JP4304425B2 - Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet - Google Patents
Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet Download PDFInfo
- Publication number
- JP4304425B2 JP4304425B2 JP2002354302A JP2002354302A JP4304425B2 JP 4304425 B2 JP4304425 B2 JP 4304425B2 JP 2002354302 A JP2002354302 A JP 2002354302A JP 2002354302 A JP2002354302 A JP 2002354302A JP 4304425 B2 JP4304425 B2 JP 4304425B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium alloy
- cold
- alloy sheet
- rolled
- rolled titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Metal Rolling (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、熱交換器用材料などに用いられる冷間圧延チタン合金板およびその冷間圧延チタン合金板の製造方法に係り、特に、冷間加工性および超塑性特性に優れる冷間圧延チタン合金板およびその冷間圧延チタン合金板の製造方法に関する。
【0002】
【従来の技術】
熱交換器は、異種の流体間で熱エネルギーを伝達させることができる機器を意味し、例えば、エアコン、冷蔵庫、バーナーの空気予熱装置、自動車のラジエーター、化学工業用部品、海水用部品などに用いられている。特に、化学工業や海水などの優れた耐食性が要求される用途にはチタン製の熱交換器が用いられる。また、熱交換器を小型化するためには使用部材を高強度化する必要があり、このような熱交換器用材料としては軽量で強度の高いチタン合金が使用される。
【0003】
チタン合金の中でもTi-6Al-4V合金は、例えば、非特許文献1に記載されるように、優れた超塑性特性を有することから、熱交換器用材料として多用されている。しかし、この合金は冷間加工性に乏しい。このため、例えば、コイルに捲き取ったTi-6Al-4V合金板に冷間圧延を施して薄板を製造する場合には、中間焼鈍の回数を多くしなければならないという欠点がある。
【0004】
非特許文献2には、冷間加工性に優れるとともに、超塑性加工性に優れたチタン合金として、Ti-9V-2Mo-3Al合金が示されている。しかし、この合金にはMoが必須元素として含まれており、原料コストが上昇する。また、Moは融点が高いので、溶解の際に溶け残りまたは凝固偏析が発生しやすくなる。
【0005】
特許文献1には、質量%で、Al:5.5〜6.5%、V:3.5〜4.5%、O:0.2%以下、Fe:0.15〜3.0%、Cr:0.15〜3.0%、Mo:0.85〜3.15%を含有し、Fe、CrおよびMoが特定の式で表される範囲内にあり、かつα晶の平均粒径が6μm以下である超塑性加工性に優れるチタン合金が記載されている。この合金は、Ti-6Al-4Vよりも超塑性特性に優れるといえるが、冷間加工性については考慮されていない。即ち、この合金はAl含有量が5.5%以上と高いため、この合金に断面減少率で50%の冷間圧延を施すと、板の端部に耳割れが発生する。
【0006】
特許文献2には、質量%で、Al:3.0〜5.0%、V:2.1〜3.7%、Mo:0.85〜3.15%、O:0.15%以下を含有し、更にFe、Cr、NiおよびCoの1種以上を含有し、これらの元素の含有量が特定の式で表される範囲内にある加工性に優れたチタン合金が記載されている。また、熱間圧延条件を特定したチタン合金材の製造方法、熱処理条件を特定したチタン合金材の超塑性加工法も記載されている。しかし、この合金にはMoが含まれるため、非特許文献2に記載された合金と同様の問題が発生する。
【0007】
【特許文献1】
特公平8−19502号公報
【特許文献2】
特公平8−23053号公報
【非特許文献1】
N.Furushiro、外3名、「Titanium '80」、Metallurgical Society of AIME発行、1980年、993〜998頁
【非特許文献2】
岡勉、外2名、「日本でチタン材料について何を研究しているか」、日本鉄鋼協会編、1989年12月1日、58〜60頁
【0008】
【発明が解決しようとする課題】
本発明は、冷間加工性および超塑性特性に優れる冷間圧延チタン合金板およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記の目的を達成すべく、冷間加工性に優れるとされるTi-3Al-2.5V合金をベースとして研究を重ねた結果、本発明を完成した。
【0010】
本発明は、下記の(1)および(2)に示す冷間圧延チタン合金板、ならびに下記の(3)に示す冷間圧延チタン合金板の製造方法を要旨とする。
【0011】
(1)質量%で、Al:2.0〜4.0%、V:4.0〜7.02%、Zr:0〜2.0%およびSn:0〜3.0%で、残部がTiおよび不純物からなることを特徴とする冷間圧延チタン合金板。
【0012】
(2)質量%で、Al:2.0〜4.0%、V:4.0〜7.02%、Zr:0〜2.0%およびSn:0〜3.0%で、更に、Fe:0.20〜1.0%、Cr:0.01〜1.0%、Cu:0.01〜1.0%およびNi:0.01〜1.0%から選択される1種以上を含み、残部がTiおよび不純物からなり、下記の(1)式から得られるVeqが4.0〜9.5の範囲であることを特徴とする冷間圧延チタン合金板。
【0013】
Veq=V+1.9Cr+3.75Fe …(1)
但し、(1)式右辺の記号は各元素の含有量を意味する。
【0014】
(3)上記の(1)または(2)に記載される化学組成を有するチタン合金に、断面減少率で40%以上の冷間加工を施すことを特徴とする冷間圧延チタン合金板の製造方法。
【0015】
【発明の実施の形態】
まず、本発明の冷間圧延チタン合金板の化学組成およびその限定理由について述べる。なお、以下の説明において、各成分についての「%」は「質量%」を意味する。
【0016】
Al:2.0〜4.0%
Alは、チタン合金の強度を上昇させるのに極めて重要な役割を果たす元素である。また、Alは、チタン合金のα相を安定化するのに有効な元素でもある。超塑性特性は、α相とβ相との比率が50:50付近になる温度領域において発現するが、Alの含有量が少ないと、この温度領域が狭くなるため、安定した超塑性特性を得ることが困難になる。広い温度領域で超塑性特性を得るためには、Alの含有量を2.0%以上とする必要がある。しかし、Alの含有量が増加するに従って冷間加工性が低下する。特に、Alの含有量が4.0%を超えるチタン合金に断面減少率で50%程度の冷間加工を施すと、板の端部に耳割れが発生する。このため、Alの含有量を2.0〜4.0%とした。
【0017】
V:4.0〜9.0%
Vは、チタン合金のβ相を安定化するのに有効な元素であり、800〜850℃の温度域におけるβ相比率を増大させる作用を有する。特に、Vを4.0%以上含有させると、α相とβ相との比率が50:50付近になる温度領域を広げることができる。しかし、Vの含有量が7.02%を超えると、チタン合金材料の耐酸化特性を低下させる。これは、Vの酸化物が昇華性を有しており、Vの含有量が7.02%を超えるチタン合金が高温に曝されると、合金表面で発生するスケールが緻密でなく、酸素の透過性が高いものとなるからである。このため、合金表面で割れが発生しやすくなり、高温延性が低下する。従って、Vの含有量を4.0〜7.02%とした。
【0018】
Zr:0〜2.0%
Zrは、添加しなくてもよい元素であるが、Zrを添加すると、その固溶強化作用によりチタン合金の強化に寄与する。また、Zrを含むチタン合金が高温に曝されると、表面に強固なZr酸化物が形成して合金内部が酸化されるのを抑制する。このため、チタン合金の高温での変形においてクラックの発生を防止して伸びを増大できるので、チタン合金の超塑性特性を改善することができる。これらの効果が大きいのは、0.5%以上である。一方、Zrの含有量が2.0%を超えると、上記の酸化抑制の効果が飽和し、Zrが高価な元素であるためコストの上昇を招く。従って、Zrを含有させる場合には、その含有量を2.0%以下とするのがよい。
【0019】
Sn:0〜3.0%
Snも添加しなくても良い元素であるが、Snは、α相またはβ相の安定化には寄与しないものの、チタン合金の強化に寄与する元素である。このようなSnの効果を得るためには0.2%以上含有させるのがよい。しかし、Snを3.0%を超えて含有させると、凝固過程において低融点領域を形成するため、この低融点領域を基点として割れが生じる。従って、Snを含有させる場合には、その含有量を3.0%以下とするのがよい。
【0020】
本発明の冷間圧延チタン合金板は、上記の化学成分を有し、残物がTiおよび不純物からなるものであるが、Tiの一部に代えて、Fe:0.20〜1.0%、Cr:0.01〜1.0%、Cu:0.01〜1.0%およびNi:0.01〜1.0%の1種以上を含んでもよい。これは、下記の理由による。
【0021】
FeおよびCrは、チタン原料であるスポンジチタン中、または添加原料であるアルミ・バナジウム合金中に不純物として含まれる元素である。このため、これらの元素を積極的に添加しなくても、チタン合金中にFeは0.20%未満、Crは0.01%未満含まれる。これらの元素はいずれもβ相安定化元素であり、Vと同様の作用効果を有するが、Vよりも安価な元素である。従って、積極的にこれらの元素を添加するとコストを低減できるので、Feは0.20%以上、Crは0.01%以上含有させるのが望ましい。しかし、FeおよびCrはチタン合金中で金属間化合物を作る共析型の元素であり、FeおよびCrをそれぞれ1.0%を超えて含有させると金属間化合物の過剰な析出により脆化を招く。
【0022】
CuおよびNiは、Vと同様にβ安定化元素であり、800〜850℃の温度域におけるのβ相の比率を増大させるのに有効な元素である。また、これらの元素はVよりも安価な元素であるためVの代替元素として添加することができる。この効果を得るためには、Cuは0.01%以上、Niは0.01%以上含有させるのが望ましい。しかし、CuおよびNiはチタンにとって共析型の元素であるために、これらの元素をそれぞれ1.0%を超えて含有させると、金属間化合物を作り、冷間加工性を低下させる。
【0023】
従って、本発明の冷間圧延チタン合金板にこれらの元素の1種以上を含有させる場合の含有量を、Feは0.20〜1.0%、Crは0.01〜1.0%、Cuは0.01〜1.0%、Niは0.01〜1.0%とした。
【0024】
Veq(=V+1.9Cr+3.75Fe):4.0〜9.5
チタン合金のβ相の安定度を示す指標として下記の(1)で表されるVeqがある。但し、(1)式右辺の記号は各元素の含有量を意味する。
【0025】
Veq=V+1.9Cr+3.75Fe・・・(1)
このVeqが4.0未満の場合には、800〜850℃の温度域におけるβ相の比率が低くなり、この温度域における超塑性特性が発現しにくくなる。一方、Veqが9.5を超えると、α相の比率が減少して800〜850℃の温度域における超塑性特性が劣化するとともに、合金自体の比重が大きくなり、軽量であるとのチタン合金の特徴を損なうことになる。従って、本発明の冷間圧延チタン合金板にFeおよび/またはCrを含有させる場合には、上記の(1)式から得られるVeqを4.0〜9.5の範囲に制限する必要がある。
【0026】
本発明の冷間圧延チタン合金板は、上記の成分を含有し、残部がTiおよび不純物からなるが、主要な不純物としてO(酸素)、C(炭素)、N(窒素)およびH(水素)がある。Oは、スポンジチタンおよびV原料に含まれる不純物であり、CおよびNは、スポンジチタンに含まれる不純物である。また、Hは加熱時に雰囲気から吸収するか、または酸洗工程で吸収される不純物である。これらの不純物は少ないほどよいが、Oは0.2%まで、Cは0.01%まで、Nは0.01%まで、Hは0.01%まで許容できる。
【0027】
次に、本発明の冷間圧延チタン合金板の製造方法について、薄板を製造する場合を例にとって説明する。冷間圧延チタン合金板は、VARなどの通常の溶解法により作製した鋳塊を熱間での分塊鍛造または圧延によりスラブとした後、熱間圧延によりホットコイルを製造し、冷間圧延により最終板厚までに仕上げ、最終焼鈍を施して作製される。このうち製品の特性に大きな影響を与えるのは冷間圧延工程であり、特に、断面減少率で40%以上の冷間加工(冷間圧延)を施すことにより、高温での超塑性特性に優れた冷間圧延チタン合金板を得ることができる。これは下記の理由による。
【0028】
即ち、冷間圧延における断面減少率を大きくすると、冷間圧延チタン合金板中の結晶粒径、特に初析α相の粒径が小さくなる。そして、冷間圧延チタン合金板中の結晶粒径が小さくなると、高温で超塑性変形を与えたときの伸びが大きくなるため、高温での超塑性特性に優れる冷間圧延チタン合金板を製造することができる。このように、冷間圧延における断面減少率が大きくなると、高温で超塑性変形を与えたときの伸びは、断面減少率が40%の付近までは急速に大きくなり、40%以上の領域では、変化が小さくなっていく。従って、本発明の冷間圧延チタン合金板の製造方法においては、断面減少率で40%以上の冷間加工を施すこととした。断面減少率の上限には、特に制限はないが、80%を超える冷間圧延を施すと、板の端部に耳割れが発生する。従って、冷間加工における断面減少率は80%以下に制限するのが望ましい。但し、材料の延性を回復することを目的として中間焼鈍を施す場合には断面減少率が80%を超える条件で冷間加工を行ってもよい。
【0029】
なお、断面減少率は、下記の(a)式から求められる。
断面減少率(%)={(加工前断面積−加工後断面積)/加工前断面積}×100 …(a)
【0030】
【実施例】
(実施例1)
プラズマ中のアーク溶解炉を用いて、幅50mm、厚さ15mm、長さ80mmのボタンインゴットを作製し、このボタンインゴットを850℃間に加熱した後、熱間圧延により、厚さ5mmの熱延板を作製した。この熱延板に750℃で10分間の焼鈍を施した後、ショットブラスおよび酸洗によって酸化物スケールを除去し、更に、機械加工によって厚さ4mmとなるまで表面を切削して、冷延用素材を作製した。この冷延用素材に冷間圧延を施し、厚さ2mmの冷延板を作製した。このとき、冷延性の評価として、冷延板の表面端部の割れの発生状況を目視観察した。
【0031】
更に、この冷間圧延時に割れが発生しなかったものについては、アルゴン雰囲気中で700℃×30分の熱処理を行い、冷間圧延により厚さ1.5mmまで圧延した後、再びアルゴン雰囲気中で700℃×30分の熱処理を施し供試材とした。この供試材から試験片の長さ方向と圧延方向とが平行となるように、平行部が厚さ1.5mm、幅12.5mmの板状試験片を採取した。この引張試験片の標点間距離を20mmとし、試験温度800℃、引張速度9mm/分で引張試験を行い、破断伸びを測定した。
【0032】
冷延板の化学組成、冷延性評価および破断伸びを表1に示す。
【0033】
【表1】
【0034】
表1に示すように、本発明で規定される化学組成を満たす合金は、冷間圧延が可能であり、優れた超塑性伸びが得られる。
【0035】
(実施例2)
実施例1と同じ製造条件で、Al:3.0%、V:5.0%を含有し、残部がTiおよび不純物からなる厚さ4mmの冷延用素材を作製した。
【0036】
この冷延用素材に、断面減少率が異なる冷間圧延を施し、厚さが3.5mm、3.0mm、2.5mm、2.0mmおよび1.5mmの冷延板を作製した。これらの冷延板にアルゴン雰囲気中で700℃×30分の熱処理を施した後、試験片の長さ方向と圧延方向とが平行となるように、平行部が厚さ1.0mm、幅12.5mmの板状試験片を採取した。この引張試験片の標点間距離を20mmとし、試験温度800℃、引張速度9mm/分で引張試験を行い、破断伸びを測定した。
【0037】
更に、中間焼鈍後の冷間圧延における断面減少率が超塑性特性に与える影響について調査すべく、厚さ2.0mmの冷延板にアルゴン雰囲気中で700℃×30分の熱処理を施した後、再度、冷間圧延により厚さ1.5mmまたは1.0mmまで圧延した後、アルゴン雰囲気中で700℃×30分の熱処理を施し供試材とした。この供試材から平行部が厚さ1.0mm、幅12.5mmの板状試験片を採取し、上記と同じ引張試験を行い、破断伸びを測定した。これらの断面減少率および破断伸びを表2に示す。
【0038】
【表2】
【0039】
表2に示すように、いずれの実施例でも化学組成が本発明で規定される範囲内にあるため、破断伸びが200%を超え、優れた超塑性特性が得られた。特に、断面減少率が高くなるほど破断伸びが増大し、断面減少率が40%以上の条件ではほとんど破断伸びは変化しなくなる。また、No.39および40の結果から、中間焼鈍後の冷間圧延率が低くても、中間焼鈍前の断面減少率が40%以上であれば、良好な破断伸びを示すことが分かる。
【0040】
【発明の効果】
本発明の冷間圧延チタン合金板は、十分な冷間加工性を有すると共に、優れた超塑性特性を有するものである。従って、本発明の冷間圧延チタン合金板は、均一な板厚分布を持つ超塑性成形用素材の製造が可能となる。これにより、薄板の冷間圧延チタン合金板を低コストで、容易に製造することができ、薄板の冷間圧延チタン合金板の適用分野を拡大することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold-rolled titanium alloy plate used for a heat exchanger material and the like, and a method for producing the cold-rolled titanium alloy plate , and in particular, a cold- rolled titanium alloy plate excellent in cold workability and superplastic characteristics. And a method for producing the cold-rolled titanium alloy sheet .
[0002]
[Prior art]
A heat exchanger means a device that can transfer heat energy between different types of fluids. For example, it is used for air conditioners, refrigerators, air preheating devices for burners, automobile radiators, chemical industry parts, seawater parts, etc. It has been. In particular, titanium heat exchangers are used for applications that require excellent corrosion resistance, such as the chemical industry and seawater. In addition, in order to reduce the size of the heat exchanger, it is necessary to increase the strength of the member used, and as such a heat exchanger material, a lightweight and high-strength titanium alloy is used.
[0003]
Among titanium alloys, Ti-6Al-4V alloy, as described in Non-Patent Document 1, for example, has excellent superplastic characteristics and is therefore widely used as a heat exchanger material. However, this alloy has poor cold workability. For this reason, for example, when manufacturing a thin plate by cold rolling the Ti-6Al-4V alloy plate scraped off to a coil, there exists a fault that the frequency | count of intermediate annealing must be increased.
[0004]
Non-Patent Document 2 discloses a Ti-9V-2Mo-3Al alloy as a titanium alloy having excellent cold workability and excellent superplastic workability. However, this alloy contains Mo as an essential element, which increases raw material costs. In addition, since Mo has a high melting point, undissolved or solidified segregation is likely to occur during melting.
[0005]
In Patent Literature 1, Al: 5.5 to 6.5%, V: 3.5 to 4.5%, O: 0.2% or less, Fe: 0.15 to 3.0%, Cr: 0.15 to 3.0%, Mo: 0.85 to 3.15% in mass% In addition, a titanium alloy having excellent superplastic workability in which Fe, Cr, and Mo are in a range represented by a specific formula, and an α crystal has an average particle diameter of 6 μm or less is described. Although this alloy can be said to be superior in superplastic properties than Ti-6Al-4V, cold workability is not considered. That is, since this alloy has a high Al content of 5.5% or more, when this alloy is subjected to cold rolling with a cross-sectional reduction rate of 50%, an edge crack occurs at the end of the plate.
[0006]
Patent Document 2 contains, in mass%, Al: 3.0 to 5.0%, V: 2.1 to 3.7%, Mo: 0.85 to 3.15%, O: 0.15% or less, and 1 of Fe, Cr, Ni, and Co. Titanium alloys that contain more than seeds and are excellent in workability in which the content of these elements is within the range represented by a specific formula are described. In addition, a manufacturing method of a titanium alloy material with specified hot rolling conditions and a superplastic working method of a titanium alloy material with specified heat treatment conditions are also described. However, since this alloy contains Mo, the same problem as the alloy described in Non-Patent Document 2 occurs.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 8-19502 [Patent Document 2]
Japanese Patent Publication No. 8-23053 [Non-Patent Document 1]
N.Furushiro, three others, “Titanium '80”, published by Metallurgical Society of AIME, 1980, 993-998 [Non-patent Document 2]
Tsutomu Oka, two others, "What are you studying about titanium materials in Japan," Japan Iron and Steel Institute, December 1, 1989, pp. 58-60
[Problems to be solved by the invention]
The present invention aims at providing cold-rolled titanium alloy sheet excellent in cold workability and superplasticity and a manufacturing method of it.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted research based on a Ti-3Al-2.5V alloy that is excellent in cold workability, and as a result, completed the present invention.
[0010]
The gist of the present invention is a cold-rolled titanium alloy plate shown in the following (1) and (2) and a method for producing a cold-rolled titanium alloy plate shown in the following (3).
[0011]
(1) By mass%, Al: 2.0 to 4.0 %, V: 4.0 to 7.02 %, Zr: 0 to 2.0% and Sn: 0 to 3.0%, the balance being A cold-rolled titanium alloy sheet characterized by comprising Ti and impurities.
[0012]
(2) By mass%, Al: 2.0-4.0 %, V: 4.0-7.02 %, Zr: 0-2.0% and Sn: 0-3.0%, Fe: 0.20~1.0%, Cr: 0.01~1.0 %, Cu: 0.01~1.0% and Ni: 0.01 to 1.0 1 or more selected from% The balance is made of Ti and impurities, and the Veq obtained from the following formula (1) is in the range of 4.0 to 9.5.
[0013]
Veq = V + 1.9Cr + 3.75Fe (1)
However, the symbol on the right side of equation (1) means the content of each element.
[0014]
(3) Production of a cold-rolled titanium alloy sheet characterized by subjecting the titanium alloy having the chemical composition described in (1) or (2) above to cold working with a cross-section reduction rate of 40% or more. Method.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, the chemical composition of the cold-rolled titanium alloy sheet of the present invention and the reasons for limitation will be described. In the following description, “%” for each component means “mass%”.
[0016]
Al: 2.0-4.0%
Al is an element that plays an extremely important role in increasing the strength of the titanium alloy. Al is also an element effective for stabilizing the α phase of the titanium alloy. Superplastic properties appear in the temperature range where the ratio of α phase to β phase is around 50:50. However, if the Al content is low, this temperature range becomes narrower, and stable superplastic properties are obtained. It becomes difficult. In order to obtain superplastic characteristics over a wide temperature range, the Al content needs to be 2.0% or more. However, the cold workability decreases as the Al content increases. In particular, if a titanium alloy having an Al content exceeding 4.0% is subjected to cold working with a cross-sectional reduction rate of about 50%, an edge crack occurs at the end of the plate. For this reason, the content of Al is set to 2.0 to 4.0%.
[0017]
V: 4.0-9.0%
V is an element effective for stabilizing the β phase of the titanium alloy, and has the effect of increasing the β phase ratio in the temperature range of 800 to 850 ° C. In particular, when V is contained in an amount of 4.0% or more, the temperature range in which the ratio of the α phase to the β phase is around 50:50 can be expanded. However, if the V content exceeds 7.02 %, the oxidation resistance of the titanium alloy material is deteriorated. This is because the oxide of V has sublimability, and when a titanium alloy having a V content exceeding 7.02 % is exposed to high temperature, the scale generated on the alloy surface is not dense, and oxygen This is because the permeability is high. For this reason, it becomes easy to generate | occur | produce a crack on the alloy surface, and high temperature ductility falls. Therefore, the content of V is set to 4.0 to 7.02 %.
[0018]
Zr: 0 to 2.0%
Zr is an element that does not need to be added, but if Zr is added, it contributes to strengthening of the titanium alloy by its solid solution strengthening action. Further, when a titanium alloy containing Zr is exposed to a high temperature, a strong Zr oxide is formed on the surface and the inside of the alloy is prevented from being oxidized. For this reason, in the deformation | transformation at high temperature of a titanium alloy, generation | occurrence | production of a crack can be prevented and elongation can be increased, Therefore The superplastic characteristic of a titanium alloy can be improved. These effects are large at 0.5% or more. On the other hand, if the content of Zr exceeds 2.0%, the effect of suppressing oxidation is saturated, and the cost increases because Zr is an expensive element. Therefore, when Zr is contained, the content is preferably 2.0% or less.
[0019]
Sn: 0 to 3.0%
Sn is an element that does not need to be added, but Sn does not contribute to stabilization of the α phase or β phase, but contributes to strengthening of the titanium alloy. In order to obtain such Sn effect, it is preferable to contain 0.2% or more. However, if Sn is contained in an amount exceeding 3.0%, a low melting point region is formed in the solidification process, and cracking occurs with this low melting point region as a base point. Therefore, when Sn is contained, the content is preferably 3.0% or less.
[0020]
The cold-rolled titanium alloy sheet of the present invention has the above-described chemical components, and the residue consists of Ti and impurities, but instead of a part of Ti, Fe: 0.20 to 1.0% , Cr: 0.01-1.0%, Cu: 0.01-1.0%, and Ni: 0.01-1.0% may be included. This is due to the following reason.
[0021]
Fe and Cr are elements contained as impurities in titanium sponge, which is a titanium raw material, or in an aluminum / vanadium alloy, which is an additive raw material. For this reason, even if these elements are not actively added, Fe is contained in the titanium alloy in less than 0.20% and Cr in less than 0.01%. These elements are all β-phase stabilizing elements and have the same effects as V, but are cheaper than V. Therefore, if these elements are positively added, the cost can be reduced. Therefore, it is desirable to contain 0.20% or more of Fe and 0.01% or more of Cr. However, Fe and Cr are eutectoid elements that form intermetallic compounds in a titanium alloy. When Fe and Cr are contained in excess of 1.0%, brittleness is caused by excessive precipitation of intermetallic compounds.
[0022]
Cu and Ni are β-stabilizing elements like V, and are effective elements for increasing the β-phase ratio in the temperature range of 800 to 850 ° C. Moreover, since these elements are elements cheaper than V, they can be added as substitute elements for V. In order to acquire this effect, it is desirable to contain Cu 0.01% or more and Ni 0.01% or more. However, since Cu and Ni are eutectoid elements for titanium, inclusion of each of these elements in excess of 1.0% creates an intermetallic compound and reduces cold workability.
[0023]
Therefore, the content in the case of containing one or more of these elements in the cold-rolled titanium alloy sheet of the present invention, Fe is 0.20 to 1.0%, Cr is 0.01 to 1.0%, Cu was 0.01 to 1.0%, and Ni was 0.01 to 1.0%.
[0024]
Veq (= V + 1.9Cr + 3.75Fe): 4.0 to 9.5
As an index indicating the stability of the β phase of the titanium alloy, there is Veq represented by the following (1). However, the symbol on the right side of equation (1) means the content of each element.
[0025]
Veq = V + 1.9Cr + 3.75Fe (1)
When this Veq is less than 4.0, the β-phase ratio in the temperature range of 800 to 850 ° C. becomes low, and the superplastic characteristics in this temperature range are hardly exhibited. On the other hand, when Veq exceeds 9.5, the ratio of the α phase decreases, the superplastic properties in the temperature range of 800 to 850 ° C. deteriorate, the specific gravity of the alloy itself increases, and the titanium alloy is lightweight. The characteristics of will be impaired. Therefore, when Fe and / or Cr is contained in the cold-rolled titanium alloy sheet of the present invention, it is necessary to limit Veq obtained from the above formula (1) to the range of 4.0 to 9.5. .
[0026]
The cold-rolled titanium alloy sheet of the present invention contains the above-mentioned components, and the balance consists of Ti and impurities, but O (oxygen), C (carbon), N (nitrogen), and H (hydrogen) as main impurities. There is. O is an impurity contained in the sponge titanium and the V raw material, and C and N are impurities contained in the sponge titanium. H is an impurity that is absorbed from the atmosphere during heating or absorbed in the pickling process. The smaller these impurities, the better. However, it is acceptable that O is up to 0.2%, C is up to 0.01%, N is up to 0.01%, and H is up to 0.01%.
[0027]
Next, the manufacturing method of the cold-rolled titanium alloy plate of the present invention will be described taking the case of manufacturing a thin plate as an example. Cold rolled titanium alloy sheet is a slab produced by hot forging or rolling from an ingot produced by a normal melting method such as VAR, then hot coil is produced by hot rolling, and cold rolling is performed. Finished to the final plate thickness and made by final annealing. Of these, the cold rolling process has a great influence on the product characteristics. In particular, it has excellent superplastic properties at high temperatures by performing cold working (cold rolling) with a cross-section reduction rate of 40% or more. A cold rolled titanium alloy sheet can be obtained. This is due to the following reason.
[0028]
That is, when the cross-sectional reduction rate in the cold rolling is increased, the crystal grain size in the cold rolled titanium alloy sheet , particularly the grain size of the pro-eutectoid α phase is reduced. And if the crystal grain size in the cold rolled titanium alloy plate becomes small, the elongation when superplastic deformation is given at high temperature becomes large, and thus a cold rolled titanium alloy plate having excellent superplastic properties at high temperature is manufactured. be able to. Thus, when the cross-section reduction rate in cold rolling is increased, the elongation when superplastic deformation is applied at high temperature rapidly increases until the cross-section reduction rate is around 40%, and in the region of 40% or more, Change is getting smaller. Therefore, in the manufacturing method of the cold-rolled titanium alloy sheet of the present invention, the cold working is performed by 40% or more in terms of the cross-sectional reduction rate. Although there is no restriction | limiting in particular in the upper limit of a cross-section reduction rate, When cold rolling exceeding 80% is given, an ear crack will generate | occur | produce in the edge part of a board. Therefore, it is desirable to limit the cross-sectional reduction rate in cold working to 80% or less. However, when performing the intermediate annealing for the purpose of recovering the ductility of the material, the cold working may be performed under the condition that the cross-section reduction rate exceeds 80%.
[0029]
The cross-sectional reduction rate can be obtained from the following equation (a).
Cross-sectional reduction rate (%) = {(cross-sectional area before processing−cross-sectional area after processing) / cross-sectional area before processing} × 100 (a)
[0030]
【Example】
Example 1
A button ingot having a width of 50 mm, a thickness of 15 mm, and a length of 80 mm was produced using an arc melting furnace in plasma, and this button ingot was heated to 850 ° C. and then hot rolled to a thickness of 5 mm. A plate was made. After this hot-rolled sheet is annealed at 750 ° C for 10 minutes, the oxide scale is removed by shot brass and pickling, and the surface is further cut by machining to a thickness of 4 mm for cold rolling. The material was made. This cold-rolling material was cold-rolled to produce a cold-rolled sheet having a thickness of 2 mm. At this time, as an evaluation of cold-rollability, the occurrence of cracks at the surface edge of the cold-rolled plate was visually observed.
[0031]
Furthermore, for those in which no cracks occurred during this cold rolling, heat treatment was performed at 700 ° C. for 30 minutes in an argon atmosphere, and after rolling to a thickness of 1.5 mm by cold rolling, 700 ° A heat treatment was performed at 30 ° C. for 30 minutes to obtain a test material. A plate-like test piece having a parallel part thickness of 1.5 mm and a width of 12.5 mm was sampled from the test material so that the length direction of the test piece and the rolling direction were parallel. A tensile test was performed at a test temperature of 800 ° C. and a tensile speed of 9 mm / min, and the elongation at break was measured by setting the distance between the test marks of this tensile test piece to 20 mm.
[0032]
Table 1 shows the chemical composition, cold-rollability evaluation and breaking elongation of the cold-rolled sheet.
[0033]
[Table 1]
[0034]
As shown in Table 1, an alloy that satisfies the chemical composition defined in the present invention can be cold-rolled and has excellent superplastic elongation.
[0035]
(Example 2)
Under the same manufacturing conditions as in Example 1, a cold rolling material having a thickness of 4 mm containing Al: 3.0%, V: 5.0%, the balance being Ti and impurities was produced.
[0036]
This cold-rolling material was cold-rolled with different cross-sectional reduction rates to produce cold-rolled sheets having thicknesses of 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm, and 1.5 mm. These cold-rolled plates were heat-treated at 700 ° C for 30 minutes in an argon atmosphere, and then the parallel part was 1.0mm thick and 12.5mm wide so that the length direction of the specimen and the rolling direction were parallel. A plate-shaped test piece was collected. A tensile test was performed at a test temperature of 800 ° C. and a tensile speed of 9 mm / min, and the elongation at break was measured by setting the distance between the test marks of this tensile test piece to 20 mm.
[0037]
Furthermore, in order to investigate the effect of the cross-section reduction rate in the cold rolling after the intermediate annealing on the superplastic properties, after subjecting a 2.0 mm thick cold-rolled plate to a heat treatment at 700 ° C. for 30 minutes in an argon atmosphere, After rolling again to a thickness of 1.5 mm or 1.0 mm by cold rolling, heat treatment was performed in an argon atmosphere at 700 ° C. for 30 minutes to obtain a test material. A plate-like test piece having a parallel portion of 1.0 mm in thickness and 12.5 mm in width was sampled from the test material, and subjected to the same tensile test as described above to measure the elongation at break. These cross-sectional reduction rates and elongation at break are shown in Table 2.
[0038]
[Table 2]
[0039]
As shown in Table 2, since the chemical composition was within the range defined by the present invention in any of the examples, the elongation at break exceeded 200%, and excellent superplastic characteristics were obtained. In particular, the elongation at break increases as the cross-section reduction rate increases, and the elongation at break hardly changes when the cross-section reduction rate is 40% or more. From the results of Nos. 39 and 40, it can be seen that even if the cold rolling rate after the intermediate annealing is low, if the cross-sectional reduction rate before the intermediate annealing is 40% or more, good breaking elongation is exhibited.
[0040]
【The invention's effect】
The cold-rolled titanium alloy sheet of the present invention has sufficient cold workability and excellent superplastic properties. Therefore, the cold-rolled titanium alloy plate of the present invention can produce a superplastic forming material having a uniform thickness distribution. Thereby, a thin cold-rolled titanium alloy plate can be easily manufactured at low cost, and an application field of the thin cold-rolled titanium alloy plate can be expanded.
Claims (4)
Veq=V+1.9Cr+3.75Fe・・・(1)
但し、(1)式右辺の元素記号はその元素の含有量(質量%)を意味する。In mass%, Al: 2.0 to 4.0 %, V: 4.0 to 7.02 %, Zr: 0 to 2.0% and Sn: 0 to 3.0%, and Fe: 0 .20~1.0%, Cr: 0.01~1.0%, Cu: 0.01~1.0% and Ni: include one or more selected from 0.01% to 1.0%, A cold-rolled titanium alloy sheet, wherein the balance is Ti and impurities, and Veq obtained from the following formula (1) is in the range of 4.0 to 9.5.
Veq = V + 1.9Cr + 3.75Fe (1)
However, the element symbol on the right side of the formula (1) means the content (% by mass) of the element.
Veq=V+1.9Cr+3.75Fe・・・(1)
但し、(1)式右辺の元素記号はその元素の含有量(質量%)を意味する。In mass%, Al: 2.0 to 4.0 %, V: 4.0 to 7.02 %, Zr: 0 to 2.0% and Sn: 0 to 3.0%, and Fe: 0 .20~1.0%, Cr: 0.01~1.0%, Cu: 0.01~1.0% and Ni: include one or more selected from 0.01% to 1.0%, A titanium alloy whose balance is made of Ti and impurities and Veq obtained from the following formula (1) is in the range of 4.0 to 9.5 is subjected to cold working with a cross-section reduction rate of 40% or more. A method for producing a cold-rolled titanium alloy sheet.
Veq = V + 1.9Cr + 3.75Fe (1)
However, the element symbol on the right side of the formula (1) means the content (% by mass) of the element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002354302A JP4304425B2 (en) | 2002-12-05 | 2002-12-05 | Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002354302A JP4304425B2 (en) | 2002-12-05 | 2002-12-05 | Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008239300A Division JP2009007679A (en) | 2008-09-18 | 2008-09-18 | Titanium alloy and method for producing titanium alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004183079A JP2004183079A (en) | 2004-07-02 |
JP4304425B2 true JP4304425B2 (en) | 2009-07-29 |
Family
ID=32755354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002354302A Expired - Fee Related JP4304425B2 (en) | 2002-12-05 | 2002-12-05 | Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4304425B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104762525A (en) * | 2015-03-27 | 2015-07-08 | 常熟市双羽铜业有限公司 | Titanium alloy tube for heat exchanger |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1772528B1 (en) * | 2004-06-02 | 2013-01-30 | Nippon Steel & Sumitomo Metal Corporation | Titanium alloy and method of manufacturing titanium alloy material |
CN100460540C (en) * | 2006-09-18 | 2009-02-11 | 辽宁峰阁钛业有限公司 | A high-strength and high-toughness titanium alloy |
JP5399759B2 (en) * | 2009-04-09 | 2014-01-29 | 株式会社神戸製鋼所 | Titanium alloy plate having high strength and excellent bending workability and press formability, and method for producing titanium alloy plate |
JP5435333B2 (en) * | 2009-04-22 | 2014-03-05 | 新日鐵住金株式会社 | Manufacturing method of α + β type titanium alloy thin plate and manufacturing method of α + β type titanium alloy thin plate coil |
WO2016140231A1 (en) * | 2015-03-02 | 2016-09-09 | 新日鐵住金株式会社 | Thin titanium sheet and manufacturing method therefor |
-
2002
- 2002-12-05 JP JP2002354302A patent/JP4304425B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104762525A (en) * | 2015-03-27 | 2015-07-08 | 常熟市双羽铜业有限公司 | Titanium alloy tube for heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2004183079A (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070131314A1 (en) | Titanium alloys and method for manufacturing titanium alloy materials | |
US9797029B2 (en) | Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same | |
JP5185613B2 (en) | Novel Fe-Al alloy and method for producing the same | |
KR101536402B1 (en) | Titanium alloy product having high strength and excellent cold rolling property | |
JP5907320B1 (en) | Material for stainless cold-rolled steel sheet and manufacturing method thereof | |
JP2536673B2 (en) | Heat treatment method for titanium alloy material for cold working | |
WO2022123812A1 (en) | Method for manufacturing austenitic stainless steel strip | |
JP7180782B2 (en) | Titanium alloy plate and automobile exhaust system parts | |
JP4304425B2 (en) | Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet | |
JP2011174142A (en) | Copper alloy plate, and method for producing copper alloy plate | |
JP2009007679A (en) | Titanium alloy and method for producing titanium alloy material | |
JP7387139B2 (en) | Titanium alloy, its manufacturing method, and engine parts using it | |
JP3297011B2 (en) | High strength titanium alloy with excellent cold rollability | |
JP4756974B2 (en) | Ni3 (Si, Ti) -based foil and method for producing the same | |
JP6927418B2 (en) | Titanium alloy and its manufacturing method | |
JP2021161470A (en) | Ferritic stainless steel sheet and welded structure | |
JP2001271143A (en) | Ferritic stainless steel excellent in ridging resistance and its production method | |
US20110318220A1 (en) | Titanium alloys and method for manufacturing titanium alloy materials | |
Gao et al. | Superplastic deformation in a coarse-grained Fe3Al based alloy | |
JP2936899B2 (en) | Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids | |
JP3297012B2 (en) | High strength titanium alloy with excellent cold rollability | |
TWI796118B (en) | Titanium alloy plate and titanium alloy coil and manufacturing method of titanium alloy plate and titanium alloy coil | |
JPH04301044A (en) | High toughness titanium alloy capable of cold working | |
JP5257670B2 (en) | Method for producing aluminum alloy material excellent in creep resistance | |
JPH03285017A (en) | Production of resistance welded tube having high vibration damping property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050322 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080623 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080623 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080918 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090401 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4304425 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140515 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |