiC is 10% or less compared to the intensity of the background. Here, the surface layer is a range from the surface to a depth of 5 µm. The α phase does not include an α′ phase or an acicular α phase. 3 is a state of the surface of the titanium alloy produced by the manufacturing method of the present invention.

α상은, 육방 세밀 충전구조로 구성되고, β상으로부터 변태하여 형성되는 α' 상이나 바늘형α상과는 결정 구조나 입계 분포가 다르다. α상에 고용된 C 원자는 Ti 원자 간에 침입형 고용 원소로서 존재하기 쉽고, Ti 원자핵의 주위에 존재하는 전자 상태에 작용함으로써 애노드 반응을 억제함으로써 내식성을 향상시킬 수 있다. 애노드 반응이란 금속이 부식되어 이온화되는 반응을 가리킨다. 금속이 이온화할 때 Ti 원자핵으로부터 전자를 괴리시킬 필요가 있고, α상에 C를 고용시킴으로써, 전자를 괴리하기 어렵게 해 내식성을 향상시킨다. α' 상은 최밀 구조가 아닌 것, 바늘형α상은 입계 편석의 영향이 큰 것이 원인이 되고, α상와 비교하여 충분한 내식성 향상 효과를 얻을 수 없다.The α phase is composed of a hexagonal fine packing structure, and the crystal structure and grain boundary distribution are different from the α′ phase and the needle-like α phase formed by transformation from the β phase. The C atoms dissolved in the α phase tend to exist as interstitial solid solution elements between Ti atoms, and the corrosion resistance can be improved by inhibiting the anode reaction by acting on the electronic state existing around the Ti atom nuclei. The anode reaction refers to a reaction in which a metal is ionized by corrosion. When the metal is ionized, it is necessary to separate electrons from the Ti atom nucleus, and by dissolving C in the α phase, it is difficult to separate electrons and the corrosion resistance is improved. The α' phase does not have a tightest structure, and the needle-like α phase has a large influence of grain boundary segregation.

TiC는 경질의 화합물이며, 소재의 가공성을 현저하게 열화시킨다. 그러나, 본 발명의 티타늄 합금의 표층에는, 탄소가 거의 고용되고, TiC도 거의 석출되지 않기 때문에, 가공성이 열화되지는 않는다.TiC is a hard compound and significantly deteriorates the workability of the material. However, since carbon is substantially dissolved in the surface layer of the titanium alloy of the present invention and TiC is hardly precipitated, workability is not deteriorated.

<열처리 온도><Heat treatment temperature>

상술한 성분 조성을 만족시키는 소재라도, 열처리 온도에 의해 표층의 조직이 변화한다. 그 때문에 발휘되는 성능도 바뀐다. 도 2에 도시되는 바와 같이, 800℃ 부근의 열처리로 제조된 티타늄 합금의 부식 속도가 가장 억제된다. 따라서, 본 발명에 있어서는, 열처리 온도를 750 내지 820℃이다. 이 온도 영역에서의 유지 시간에 대해서는 특별한 한정은 없으며, 1sec 이상, 바람직하게는 30sec 이상의 시간 유지한다면 충분하다.Even if it is a material satisfying the above-mentioned composition, the structure of the surface layer changes depending on the heat treatment temperature. As a result, the performance exhibited also changes. As shown in Figure 2, the corrosion rate of the titanium alloy produced by heat treatment around 800 ℃ is most suppressed. Therefore, in the present invention, the heat treatment temperature is 750 to 820°C. There is no particular limitation on the holding time in this temperature range, and it is sufficient if the holding time is 1 sec or more, preferably 30 sec or more.

750 내지 820℃에서 티타늄 합금의 부식 속도가 억제되는 이유로서는, 이 온도 영역 이외에서 열처리를 실시하면 TiC가 석출되거나, 조직이 α' 상이나 바늘형α상이 되거나 하기 때문이다. 예를 들어, 도 4에는, 이 온도 영역 이외에서 열처리를 실시한 종래의 방법으로 제조되는 티타늄 합금의 표층 상태가 나타나고 있다. 표층에는, 섬 형상의 TiC 석출물이 발생되고 있다(도 4). TiC는 경질의 화합물이며, 소재의 가공성을 현저하게 열화시킨다. 그 때문에, 종래의 방법으로 제조된 티타늄 합금은 가공성이 열화된다.The reason why the corrosion rate of the titanium alloy is suppressed at 750 to 820°C is that when heat treatment is performed outside this temperature range, TiC is precipitated or the structure becomes α′ phase or acicular α phase. For example, FIG. 4 shows the state of the surface layer of a titanium alloy manufactured by a conventional method in which heat treatment is performed outside of this temperature range. In the surface layer, island-shaped TiC precipitates are generated (FIG. 4). TiC is a hard compound and significantly deteriorates the workability of the material. Therefore, the workability of the titanium alloy produced by the conventional method is deteriorated.

<냉각 속도><Cooling rate>

열처리 온도가 상기 범위여도, 냉각 속도가 느릴 경우에는, 냉각 과정에서 TiC가 석출되기 때문에, 표층이 α가 되지 않는다. 본 발명의 냉각 속도는, 0.001℃/sec 이상, 바람직하게는 1℃/sec 이상이 좋다. 또한, 냉각 속도는 빠른 쪽이 TiC의 석출을 억제할 수 있지만, 너무 빠른 냉각 속도는 티타늄판의 형상 유지에 악영향을 초래하기 때문에, 상한을 2000℃/sec로 한다.Even if the heat treatment temperature is within the above range, when the cooling rate is slow, since TiC is precipitated in the cooling process, the surface layer does not become α. The cooling rate of the present invention is preferably 0.001°C/sec or more, preferably 1°C/sec or more. In addition, although a faster cooling rate can suppress precipitation of TiC, since an excessively fast cooling rate causes a bad influence on shape maintenance of a titanium plate, an upper limit is made into 2000 degreeC/sec.

<제조 방법><Production method>

다음에, 본 발명의 티타늄 합금의 제조 방법에 대해 설명한다. 본 발명의 티타늄 합금은, 통상의 공업용 순티타늄과 마찬가지로, 주조→분괴 압연(또는 열간 단조)→열간 압연→어닐링(→냉간 압연→최종 어닐링)과 같은 각 공정간에, 수시 블라스트, 산세 처리를 하는 것 등에 의해, 특별히 특수한 방법을 이용하지 않고 제조할 수 있다. 또한, 상기 공정의 설명에서, 괄호넣기의 (→냉간 압연→최종 어닐링)이라는 공정은 반드시 필요하지는 않지만, 제조할 티타늄의 판 두께, 형상, 크기 등에 의해 적절하게 실시한다.Next, the manufacturing method of the titanium alloy of this invention is demonstrated. The titanium alloy of the present invention, like ordinary industrial pure titanium, is subjected to frequent blasting and pickling treatment between each process such as casting → ingot rolling (or hot forging) → hot rolling → annealing (→ cold rolling → final annealing). It can be manufactured without using a special method in particular. In addition, in the description of the above process, the step of (→ cold rolling → final annealing) of parentheses is not necessarily required, but is appropriately carried out depending on the thickness, shape, size, etc. of the titanium to be manufactured.

실시예Example

이하, 실시예를 들어 본 발명을 더 구체적으로 설명한다. 본 발명은 이하의 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of Examples. The present invention is not limited to the following examples.

스폰지 티타늄 및 소정의 첨가 원소를 포함하는 용해 원료로 사용하고, 진공 아크 용해로에 의해, 표 1에 나타내는 각 성분 조성의 티타늄 잉곳을 주조하였다. 첨가 원소 중 Fe는 전해철, C는 TiC 분말을 각각 첨가하였다.It was used as a melting raw material containing sponge titanium and a predetermined|prescribed additive element, and the titanium ingot of each component composition shown in Table 1 was cast with the vacuum arc melting furnace. Among the additional elements, electrolytic iron was added to Fe and TiC powder was added to C.

또한, 표 중의, Al, V, Cr, Ru, Pd, Ni 및 Co는 의도적으로 첨가하는 원소가 아니며, 표 중의 값은 상기 각각의 원소 함유량이 불순물 레벨인 것을 나타내는 것이다.In addition, Al, V, Cr, Ru, Pd, Ni, and Co in the table are not intentionally added elements, and the values in the table indicate that the content of each element is an impurity level.

Figure 112020097604833-pct00001
Figure 112020097604833-pct00001

주조된 티타늄 주괴를 사용하여, 800 내지 1000℃의 가열 온도에서 단조, 열간 압연을 행하여, 두께 4.0㎜의 열연판으로 하고, 산세와 기계 가공에 의해 내식성 평가용 시험편을 제작하였다. 그 후, 표 2에 나타내는 각각의 온도에서 진공 어닐링을 실시하고, 내식성을 평가하였다.Using the cast titanium ingot, forging and hot rolling were performed at a heating temperature of 800 to 1000° C. to obtain a hot-rolled sheet having a thickness of 4.0 mm, and a test piece for evaluation of corrosion resistance was produced by pickling and machining. Then, vacuum annealing was performed at each temperature shown in Table 2, and corrosion resistance was evaluated.

표면 조직의 동정은, XRD(X선 회절)와 마이크로 조직 관찰에 의해 행한, X선 회절의 조건은, 특성 X선으로서 Co Kα선을 이용하고, 전압은 30kV, 전류는 100mA로 하였다. X선 회절의 범위는 10°≤2θ≤110°, 스텝은 0.04°, 적산 시간은 2s로 하고, X선 입사각은 0.3°로 하였다. 시험편(세로 20㎜, 가로 20㎜)의 X선 회절 피크의 위치로부터α상, β상, α' 상, TiC의 유무를 조사하고, 마이크로 조직 관찰에 의해 바늘형α의 유무를 포함하여 종합적으로 표면 조직을 조사하였다. X선 회절 피크 강도가 백 그라운드보다도 10%를 초과하여 검출된 경우에 β상, α' 상, TiC의 형성을 확인하고, 그의 다른 경우에는 α단상이라고 판단하였다.The surface structure was identified by XRD (X-ray diffraction) and microstructure observation, and the conditions of X-ray diffraction were that Co Kα rays were used as characteristic X-rays, the voltage was 30 kV, and the current was 100 mA. The range of X-ray diffraction was 10°≤2θ≤110°, the step was 0.04°, the integration time was 2s, and the X-ray incident angle was 0.3°. From the position of the X-ray diffraction peak of the test piece (length 20 mm, width 20 mm), the presence or absence of α phase, β phase, α' phase, and TiC was investigated, The surface texture was investigated. When the X-ray diffraction peak intensity was detected to exceed 10% of the background, the formation of the β phase, the α′ phase and TiC was confirmed, and in other cases, it was judged to be an α single phase.

내식성은, 시험편을 90℃, 3mass%의 염산수 용액에 168h 침지하고, 침지 전후의 중량을 비교함으로써, 산출된 부식 속도의 대소에 의해 평가하였다. 부식 속도가 2㎜/year 이하인 경우를 합격으로 하였다. 내식성 평가 시험의 결과를 표 2에 나타낸다. 가공성은, JIS Z 2241에 기재된 방법으로 인장 시험을 행하고, 그 신율에 의해 평가하였다. 신율의 측정은, 신율계에 의해 행하고, 전체 신율이 40% 이상인 경우를 합격으로 하였다.Corrosion resistance was evaluated by the magnitude of the corrosion rate calculated by immersing a test piece in 90 degreeC and 3 mass% hydrochloric acid solution for 168h, and comparing the weight before and behind immersion. The case where the corrosion rate was 2 mm/year or less was regarded as pass. Table 2 shows the results of the corrosion resistance evaluation test. Workability performed a tensile test by the method described in JIS Z 2241, and evaluated by the elongation. The measurement of elongation was performed with an extensometer, and the case where total elongation was 40 % or more was set as the pass.

Figure 112020097604833-pct00002
Figure 112020097604833-pct00002

본 발명에서 규정하는 소재 성분, 열처리 온도, 표층 조직의 모두를 만족시키는 No.1 내지 9에서는 부식 속도가 현저하게 낮고, 내식성이 향상되고, 충분한 신율을 나타내기 때문에 내식성과 가공성의 양립을 확인할 수 있었다.In Nos. 1 to 9, which satisfy all of the material components, heat treatment temperature, and surface layer structure stipulated in the present invention, the corrosion rate is remarkably low, corrosion resistance is improved, and since sufficient elongation is exhibited, both corrosion resistance and workability can be confirmed. there was.

No.10 내지 16은 탄소 등의 소재 성분은 본 발명의 범위 내에 있지만, 열처리 온도 혹은 냉각 속도가 본 발명의 범위 밖이기 때문에, 표면 조직이 α단상으로 되지 않고, 부식 속도가 크게 만족되는 신율을 나타내지 않았다. No.14, 16, 18, 20은 냉각 속도가 느리기 때문에, 냉각 과정에서 TiC가 석출되었다.In Nos. 10 to 16, the material components such as carbon are within the scope of the present invention, but since the heat treatment temperature or cooling rate is outside the scope of the present invention, the surface structure does not become α single phase, and the elongation at which the corrosion rate is greatly satisfied. did not show In Nos. 14, 16, 18, and 20, since the cooling rate was slow, TiC was precipitated in the cooling process.

No.17 내지 24는, S, P, Si 등 C의 고용 한도를 저하시키는 원소가, 본 발명의 범위 이상으로 첨가되어 있어, 본 발명의 온도나 냉각 속도를 만족시켜도 α단상이 되지 않고, 내식성도 향상되지 않으며, TiC도 석출되고 있기 때문에 신율이 낮았다.In Nos. 17 to 24, elements that lower the solid solution limit of C, such as S, P, Si, are added beyond the range of the present invention, and even if the temperature and cooling rate of the present invention are satisfied, α single phase does not occur, and corrosion resistance also did not improve, and since TiC was also precipitated, the elongation was low.

No.1, 5는, 옥외의 환경에서는 변색 등이 거의 관찰되지 않았던 것에 비해, No.23, 24는, 옥외의 환경에서는 표면이 갈색으로 되었다.In No. 1 and 5, discoloration etc. were hardly observed in an outdoor environment, whereas in No. 23 and 24, the surface became brown in an outdoor environment.

Claims (2)

질량%로,
C: 0.10 내지 0.30%,
N: 0.001 내지 0.03%,
S: 0.001 내지 0.03%,
P: 0.001 내지 0.03%,
Si: 0.001 내지 0.10%,
Fe: 0.01 내지 0.3%,
H: 0.015% 이하,
O: 0.25% 이하
이며, 잔부가 Ti 및 불가피적 불순물이며, 표층이 α단상인 것을 특징으로 하는 티타늄 합금.
in mass %,
C: 0.10 to 0.30%;
N: 0.001 to 0.03%;
S: 0.001 to 0.03%;
P: 0.001 to 0.03%;
Si: 0.001 to 0.10%;
Fe: 0.01 to 0.3%,
H: 0.015% or less;
O: 0.25% or less
and the balance is Ti and unavoidable impurities, and the surface layer is an α single phase.
질량%로,
C: 0.10 내지 0.30%,
N: 0.001 내지 0.03%,
S: 0.001 내지 0.03%,
P: 0.001 내지 0.03%,
Si: 0.001 내지 0.10%,
Fe: 0.01 내지 0.3%,
H: 0.015% 이하,
O: 0.25% 이하
이며, 잔부가 Ti 및 불가피적 불순물인 티타늄 합금에 750 내지 820℃에서 마무리 열처리를 실시하고, 0.001℃/sec 이상의 속도로 냉각하는 것을 특징으로 하는 티타늄 합금의 제조 방법.
in mass %,
C: 0.10 to 0.30%;
N: 0.001 to 0.03%;
S: 0.001 to 0.03%;
P: 0.001 to 0.03%;
Si: 0.001 to 0.10%;
Fe: 0.01 to 0.3%,
H: 0.015% or less;
O: 0.25% or less
And, a titanium alloy with the balance of Ti and unavoidable impurities is subjected to a finish heat treatment at 750 to 820 ° C., followed by cooling at a rate of 0.001 ° C./sec or more.
KR1020207026577A 2018-04-10 2018-04-10 Titanium alloy and manufacturing method thereof Active KR102340036B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015065 WO2019198147A1 (en) 2018-04-10 2018-04-10 Titanium alloy and production method therefor

Publications (2)

Publication Number Publication Date
KR20200118878A KR20200118878A (en) 2020-10-16
KR102340036B1 true KR102340036B1 (en) 2021-12-16

Family

ID=68163163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207026577A Active KR102340036B1 (en) 2018-04-10 2018-04-10 Titanium alloy and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP6927418B2 (en)
KR (1) KR102340036B1 (en)
CN (1) CN111902550B (en)
RU (1) RU2752094C1 (en)
WO (1) WO2019198147A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102678251B1 (en) * 2021-11-19 2024-06-26 한국생산기술연구원 Method for manufacturing high corrosion resistance titanium alloy having fine precipitates by quenching, and high corrosion resistance titanium alloy manufactured through the same
JPWO2024100802A1 (en) * 2022-11-09 2024-05-16

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144413A (en) 2010-01-13 2011-07-28 Kobe Steel Ltd Titanium alloy billet having excellent flaw detectability in ultrasonic test
JP2013095964A (en) 2011-10-31 2013-05-20 Kobe Steel Ltd Titanium plate, method for producing titanium plate and method for manufacturing heat-exchanging plate for plate-type heat-exchanger
JP2014205904A (en) 2013-03-19 2014-10-30 株式会社神戸製鋼所 Titanium plate
WO2017018522A1 (en) 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot working

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727821Y2 (en) * 1976-02-27 1982-06-17
JPH0625779A (en) 1992-07-08 1994-02-01 Nkk Corp Titanium alloy excellent in corrosion resistance to sulfuric acid and hydrochloric acid
EP0767245B1 (en) * 1995-04-21 2000-10-04 Nippon Steel Corporation High-strength, high-ductility titanium alloy and process for preparing the same
US20070062614A1 (en) 2005-09-19 2007-03-22 Grauman James S Titanium alloy having improved corrosion resistance and strength
JP3916088B2 (en) 2005-12-28 2007-05-16 住友金属工業株式会社 Titanium alloy for corrosion resistant materials
JP5491882B2 (en) * 2010-01-27 2014-05-14 株式会社神戸製鋼所 High strength titanium plate with excellent cold rolling properties
RU2643736C2 (en) * 2014-01-22 2018-02-05 Ниппон Стил Энд Сумитомо Метал Корпорейшн Titanium material or material from titanium alloy having surface electrical conductivity, as well as fuel cell separator and fuel cell using thereof
CN104099531B (en) * 2014-07-31 2016-08-24 宁国市宁武耐磨材料有限公司 A kind of high hardness wear-resisting ball and preparation method thereof
JP6719216B2 (en) * 2015-03-26 2020-07-08 株式会社神戸製鋼所 α-β type titanium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144413A (en) 2010-01-13 2011-07-28 Kobe Steel Ltd Titanium alloy billet having excellent flaw detectability in ultrasonic test
JP2013095964A (en) 2011-10-31 2013-05-20 Kobe Steel Ltd Titanium plate, method for producing titanium plate and method for manufacturing heat-exchanging plate for plate-type heat-exchanger
JP2014205904A (en) 2013-03-19 2014-10-30 株式会社神戸製鋼所 Titanium plate
WO2017018522A1 (en) 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot working

Also Published As

Publication number Publication date
JPWO2019198147A1 (en) 2021-01-14
RU2752094C1 (en) 2021-07-22
CN111902550A (en) 2020-11-06
JP6927418B2 (en) 2021-08-25
KR20200118878A (en) 2020-10-16
CN111902550B (en) 2022-03-08
WO2019198147A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP2826974B2 (en) Corrosion resistant duplex stainless steel
JP4963043B2 (en) Bright annealed ferritic stainless steel sheet with excellent rust resistance and workability and method for producing the same
CN108884529B (en) Cr-based two-phase alloy and its products
JP5661938B2 (en) Ni-Fe-Cr-Mo-alloy
US20190284666A1 (en) NiCrFe Alloy
WO2009118964A1 (en) Titanium plate and process for manufacturing titanium plate
KR20170020483A (en) Nickel-chromium-iron-molybdenum corrosion resistant alloy and article of manufacture and method of manufacturing thereof
US20070131314A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
CN104245978A (en) Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance
CN104245977A (en) Nickel-chromium alloy having good processability, creep resistance and corrosion resistance
WO2017002148A1 (en) Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet
JP6760476B2 (en) Steel plate and its manufacturing method
JP2014001442A (en) Weather resistant bolt steel
KR102340036B1 (en) Titanium alloy and manufacturing method thereof
JP5505214B2 (en) High corrosion resistance titanium alloy having a large 0.2% proof stress in the rolling direction and its manufacturing method
CN111148854A (en) Austenitic stainless steel and method for producing same
JP3247244B2 (en) Fe-Cr-Ni alloy with excellent corrosion resistance and workability
JP6085211B2 (en) Titanium alloy material excellent in scale adhesion control and formability, its manufacturing method, and heat exchanger or seawater evaporator
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
TWI650428B (en) Titanium alloy and its manufacturing method
JP2013001973A (en) Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them
JP3779043B2 (en) Duplex stainless steel
US20110318220A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
JP2010180448A (en) Titanium alloy excellent in hydrogen absorbing resistance and cold-workability, and method of producing the same
KR20250069637A (en) Titanium materials, chemical equipment parts, and chemical equipment

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20200915

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20211027

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20211213

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20211214

End annual number: 3

Start annual number: 1

PG1601 Publication of registration