[go: up one dir, main page]

JP2009007679A - Titanium alloy and method for producing titanium alloy material - Google Patents

Titanium alloy and method for producing titanium alloy material Download PDF

Info

Publication number
JP2009007679A
JP2009007679A JP2008239300A JP2008239300A JP2009007679A JP 2009007679 A JP2009007679 A JP 2009007679A JP 2008239300 A JP2008239300 A JP 2008239300A JP 2008239300 A JP2008239300 A JP 2008239300A JP 2009007679 A JP2009007679 A JP 2009007679A
Authority
JP
Japan
Prior art keywords
titanium alloy
cold
cross
veq
reduction rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008239300A
Other languages
Japanese (ja)
Inventor
Atsuhiko Kuroda
篤彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008239300A priority Critical patent/JP2009007679A/en
Publication of JP2009007679A publication Critical patent/JP2009007679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

【課題】十分な冷間加工性を有すると共に、優れた超塑性特性を有するチタン合金およびチタン合金材の製造方法の提供。
【解決手段】(1)質量%で、Al:2.0〜4.0%、V:4.0〜9.0%、Zr:0〜2.0%およびSn:0〜3.0%で、必要に応じて、Fe:0.20〜1.0%、Cr:0.01〜1.0%、Cu:0.01〜1.0%およびNi:0.01〜1.0%から選択される1種以上を含み、残部がTiおよび不純物からなり、下記の(1)式から得られるVeqが4.0〜9.5の範囲であることを特徴とするチタン合金。
Veq=V+1.9Cr+3.75Fe・・・(1)
(2)このチタン合金材に、断面減少率で40%以上の冷間加工を施すことを特徴とするチタン合金材の製造方法。
【選択図】 なし
Provided are a titanium alloy having sufficient cold workability and excellent superplastic properties, and a method for producing the titanium alloy material.
(1) By mass%, Al: 2.0 to 4.0%, V: 4.0 to 9.0%, Zr: 0 to 2.0% and Sn: 0 to 3.0% As required, Fe: 0.20 to 1.0%, Cr: 0.01 to 1.0%, Cu: 0.01 to 1.0% and Ni: 0.01 to 1.0% A titanium alloy comprising at least one selected from the group consisting of Ti and impurities, wherein Veq obtained from the following formula (1) is in the range of 4.0 to 9.5.
Veq = V + 1.9Cr + 3.75Fe (1)
(2) A method for producing a titanium alloy material, wherein the titanium alloy material is subjected to cold working with a cross-sectional reduction rate of 40% or more.
[Selection figure] None

Description

本発明は、熱交換器用材料などに用いられるチタン合金およびそのチタン合金材の製造方法に係り、特に、冷間加工性および超塑性特性に優れるチタン合金およびそのチタン合金材の製造方法に関する。   The present invention relates to a titanium alloy used for a heat exchanger material and the like, and a method for producing the titanium alloy material, and more particularly to a titanium alloy having excellent cold workability and superplastic characteristics and a method for producing the titanium alloy material.

熱交換器は、異種の流体間で熱エネルギーを伝達させることができる機器を意味し、例えば、エアコン、冷蔵庫、バーナーの空気予熱装置、自動車のラジエーター、化学工業用部品、海水用部品などに用いられている。特に、化学工業や海水などの優れた耐食性が要求される用途にはチタン製の熱交換器が用いられる。また、熱交換器を小型化するためには使用部材を高強度化する必要があり、このような熱交換器用材料としては軽量で強度の高いチタン合金が使用される。   A heat exchanger means a device that can transfer heat energy between different types of fluids. For example, it is used for air conditioners, refrigerators, air preheating devices for burners, automobile radiators, chemical industry parts, seawater parts, etc. It has been. In particular, titanium heat exchangers are used for applications that require excellent corrosion resistance, such as the chemical industry and seawater. Further, in order to reduce the size of the heat exchanger, it is necessary to increase the strength of the member used, and as such a heat exchanger material, a lightweight and high strength titanium alloy is used.

チタン合金の中でもTi−6Al−4V合金は、例えば、非特許文献1に記載されるように、優れた超塑性特性を有することから、熱交換器用材料として多用されている。しかし、この合金は冷間加工性に乏しい。このため、例えば、コイルに捲き取ったTi−6Al−4V合金板に冷間圧延を施して薄板を製造する場合には、中間焼鈍の回数を多くしなければならないという欠点がある。   Among titanium alloys, Ti-6Al-4V alloy, as described in Non-Patent Document 1, for example, is widely used as a material for heat exchangers because it has excellent superplastic properties. However, this alloy has poor cold workability. For this reason, for example, when manufacturing a thin plate by cold rolling the Ti-6Al-4V alloy plate scraped off to the coil, there is a drawback that the number of intermediate annealings must be increased.

非特許文献2には、冷間加工性に優れるとともに、超塑性加工性に優れたチタン合金として、Ti−9V−2Mo−3Al合金が示されている。しかし、この合金にはMoが必須元素として含まれており、原料コストが上昇する。また、Moは融点が高いので、溶解の際に溶け残りまたは凝固偏析が発生しやすくなる。   Non-Patent Document 2 shows a Ti-9V-2Mo-3Al alloy as a titanium alloy that is excellent in cold workability and excellent in superplastic workability. However, this alloy contains Mo as an essential element, which increases raw material costs. Further, since Mo has a high melting point, undissolved or solidified segregation is likely to occur during melting.

特許文献1には、質量%で、Al:5.5〜6.5%、V:3.5〜4.5%、O:0.2%以下、Fe:0.15〜3.0%、Cr:0.15〜3.0%、Mo:0.85〜3.15%を含有し、Fe、CrおよびMoが特定の式で表される範囲内にあり、かつα晶の平均粒径が6μm以下である超塑性加工性に優れるチタン合金が記載されている。この合金は、Ti−6Al−4Vよりも超塑性特性に優れるといえるが、冷間加工性については考慮されていない。即ち、この合金はAl含有量が5.5%以上と高いため、この合金に断面減少率で50%の冷間圧延を施すと、板の端部に耳割れが発生する。   In Patent Document 1, in mass%, Al: 5.5 to 6.5%, V: 3.5 to 4.5%, O: 0.2% or less, Fe: 0.15 to 3.0% , Cr: 0.15 to 3.0%, Mo: 0.85 to 3.15%, Fe, Cr and Mo are in a range represented by a specific formula, and an average grain of α crystal A titanium alloy having a diameter of 6 μm or less and excellent superplastic workability is described. This alloy is superior to Ti-6Al-4V in superplastic properties, but cold workability is not considered. That is, since this alloy has a high Al content of 5.5% or more, when this alloy is subjected to cold rolling with a cross-sectional reduction rate of 50%, an edge crack occurs at the end of the plate.

特許文献2には、質量%で、Al:3.0〜5.0%、V:2.1〜3.7%、Mo:0.85〜3.15%、O:0.15%以下を含有し、更にFe、Cr、NiおよびCoの1種以上を含有し、これらの元素の含有量が特定の式で表される範囲内にある加工性に優れたチタン合金が記載されている。また、熱間圧延条件を特定したチタン合金材の製造方法、熱処理条件を特定したチタン合金材の超塑性加工法も記載されている。しかし、この合金にはMoが含まれるため、非特許文献2に記載された合金と同様の問題が発生する。   In Patent Document 2, in mass%, Al: 3.0 to 5.0%, V: 2.1 to 3.7%, Mo: 0.85 to 3.15%, O: 0.15% or less In addition, there is described a titanium alloy having excellent workability that contains at least one of Fe, Cr, Ni, and Co, and the content of these elements is within a range represented by a specific formula. . In addition, a manufacturing method of a titanium alloy material with specified hot rolling conditions and a superplastic working method of a titanium alloy material with specified heat treatment conditions are also described. However, since this alloy contains Mo, the same problem as the alloy described in Non-Patent Document 2 occurs.

特公平8−19502号公報Japanese Patent Publication No.8-19502 特公平8−23053号公報Japanese Patent Publication No. 8-23053 N.Furushiro、外3名、「Titanium '80」、Metallurgical Society of AIME発行、1980年、993〜998頁N. Furushiro, three others, "Titanium '80", published by Metallurgical Society of AIME, 1980, pages 993-998 岡勉、外2名、「日本でチタン材料について何を研究しているか」、日本鉄鋼協会編、1989年12月1日、58〜60頁Tsutomu Oka, two others, "What are you studying about titanium materials in Japan," Japan Iron and Steel Institute, December 1, 1989, pp. 58-60

本発明は、冷間加工性および超塑性特性に優れるチタン合金およびその合金材の製造方法を提供することを目的とする。   An object of the present invention is to provide a titanium alloy excellent in cold workability and superplastic characteristics and a method for producing the alloy material.

本発明者らは、上記の目的を達成すべく、冷間加工性に優れるとされるTi−3Al−2.5V合金をベースとして研究を重ねた結果、本発明を完成した。   In order to achieve the above object, the present inventors have completed the present invention as a result of repeated research based on a Ti-3Al-2.5V alloy, which is considered to be excellent in cold workability.

本発明は、下記の(1)および(2)に示すチタン合金、ならびに下記の(3)に示すチタン合金材の製造方法を要旨とする。   The gist of the present invention is a titanium alloy shown in the following (1) and (2) and a method for producing a titanium alloy material shown in the following (3).

(1)質量%で、Al:2.0〜4.0%、V:4.0〜9.0%、Zr:0〜2.0%およびSn:0〜3.0%で、残部がTiおよび不純物からなることを特徴とするチタン合金。   (1) By mass%, Al: 2.0-4.0%, V: 4.0-9.0%, Zr: 0-2.0% and Sn: 0-3.0%, the balance being A titanium alloy comprising Ti and impurities.

(2)質量%で、Al:2.0〜4.0%、V:4.0〜9.0%、Zr:0〜2.0%およびSn:0〜3.0%で、更に、Fe:0.20〜1.0%、Cr:0.01〜1.0%、Cu:0.01〜1.0%およびNi:0.01〜1.0%から選択される1種以上を含み、残部がTiおよび不純物からなり、下記の(1)式から得られるVeqが4.0〜9.5の範囲であることを特徴とするチタン合金。
Veq=V+1.9Cr+3.75Fe・・・(1)
但し、(1)式右辺の記号は各元素の含有量を意味する。
(2) By mass%, Al: 2.0-4.0%, V: 4.0-9.0%, Zr: 0-2.0% and Sn: 0-3.0%, One or more selected from Fe: 0.20-1.0%, Cr: 0.01-1.0%, Cu: 0.01-1.0% and Ni: 0.01-1.0% And the balance is Ti and impurities, and Veq obtained from the following formula (1) is in the range of 4.0 to 9.5.
Veq = V + 1.9Cr + 3.75Fe (1)
However, the symbol on the right side of the formula (1) means the content of each element.

(3)上記の(1)または(2)に記載のチタン合金に、断面減少率で40%以上の冷間加工を施すことを特徴とするチタン合金材の製造方法。   (3) A method for producing a titanium alloy material, comprising subjecting the titanium alloy according to the above (1) or (2) to cold working with a cross-sectional reduction rate of 40% or more.

本発明のチタン合金は、十分な冷間加工性を有すると共に、優れた超塑性特性を有するものである。従って、本発明のチタン合金を用いて冷間圧延によりコイルを製造することが可能であり、均一な板厚分布を持つ超塑性成形用素材の製造が可能となる。これにより、チタン合金の薄板を低コストで、容易に製造することができ、チタン合金薄板の適用分野を拡大することができる。   The titanium alloy of the present invention has sufficient cold workability and excellent superplastic properties. Therefore, a coil can be manufactured by cold rolling using the titanium alloy of the present invention, and a superplastic forming material having a uniform thickness distribution can be manufactured. Thereby, the titanium alloy thin plate can be easily manufactured at low cost, and the application field of the titanium alloy thin plate can be expanded.

まず、本発明のチタン合金の化学組成およびその限定理由について述べる。なお、以下の説明において、各成分についての「%」は「質量%」を意味する。   First, the chemical composition of the titanium alloy of the present invention and the reason for limitation will be described. In the following description, “%” for each component means “mass%”.

Al:2.0〜4.0%
Alは、チタン合金の強度を上昇させるのに極めて重要な役割を果たす元素である。また、Alは、チタン合金のα相を安定化するのに有効な元素でもある。超塑性特性は、α相とβ相との比率が50:50付近になる温度領域において発現するが、Alの含有量が少ないと、この温度領域が狭くなるため、安定した超塑性特性を得ることが困難になる。広い温度領域で超塑性特性を得るためには、Alの含有量を2.0%以上とする必要がある。しかし、Alの含有量が増加するに従って冷間加工性が低下する。特に、Alの含有量が4.0%を超えるチタン合金に断面減少率で50%程度の冷間加工を施すと、板の端部に耳割れが発生する。このため、Alの含有量を2.0〜4.0%とした。
Al: 2.0-4.0%
Al is an element that plays an extremely important role in increasing the strength of the titanium alloy. Al is also an element effective for stabilizing the α phase of the titanium alloy. Superplastic properties are manifested in a temperature region where the ratio of α phase to β phase is around 50:50. However, if the Al content is low, this temperature region is narrowed, so that stable superplastic properties are obtained. It becomes difficult. In order to obtain superplastic characteristics in a wide temperature range, the Al content needs to be 2.0% or more. However, the cold workability decreases as the Al content increases. In particular, when a cold working with a cross-sectional reduction rate of about 50% is performed on a titanium alloy having an Al content exceeding 4.0%, an edge crack occurs at the end of the plate. For this reason, the content of Al is set to 2.0 to 4.0%.

V:4.0〜9.0%
Vは、チタン合金のβ相を安定化するのに有効な元素であり、800〜850℃の温度域におけるβ相比率を増大させる作用を有する。特に、Vを4.0%以上含有させると、α相とβ相との比率が50:50付近になる温度領域を広げることができる。しかし、Vの含有量が9.0%を超えると、チタン合金材料の耐酸化特性を低下させる。これは、Vの酸化物が昇華性を有しており、Vの含有量が9.0%を超えるチタン合金が高温に曝されると、合金表面で発生するスケールが緻密でなく、酸素の透過性が高いものとなるからである。このため、合金表面で割れが発生しやすくなり、高温延性が低下する。従って、Vの含有量を4.0〜9.0%とした。
V: 4.0-9.0%
V is an element effective for stabilizing the β phase of the titanium alloy, and has the effect of increasing the β phase ratio in the temperature range of 800 to 850 ° C. In particular, when V is contained in an amount of 4.0% or more, the temperature range in which the ratio of the α phase to the β phase is around 50:50 can be expanded. However, if the content of V exceeds 9.0%, the oxidation resistance characteristics of the titanium alloy material are deteriorated. This is because the oxide of V has sublimability, and when a titanium alloy having a V content exceeding 9.0% is exposed to a high temperature, the scale generated on the alloy surface is not dense, and oxygen This is because the permeability is high. For this reason, it becomes easy to generate | occur | produce a crack on the alloy surface, and high temperature ductility falls. Therefore, the content of V is set to 4.0 to 9.0%.

Zr:0〜2.0%
Zrは、添加しなくてもよい元素であるが、Zrを添加すると、その固溶強化作用によりチタン合金の強化に寄与する。また、Zrを含むチタン合金が高温に曝されると、表面に強固なZr酸化物が形成して合金内部が酸化されるのを抑制する。このため、チタン合金の高温での変形においてクラックの発生を防止して伸びを増大できるので、チタン合金の超塑性特性を改善することができる。これらの効果が大きいのは、0.5%以上である。一方、Zrの含有量が2.0%を超えると、上記の酸化抑制の効果が飽和し、Zrが高価な元素であるためコストの上昇を招く。従って、Zrを含有させる場合には、その含有量を2.0%以下とするのがよい。
Zr: 0 to 2.0%
Zr is an element that does not need to be added, but if Zr is added, it contributes to strengthening of the titanium alloy by its solid solution strengthening action. Further, when a titanium alloy containing Zr is exposed to a high temperature, a strong Zr oxide is formed on the surface and the inside of the alloy is prevented from being oxidized. For this reason, in the deformation | transformation at high temperature of a titanium alloy, generation | occurrence | production of a crack can be prevented and elongation can be increased, Therefore The superplastic characteristic of a titanium alloy can be improved. These effects are large at 0.5% or more. On the other hand, if the content of Zr exceeds 2.0%, the effect of suppressing the oxidation is saturated, and the cost increases because Zr is an expensive element. Therefore, when Zr is contained, the content is preferably 2.0% or less.

Sn:0〜3.0%
Snも添加しなくても良い元素であるが、Snは、α相またはβ相の安定化には寄与しないものの、チタン合金の強化に寄与する元素である。このようなSnの効果を得るためには0.2%以上含有させるのがよい。しかし、Snを3.0%を超えて含有させると、凝固過程において低融点領域を形成するため、この低融点領域を基点として割れが生じる。従って、Snを含有させる場合には、その含有量を3.0%以下とするのがよい。
Sn: 0 to 3.0%
Sn is an element that does not need to be added, but Sn does not contribute to stabilization of the α phase or β phase, but contributes to strengthening of the titanium alloy. In order to obtain such an Sn effect, it is preferable to contain 0.2% or more. However, when Sn is contained in an amount exceeding 3.0%, a low melting point region is formed in the solidification process, so that cracking occurs based on this low melting point region. Therefore, when it contains Sn, it is good to make the content into 3.0% or less.

本発明のチタン合金は、上記の化学成分を有し、残物がTiおよび不純物からなるものであるが、Tiの一部に代えて、Fe:0.20〜1.0%、Cr:0.01〜1.0%、Cu:0.01〜1.0%およびNi:0.01〜1.0%の1種以上を含んでもよい。これは、下記の理由による。   The titanium alloy of the present invention has the chemical components described above, and the residue is made of Ti and impurities, but instead of a part of Ti, Fe: 0.20 to 1.0%, Cr: 0 One or more of 0.01 to 1.0%, Cu: 0.01 to 1.0% and Ni: 0.01 to 1.0% may be included. This is due to the following reason.

FeおよびCrは、チタン原料であるスポンジチタン中、または添加原料であるアルミ・バナジウム合金中に不純物として含まれる元素である。このため、これらの元素を積極的に添加しなくても、チタン合金中にFeは0.20%未満、Crは0.01%未満含まれる。これらの元素はいずれもβ相安定化元素であり、Vと同様の作用効果を有するが、Vよりも安価な元素である。従って、積極的にこれらの元素を添加するとコストを低減できるので、Feは0.20%以上、Crは0.01%以上含有させるのが望ましい。しかし、FeおよびCrはチタン合金中で金属間化合物を作る共析型の元素であり、FeおよびCrをそれぞれ1.0%を超えて含有させると金属間化合物の過剰な析出により脆化を招く。   Fe and Cr are elements contained as impurities in titanium sponge, which is a titanium raw material, or in an aluminum / vanadium alloy, which is an additive raw material. For this reason, even if these elements are not positively added, Fe is contained in the titanium alloy in less than 0.20% and Cr in less than 0.01%. All of these elements are β-phase stabilizing elements and have the same effects as V, but are cheaper than V. Therefore, if these elements are positively added, the cost can be reduced. Therefore, it is desirable to contain 0.20% or more of Fe and 0.01% or more of Cr. However, Fe and Cr are eutectoid elements that form intermetallic compounds in titanium alloys. When Fe and Cr are contained in excess of 1.0%, they cause embrittlement due to excessive precipitation of intermetallic compounds. .

CuおよびNiは、Vと同様にβ安定化元素であり、800〜850℃の温度域におけるのβ相の比率を増大させるのに有効な元素である。また、これらの元素はVよりも安価な元素であるためVの代替元素として添加することができる。この効果を得るためには、Cuは0.01%以上、Niは0.01%以上含有させるのが望ましい。しかし、CuおよびNiはチタンにとって共析型の元素であるために、これらの元素をそれぞれ1.0%を超えて含有させると、金属間化合物を作り、冷間加工性を低下させる。   Cu and Ni are β-stabilizing elements like V, and are effective elements for increasing the β-phase ratio in the temperature range of 800 to 850 ° C. Moreover, since these elements are elements cheaper than V, they can be added as substitute elements for V. In order to obtain this effect, it is desirable to contain Cu 0.01% or more and Ni 0.01% or more. However, since Cu and Ni are eutectoid elements for titanium, inclusion of these elements in an amount exceeding 1.0% each makes an intermetallic compound and reduces cold workability.

従って、本発明のチタン合金にこれらの元素の1種以上を含有させる場合の含有量を、Feは0.20〜1.0%、Crは0.01〜1.0%、Cuは0.01〜1.0%、Niは0.01〜1.0%とした。   Therefore, when the titanium alloy of the present invention contains one or more of these elements, Fe is 0.20 to 1.0%, Cr is 0.01 to 1.0%, Cu is 0.00. 01-1.0%, Ni was 0.01-1.0%.

Veq(=V+1.9Cr+3.75Fe):4.0〜9.5
チタン合金のβ相の安定度を示す指標として下記の(1)で表されるVeqがある。但し、(1)式右辺の記号は各元素の含有量を意味する。
Veq=V+1.9Cr+3.75Fe・・・(1)
Veq (= V + 1.9Cr + 3.75Fe): 4.0 to 9.5
As an index indicating the stability of the β phase of the titanium alloy, there is Veq represented by the following (1). However, the symbol on the right side of the formula (1) means the content of each element.
Veq = V + 1.9Cr + 3.75Fe (1)

このVeqが4.0未満の場合には、800〜850℃の温度域におけるβ相の比率が低くなり、この温度域における超塑性特性が発現しにくくなる。一方、Veqが9.5を超えると、α相の比率が減少して800〜850℃の温度域における超塑性特性が劣化するとともに、合金自体の比重が大きくなり、軽量であるとのチタン合金の特徴を損なうことになる。従って、本発明のチタン合金にFeおよび/またはCrを含有させる場合には、上記の(1)式から得られるVeqを4.0〜9.5の範囲に制限する必要がある。 When this Veq is less than 4.0, the β-phase ratio in the temperature range of 800 to 850 ° C. becomes low, and the superplastic characteristics in this temperature range are hardly exhibited. On the other hand, when Veq exceeds 9.5, the ratio of the α phase decreases, the superplastic properties in the temperature range of 800 to 850 ° C. deteriorate, the specific gravity of the alloy itself increases, and the titanium alloy is lightweight. The characteristics of will be impaired. Therefore, when Fe and / or Cr is contained in the titanium alloy of the present invention, it is necessary to limit Veq obtained from the above formula (1) to a range of 4.0 to 9.5.

本発明のチタン合金は、上記の成分を含有し、残部がTiおよび不純物からなるが、主要な不純物としてO(酸素)、C(炭素)、N(窒素)およびH(水素)がある。Oは、スポンジチタンおよびV原料に含まれる不純物であり、CおよびNは、スポンジチタンに含まれる不純物である。また、Hは加熱時に雰囲気から吸収するか、または酸洗工程で吸収される不純物である。これらの不純物は少ないほどよいが、Oは0.2%まで、Cは0.01%まで、Nは0.01%まで、Hは0.01%まで許容できる。   The titanium alloy of the present invention contains the above-mentioned components, and the balance is composed of Ti and impurities. Major impurities include O (oxygen), C (carbon), N (nitrogen), and H (hydrogen). O is an impurity contained in the sponge titanium and the V raw material, and C and N are impurities contained in the sponge titanium. H is an impurity that is absorbed from the atmosphere during heating or absorbed in the pickling process. The smaller these impurities, the better. However, it is acceptable that O is up to 0.2%, C is up to 0.01%, N is up to 0.01%, and H is up to 0.01%.

次に、本発明のチタン合金材の製造方法について、薄板を製造する場合を例にとって説明する。チタン合金材は、VARなどの通常の溶解法により作製した鋳塊を熱間での分塊鍛造または圧延によりスラブとした後、熱間圧延によりホットコイルを製造し、冷間圧延により最終板厚までに仕上げ、最終焼鈍を施して作製される。このうち製品の特性に大きな影響を与えるのは冷間圧延工程であり、特に、断面減少率で40%以上の冷間加工(冷間圧延)を施すことにより、高温での超塑性特性に優れたチタン合金材を得ることができる。これは下記の理由による。   Next, the manufacturing method of the titanium alloy material of the present invention will be described by taking the case of manufacturing a thin plate as an example. For titanium alloy materials, ingots produced by a normal melting method such as VAR are made into slabs by hot forging or rolling, hot coils are produced by hot rolling, and the final thickness is obtained by cold rolling. It is finished and finished by final annealing. Of these, the cold rolling process has a great influence on the product characteristics. In particular, it has excellent superplastic properties at high temperatures by performing cold working (cold rolling) with a cross-section reduction rate of 40% or more. A titanium alloy material can be obtained. This is due to the following reasons.

即ち、冷間圧延における断面減少率を大きくすると、チタン合金材中の結晶粒径、特に初析α相の粒径が小さくなる。そして、チタン合金材中の結晶粒径が小さくなると、高温で超塑性変形を与えたときの伸びが大きくなるため、高温での超塑性特性に優れるチタン合金材を製造することができる。このように、冷間圧延における断面減少率が大きくなると、高温で超塑性変形を与えたときの伸びは、断面減少率が40%の付近までは急速に大きくなり、40%以上の領域では、変化が小さくなっていく。従って、本発明のチタン合金材の製造方法においては、断面減少率で40%以上の冷間加工を施すこととした。断面減少率の上限には、特に制限はないが、80%を超える冷間圧延を施すと、板の端部に耳割れが発生する。従って、冷間加工における断面減少率は80%以下に制限するのが望ましい。但し、材料の延性を回復することを目的として中間焼鈍を施す場合には断面減少率が80%を超える条件で冷間加工を行ってもよい。   That is, when the cross-section reduction rate in cold rolling is increased, the crystal grain size in the titanium alloy material, particularly the grain size of the pro-eutectoid α phase is reduced. And if the crystal grain diameter in a titanium alloy material becomes small, since the elongation when giving superplastic deformation at high temperature will become large, the titanium alloy material which is excellent in the superplastic property at high temperature can be manufactured. Thus, when the cross-section reduction rate in cold rolling is increased, the elongation when superplastic deformation is applied at high temperature rapidly increases until the cross-section reduction rate is around 40%, and in the region of 40% or more, Change is getting smaller. Therefore, in the manufacturing method of the titanium alloy material of the present invention, cold working with a cross-section reduction rate of 40% or more is performed. Although there is no restriction | limiting in particular in the upper limit of a cross-section reduction rate, When cold rolling exceeding 80% is given, an ear crack will generate | occur | produce in the edge part of a board. Therefore, it is desirable to limit the cross-sectional reduction rate in cold working to 80% or less. However, when performing the intermediate annealing for the purpose of recovering the ductility of the material, the cold working may be performed under the condition that the cross-section reduction rate exceeds 80%.

なお、断面減少率は、下記の(a)式から求められる。
断面減少率(%)={(加工前断面積−加工後断面積)/加工前断面積}×100・・・(a)
The cross-sectional reduction rate can be obtained from the following equation (a).
Cross-sectional reduction rate (%) = {(cross-sectional area before processing−cross-sectional area after processing) / cross-sectional area before processing} × 100 (a)

(実施例1)
プラズマ中のアーク溶解炉を用いて、幅50mm、厚さ15mm、長さ80mmのボタンインゴットを作製し、このボタンインゴットを850℃間に加熱した後、熱間圧延により、厚さ5mmの熱延板を作製した。この熱延板に750℃で10分間の焼鈍を施した後、ショットブラスおよび酸洗によって酸化物スケールを除去し、更に、機械加工によって厚さ4mmとなるまで表面を切削して、冷延用素材を作製した。この冷延用素材に冷間圧延を施し、厚さ2mmの冷延板を作製した。このとき、冷延性の評価として、冷延板の表面端部の割れの発生状況を目視観察した。
Example 1
Using an arc melting furnace in plasma, a button ingot having a width of 50 mm, a thickness of 15 mm, and a length of 80 mm was produced. After heating the button ingot between 850 ° C., hot rolling with a thickness of 5 mm was performed. A plate was made. After this hot-rolled sheet is annealed at 750 ° C. for 10 minutes, the oxide scale is removed by shot brass and pickling, and the surface is further cut by machining to a thickness of 4 mm for cold rolling. The material was made. This cold-rolling material was cold-rolled to produce a cold-rolled plate having a thickness of 2 mm. At this time, as an evaluation of cold-rollability, the occurrence of cracks at the surface edge of the cold-rolled plate was visually observed.

更に、この冷間圧延時に割れが発生しなかったものについては、アルゴン雰囲気中で700℃×30分の熱処理を行い、冷間圧延により厚さ1.5mmまで圧延した後、再びアルゴン雰囲気中で700℃×30分の熱処理を施し供試材とした。この供試材から試験片の長さ方向と圧延方向とが平行となるように、平行部が厚さ1.5mm、幅12.5mmの板状試験片を採取した。この引張試験片の標点間距離を20mmとし、試験温度800℃、引張速度9mm/分で引張試験を行い、破断伸びを測定した。   Furthermore, for those in which no cracks occurred during the cold rolling, heat treatment was performed in an argon atmosphere at 700 ° C. for 30 minutes, and after rolling to 1.5 mm by cold rolling, again in an argon atmosphere. A heat treatment was performed at 700 ° C. for 30 minutes to obtain a test material. A plate-shaped test piece having a thickness of 1.5 mm and a width of 12.5 mm was taken from the specimen so that the length direction of the test piece and the rolling direction were parallel to each other. A tensile test was performed at a test temperature of 800 ° C. and a tensile speed of 9 mm / min, and the elongation at break was measured by setting the distance between the test marks of this tensile test piece to 20 mm.

冷延板の化学組成、冷延性評価および破断伸びを表1に示す。   Table 1 shows the chemical composition, cold-rollability evaluation and breaking elongation of the cold-rolled sheet.

Figure 2009007679
Figure 2009007679

表1に示すように、本発明で規定される化学組成を満たす合金は、冷間圧延が可能であり、優れた超塑性伸びが得られる。   As shown in Table 1, an alloy that satisfies the chemical composition defined in the present invention can be cold-rolled and has excellent superplastic elongation.

(実施例2)
実施例1と同じ製造条件で、Al:3.0%、V:5.0%を含有し、残部がTiおよび不純物からなる厚さ4mmの冷延用素材を作製した。
(Example 2)
Under the same manufacturing conditions as in Example 1, a cold rolling material having a thickness of 4 mm containing Al: 3.0%, V: 5.0%, the balance being Ti and impurities was produced.

この冷延用素材に、断面減少率が異なる冷間圧延を施し、厚さが3.5mm、3.0mm、2.5mm、2.0mmおよび1.5mmの冷延板を作製した。これらの冷延板にアルゴン雰囲気中で700℃×30分の熱処理を施した後、試験片の長さ方向と圧延方向とが平行となるように、平行部が厚さ1.0mm、幅12.5mmの板状試験片を採取した。この引張試験片の標点間距離を20mmとし、試験温度800℃、引張速度9mm/分で引張試験を行い、破断伸びを測定した。   This cold-rolling material was subjected to cold rolling with different cross-sectional reduction rates to produce cold-rolled plates having thicknesses of 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm, and 1.5 mm. These cold-rolled plates were heat-treated at 700 ° C. for 30 minutes in an argon atmosphere, and then the parallel part had a thickness of 1.0 mm and a width of 12 so that the length direction of the test piece was parallel to the rolling direction. A 5 mm plate specimen was collected. A tensile test was performed at a test temperature of 800 ° C. and a tensile speed of 9 mm / min, and the elongation at break was measured by setting the distance between the test marks of this tensile test piece to 20 mm.

更に、中間焼鈍後の冷間圧延における断面減少率が超塑性特性に与える影響について調査すべく、厚さ2.0mmの冷延板にアルゴン雰囲気中で700℃×30分の熱処理を施した後、再度、冷間圧延により厚さ1.5mmまたは1.0mmまで圧延した後、アルゴン雰囲気中で700℃×30分の熱処理を施し供試材とした。この供試材から平行部が厚さ1.0mm、幅12.5mmの板状試験片を採取し、上記と同じ引張試験を行い、破断伸びを測定した。これらの断面減少率および破断伸びを表2に示す。   Furthermore, after conducting a heat treatment at 700 ° C. for 30 minutes in an argon atmosphere on a cold-rolled sheet having a thickness of 2.0 mm in order to investigate the influence of the cross-section reduction rate in the cold rolling after the intermediate annealing on the superplastic properties. After rolling again to a thickness of 1.5 mm or 1.0 mm by cold rolling, a heat treatment was performed at 700 ° C. for 30 minutes in an argon atmosphere to obtain a test material. A plate-shaped test piece having a parallel portion of 1.0 mm in thickness and 12.5 mm in width was sampled from the test material, and the same tensile test as described above was performed to measure the elongation at break. These cross-sectional reduction rates and elongation at break are shown in Table 2.

Figure 2009007679
Figure 2009007679

表2に示すように、いずれの実施例でも化学組成が本発明で規定される範囲内にあるため、破断伸びが200%を超え、優れた超塑性特性が得られた。特に、断面減少率が高くなるほど破断伸びが増大し、断面減少率が40%以上の条件ではほとんど破断伸びは変化しなくなる。また、No.39および40の結果から、中間焼鈍後の冷間圧延率が低くても、中間焼鈍前の断面減少率が40%以上であれば、良好な破断伸びを示すことが分かる。   As shown in Table 2, since the chemical composition was in the range defined by the present invention in any of the examples, the elongation at break exceeded 200%, and excellent superplastic characteristics were obtained. In particular, the elongation at break increases as the cross-section reduction rate increases, and the elongation at break hardly changes when the cross-section reduction rate is 40% or more. No. From the results of 39 and 40, it can be seen that even if the cold rolling rate after the intermediate annealing is low, the elongation at break is good if the cross-sectional reduction rate before the intermediate annealing is 40% or more.

本発明のチタン合金は、十分な冷間加工性を有すると共に、優れた超塑性特性を有するものである。従って、本発明のチタン合金を用いて冷間圧延によりコイルを製造することが可能であり、均一な板厚分布を持つ超塑性成形用素材の製造が可能となる。これにより、チタン合金の薄板を低コストで、容易に製造することができ、チタン合金薄板の適用分野を拡大することができる。   The titanium alloy of the present invention has sufficient cold workability and excellent superplastic properties. Therefore, a coil can be manufactured by cold rolling using the titanium alloy of the present invention, and a superplastic forming material having a uniform thickness distribution can be manufactured. Thereby, the titanium alloy thin plate can be easily manufactured at low cost, and the application field of the titanium alloy thin plate can be expanded.

Claims (4)

質量%で、Al:2.0〜4.0%、V:4.0〜9.0%、Zr:0〜2.0%およびSn:0〜3.0%で、残部がTiおよび不純物からなることを特徴とするチタン合金。   In mass%, Al: 2.0 to 4.0%, V: 4.0 to 9.0%, Zr: 0 to 2.0% and Sn: 0 to 3.0%, the balance being Ti and impurities A titanium alloy characterized by comprising: 質量%で、Al:2.0〜4.0%、V:4.0〜9.0%、Zr:0〜2.0%およびSn:0〜3.0%で、更に、Fe:0.20〜1.0%、Cr:0.01〜1.0%、Cu:0.01〜1.0%およびNi:0.01〜1.0%から選択される1種以上を含み、残部がTiおよび不純物からなり、下記の(1)式から得られるVeqが4.0〜9.5の範囲であることを特徴とするチタン合金。
Veq=V+1.9Cr+3.75Fe・・・(1)
但し、(1)式右辺の元素記号はその元素の含有量(質量%)を意味する。
In mass%, Al: 2.0 to 4.0%, V: 4.0 to 9.0%, Zr: 0 to 2.0% and Sn: 0 to 3.0%, and Fe: 0 20-1.0%, Cr: 0.01-1.0%, Cu: 0.01-1.0% and Ni: 0.01-1.0% or more selected from one type, A titanium alloy, wherein the balance is Ti and impurities, and Veq obtained from the following formula (1) is in the range of 4.0 to 9.5.
Veq = V + 1.9Cr + 3.75Fe (1)
However, the element symbol on the right side of the formula (1) means the content (% by mass) of the element.
質量%で、Al:2.0〜4.0%、V:4.0〜9.0%、Zr:0〜2.0%およびSn:0〜3.0%で、残部がTiおよび不純物からなるチタン合金に、断面減少率で40%以上の冷間加工を施すことを特徴とするチタン合金材の製造方法。   In mass%, Al: 2.0 to 4.0%, V: 4.0 to 9.0%, Zr: 0 to 2.0% and Sn: 0 to 3.0%, the balance being Ti and impurities A method for producing a titanium alloy material, comprising subjecting a titanium alloy made of a material to cold working with a cross-sectional reduction rate of 40% or more. 質量%で、Al:2.0〜4.0%、V:4.0〜9.0%、Zr:0〜2.0%およびSn:0〜3.0%で、更に、Fe:0.20〜1.0%、Cr:0.01〜1.0%、Cu:0.01〜1.0%およびNi:0.01〜1.0%から選択される1種以上を含み、残部がTiおよび不純物からなり、下記の(1)式から得られるVeqが4.0〜9.5の範囲であるチタン合金に、断面減少率で40%以上の冷間加工を施すことを特徴とするチタン合金材の製造方法。
Veq=V+1.9Cr+3.75Fe・・・(1)
但し、(1)式右辺の元素記号はその元素の含有量(質量%)を意味する。
In mass%, Al: 2.0 to 4.0%, V: 4.0 to 9.0%, Zr: 0 to 2.0% and Sn: 0 to 3.0%, and Fe: 0 20-1.0%, Cr: 0.01-1.0%, Cu: 0.01-1.0% and Ni: 0.01-1.0% or more selected from one type, A titanium alloy whose balance is made of Ti and impurities and Veq obtained from the following formula (1) is in the range of 4.0 to 9.5 is subjected to cold working with a cross-section reduction rate of 40% or more. A method for producing a titanium alloy material.
Veq = V + 1.9Cr + 3.75Fe (1)
However, the element symbol on the right side of the formula (1) means the content (% by mass) of the element.
JP2008239300A 2008-09-18 2008-09-18 Titanium alloy and method for producing titanium alloy material Pending JP2009007679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239300A JP2009007679A (en) 2008-09-18 2008-09-18 Titanium alloy and method for producing titanium alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239300A JP2009007679A (en) 2008-09-18 2008-09-18 Titanium alloy and method for producing titanium alloy material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002354302A Division JP4304425B2 (en) 2002-12-05 2002-12-05 Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet

Publications (1)

Publication Number Publication Date
JP2009007679A true JP2009007679A (en) 2009-01-15

Family

ID=40323040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239300A Pending JP2009007679A (en) 2008-09-18 2008-09-18 Titanium alloy and method for producing titanium alloy material

Country Status (1)

Country Link
JP (1) JP2009007679A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904443A (en) * 2017-12-19 2018-04-13 燕山大学 Strong super-high-plasticity titanium alloy in one kind
CN110438370A (en) * 2019-09-03 2019-11-12 河北工业大学 A kind of high-strength anticorrosion titanium zirconium-base alloy and preparation method thereof
CN120119145A (en) * 2025-05-15 2025-06-10 中国科学院力学研究所 A high performance titanium alloy with strong uniform deformation ability and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284060A (en) * 1986-06-03 1987-12-09 Nippon Steel Corp Manufacture of hot rolled titanium alloy plate
JPH0339430A (en) * 1989-07-05 1991-02-20 Daido Steel Co Ltd High strength titanium alloy
JPH03294442A (en) * 1990-04-13 1991-12-25 Sumitomo Metal Ind Ltd High toughness titanium alloy and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284060A (en) * 1986-06-03 1987-12-09 Nippon Steel Corp Manufacture of hot rolled titanium alloy plate
JPH0339430A (en) * 1989-07-05 1991-02-20 Daido Steel Co Ltd High strength titanium alloy
JPH03294442A (en) * 1990-04-13 1991-12-25 Sumitomo Metal Ind Ltd High toughness titanium alloy and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904443A (en) * 2017-12-19 2018-04-13 燕山大学 Strong super-high-plasticity titanium alloy in one kind
CN110438370A (en) * 2019-09-03 2019-11-12 河北工业大学 A kind of high-strength anticorrosion titanium zirconium-base alloy and preparation method thereof
CN120119145A (en) * 2025-05-15 2025-06-10 中国科学院力学研究所 A high performance titanium alloy with strong uniform deformation ability and preparation method thereof

Similar Documents

Publication Publication Date Title
US20070131314A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
US9797029B2 (en) Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same
JP6385507B2 (en) Nb-containing ferritic stainless steel sheet and method for producing the same
JP5796810B2 (en) Titanium alloy material with high strength and excellent cold rolling properties
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
CN108026623B (en) Ferritic stainless steel
JPWO2006085609A1 (en) Novel Fe-Al alloy and method for producing the same
JP2536673B2 (en) Heat treatment method for titanium alloy material for cold working
WO2022123812A1 (en) Method for manufacturing austenitic stainless steel strip
WO2014057738A1 (en) Plate-like conductor for bus bar, and bus bar comprising same
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP2020172694A (en) Austenitic stainless steel and method for producing the same
CN105018791A (en) Titanium-iron-aluminum-carbon alloy
JP2011174142A (en) Copper alloy plate, and method for producing copper alloy plate
JP6927418B2 (en) Titanium alloy and its manufacturing method
JP2009007679A (en) Titanium alloy and method for producing titanium alloy material
JP4756974B2 (en) Ni3 (Si, Ti) -based foil and method for producing the same
JP2021161470A (en) Ferritic stainless steel sheet and welded structure
US20110318220A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
Gao et al. Superplastic deformation in a coarse-grained Fe3Al based alloy
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JP3297012B2 (en) High strength titanium alloy with excellent cold rollability
JP5257670B2 (en) Method for producing aluminum alloy material excellent in creep resistance
JP2017155334A (en) Aluminum alloy sheet for hot molding and manufacturing method therefor
JPS6240336A (en) Manufacturing method for Ni-Fe-Cr alloy sheet material with excellent cold formability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A02 Decision of refusal

Effective date: 20120417

Free format text: JAPANESE INTERMEDIATE CODE: A02