[go: up one dir, main page]

KR102322184B1 - Indium zinc oxide (izo) based sputtering target, and method for producing same - Google Patents

Indium zinc oxide (izo) based sputtering target, and method for producing same Download PDF

Info

Publication number
KR102322184B1
KR102322184B1 KR1020200017636A KR20200017636A KR102322184B1 KR 102322184 B1 KR102322184 B1 KR 102322184B1 KR 1020200017636 A KR1020200017636 A KR 1020200017636A KR 20200017636 A KR20200017636 A KR 20200017636A KR 102322184 B1 KR102322184 B1 KR 102322184B1
Authority
KR
South Korea
Prior art keywords
target
sputtering
temperature
sintered compact
bulk resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020200017636A
Other languages
Korean (ko)
Other versions
KR20200019654A (en
Inventor
다카시 가케노
Original Assignee
제이엑스금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스금속주식회사 filed Critical 제이엑스금속주식회사
Publication of KR20200019654A publication Critical patent/KR20200019654A/en
Application granted granted Critical
Publication of KR102322184B1 publication Critical patent/KR102322184B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

In, Zn, O 로 이루어지는 스퍼터링 타깃으로서, Zn 과 In 의 원자비가 0.05 ≤ Zn/(In + Zn) ≤ 0.30 을 만족시키고, 그 타깃의 스퍼터 면에 있어서의 벌크 저항률의 표준 편차가 1.0 mΩ·㎝ 이하인 것을 특징으로 하는 스퍼터링 타깃. 소결체의 휨이 적고, 휨 저감을 위한 연삭에 의한 벌크 저항률의 면내 편차가 억제된 산화인듐-산화아연계 산화물 (IZO) 소결체 타깃의 제조 방법을 제공한다.A sputtering target made of In, Zn, O, wherein the atomic ratio of Zn and In satisfies 0.05 ≤ Zn/(In + Zn) ≤ 0.30, and the standard deviation of the bulk resistivity on the sputtering surface of the target is 1.0 mΩ·cm The following are the sputtering targets characterized by the above-mentioned. Provided is a method of manufacturing an indium oxide-zinc oxide-based oxide (IZO) sintered body target having little warpage of a sintered body and suppressing in-plane variation in bulk resistivity due to grinding for warpage reduction.

Figure R1020200017636
Figure R1020200017636

Description

산화인듐-산화아연계 (IZO) 스퍼터링 타깃 및 그 제조 방법{INDIUM ZINC OXIDE (IZO) BASED SPUTTERING TARGET, AND METHOD FOR PRODUCING SAME}Indium oxide-zinc oxide-based (IZO) sputtering target and manufacturing method thereof

본 발명은, 산화인듐-산화아연계 (IZO) 스퍼터링 타깃 및 그 제조 방법에 관한 것으로, 특히, 타깃의 스퍼터 면 내에 있어서의 벌크 저항률의 차가 작고, 막의 형성에 바람직한 스퍼터링 타깃 및 그 제조 방법에 관한 것이다.The present invention relates to an indium oxide-zinc oxide (IZO) sputtering target and a method for manufacturing the same, and more particularly, to a sputtering target having a small difference in bulk resistivity within the sputtering surface of the target and suitable for forming a film, and a method for manufacturing the same will be.

몇 가지의 금속 복합 산화물로 이루어지는 투명 도전막은, 고도전성과 가시광 투과성을 가지고 있으므로, 액정 표시 장치, 박막 일렉트로루미네선스 표시 장치, 유기 EL, 방사성 검출 장치, 단말 기기의 투명 태블릿, 창유리의 결로 방지용 발열막, 대전 방지막 혹은 태양광 집열기용 선택 투과막, 터치 패널의 전극 등의 다방면에 걸친 용도로 사용되고 있다. 이와 같은 금속 복합 산화물로 이루어지는 투명 도전막 중에서도 가장 보급되어 있는 것은 ITO 로 불리고 있는 산화인듐-산화주석으로 이루어지는 투명 도전막이다.Since the transparent conductive film made of some metal complex oxide has high conductivity and visible light transmittance, it is used for preventing condensation of liquid crystal display devices, thin film electroluminescence displays, organic EL devices, radiation detection devices, transparent tablets of terminal devices, and window glass. It is used for a wide range of applications, such as a heating film, an antistatic film, or a selective transmission film for a solar collector, and an electrode of a touch panel. Among the transparent conductive films made of such a metal complex oxide, the most prevalent is a transparent conductive film made of indium oxide-tin oxide called ITO.

한편, ITO 막보다 에칭 속도가 큰 인듐 및 아연의 복합 산화물 (「IZO」라고 칭한다) 을 주성분으로 하는 투명 도전막의 수요가 증가하고 있다. IZO 막을 제조할 때에는, 소결체 스퍼터링 타깃이 사용되지만, 이 IZO 소결체는, 소결 과정에서 휨이 발생한다는 문제가 있었다. 휨이 발생한 타깃은, 제품 형상을 가지런히 하기 위해, 그 양면을, 평면이 되도록 연삭할 필요가 있는데, 연삭 처리에 의해 타깃 면 내의 벌크 저항률이 크게 변동되어, 스퍼터링시, 이상 방전 등이 발생한다는 문제가 있었다.On the other hand, the demand for the transparent conductive film which has as a main component the complex oxide of indium and zinc (referred to as "IZO") which has a larger etching rate than an ITO film|membrane is increasing. When manufacturing an IZO film, although a sintered compact sputtering target was used, this IZO sintered compact had the problem that curvature generate|occur|produced in a sintering process. In order to align the product shape, it is necessary to grind both surfaces of the warped target so that it becomes flat. There was a problem.

다음으로, IZO 소결체 스퍼터링에 관한 선행 기술에 대해 설명한다. 특허문헌 1 에는, 산화인듐과 산화아연을 혼합하고, 이것을 콜드 프레스 및 정수압 냉간 압축에 의해 성형한 후, 산소 분위기 중 또는 대기 중에서 1300 ∼ 1500 ℃ 에서 가열 소결하는 것이 개시되어 있다. 또, 특허문헌 2 에는, In2O3 과 ZnO 의 분말을 혼합하기에 앞서 ZnO 분말만을 가소 (假燒) 하는 것이 개시되어 있다.Next, the prior art related to sputtering of the IZO sintered body will be described. In patent document 1, after mixing indium oxide and zinc oxide, and shape|molding this by cold press and hydrostatic cold compression, heating and sintering in oxygen atmosphere or air|atmosphere at 1300-1500 degreeC is indicated. Further, Patent Document 2 discloses the only plasticizer (假燒) ZnO powder prior to mixing the powders of In 2 O 3 and ZnO.

특허문헌 3 에는, 산화인듐 분말과 산화아연 분말을 특정한 성상으로 하는 것이 기재되어 있다. 또, 특허문헌 4 에는, IZO 를 소결할 때, 1200 ℃ 에 도달할 때까지, 산소 농도 21 %용량 이상으로 하고, 1200 ∼ 1450 ℃ 에서는, 산소 농도 21 %용량 미만의 분위기에서 소결하는 것이 기재되어 있다. 특허문헌 5 에는, 원료 분말을 미세하게 분쇄함으로써 타깃에 있어서의 결정 입경을 제어하는 것이 기재되어 있다.Patent Document 3 describes that the indium oxide powder and the zinc oxide powder have specific properties. Moreover, in patent document 4, when sintering IZO, until it reaches 1200 degreeC, it shall be 21% capacity or more in oxygen concentration, and at 1200-1450 degreeC, it is described that sintering in the atmosphere of oxygen concentration less than 21% capacity|capacitance, have. Patent Document 5 describes controlling the crystal grain size of the target by finely pulverizing the raw material powder.

그러나, 이들 종래의 제조 공정 하에서는, 소결시의 가열에 의한 열 팽창, 열 수축에 수반하여, 제작한 소결체에 휨이 발생하고 있었다. 휨이 큰 소결체는 타깃 형상으로 가공할 때, 타깃의 스퍼터 면에 있어서의 저항률의 차가 커지는 경우가 있었다. 이와 같은, 타깃 면 내의 저항률의 편차는 스퍼터시에 아킹 (이상 방전) 등을 일으켜, 제품의 제조 수율을 저하시키는 문제가 있었다. 특히, 최근의 스퍼터링 타깃의 대면적화에 수반하여, 상기와 같은 문제는 현저해졌다.However, under these conventional manufacturing processes, curvature had generate|occur|produced in the produced sintered compact with thermal expansion and thermal contraction by the heating at the time of sintering. When processing a sintered compact with large curvature into a target shape, the difference in resistivity in the sputtering surface of a target may become large. Such variation in resistivity within the target plane causes arcing (abnormal discharge) or the like at the time of sputtering, resulting in a problem of lowering the production yield of the product. In particular, with the recent increase in the area of sputtering targets, the above problems became remarkable.

일본 공개특허공보 2001-131736호Japanese Patent Laid-Open No. 2001-131736 일본 공개특허공보 평9-111444호Japanese Patent Application Laid-Open No. 9-111444 일본 공개특허공보 2007-8780호Japanese Patent Laid-Open No. 2007-8780 일본 공개특허공보 2007-8772호Japanese Laid-Open Patent Publication No. 2007-8772 국제 공개 제2001/038599호International Publication No. 2001/038599

본 발명은 상기 과제를 해결하기 위해서 이루어진 것으로, 스퍼터링시에 아킹 (이상 방전) 의 발생을 억제할 수 있는, 스퍼터 면 내의 벌크 저항률의 차가 작은, 스퍼터링 타깃 및 그 제조 방법을 제공하는 것을 과제로 한다. 특히, 대면적이어도, 벌크 저항률의 면내의 차가 작은 스퍼터링 타깃을 제공하는 것을 과제로 한다. The present invention has been made in order to solve the above problems, and it is an object to provide a sputtering target with a small difference in bulk resistivity within the sputtering surface, which can suppress the occurrence of arcing (abnormal discharge) during sputtering, and a method for manufacturing the same. . It makes it a subject to provide the sputtering target with a small in-plane difference of bulk resistivity especially even if it is a large area.

본 발명자는, 상기 과제를 해결하기 위해서 예의 연구를 실시한 결과, IZO 의 수축이 개시되거나 혹은 개시된 상태에서 일단 온도를 유지하여, 소결체 내의 온도 분포를 작게 하고, 이로써, 소결체의 휨량을 대폭 억제할 수 있는 것을 알아내었다. 그 결과, 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭하거나 해도, 면내의 벌크 저항률의 차가 작은 스퍼터링 타깃을 얻을 수 있다는 지견이 얻어졌다.As a result of earnest research conducted to solve the above problems, the present inventors start or maintain the temperature in a state where the shrinkage of IZO is started, thereby reducing the temperature distribution in the sintered body, thereby significantly reducing the amount of warpage of the sintered body found out that there is As a result, the knowledge that a sputtering target with a small difference in in-plane bulk resistivity can be obtained was acquired even if it grinded so that the both surfaces might become flat in order to align to a target shape.

이와 같은 지견에 기초하여, 본원은, 이하의 발명을 제공한다.Based on such knowledge, this application provides the following invention.

1) In, Zn, O 로 이루어지는 스퍼터링 타깃으로서, Zn 과 In 의 원자비가 0.05 ≤ Zn/(In + Zn) ≤ 0.30 을 만족시키고, 그 타깃의 스퍼터 면에 있어서의 벌크 저항률의 표준 편차가 1.0 mΩ·㎝ 이하인 것을 특징으로 하는 스퍼터링 타깃.1) A sputtering target made of In, Zn, O, the atomic ratio of Zn to In satisfies 0.05 ≤ Zn/(In + Zn) ≤ 0.30, and the standard deviation of the bulk resistivity on the sputtering surface of the target is 1.0 mΩ · A sputtering target characterized in that it is cm or less.

2) 벌크 저항률이 1.0 ∼ 10 mΩ·㎝ 인 것을 특징으로 하는 상기 1) 에 기재된 스퍼터링 타깃.2) The sputtering target according to 1) above, wherein the bulk resistivity is 1.0 to 10 mΩ·cm.

3) 상대 밀도가 98 % 이상인 것을 특징으로 하는 상기 1) 또는 2) 에 기재된 스퍼터링 타깃.3) Relative density is 98% or more, The sputtering target as described in said 1) or 2) characterized by the above-mentioned.

4) 스퍼터 면의 면적이 60000 ㎟ ∼ 400000 ㎟ 인 것을 특징으로 하는 상기 1) ∼ 3) 중 어느 하나에 기재된 스퍼터링 타깃.4) The sputtering surface area is 60000 mm2 - 400000 mm2, The sputtering target in any one of said 1) - 3) characterized by the above-mentioned.

5) In, Zn, O 로 이루어지는 소결체로서, Zn 과 In 의 원자비가 0.05 ≤ Zn/(In + Zn) ≤ 0.30 을 만족시키고, 휨량이 2.0 ㎜ 이내인 것을 특징으로 하는 IZO 소결체.5) A sintered body made of In, Zn, O, wherein the atomic ratio of Zn and In satisfies 0.05 ≤ Zn/(In + Zn) ≤ 0.30, and an IZO sintered body, characterized in that the warpage is within 2.0 mm.

6) 원료 분말을 프레스 성형한 성형체를 소결하여 제조되는, IZO 소결체로 이루어지는 스퍼터링 타깃의 제조 방법으로서, 실온으로부터 소결 온도까지 승온시키는 공정에 있어서, 도중 유지 온도를 600 ∼ 800 ℃ 로 하고, 1 ∼ 10 시간 유지하는 공정, 당해 도중 유지 온도로부터 소결 온도까지 0.2 ∼ 2.0 ℃/min 로 승온시키는 공정, 소결 온도를 1350 ∼ 1500 ℃ 로 하고, 소결 유지 시간을 1 ∼ 100 시간으로 소결하는 공정으로 이루어지는 것을 특징으로 하는 스퍼터링 타깃의 제조 방법.6) A method for producing a sputtering target consisting of an IZO sintered body produced by sintering a molded body press-molded with a raw material powder. What consists of a step of holding for 10 hours, a step of raising the temperature from the holding temperature to the sintering temperature in the middle at a rate of 0.2 to 2.0 °C/min, a step of setting the sintering temperature to 1350 to 1500 °C, and a step of sintering for a sintering holding time of 1 to 100 hours The manufacturing method of the sputtering target characterized by the above-mentioned.

7) 소결 온도를 1380 ∼ 1420 ℃ 로 하는 것을 특징으로 하는 상기 6) 에 기재된 스퍼터링 타깃의 제조 방법.7) Sintering temperature shall be 1380-1420 degreeC, The manufacturing method of said sputtering target as described in 6) characterized by the above-mentioned.

8) 소결 유지 시간을 5 ∼ 30 시간으로 소결하는 것을 특징으로 하는 상기 6) 또는 7) 에 기재된 스퍼터링 타깃의 제조 방법.8) The method for producing a sputtering target according to the above 6) or 7), wherein the sintering holding time is 5 to 30 hours.

9) 1.0 ∼ 5.0 ℃/min 로 강온시키는 것을 특징으로 하는 상기 6) ∼ 8) 중 어느 하나에 기재된 스퍼터링 타깃의 제조 방법.9) It is made to temperature-fall at 1.0-5.0 degreeC/min, The manufacturing method of the sputtering target in any one of said 6)-8) characterized by the above-mentioned.

10) 도중 유지 온도로부터 소결 온도까지 0.5 ∼ 1.5 ℃/min 로 승온시키는 것을 특징으로 하는 상기 6) ∼ 9) 중 어느 하나에 기재된 스퍼터링 타깃의 제조 방법.10) The manufacturing method of the sputtering target in any one of said 6) - 9) characterized by heating up at 0.5-1.5 degree-C/min from an intermediate holding temperature to a sintering temperature.

본 발명은, 산화인듐-산화아연계 산화물 (IZO) 소결체의 제조 방법에 있어서, 종래와 상이한 제조 조건, 즉, 소결 조건 중, 특정한 온도에서 유지하는 것이 휨의 저감에 유효한 것을 알아내어, 스퍼터 면 내에 있어서의 벌크 저항률 차가 작은 타깃을 제작할 수 있고, 그 결과, 아킹 등의 발생이 적어 양호한 스퍼터링을 가능하게 하고, 형성한 막의 특성을 향상시킬 수 있다는 우수한 효과를 갖는다. 본 발명은, 특히 대면적의 IZO 스퍼터링 타깃에 있어서 유효하다.In the manufacturing method of an indium oxide-zinc oxide type oxide (IZO) sintered compact, this invention discovers that it is effective for the reduction of curvature to maintain at a specific temperature among manufacturing conditions different from the prior art, that is, sintering conditions, sputtering surface It is possible to produce a target with a small difference in the bulk resistivity in the interior, and as a result, there is little occurrence of arcing and the like, enabling good sputtering, and has an excellent effect that the properties of the formed film can be improved. This invention is effective especially in a large-area IZO sputtering target.

도 1 은, 본 발명의 스퍼터링 타깃 (각형) 의 벌크 저항률의 측정 지점을 나타내는 도면이다.
도 2 는, 본 발명의 스퍼터링 타깃 (원반형) 의 벌크 저항률의 측정 지점을 나타내는 도면이다.
도 3 은, 본 발명의 스퍼터링 타깃의 휨량의 측정을 나타내는 모식도이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the measurement point of the bulk resistivity of the sputtering target (square shape) of this invention.
It is a figure which shows the measurement point of the bulk resistivity of the sputtering target (disk shape) of this invention.
3 : is a schematic diagram which shows the measurement of the curvature amount of the sputtering target of this invention.

본 발명의 스퍼터링 타깃의 성분 조성은, 인듐 (In), 아연 (Zn), 산소 (O) 로 이루어지고, Zn 과 In 의 원자비가 0.05 ≤ Zn/(In + Zn) ≤ 0.30 인 조건을 만족시키는 것이다. 본 발명의 타깃은, 주로 인듐과 아연의 복합 산화물로 구성되어 있지만, 산화인듐이나 산화아연의 단독의 산화물을 함유해도 된다. 또, 본 발명의 특성을 해치지 않는 범위에서 그 밖의 원소를 함유해도 된다. 상기 Zn 의 원자비는 타깃을 사용하여 형성되는 막의 도전성 등의 관점에서 결정되는 것으로, 이 범위를 초과하면 원하는 특성이 얻어지지 않는다.The component composition of the sputtering target of the present invention is composed of indium (In), zinc (Zn) and oxygen (O), and the atomic ratio of Zn to In satisfies the condition of 0.05 ≤ Zn/(In + Zn) ≤ 0.30 will be. Although the target of this invention is mainly comprised from the complex oxide of indium and zinc, it may contain the independent oxide of indium oxide or zinc oxide. Moreover, you may contain other elements in the range which does not impair the characteristic of this invention. The atomic ratio of Zn is determined from the viewpoint of conductivity of a film formed by using a target, and if this range is exceeded, desired properties cannot be obtained.

본 발명은, 상기 스퍼터링 타깃의 스퍼터 면에 있어서의 벌크 저항률의 표준 편차가 1.0 mΩ·㎝ 이하인 것을 특징으로 한다. 소결체의 휨이 큰 경우, 타깃의 스퍼터 면의 벌크 저항률의 편차가 커지기 때문에, 형성한 막 특성 (특히 막 저항) 의 균일성을 저해하는 문제가 있었다. 본 발명에서는, 소결 조건을 조정함으로써 소결체의 휨을 현저하게 저감시키고, 이로써, 스퍼터 면 내의 벌크 저항률의 표준 편차를 1.0 mΩ·㎝ 이하까지 저감시키는 것을 가능하게 하고 있다. 또한, 스퍼터 면이란, 소결체를 연삭하고, 스퍼터링 타깃으로 가공한 결과, 스퍼터 장치에서 스퍼터되는 면을 의미한다.The present invention is characterized in that the standard deviation of the bulk resistivity on the sputtering surface of the sputtering target is 1.0 mΩ·cm or less. When the curvature of the sintered body was large, the dispersion of the bulk resistivity of the sputtering surface of the target was large, so there was a problem of impairing the uniformity of the formed film properties (especially the film resistance). In the present invention, the warpage of the sintered body is remarkably reduced by adjusting the sintering conditions, thereby making it possible to reduce the standard deviation of the bulk resistivity in the sputtering plane to 1.0 mΩ·cm or less. In addition, as a result of grinding a sintered compact and processing a sputtering target with a sputtering surface, the surface sputtered by a sputtering apparatus is meant.

본 발명의 벌크 저항률은, 1.0 mΩ·㎝ 이상, 10 mΩ·㎝ 이하인 것이 바람직하다. 벌크 저항률이 높은 경우, 스퍼터 방전을 불안정하게 하는 경우가 있다. 본 발명의 벌크 저항률은, 4 탐침법에 의해, 타깃의 스퍼터 면을 등간격으로 16 점 이상 (각형 타깃의 경우) 또는 9 점 이상 (원반형 타깃의 경우) 을 측정하고, 그 평균치 및 표준 편차를 산출한다. 예를 들어, 도 1, 2 에 나타내는 바와 같이, 타깃 끝에서부터 20 ㎜ 이상 내측의 부분을 50 ㎜ ∼ 60 ㎜ 의 등간격으로 가로세로 15 ㎜ 의 부위를 3 회 측정하고, 그 평균을 그 부위의 벌크 저항률로 한다. 단, 타깃의 면적이 작은 경우에는, 측정 간격을 좁힘으로써, 측정 점수를 9 점 이상 또는 16 점 이상 확보한다. 또한, 타깃의 벌크 저항률을 측정할 때에는, 필요에 따라 연삭해도 된다.It is preferable that the bulk resistivity of this invention is 1.0 mΩ·cm or more and 10 mΩ·cm or less. When bulk resistivity is high, sputter discharge may be made unstable. For the bulk resistivity of the present invention, 16 points or more (in the case of a rectangular target) or 9 or more points (in the case of a disk-shaped target) are measured at equal intervals on the sputtering surface of the target by a four-probe method, and the average value and standard deviation thereof are measured Calculate. For example, as shown in Figs. 1 and 2, the portion 20 mm or more inside the target end is measured three times at equal intervals of 50 mm to 60 mm, and the average of the portion is measured. Bulk resistivity. However, when the area of the target is small, 9 or more points or 16 or more points are ensured by narrowing a measurement interval. In addition, when measuring the bulk resistivity of a target, you may grind as needed.

일반적으로, 소결체의 면적이 커질수록, 휨량도 커진다. 본 발명은, 대면적의 소결체여도, 그 휨량을 2.0 ㎜ 이내로 억제할 수 있는 것을 특징으로 하는 것이다. 본 발명은, 특히, 타깃의 스퍼터 면에 있어서의 면적이 60000 ㎟ ∼ 400000 ㎟ 로 대면적이어도, 스퍼터 면 내의 저항률 차를 상기 범위에 들어가게 할 수 있는 점에서 우수한 것이다. 여기서, 휨의 측정에는, 레이저식 변위 센서를 사용하고, 그 레이저를 프로브로 하여 소결체의 크기에 맞추어, 도 2 에 나타내는 바와 같이 소결체의 어느 일방의 면을 레이저로 주사하면서, 그 높이를 측정한다. 그리고, 면내에 있어서의 최대 높이와 최소 높이의 차이를 최대 휨량으로 한다.In general, the larger the area of the sintered body, the larger the amount of warpage. The present invention is characterized in that the amount of warpage can be suppressed to within 2.0 mm even in a sintered compact with a large area. Especially, this invention is excellent at the point which can make the resistivity difference in a sputter|spatter surface fall within the said range even if the area in the sputtering surface of a target is a large area with 60000 mm<2> - 400000 mm<2>. Here, a laser displacement sensor is used for the measurement of warpage, and the laser is used as a probe to match the size of the sintered body, and as shown in FIG. 2 , the height is measured while scanning one side of the sintered body with a laser. . And let the difference between the maximum height and minimum height in a plane be the maximum deflection amount.

또, 본 발명의 스퍼터링 타깃은, 상대 밀도가 98 % 이상으로 고밀도인 것을 특징으로 하는 것이다. 고밀도 타깃은, 스퍼터링시의 파티클 등을 저감시킬 수 있어, 양호한 특성을 구비한 막을 형성하는 것이 가능해진다. 상대 밀도는, (아르키메데스법으로 측정한 소결체의 실제 밀도)/(산화물의 조성으로부터 계산한 이론 밀도) × 100 = 상대 밀도 (%) 로 나타낸 것이다. 여기서, 산화물의 조성으로부터 계산한 이론 밀도란, 원료를 구성하는 원소로부터 산출한 이론적인 밀도이며, 예를 들어 산화인듐 (In2O3) 분말, 산화아연 (ZnO) 분말을 원료로 하고, 산화인듐:산화아연의 중량비를 90 wt%:10 wt% 로 한 경우, 산화물의 조성으로부터 계산한 이론 밀도 = (산화인듐의 이론 밀도 × 90 + 산화아연의 이론 밀도 × 10)/100 (g/㎤) 으로 하여 산출한다.Moreover, the sputtering target of this invention is high density with a relative density of 98 % or more, It is characterized by the above-mentioned. A high-density target can reduce the particle|grains etc. at the time of sputtering, and it becomes possible to form the film|membrane provided with favorable characteristics. The relative density is expressed by (actual density of the sintered body measured by Archimedes method)/(theoretical density calculated from the oxide composition) x 100 = relative density (%). Here, the theoretical density calculated from the composition of the oxide is a theoretical density calculated from the elements constituting the raw material, for example, indium oxide (In 2 O 3 ) powder, zinc oxide (ZnO) powder, and oxidation When the weight ratio of indium:zinc oxide is 90 wt%:10 wt%, the theoretical density calculated from the oxide composition = (theoretical density of indium oxide x 90 + theoretical density of zinc oxide x 10)/100 (g/cm 3 ) ) to calculate

본 발명의 산화인듐-산화아연계 산화물 (IZO) 소결체 타깃은, 이하, 원료의 혼합, 분쇄, 성형, 소결의 각 프로세스를 거쳐 제작할 수 있다.The indium oxide-zinc oxide (IZO) sintered compact target of this invention can be produced through each process of mixing of raw materials, grinding|pulverization, shaping|molding, and sintering as follows.

(원료의 혼합, 분쇄, 조립 (造粒), 성형의 조건)(Conditions of mixing, grinding, granulation, and molding of raw materials)

원료 분말로서, 산화인듐 (In2O3) 분말, 산화아연 (ZnO) 분말을 준비한다. 원료 분말은, 비표면적이 약 5 ㎡/g 인 것을 사용하는 것이 바람직하다.As the raw material powder, indium oxide (In 2 O 3 ) powder and zinc oxide (ZnO) powder are prepared. It is preferable to use the raw material powder having a specific surface area of about 5 m 2 /g.

구체적으로는, 산화인듐 분말은, 부피 밀도:0.5 ∼ 0.7 g/㎤, 메디안 직경 (D50) :1.0 ∼ 2.1 ㎛, 비표면적:4.0 ∼ 5.7 ㎡/g, 산화아연 분말:부피 밀도:0.2 ∼ 0.6 g/㎤, 메디안 직경 (D50):1.0 ∼ 2.5 ㎛, 비표면적:3.0 ∼ 6.0 ㎡/g 를 사용한다.Specifically, the indium oxide powder has a bulk density: 0.5 to 0.7 g/cm 3 , a median diameter (D 50 ): 1.0 to 2.1 μm, a specific surface area: 4.0 to 5.7 m 2 /g, and a zinc oxide powder: bulk density: 0.2 to 0.6 g/cm 3 , median diameter (D 50 ): 1.0 to 2.5 µm, and specific surface area: 3.0 to 6.0 m 2 /g are used.

다음으로, 각 원료 분말을 원하는 조성비가 되도록 칭량 후, 혼합 분쇄를 실시한다. 분쇄 방법에는 구하는 입도, 피분쇄 물질에 따라 여러 가지 방법이 있지만, 비즈 밀 등의 습식 매체 교반 밀이 적합하다. 이것은, 분말체를 물에 분산시킨 슬러리를, 경도가 높은 재료인 지르코니아, 알루미나 등의 분쇄 매체와 함께 강제적으로 교반하는 것으로, 고효율로 분쇄 분말을 얻을 수 있다. 그러나, 이 때에 분쇄 매체도 마모되기 때문에, 분쇄 분말에 분쇄 매체 자체가 불순물로서 혼입되므로, 장시간의 처리는 바람직하지 않다.Next, after weighing each raw material powder so that it may become a desired composition ratio, mixing and grinding are performed. Although there are various methods depending on the particle size to be calculated|required and the material to be grind|pulverized as a grinding|pulverization method, wet medium stirring mills, such as a bead mill, are suitable. In this case, the powder in which the powder is dispersed in water is forcibly stirred together with a grinding medium such as zirconia or alumina, which is a material having high hardness, to obtain a pulverized powder with high efficiency. However, since the grinding medium is also worn at this time, the grinding medium itself is mixed into the grinding powder as an impurity, so that the treatment for a long time is not preferable.

분쇄량을 분쇄 전후의 비표면적의 차로 정의하면, 습식 매체 교반 밀에서는 분쇄량은 분말체에 대한 투입 에너지에 거의 비례한다. 따라서, 분쇄를 실시할 때에는, 습식 매체 교반 밀은 적산 전력을 관리하는 것이 중요하다. 분쇄 전후의 비표면적의 차 (ΔBET) 는, 0.5 ∼ 3.0 ㎡/g, 분쇄 후의 메디안 직경 (D50) 은, 1.0 ㎛ 이하로 한다.If the grinding amount is defined as the difference between the specific surface areas before and after grinding, in the wet medium stirring mill, the grinding amount is almost proportional to the energy input to the powder. Therefore, when performing grinding, it is important for the wet medium stirring mill to manage the integrated power. The difference (ΔBET) of the specific surface area before and after grinding is 0.5 to 3.0 m 2 /g, and the median diameter (D 50 ) after grinding is set to 1.0 µm or less.

다음으로, 미세 분쇄한 슬러리의 조립을 실시한다. 이것은, 조립에 의해 분말체의 유동성을 향상시킴으로써, 다음 공정의 프레스 성형시에 분말체를 균일하게 금형에 충전하고, 균질한 성형체를 얻기 위해서이다. 조립에는 여러 가지 방식이 있지만, 프레스 성형에 적합한 조립 분말을 얻는 방법 중 하나로, 분무식 건조 장치 (스프레이 드라이어) 를 사용하는 방법이 있다. 이것은 분말체를 슬러리로 하여, 열풍 중에 액적으로서 분산시키고, 순간적으로 건조시키는 방법으로, 10 ∼ 500 ㎛ 의 구상의 조립 분말을 연속적으로 얻을 수 있다.Next, the finely pulverized slurry is granulated. This is for improving the fluidity of the powder by granulation, thereby uniformly filling the mold with the powder during press molding in the next step to obtain a homogeneous molded body. Although there are various methods for granulation, there is a method of using a spray drying apparatus (spray dryer) as one of the methods of obtaining granulated powder suitable for press molding. This is a method of making a powder into a slurry, dispersing it as droplets in hot air, and drying it instantaneously, whereby a spherical granulated powder having a size of 10 to 500 µm can be continuously obtained.

스프레이 드라이어에 의한 건조로는, 열풍의 입구 온도, 및 출구 온도의 관리가 중요하다. 입구와 출구의 온도차가 크면 단위 시간당의 건조량이 증가하여 생산성이 향상되지만, 입구 온도가 지나치게 높은 경우에는 분말체, 및 첨가한 바인더가 열에 의해 변질되어, 원하는 특성이 얻어지지 않는 경우가 있다. 또, 출구 온도가 지나치게 낮은 경우에는 조립 분말이 충분히 건조되지 않는 경우가 있다.In the drying furnace with a spray dryer, it is important to control the inlet temperature and outlet temperature of a hot air. When the temperature difference between the inlet and outlet is large, the drying amount per unit time increases and productivity is improved. However, when the inlet temperature is too high, the powder and the added binder are deteriorated by heat, and desired properties may not be obtained. Moreover, when the outlet temperature is too low, the granulated powder may not be sufficiently dried.

또, 슬러리 중에 폴리비닐알코올 (PVA) 등의 바인더를 첨가하여 조립 분말 중에 함유시킴으로써, 성형체 강도를 향상시킬 수 있다. PVA 의 첨가량은, PVA 6 wt% 함유 수용액을 원료 분말에 대해 50 ∼ 250 cc/kg 첨가한다. 또한, 바인더에 적합한 가소제도 첨가함으로써, 프레스 성형시의 조립 분말의 압괴 강도를 조절할 수도 있다. 또, 얻어진 조립 분말에, 소량의 물을 첨가하여 습윤시킴으로써 성형체 강도를 향상시키는 방법도 있다.In addition, by adding a binder such as polyvinyl alcohol (PVA) to the slurry and containing it in the granulated powder, the strength of the molded body can be improved. As for the addition amount of PVA, 50-250 cc/kg of PVA 6 wt% containing aqueous solution is added with respect to raw material powder. In addition, by adding a plasticizer suitable for the binder, the crush strength of the granulated powder at the time of press molding can be adjusted. Moreover, there is also a method of improving the strength of the compact by adding a small amount of water to the obtained granulated powder to wet it.

다음으로, 프레스 성형을 실시한다. 조립 분말을 금형에 충전하고, 400 ∼ 1000 kgf/㎠ 의 압력을, 1 ∼ 3 분간 유지하여 성형한다. 압력 400 kgf/㎠ 미만이면, 충분한 강도와 밀도의 성형체를 얻을 수 없고, 또 압력 1000 kgf/㎠ 이상에서는, 성형체를 금형으로부터 꺼낼 때에, 성형체 자체가 압력으로부터 해방되는 것에 의한 변형때문에 파괴되는 경우가 있어, 생산상 바람직하지 않다.Next, press molding is performed. The granulated powder is filled in a mold, and a pressure of 400 to 1000 kgf/cm 2 is maintained for 1 to 3 minutes for molding. If the pressure is less than 400 kgf/cm2, a molded body of sufficient strength and density cannot be obtained, and at a pressure of 1000 kgf/cm2 or more, when the molded body is taken out from the mold, the molded body itself is deformed due to release from the pressure. Therefore, it is not preferable in terms of production.

(소결 공정)(sintering process)

전기로를 사용하여, 산소 분위기 중에서 성형체를 소결하여, 소결체를 얻는다. 소결 온도 1350 ∼ 1500 ℃ 까지 승온시킨다. 승온 도중에, 소결체 내의 온도 분포를 작게 하기 위해서 유지 공정을 도입한다. 도중 유지 온도는, 반응이 시작되기 전의 온도대에서 소결체 내의 온도 분포를 작게 하기 위해, 600 ∼ 800 ℃ 의 온도에서 도입하면 된다. 600 ℃ 미만에서는 온도가 지나치게 저온이어서 효과가 나타나지 않고, 800 ℃ 보다 고온인 경우에는, 이미 어느 정도 반응이 진행되고 있기 때문에, 휨 저감의 효과가 얻어지지 않는다. 도중 유지 시간은 1 ∼ 10 시간, 바람직하게는 4 ∼ 6 시간으로 한다. 유지 시간이 지나치게 짧으면, 반응의 진행을 충분히 억제하지 못하고, 한편, 유지 시간이 지나치게 길면 생산성이 저하되기 때문에 바람직하지 않다.Using an electric furnace, a compact is sintered in oxygen atmosphere, and a sintered compact is obtained. It heats up to sintering temperature 1350-1500 degreeC. In the middle of temperature increase, in order to make small the temperature distribution in a sintered compact, a holding process is introduce|transduced. In order to make small the temperature distribution in a sintered compact in the temperature range before reaction begins, what is necessary is just to introduce|transduce holding temperature at the temperature of 600-800 degreeC. When the temperature is lower than 600° C., the effect is not exhibited because the temperature is too low. When the temperature is higher than 800° C., since the reaction has already progressed to some extent, the effect of reducing the warpage is not obtained. The holding time on the way is 1 to 10 hours, preferably 4 to 6 hours. Since advancing of reaction cannot fully be suppressed when holding time is too short, on the other hand, when holding time is too long, productivity will fall, it is unpreferable.

그리고, 도중 유지 온도로부터 소결 온도까지 0.2 ∼ 2.0 ℃/min 로 승온시킨다. 도중 유지 온도로부터 소결 온도까지 승온 속도가 0.2 ℃/min 보다 작으면, 소정 온도가 되기까지 불필요하게 시간을 요해 버리는 경우와, 밀도가 높아지지 않는 경우가 있고, 승온 속도가 2.0 ℃/min 보다 크면, 소결체 내의 온도 분포가 작아지지 않고, 불균일이 발생하거나 소결체가 균열되어 버리거나 한다. 바람직하게는, 0.5 ∼ 1.5 ℃/min 이다.And it is made to heat up at 0.2-2.0 degreeC/min from the holding temperature on the way to the sintering temperature. If the temperature increase rate from the holding temperature to the sintering temperature is less than 0.2 °C/min, it takes time unnecessarily to reach the predetermined temperature, and the density does not increase in some cases, and the temperature increase rate is greater than 2.0 °C/min. , the temperature distribution in the sintered compact does not become small, and non-uniformity occurs or the sintered compact is cracked. Preferably, it is 0.5-1.5 degreeC/min.

소결 온도는 1350 ∼ 1500 ℃ 로 하여, 1 ∼ 100 시간 정도 유지하고, 그 후, 노랭 또는 강온 속도 1.0 ∼ 5.0 ℃/min 로 강온시킨다. 소결 온도가 1350 ℃ 보다 낮으면 고밀도의 소결체를 얻을 수 없다. 또, 1500 ℃ 이상의 소결 온도에서는, 산화아연의 휘발에 의해, 소결 밀도의 저하나 조성 편차가 발생하고, 또 노 히터 수명이 저하되어 버린다는 비용적 문제도 있으므로, 상한은 1500 ℃ 로 하는 것이 바람직하다. 바람직하게는, 1380 ∼ 1420 ℃ 이다. 또 소결 온도에 있어서의 유지 시간이 1 시간보다 짧으면 소결이 충분히 진행되지 않아, 소결체의 밀도가 충분히 높아지지 않거나, 소결체가 휘어져 버리거나 한다. 유지 시간이 100 시간을 초과해도, 불필요한 에너지와 시간을 요하는 비효율성이 발생하여 생산상 바람직하지 않다. 바람직하게는 5 ∼ 30 시간이다.Sintering temperature shall be 1350-1500 degreeC, hold|maintain for about 1-100 hours, and is made to temperature-fall at a furnace cooling or temperature-fall rate 1.0-5.0 degree-C/min after that. If the sintering temperature is lower than 1350° C., a high-density sintered body cannot be obtained. In addition, at a sintering temperature of 1500°C or higher, since zinc oxide volatilizes, a decrease in the sintered density or a compositional variation occurs, and there is also a cost problem that the furnace heater life is reduced. Therefore, the upper limit is preferably set to 1500°C. do. Preferably, it is 1380-1420 degreeC. Moreover, when the holding time in sintering temperature is shorter than 1 hour, sintering will not fully advance and the density of a sintered compact will not become high enough, or a sintered compact will warp. Even if the holding time exceeds 100 hours, inefficiency that requires unnecessary energy and time occurs, which is undesirable in terms of production. Preferably it is 5 to 30 hours.

실시예Example

다음으로, 본 발명의 실시예에 대해 설명한다. 실시예, 비교예에서는, 산화인듐-산화아연계 산화물 (IZO) 소결체의 원료 분말을 프레스 성형한 성형체를 제작하는 공정은, 상기 식별번호 [0033] ∼ [0040] 에 기재하는 조건에서 실시하고, 나아가 소결 공정은, 식별번호 [0041] ∼ 식별번호 [0044] 에 기재하는 조건의 범위에서 적절히 설정하여 실시하였다. 각각의 소결체의 조성은 표 1 에 나타내는 바와 같다.Next, an embodiment of the present invention will be described. In Examples and Comparative Examples, the process of producing a compact obtained by press-molding the raw material powder of an indium oxide-zinc oxide-based oxide (IZO) sintered compact is carried out under the conditions described in the identification number to [0040], Furthermore, the sintering process was carried out by appropriately setting within the range of conditions described in the identification number [0041] to the identification number [0044]. The composition of each sintered body is as shown in Table 1.

실시예 등에 있어서의 아킹 시험은, 신크론 제조 마그네트론 스퍼터 장치 (형번:BSC7011) 를 사용하고, DC 파워 밀도:2.3 W/㎠, 가스압:0.6 Pa, 가스 유량 300 sccm 의 조건에서, 아르곤 분위기 중, 35 시간 연속하여 스퍼터를 실시하여, 아킹의 발생 상태를 조사하였다. 아킹의 검출은, 랜드마크 테크놀로지 제조 마이크로 아크 모니터 (MAM genesis) 를 사용하여, 아킹 (마이크로 아크) 발생 횟수 (회) 를 측정하였다. 아킹 판정 기준은, 검출 전압 100 V 이상, 방출 에너지 (아크 방전이 발생하고 있을 때의 스퍼터 전압 × 스퍼터 전류 × 발생 시간) 가 20 mJ 이하인 아킹을 카운트하여, 10 회 이하이면 ○, 그것을 초과하는 경우에는 × 로 하였다.In the arcing test in Examples, etc., using a magnetron sputtering device manufactured by Syncron (model number: BSC7011), DC power density: 2.3 W/cm 2 , gas pressure: 0.6 Pa, and gas flow rate 300 sccm in an argon atmosphere, Sputtering was performed continuously for 35 hours, and the generation|occurrence|production state of arcing was investigated. Arcing was detected using a micro arc monitor (MAM genesis) manufactured by Landmark Technology, and the number of arcing (micro arc) occurrences (times) was measured. Arcing judgment criterion is to count arcs with a detection voltage of 100 V or more and a discharge energy (sputter voltage when arc discharge is occurring × sputter current × generation time) of 20 mJ or less, and if it is 10 times or less, ○, if it exceeds it was denoted by ×.

(실시예 1)(Example 1)

실시예 1 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간, 도중 유지 온도를 800 ℃ 로 하였다. 그 결과, 소결체의 밀도는 98.41 % 이고, 최대 휨 값은 1.39 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률은, 2.43 mΩ·㎝, 그 표준 편차는 0.78 mΩ·㎝ 였다. 실시예 1 에서는, 이와 같이 소결체의 휨량이 적고, 타깃의 벌크 저항률의 편차가 작다는 양호한 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생은 거의 보이지 않았다. 이상의 결과를, 표 1 에 나타낸다.In Example 1, the maximum sintering temperature was 1400°C, the sintering holding time was 10 hours, and the intermediate holding temperature was 800°C. As a result, the density of the sintered compact was 98.41 %, and the maximum warpage value was 1.39 mm. Moreover, in order to align the sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the bulk resistivity of the target was 2.43 mΩ·cm, and its standard deviation was 0.78 mΩ·cm. In Example 1, there was little warpage of a sintered compact in this way, and the favorable result that the dispersion|variation in the bulk resistivity of a target was small was obtained. Moreover, as a result of sputtering the target produced in this way, generation|occurrence|production of arcing was hardly seen. The above results are shown in Table 1.

Figure 112020015388450-pat00001
Figure 112020015388450-pat00001

(실시예 2 ∼ 15) (Examples 2 to 15)

실시예 2 ∼ 15 에서는, 소결체의 조성, 최고 소결 온도, 소결 유지 시간, 도중 유지 온도, 도중 유지 시간, 도중 유지 온도로부터 소결 유지 온도까지의 승온 속도, 소결체의 면적의 각 조건을 각각 변화시켰다. 그 결과, 표 1 에 나타내는 바와 같이, 어느 소결체도 밀도가 98 % 이상이며, 최대 휨 값은 2.0 ㎜ 이내였다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 어느 타깃의 벌크 저항률은, 1.0 ∼ 10.0 mΩ·㎝ 이고, 그 표준 편차는 1.0 mΩ·㎝ 이내였다. 실시예 2 ∼ 15 에서는, 이와 같이 소결체의 휨량이 적고, 타깃의 벌크 저항률의 편차가 작다는 양호한 결과가 얻어졌다. 또, 이들 타깃을 스퍼터한 결과, 아킹의 발생은 거의 보이지 않았다.In Examples 2 to 15, each condition of the composition of the sintered compact, the maximum sintering temperature, the sintering holding time, the intermediate holding temperature, the intermediate holding time, the temperature increase rate from the intermediate holding temperature to the sintering holding temperature, and the area of the sintered body was changed. As a result, as shown in Table 1, the density of any sintered compact was 98 % or more, and the maximum deflection value was less than 2.0 mm. Moreover, in order to align the sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the bulk resistivity of a certain target was 1.0-10.0 mΩ·cm, and the standard deviation was within 1.0 mΩ·cm. In Examples 2-15, there was little curvature of a sintered compact in this way, and the favorable result that the dispersion|variation in the bulk resistivity of a target was small was acquired. Moreover, as a result of sputtering these targets, generation|occurrence|production of arcing was hardly seen.

(비교예 1)(Comparative Example 1)

비교예 1 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간으로 하고, 도중 유지는 실시하지 않았다. 그 결과, 소결체의 최대 휨 값은 2.30 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.40 mΩ·㎝ 였다. 비교예 1 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 1, the maximum sintering temperature was 1400°C, and the sintering holding time was 10 hours, and holding in the middle was not performed. As a result, the maximum warpage value of the sintered compact was 2.30 mm. Moreover, in order to align the sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the standard deviation of the bulk resistivity of a target was 1.40 mΩ·cm. In Comparative Example 1, the result that the amount of curvature of the sintered compact was large and the dispersion|variation in the bulk resistivity of a target was large in this way was obtained. Moreover, as a result of sputtering the target produced in this way, there were many generation|occurrence|production of arcing.

(비교예 2)(Comparative Example 2)

비교예 2 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간으로 하고, 도중 유지 온도를 500 ℃ 로 낮게 하였다. 그 결과, 소결체의 최대 휨 값은 2.06 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.18 mΩ·㎝ 였다. 비교예 2 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 2, the maximum sintering temperature was 1400°C and the sintering holding time was 10 hours, and the intermediate holding temperature was made as low as 500°C. As a result, the maximum warpage value of the sintered compact was 2.06 mm. Moreover, in order to align the sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the standard deviation of the bulk resistivity of a target was 1.18 mΩ·cm. In the comparative example 2, the amount of curvature of a sintered compact was large in this way, and the result that the dispersion|variation in the bulk resistivity of a target was large was obtained. Moreover, as a result of sputtering the target produced in this way, there were many generation|occurrence|production of arcing.

(비교예 3)(Comparative Example 3)

비교예 3 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간으로 하고, 도중 유지 온도를 900 ℃ 로 높게 하였다. 그 결과, 소결체의 최대 휨 값은 2.14 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.24 mΩ·㎝ 였다. 비교예 3 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 3, the maximum sintering temperature was 1400°C, the sintering holding time was 10 hours, and the intermediate holding temperature was made high at 900°C. As a result, the maximum warpage value of the sintered compact was 2.14 mm. Moreover, in order to align the sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the standard deviation of the bulk resistivity of a target was 1.24 mΩ·cm. In the comparative example 3, the amount of curvature of a sintered compact was large in this way, and the result that the dispersion|variation in the bulk resistivity of a target was large was obtained. Moreover, as a result of sputtering the target produced in this way, there were many generation|occurrence|production of arcing.

(비교예 4)(Comparative Example 4)

비교예 4 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간으로 하고, 도중 유지 온도를 1100 ℃ 로 높게 하였다. 그 결과, 소결체의 최대 휨 값은 2.11 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.11 mΩ·㎝ 였다. 비교예 4 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 4, the maximum sintering temperature was 1400°C and the sintering holding time was 10 hours, and the intermediate holding temperature was made high to 1100°C. As a result, the maximum warpage value of the sintered compact was 2.11 mm. Moreover, in order to align a sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the standard deviation of the bulk resistivity of a target was 1.11 mΩ·cm. In the comparative example 4, the amount of curvature of a sintered compact was large in this way, and the result that the dispersion|variation in the bulk resistivity of a target was large was obtained. Moreover, as a result of sputtering the target produced in this way, there were many generation|occurrence|production of arcing.

(비교예 5)(Comparative Example 5)

비교예 5 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간, 도중 유지 온도를 800 ℃ 로 하고, 도중 유지 온도로부터 최고 소결 온도까지의 승온 속도를 5 ℃/min 로 빠르게 하였다. 그 결과, 소결체의 최대 휨 값은 2.23 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.26 mΩ·㎝ 였다. 비교예 5 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 5, the maximum sintering temperature was 1400°C, the sintering holding time was 10 hours, the intermediate holding temperature was 800°C, and the temperature increase rate from the intermediate holding temperature to the highest sintering temperature was increased to 5°C/min. As a result, the maximum warpage value of the sintered compact was 2.23 mm. Moreover, in order to align a sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the standard deviation of the bulk resistivity of a target was 1.26 mΩ·cm. In Comparative Example 5, the result that the amount of curvature of the sintered compact was large and the dispersion|variation in the bulk resistivity of a target was large in this way was obtained. Moreover, as a result of sputtering the target produced in this way, there were many generation|occurrence|production of arcing.

(비교예 6)(Comparative Example 6)

비교예 6 에서는, 최고 소결 온도를 1400 ℃, 소결 유지 시간을 10 시간, 도중 유지 온도를 800 ℃ 로 하고, 도중 유지 시간을 1 시간으로 짧게 하였다. 그 결과, 소결체의 최대 휨 값은 2.31 ㎜ 가 되었다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.31 mΩ·㎝ 였다. 비교예 6 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 6, the highest sintering temperature was 1400°C, the sintering holding time was 10 hours, the intermediate holding temperature was 800°C, and the intermediate holding time was shortened to 1 hour. As a result, the maximum warpage value of the sintered compact was 2.31 mm. Moreover, in order to align the sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the standard deviation of the bulk resistivity of the target was 1.31 mΩ·cm. In the comparative example 6, the amount of curvature of a sintered compact was large in this way, and the result that the dispersion|variation in the bulk resistivity of a target was large was obtained. Moreover, as a result of sputtering the target produced in this way, there were many generation|occurrence|production of arcing.

(비교예 7)(Comparative Example 7)

비교예 7 에서는, 도중 유지 온도를 800 ℃ 로 하고, 최고 소결 온도를 1600 ℃ 로 높게 하였다. 그 결과, 소결체의 최대 휨량은 2.33 ㎜ 이며, 상대 밀도가 97.5 % 였다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.42 mΩ·㎝ 였다. 비교예 7 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 7, the intermediate holding temperature was set to 800°C, and the highest sintering temperature was made high to 1600°C. As a result, the maximum deflection amount of the sintered compact was 2.33 mm, and the relative density was 97.5%. Moreover, in order to align the sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the standard deviation of the bulk resistivity of the target was 1.42 mΩ·cm. In the comparative example 7, the amount of curvature of a sintered compact was large in this way, and the result that the dispersion|variation in the bulk resistivity of a target was large was obtained. Moreover, as a result of sputtering the target produced in this way, there were many generation|occurrence|production of arcing.

(비교예 8)(Comparative Example 8)

비교예 8 에서는, 도중 유지 온도를 800 ℃ 로 하고, 최고 소결 온도를 1500 ℃ 로 높게 하였다. 그 결과, 소결체의 최대 휨량은 2.37 ㎜ 였다. 또, 소결체를 타깃 형상으로 가지런히 하기 위해, 그 양면을 평면이 되도록 연삭한 결과, 타깃의 벌크 저항률의 표준 편차는 1.53 mΩ·㎝ 였다. 비교예 8 에서는, 이와 같이 소결체의 휨량이 크고, 타깃의 벌크 저항률의 편차가 크다는 결과가 얻어졌다. 또, 이와 같이 하여 제작한 타깃을 스퍼터한 결과, 아킹의 발생이 많았다.In Comparative Example 8, the intermediate holding temperature was set to 800°C, and the highest sintering temperature was made high to 1500°C. As a result, the maximum deflection amount of the sintered compact was 2.37 mm. Moreover, in order to align the sintered compact with a target shape, as a result of grinding the both surfaces so that it might become flat, the standard deviation of the bulk resistivity of a target was 1.53 mohm*cm. In Comparative Example 8, the result that the amount of curvature of the sintered compact was large and the dispersion|variation in the bulk resistivity of a target was large in this way was obtained. Moreover, as a result of sputtering the target produced in this way, there were many generation|occurrence|production of arcing.

상기와 같이, 본 발명은, 종래와 상이한 소결 조건에 따라, 휨이 작은 소결체를 양호한 수율로 제작할 수 있고, 이로 인해, 생산성을 현저하게 향상시킬 수 있다는 우수한 효과를 갖는다. 또, 본 발명은, 소결체의 휨을 저감시킴으로써, 그 소결체를 가공한 후의 타깃의 스퍼터 면의 벌크 저항률의 편차가 작을 수 있어, 특성이 균일한 막을 형성할 수 있다는 우수한 효과를 갖는다. 본 발명의 스퍼터링 타깃은, 액정 표시 장치, 박막 일렉트로루미네선스 표시 장치, 유기 EL 등에 사용되는 투명 도전막의 형성에 유용하다.As described above, the present invention has an excellent effect that a sintered compact having a small warpage can be produced in a good yield according to sintering conditions different from those of the prior art, and thus productivity can be remarkably improved. In addition, the present invention has an excellent effect that, by reducing the curvature of the sintered body, the variation in the bulk resistivity of the sputtered surface of the target after processing the sintered body can be small, and a film with uniform properties can be formed. The sputtering target of this invention is useful for formation of the transparent conductive film used for a liquid crystal display device, a thin film electroluminescence display device, organic electroluminescent etc..

Claims (3)

In, Zn, O 로 이루어지는 투명 도전막 형성용 스퍼터링 타깃으로서,
Zn 과 In 의 원자비 Zn/(In + Zn) 이 0.08 초과 0.3 이하이고, 그 타깃의 스퍼터 면의 면적이 60000 ㎟ 이상 400000 ㎟ 이하일 때, 벌크 저항률이 1.0 mΩ·㎝ 이상 10 mΩ·㎝ 이하이며, 스퍼터 면에 있어서의 벌크 저항률의 표준 편차가 1.0 mΩ·㎝ 이하이고, 상대 밀도가 98 % 이상인 것을 특징으로 하는 스퍼터링 타깃.
As a sputtering target for forming a transparent conductive film made of In, Zn, O,
When the atomic ratio Zn/(In + Zn) of Zn and In is more than 0.08 and not more than 0.3, and the area of the sputtering surface of the target is 60000 mm2 or more and 400000 mm2 or less, the bulk resistivity is 1.0 mΩ·cm or more and 10 mΩ·cm or less, , the standard deviation of the bulk resistivity in the sputtering surface is 1.0 mΩ·cm or less, and the relative density is 98% or more.
삭제delete 삭제delete
KR1020200017636A 2016-03-31 2020-02-13 Indium zinc oxide (izo) based sputtering target, and method for producing same Active KR102322184B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016071381A JP6125689B1 (en) 2016-03-31 2016-03-31 Indium oxide-zinc oxide (IZO) sputtering target
JPJP-P-2016-071381 2016-03-31
KR1020190017109A KR20190019104A (en) 2016-03-31 2019-02-14 Indium zinc oxide (izo) based sputtering target, and method for producing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190017109A Division KR20190019104A (en) 2016-03-31 2019-02-14 Indium zinc oxide (izo) based sputtering target, and method for producing same

Publications (2)

Publication Number Publication Date
KR20200019654A KR20200019654A (en) 2020-02-24
KR102322184B1 true KR102322184B1 (en) 2021-11-04

Family

ID=58704743

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020160163661A Ceased KR20170112970A (en) 2016-03-31 2016-12-02 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020180077156A Active KR101956506B1 (en) 2016-03-31 2018-07-03 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020190017109A Ceased KR20190019104A (en) 2016-03-31 2019-02-14 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020200017636A Active KR102322184B1 (en) 2016-03-31 2020-02-13 Indium zinc oxide (izo) based sputtering target, and method for producing same

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020160163661A Ceased KR20170112970A (en) 2016-03-31 2016-12-02 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020180077156A Active KR101956506B1 (en) 2016-03-31 2018-07-03 Indium zinc oxide (izo) based sputtering target, and method for producing same
KR1020190017109A Ceased KR20190019104A (en) 2016-03-31 2019-02-14 Indium zinc oxide (izo) based sputtering target, and method for producing same

Country Status (4)

Country Link
JP (1) JP6125689B1 (en)
KR (4) KR20170112970A (en)
CN (3) CN107267936A (en)
TW (2) TWI661069B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523510B1 (en) * 2018-03-30 2019-06-05 Jx金属株式会社 Sputtering target
JP2020143359A (en) * 2019-03-08 2020-09-10 Jx金属株式会社 Manufacturing method of sputtering target member, and sputtering target member
CN113555451A (en) * 2020-04-23 2021-10-26 南方科技大学 A kind of preparation method of transparent optoelectronic device and transparent optoelectronic device
JP7162647B2 (en) * 2020-09-15 2022-10-28 Jx金属株式会社 Cu-W-O sputtering target and oxide thin film
CN115679259A (en) * 2021-07-30 2023-02-03 北京北方华创微电子装备有限公司 IZO film preparation method and physical vapor deposition equipment
CN113956022A (en) * 2021-11-30 2022-01-21 郑州大学 A kind of zinc-doped indium oxide powder, sputtering target and preparation method thereof
CN116177993A (en) * 2022-12-15 2023-05-30 先导薄膜材料(广东)有限公司 A kind of indium zinc oxide sintered target and preparation method thereof
CN116041047B (en) * 2022-12-15 2024-05-17 先导薄膜材料(广东)有限公司 IZO doped target material for sputtering and preparation method thereof
CN116199496B (en) * 2022-12-15 2024-07-19 先导薄膜材料(广东)有限公司 Indium zinc oxide doped rare earth metal target material and preparation method thereof
CN116162908B (en) * 2022-12-15 2024-08-30 先导薄膜材料(广东)有限公司 Indium zinc oxide target and preparation method thereof
CN116219375B (en) * 2022-12-15 2024-07-19 先导薄膜材料(广东)有限公司 Indium zinc oxide target and preparation method thereof
CN117247273B (en) * 2023-11-17 2024-02-23 江苏迪纳科精细材料股份有限公司 Preparation method and device of X-IZO magnetron sputtering target material with high mobility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024087A (en) * 2008-07-18 2010-02-04 Idemitsu Kosan Co Ltd Method for manufacturing oxide sintered compact, methods for manufacturing oxide sintered compact, sputtering target, oxide thin film and thin film transistor, and semiconductor device
JP2013147423A (en) 2008-06-06 2013-08-01 Idemitsu Kosan Co Ltd Sputtering target for oxide thin film and process for producing the same
JP2014043598A (en) * 2012-08-24 2014-03-13 Ulvac Japan Ltd METHOD FOR MANUFACTURING InZnO BASED SPUTTERING TARGET
JP2015021165A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Sputtering target and production method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3734540B2 (en) 1995-10-13 2006-01-11 三井金属鉱業株式会社 Manufacturing method of indium oxide-zinc oxide based sintered compact target
JP3721080B2 (en) * 1999-05-10 2005-11-30 株式会社日鉱マテリアルズ Sputtering target and manufacturing method thereof
JP3628566B2 (en) * 1999-11-09 2005-03-16 株式会社日鉱マテリアルズ Sputtering target and manufacturing method thereof
JP4850378B2 (en) * 1999-11-25 2012-01-11 出光興産株式会社 Sputtering target, transparent conductive oxide, and method for producing sputtering target
TW570909B (en) * 2001-06-26 2004-01-11 Mitsui Mining & Smelting Co Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
CN100585752C (en) * 2003-05-20 2010-01-27 出光兴产株式会社 Amorphous transparent conductive film, sputtering target as raw material for amorphous transparent conductive film, amorphous transparent electrode substrate, method for producing amorphous transparent electrode substrate, and color filter for liquid crystal display
TWI390062B (en) * 2004-03-05 2013-03-21 Tosoh Corp Cylindrical sputtering target, ceramic sintered body, and process for producing sintered body
JP5156181B2 (en) 2005-06-30 2013-03-06 出光興産株式会社 Method for producing indium oxide / zinc oxide sintered body
JP4758697B2 (en) 2005-07-01 2011-08-31 出光興産株式会社 Manufacturing method of IZO sputtering target
JP4762062B2 (en) * 2006-06-22 2011-08-31 出光興産株式会社 Sintered body, film, and organic electroluminescence element
CN102191465A (en) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 Indium-doped zinc oxide target material and preparation method of transparent conducting film
KR20140027241A (en) * 2011-05-10 2014-03-06 이데미쓰 고산 가부시키가이샤 In??o??-zno sputtering target
JP5883990B2 (en) * 2013-03-29 2016-03-15 Jx金属株式会社 IGZO sputtering target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147423A (en) 2008-06-06 2013-08-01 Idemitsu Kosan Co Ltd Sputtering target for oxide thin film and process for producing the same
JP2010024087A (en) * 2008-07-18 2010-02-04 Idemitsu Kosan Co Ltd Method for manufacturing oxide sintered compact, methods for manufacturing oxide sintered compact, sputtering target, oxide thin film and thin film transistor, and semiconductor device
JP2014043598A (en) * 2012-08-24 2014-03-13 Ulvac Japan Ltd METHOD FOR MANUFACTURING InZnO BASED SPUTTERING TARGET
JP2015021165A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Sputtering target and production method thereof

Also Published As

Publication number Publication date
CN107267936A (en) 2017-10-20
KR101956506B1 (en) 2019-03-08
KR20190019104A (en) 2019-02-26
JP6125689B1 (en) 2017-05-10
CN114752901A (en) 2022-07-15
KR20170112970A (en) 2017-10-12
TWI661069B (en) 2019-06-01
TWI645059B (en) 2018-12-21
TW201805457A (en) 2018-02-16
JP2017179536A (en) 2017-10-05
KR20180081686A (en) 2018-07-17
KR20200019654A (en) 2020-02-24
CN108930015A (en) 2018-12-04
TW201837222A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
KR102322184B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
KR101274279B1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
KR102030892B1 (en) Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
CN103717779A (en) Zn-sn-o type oxide sintered body and method for producing same
JP6078189B1 (en) IZO sintered compact sputtering target and manufacturing method thereof
KR20140041950A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
CN101208453A (en) Gallium oxide-zinc oxide-based sputtering target, method for forming transparent conductive film, and transparent conductive film
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
CN101208452A (en) Gallium oxide-zinc oxide-based sputtering target, method for forming transparent conductive film, and transparent conductive film
KR102089842B1 (en) Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film
KR102375637B1 (en) Oxide sintered compact and sputtering target
CN108698937A (en) Sn-Zn-O systems oxidate sintered body and its manufacturing method
JP6343695B2 (en) Indium oxide-zinc oxide (IZO) sputtering target and method for producing the same
JP5399344B2 (en) Method for producing composite oxide sintered body
JP5809542B2 (en) Sputtering target material and manufacturing method thereof
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
KR102188415B1 (en) Sputtering target
CN110546299A (en) Sputtering target for transparent conductive film
JP2013067538A (en) Oxide sintered body and oxide transparent conductive film

Legal Events

Date Code Title Description
A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20200213

Patent event code: PA01071R01D

Filing date: 20190214

Application number text: 1020190017109

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20201229

Comment text: Request for Examination of Application

Patent event code: PA02011R04I

Patent event date: 20200213

Comment text: Divisional Application of Patent

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20210302

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210906

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20211101

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20211101

End annual number: 3

Start annual number: 1

PG1601 Publication of registration