[go: up one dir, main page]

JP5156181B2 - Method for producing indium oxide / zinc oxide sintered body - Google Patents

Method for producing indium oxide / zinc oxide sintered body Download PDF

Info

Publication number
JP5156181B2
JP5156181B2 JP2005192740A JP2005192740A JP5156181B2 JP 5156181 B2 JP5156181 B2 JP 5156181B2 JP 2005192740 A JP2005192740 A JP 2005192740A JP 2005192740 A JP2005192740 A JP 2005192740A JP 5156181 B2 JP5156181 B2 JP 5156181B2
Authority
JP
Japan
Prior art keywords
zinc oxide
sintered body
indium oxide
volume
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005192740A
Other languages
Japanese (ja)
Other versions
JP2007008772A (en
Inventor
一吉 井上
暁 海上
雅人 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005192740A priority Critical patent/JP5156181B2/en
Publication of JP2007008772A publication Critical patent/JP2007008772A/en
Application granted granted Critical
Publication of JP5156181B2 publication Critical patent/JP5156181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、酸化インジウム−酸化亜鉛焼結体に関し、結晶組織が微細であり、焼結体密度が高く、表面に出来る黄色層の厚みを低下でき、抗折強度が大きいインジウム及び亜鉛酸化物を主成分とする透明導電膜形成に好適な酸化インジウム・酸化亜鉛焼結体の製造方法に関するものである。   The present invention relates to an indium oxide-zinc oxide sintered body, indium and zinc oxide having a fine crystal structure, a high sintered body density, a reduced yellow layer thickness on the surface, and a high bending strength. The present invention relates to a method for producing an indium oxide / zinc oxide sintered body suitable for forming a transparent conductive film as a main component.

金属複合酸化物からなる透明導電膜は、高導電性と可視光透過性を有しているので、液晶表示装置、薄膜エレクトロルミネッセンス表示装置、放射線検出装置、端末機器の透明タブレット、窓ガラスの結露防止用発熱膜、帯電防止膜又は太陽光集熱器用選択透過膜、タッチパネルの電極などの多岐に亘る用途に使用されている。このような金属複合酸化物からなる透明導電膜の中で最も普及しているものはITOと呼ばれている酸化インジウム−酸化錫からなる透明導電膜である。この他、酸化錫にアンチモンを添加したもの(ATO)や酸化亜鉛にアルミニウムを添加したもの(AZO)などが知られている。これらは、膜特性や製造コストなどが異なるので、その用途に応じて適宜使用されている。
一方、ITO膜よりもエッチング速度が大きいインジウム及び亜鉛の複合酸化物(以下、「IZO」ということがある。)を主成分とする透明導電膜を用いる提案がなされている(特許文献1参照)。特許文献1において、成膜時に使用したIZOターゲットは、熱間静水圧プレス法により製造されたものである(特許文献1の実施例4〜12参照)。
A transparent conductive film made of a metal composite oxide has high conductivity and visible light transmittance, so a liquid crystal display device, a thin film electroluminescence display device, a radiation detection device, a transparent tablet for terminal equipment, and condensation on window glass. It is used in a wide variety of applications such as a heat-generating film for prevention, an antistatic film or a selective transmission film for solar collectors, and electrodes for touch panels. Among the transparent conductive films made of such metal composite oxides, the most widespread is a transparent conductive film made of indium oxide-tin oxide called ITO. In addition, a tin oxide added with antimony (ATO) and a zinc oxide added with aluminum (AZO) are known. Since these have different film characteristics and manufacturing costs, they are used as appropriate according to their applications.
On the other hand, a proposal has been made to use a transparent conductive film whose main component is a complex oxide of indium and zinc (hereinafter sometimes referred to as “IZO”), which has a higher etching rate than the ITO film (see Patent Document 1). . In Patent Document 1, the IZO target used at the time of film formation is manufactured by a hot isostatic pressing method (see Examples 4 to 12 of Patent Document 1).

しかしながら、この方法で製造された従来のIZOスパッタリングターゲットは焼結密度が十分高いとはいえず、結晶粒径も不均一であった。また、得られたターゲットはバルク抵抗が十分低いとはいえず、DCスパッタリング用として必ずしも最適なスパッタリングターゲットではなかった。さらに、熱間静水圧プレス法による焼結ターゲットの機械的強度が低いために、スパッタリング中又はターゲットの取り扱い中に欠けや割れが発生するという問題があった。
また、一般にITOターゲット、IZOターゲット共に、焼結直後の焼結体表面は、酸化度が高く、密度の低い黄色層で覆われている。このため焼結体をターゲットに仕上げるには、この黄色層を研削している。しかしながら、この黄色層の厚みは一概には言えないものの、5mmを越える場合があり、表裏を5mmずつ研削すると合計で10mm以上の研削厚となり、生産性の低いものになる。
特許第2695605号公報
However, the conventional IZO sputtering target manufactured by this method cannot be said to have a sufficiently high sintered density, and the crystal grain size is not uniform. Moreover, it cannot be said that the obtained target has a sufficiently low bulk resistance, and is not necessarily an optimum sputtering target for DC sputtering. Furthermore, since the mechanical strength of the sintered target by the hot isostatic pressing method is low, there is a problem that chipping or cracking occurs during sputtering or handling of the target.
In general, in both the ITO target and the IZO target, the surface of the sintered body immediately after sintering is covered with a yellow layer having a high degree of oxidation and a low density. Therefore, this yellow layer is ground to finish the sintered body as a target. However, although the thickness of this yellow layer cannot be generally specified, it may exceed 5 mm. When the front and back surfaces are ground by 5 mm, the total thickness becomes 10 mm or more, resulting in low productivity.
Japanese Patent No. 2695605

本発明は、前記の課題を解決するためになされたもので、インジウム及び亜鉛の酸化物を主成分とするIZO透明導電膜の持つ特性を失うことなく改良を図ることを目的とし、結晶粒径を均一微細化し、焼結体密度が高く、表面に出来る黄色層の厚みを低下でき、スパッタリングの放電を安定化させるとともに、安定かつ再現性よい透明導電膜を得ることのできる酸化インジウム・酸化亜鉛焼結体の製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and aims to improve without losing the characteristics of an IZO transparent conductive film mainly composed of oxides of indium and zinc. Indium oxide / zinc oxide which can obtain a transparent conductive film with high density of sintered body, high density of sintered body, reduced thickness of yellow layer formed on the surface, stabilization of sputtering discharge, and stable and reproducible It aims at providing the manufacturing method of a sintered compact.

本発明者等は酸化インジウム・酸化亜鉛粉末成型体の焼結挙動に関して詳細な検討を重ね、次のような知見を得た。即ち、酸化インジウム単独の焼結では1100℃で高密度焼結体となるが、酸化インジウムに酸化亜鉛を少量添加したIZO粉末の場合、1200℃以上の高温で焼結した時はじめて高密度化する。この原因としては、1000℃程度の加熱では酸化インジウムと酸化亜鉛の反応は起こらず酸化インジウムのみが焼結して高密度化しようとするが、共存する酸化亜鉛がこの焼結反応を阻害するということが判明した。加熱温度が1200℃以上の高温になると、酸化インジウムと酸化亜鉛からなる六方晶層状化合物(In23・(ZnO)m、ここで、mは2〜20の整数である。)を生成し、この生成と共に高密度化が進行すると考えられる。
このため、IZOを焼結する場合、1200℃に達するまでは酸化インジウム粒子同士の蒸発拡散を促進し、一方、1200〜1450℃では、酸化インジウムと酸化亜鉛の安定な化合物の形成及び酸化亜鉛中への酸化インジウムの拡散、体積拡散を促進することが好ましいことを見出した。このような知見により、本発明を完成するに至ったものである。
The inventors of the present invention have made extensive studies on the sintering behavior of the indium oxide / zinc oxide powder molded body, and have obtained the following knowledge. In other words, indium oxide alone becomes a high-density sintered body at 1100 ° C., but in the case of IZO powder in which a small amount of zinc oxide is added to indium oxide, the density is increased only when sintered at a high temperature of 1200 ° C. or higher. . The reason for this is that when heating at about 1000 ° C., the reaction between indium oxide and zinc oxide does not occur and only indium oxide sinters to increase the density, but the coexisting zinc oxide inhibits this sintering reaction. It has been found. When the heating temperature is higher than 1200 ° C., a hexagonal layered compound composed of indium oxide and zinc oxide (In 2 O 3. (ZnO) m , where m is an integer of 2 to 20) is generated. It is considered that the densification progresses with this generation.
For this reason, when IZO is sintered, evaporation diffusion between indium oxide particles is promoted until reaching 1200 ° C., while at 1200 to 1450 ° C., formation of a stable compound of indium oxide and zinc oxide and in zinc oxide It has been found that it is preferable to promote the diffusion and volume diffusion of indium oxide. Such knowledge has led to the completion of the present invention.

すなわち、本発明は、酸化インジウム粉末及び酸化亜鉛粉末を一体に成型した後、1200℃の温度に達するまで酸素濃度21容量%以上の雰囲気下で加熱した後、1200〜1450℃の温度で酸素濃度21容量%未満の雰囲気下で焼結する酸化インジウム・酸化亜鉛焼結体の製造方法を提供するものである。   That is, according to the present invention, indium oxide powder and zinc oxide powder are integrally molded, heated in an atmosphere having an oxygen concentration of 21% by volume or more until reaching a temperature of 1200 ° C., and then oxygen concentration at a temperature of 1200 to 1450 ° C. The present invention provides a method for producing an indium oxide / zinc oxide sintered body that is sintered in an atmosphere of less than 21% by volume.

本発明の酸化インジウム・酸化亜鉛焼結体の製造方法によると、結晶粒径を均一微細化し、焼結体の相対密度が95%以上(相対密度とは、酸化インジウム、酸化亜鉛の真密度を重量配分して求めた理論密度を100%とした相対値である。)と高く、表面に出来る黄色層の厚みを低下でき、スパッタリングの放電を安定化させるとともに、安定かつ再現性よい透明導電膜を得ることのできるIZO焼結体が得られる。   According to the method for producing an indium oxide / zinc oxide sintered body of the present invention, the crystal grain size is made uniform and the relative density of the sintered body is 95% or more (relative density means the true density of indium oxide and zinc oxide). It is a relative value with the theoretical density obtained by weight distribution as 100%.) A transparent conductive film that is high, can reduce the thickness of the yellow layer formed on the surface, stabilizes the discharge of sputtering, and is stable and reproducible. An IZO sintered body that can be obtained is obtained.

以下、本発明の製造方法を詳細に説明する。
本発明の酸化インジウム・酸化亜鉛焼結体の製造方法は、酸化インジウム粉末及び酸化亜鉛粉末(IZO粉末)を一体に成型した後、1200℃の温度に達するまで酸素濃度21容量%以上の雰囲気下で加熱した後、1200〜1450℃の温度で酸素濃度21容量%未満の雰囲気下で焼結する。
なお、ここで、酸素濃度21容量%以上とは、空気に酸素ガスを添加した場合を示す。また、酸素濃度21容量%未満とは空気中の酸素濃度及び不活性ガスにより空気を希釈した場合を示す。不活性ガスには、アルゴンや窒素などが使用できるが、一般的には、空気に窒素を添加して、所望の酸素濃度を得ることができる。
本発明に用いるIZO粉末の組成としては、酸化インジウム/酸化亜鉛の重量比で95/5〜75/25が好ましく、95/5〜85/15程度がさらに好ましい。また、IZO粉末は酸化インジウムと酸化亜鉛の混合粉末でもよし、インジウム及び/又は亜鉛の有機酸水溶液から得られる有機酸塩を熱分解して得られる粉末(例えば、特許第2695605号公報、特許第317928号公報等参照)でもよい。
Hereinafter, the production method of the present invention will be described in detail.
The method for producing an indium oxide / zinc oxide sintered body according to the present invention comprises an indium oxide powder and a zinc oxide powder (IZO powder) that are integrally molded, and then in an atmosphere having an oxygen concentration of 21% by volume or more until a temperature of 1200 ° C. is reached. After heating at 1,200 to 1450 ° C., sintering is performed in an atmosphere having an oxygen concentration of less than 21% by volume.
Here, the oxygen concentration of 21% by volume or more indicates a case where oxygen gas is added to air. In addition, the oxygen concentration of less than 21% by volume indicates a case where air is diluted with an oxygen concentration in the air and an inert gas. As the inert gas, argon, nitrogen, or the like can be used. In general, a desired oxygen concentration can be obtained by adding nitrogen to air.
The composition of the IZO powder used in the present invention is preferably 95/5 to 75/25, more preferably about 95/5 to 85/15, by weight ratio of indium oxide / zinc oxide. The IZO powder may be a mixed powder of indium oxide and zinc oxide, and is a powder obtained by thermally decomposing an organic acid salt obtained from an organic acid aqueous solution of indium and / or zinc (for example, Japanese Patent No. 2695605, Patent No. 317928).

このような粉末からIZO焼結体を製造する場合、まず前記IZO粉末の成型体(IZO成型体)を製造する。この成型方法には、スリップキャスト法、金型成型法等が挙げられるが、特に制限はない。さらに成型体は、冷間静水圧法(CIP)により、緻密化することが好ましい。この様なCIP処理は焼結密度向上に効果的である。また粉末成型時にバインダ−等を使用した場合、脱ワックス処理をすることが好ましい。   When manufacturing an IZO sintered body from such a powder, first, the said IZO powder molded object (IZO molded object) is manufactured. Examples of the molding method include a slip casting method and a mold molding method, but there is no particular limitation. Further, the molded body is preferably densified by cold isostatic pressing (CIP). Such a CIP process is effective in improving the sintered density. Moreover, when a binder etc. are used at the time of powder shaping | molding, it is preferable to perform a dewaxing process.

本発明においては、前記IZO成型体を1200℃に達するまで、酸素濃度21容量%以上の雰囲気下で加熱する。
1200℃までは、酸化インジウム同士の蒸発拡散を促進するため、酸素濃度21容量%以上の雰囲気下で加熱する。酸素濃度が、21容量%未満であると、酸化亜鉛の粒成長が促進されたり、酸化亜鉛が酸素を遊離したりする場合があり、1200℃以上における酸化亜鉛中への酸化インジウムの拡散が進行しづらくなり焼結に悪影響があるため、好ましくない。
1200℃以下の酸素濃度としては、焼結炉中の気体体積の21〜99容量%であると好ましく、25〜40容量%であるとさらに好ましい。酸素は若干の付加によって十分な効果があり、前記範囲内であれば十分な効果が得られ、生産コストも低い。
In the present invention, the IZO molded body is heated in an atmosphere having an oxygen concentration of 21% by volume or more until reaching 1200 ° C.
Up to 1200 ° C., heating is performed in an atmosphere having an oxygen concentration of 21% by volume or more in order to promote evaporation and diffusion between indium oxides. If the oxygen concentration is less than 21% by volume, the growth of zinc oxide grains may be promoted, or the zinc oxide may liberate oxygen, and the diffusion of indium oxide into the zinc oxide at 1200 ° C. or higher proceeds. This is not preferable because it becomes difficult and there is an adverse effect on sintering.
The oxygen concentration at 1200 ° C. or lower is preferably 21 to 99% by volume of the gas volume in the sintering furnace, and more preferably 25 to 40% by volume. Oxygen has a sufficient effect by adding a little, and if it is within the above range, a sufficient effect can be obtained and the production cost is low.

一方、1200℃に達してから、1200〜1450℃においては、酸素濃度21容量%未満の雰囲気下で加熱する。
この温度領域は、酸化亜鉛粒界にある酸化インジウムが酸化亜鉛中に挿入され中間化合物生成によって拡散凝集を起こし、焼結体が急激に緻密化する領域であるため、この領域においては、酸素濃度21容量%未満の雰囲気下で加熱することが必要である。酸素濃度が、21容量%以上では、焼結体表面の酸素量が多くなりすぎて、黄色層が厚くなり、生産性上好ましくない。
また、1450℃を越える温度で焼結を行うと、焼結体が異常粒成長を起こして、焼結体の強度が減少し、割れやすいものとなるため好ましくない。
1200〜1450℃の酸素濃度としては、焼結炉中の気体体積の10〜21容量%未満であると好ましく、15〜21容量%未満であるとさらに好ましい。
また、1200℃以上の降温時の雰囲気としては、特に限定されないが、焼結炉中の気体体積の酸素濃度15〜21容量%であると好ましく、全温度範囲で空気であってもよい。
On the other hand, after reaching 1200 ° C., heating is performed in an atmosphere having an oxygen concentration of less than 21% by volume at 1200 to 1450 ° C.
This temperature region is a region where indium oxide at the zinc oxide grain boundary is inserted into zinc oxide and causes diffusion aggregation due to the formation of intermediate compounds, and the sintered body rapidly becomes dense. It is necessary to heat in an atmosphere of less than 21% by volume. When the oxygen concentration is 21% by volume or more, the amount of oxygen on the surface of the sintered body is excessively increased and the yellow layer becomes thick, which is not preferable in terms of productivity.
Further, if sintering is performed at a temperature exceeding 1450 ° C., the sintered body causes abnormal grain growth, the strength of the sintered body is reduced, and it becomes easy to crack, which is not preferable.
The oxygen concentration at 1200 to 1450 ° C. is preferably less than 10 to 21% by volume of the gas volume in the sintering furnace, and more preferably less than 15 to 21% by volume.
Further, the atmosphere when the temperature is lowered to 1200 ° C. or higher is not particularly limited, but is preferably 15 to 21% by volume of the oxygen concentration of the gas volume in the sintering furnace, and may be air in the entire temperature range.

なお、加熱時の昇温速度としては、10〜300℃/時間が好ましく、酸素以外に含まれていてもよい気体としては、特に限定されないが、窒素、アルゴン、ヘリウム、二酸化炭素等が挙げられる。
焼結時の圧力は任意に設定して行うことができ、加圧して行うと酸素付加効果が高まることからさらに好ましい。
1200〜1450℃の温度領域における保持時間は特に限定されないが、例えば3〜15時間が好ましい。この時間内であれば、粒成長が十分で高密度となり、生産性もよい。
なお、焼結後の降温条件としては、10〜300℃/時間が好ましい。
The heating rate during heating is preferably 10 to 300 ° C./hour, and the gas that may be contained in addition to oxygen is not particularly limited, and examples thereof include nitrogen, argon, helium, and carbon dioxide. .
The pressure at the time of sintering can be arbitrarily set, and pressurization is more preferable because the effect of adding oxygen is enhanced.
The holding time in the temperature range of 1200 to 1450 ° C. is not particularly limited, but is preferably 3 to 15 hours, for example. Within this time, grain growth is sufficient and high density, and productivity is good.
In addition, as temperature-fall conditions after sintering, 10-300 degreeC / hour is preferable.

次に、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
実施例1
酸化インジウムと酸化亜鉛の混合粉末(重量比で90/10)を金型で成型し、厚さ10mm、直径100mmの成型体を得た。この成型体を2t/cm2でCIP処理した後、1350℃まで100℃/時間で昇温し、1350℃で5時間保持し、100℃/時間で降温した。この時の焼結雰囲気は、1200℃までは空気に5容量%の純酸素ガスを添加し酸素26容量%、窒素74容量%、1200℃〜1350℃の保持時間終了までの酸素18容量%、窒素82容量%、降温時1200℃以下は空気とした。
得られた焼結体の相対密度は96%、焼結粒径は3〜4μmであり、異常粒成長は認められなかった。また、ターゲットに仕上げる際に、研削した黄色層の厚みは0.8mmであった。
EXAMPLES Next, although this invention is demonstrated in more detail using an Example, this invention is not limited to these Examples.
Example 1
A mixed powder of indium oxide and zinc oxide (weight ratio 90/10) was molded with a mold to obtain a molded body having a thickness of 10 mm and a diameter of 100 mm. The molded body was subjected to CIP treatment at 2 t / cm 2 , heated to 1350 ° C. at 100 ° C./hour, held at 1350 ° C. for 5 hours, and lowered at 100 ° C./hour. The sintering atmosphere at this time is up to 1200 ° C., 5% by volume of pure oxygen gas is added to the air, 26% by volume of oxygen, 74% by volume of nitrogen, 18% by volume of oxygen until the end of the holding time of 1200 ° C. to 1350 ° C., Air was used at 82% by volume of nitrogen and 1200 ° C. or lower when the temperature dropped.
The relative density of the obtained sintered body was 96%, the sintered particle diameter was 3 to 4 μm, and no abnormal grain growth was observed. Moreover, when finishing to a target, the thickness of the ground yellow layer was 0.8 mm.

実施例2
実施例1において、1200℃〜1350℃の保持時間終了までの酸素15容量%、窒素85容量%とした以外は同様にして処理した。
得られた焼結体の相対密度は96%、焼結粒径は3〜5μmであり、異常粒成長は認められなかった。また、ターゲットに仕上げる際に、研削した黄色層の厚みは0.7mmであった。
Example 2
In Example 1, the treatment was performed in the same manner except that the oxygen was 15% by volume and the nitrogen was 85% by volume until the end of the holding time at 1200 ° C. to 1350 ° C.
The relative density of the obtained sintered body was 96%, the sintered particle diameter was 3 to 5 μm, and no abnormal grain growth was observed. Moreover, when finishing to a target, the thickness of the ground yellow layer was 0.7 mm.

実施例3
酸化インジウムと酸化亜鉛の混合粉末(重量比で90/10)を金型で成型し、厚さ10mm、直径100mmの成型体を得た。この成型体を2t/cm2でCIP処理した後、1400℃まで100℃/時間で昇温し、1400℃で5時間保持し、100℃/時間で降温した。この時の焼結雰囲気は、1200℃までは空気に純酸素ガスを添加して、酸素30容量%、窒素70容量%とし、1200℃〜1400℃の保持時間終了までの酸素18%、窒素82%、降温時は1200℃以下600℃まで酸素18%、窒素82%とし、その後空気とした。
得られた焼結体の相対密度は98%、焼結粒径は3〜4μmであり、異常粒成長は認められなかった。また、ターゲットに仕上げる際に、研削した黄色層の厚みは0.6mmであった。
Example 3
A mixed powder of indium oxide and zinc oxide (weight ratio 90/10) was molded with a mold to obtain a molded body having a thickness of 10 mm and a diameter of 100 mm. The molded body was subjected to CIP treatment at 2 t / cm 2 , then heated to 1400 ° C. at 100 ° C./hour, held at 1400 ° C. for 5 hours, and lowered at 100 ° C./hour. In this sintering atmosphere, pure oxygen gas is added to air up to 1200 ° C. to make oxygen 30% by volume and nitrogen 70% by volume, 18% oxygen until the end of the holding time at 1200 ° C. to 1400 ° C., nitrogen 82 When the temperature was lowered, oxygen was reduced to 1200 ° C. or lower and 600 ° C. to 18% oxygen and 82% nitrogen, and then air was used.
The relative density of the obtained sintered body was 98%, the sintered grain size was 3 to 4 μm, and no abnormal grain growth was observed. Moreover, when finishing to a target, the thickness of the ground yellow layer was 0.6 mm.

比較例1
実施例1と同様にして、酸化インジウムと酸化亜鉛の混合粉末(重量比で90/10)の成型体を得て、CIP処理した後、同様に昇温し、1350℃で5時間保持し、100℃/時間で降温した。この時の焼結雰囲気は、すべて空気とした。
得られた焼結体の相対密度は93%であった。また、ターゲットに仕上げる際に、研削した黄色層の厚みは1.6mmであった。
Comparative Example 1
In the same manner as in Example 1, a molded body of a mixed powder of indium oxide and zinc oxide (weight ratio 90/10) was obtained, and after CIP treatment, the temperature was similarly raised and held at 1350 ° C. for 5 hours. The temperature was lowered at 100 ° C./hour. The sintering atmosphere at this time was all air.
The relative density of the obtained sintered body was 93%. Moreover, when finishing to a target, the thickness of the ground yellow layer was 1.6 mm.

以上詳細に説明したように、本発明の酸化インジウム・酸化亜鉛焼結体の製造方法によると、結晶粒径を均一微細化し、焼結体の相対密度が95%以上と高く、表面に出来る黄色層の厚みを低下できるため生産性が高く、スパッタリングの放電を安定化させるとともに、安定かつ再現性よい透明導電膜を得ることのできるIZO焼結体が得られる。このような焼結体は、スパッタリングターゲット等に利用することができ、その工業的価値は高い。

As described above in detail, according to the method for producing an indium oxide / zinc oxide sintered body of the present invention, the crystal grain size is uniformly refined, the relative density of the sintered body is as high as 95% or more, and yellow is formed on the surface. Since the thickness of the layer can be reduced, an IZO sintered body can be obtained that has high productivity, stabilizes the discharge of sputtering, and can obtain a transparent conductive film that is stable and reproducible. Such a sintered body can be used for a sputtering target or the like, and its industrial value is high.

Claims (6)

酸化インジウム/酸化亜鉛の重量比が95/5〜75/25である酸化インジウム粉末及び酸化亜鉛粉末を一体に成型した後、1200℃の温度に達するまで酸素濃度21容量%以上の雰囲気下で加熱した後、1200〜1450℃の温度で酸素濃度21容量%未満の雰囲気下で焼結する酸化インジウム・酸化亜鉛焼結体の製造方法であって、1200〜1450℃の温度での酸素濃度が、不活性ガスにより空気を希釈して調整されたものである、酸化インジウム・酸化亜鉛焼結体の製造方法。 After indium oxide powder and zinc oxide powder having an indium oxide / zinc oxide weight ratio of 95/5 to 75/25 are integrally molded, they are heated in an atmosphere having an oxygen concentration of 21% by volume or more until a temperature of 1200 ° C. is reached. After that, a method for producing an indium oxide / zinc oxide sintered body that is sintered at a temperature of 1200 to 1450 ° C. in an atmosphere having an oxygen concentration of less than 21% by volume, wherein the oxygen concentration at a temperature of 1200 to 1450 ° C. is A method for producing an indium oxide / zinc oxide sintered body prepared by diluting air with an inert gas. 1200〜1450℃の温度での酸素濃度が、15〜18容量%である請求項1に記載の酸化インジウム・酸化亜鉛焼結体の製造方法。   The method for producing an indium oxide / zinc oxide sintered body according to claim 1, wherein the oxygen concentration at a temperature of 1200 to 1450 ° C. is 15 to 18% by volume. 前記不活性ガスが窒素である請求項1又は2に記載の酸化インジウム・酸化亜鉛焼結体の製造方法。   The method for producing an indium oxide / zinc oxide sintered body according to claim 1, wherein the inert gas is nitrogen. 酸化インジウム粉末及び酸化亜鉛粉末を一体に成型した後、緻密化する請求項1〜のいずれかに記載の酸化インジウム・酸化亜鉛焼結体の製造方法。 The method for producing an indium oxide / zinc oxide sintered body according to any one of claims 1 to 3 , wherein the indium oxide powder and the zinc oxide powder are integrally molded and then densified. 冷間静水圧法により、緻密化する請求項に記載の酸化インジウム・酸化亜鉛焼結体の製造方法。 The method for producing an indium oxide / zinc oxide sintered body according to claim 4 , which is densified by a cold isostatic pressure method. 1350〜1450℃の保持時間が3〜15時間である請求項1〜のいずれかに記載の酸化インジウム・酸化亜鉛焼結体の製造方法。 The method for producing an indium oxide / zinc oxide sintered body according to any one of claims 1 to 5 , wherein a holding time at 1350 to 1450 ° C is 3 to 15 hours.
JP2005192740A 2005-06-30 2005-06-30 Method for producing indium oxide / zinc oxide sintered body Active JP5156181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192740A JP5156181B2 (en) 2005-06-30 2005-06-30 Method for producing indium oxide / zinc oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192740A JP5156181B2 (en) 2005-06-30 2005-06-30 Method for producing indium oxide / zinc oxide sintered body

Publications (2)

Publication Number Publication Date
JP2007008772A JP2007008772A (en) 2007-01-18
JP5156181B2 true JP5156181B2 (en) 2013-03-06

Family

ID=37747740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192740A Active JP5156181B2 (en) 2005-06-30 2005-06-30 Method for producing indium oxide / zinc oxide sintered body

Country Status (1)

Country Link
JP (1) JP5156181B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125689B1 (en) 2016-03-31 2017-05-10 Jx金属株式会社 Indium oxide-zinc oxide (IZO) sputtering target

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316954A (en) * 1989-06-14 1991-01-24 Tosoh Corp Oxide sintered body, its manufacturing method and uses
JP3628566B2 (en) * 1999-11-09 2005-03-16 株式会社日鉱マテリアルズ Sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007008772A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
CN102216237B (en) ZnO-SnO2-In2O3 Oxide Sintered Body and Amorphous Transparent Conductive Film
JP5887819B2 (en) Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
CN105986230A (en) Oxide sintered compact, sputtering target, thin film and method of producing oxide sintered compact
JP2011184715A (en) Zinc oxide based transparent conductive film forming material, method for producing the same, target using the same, and method for forming zinc oxide based transparent conductive film
JP2016132609A (en) Oxide sintered body, sputtering target, and oxide thin film
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
TWI778100B (en) Oxide sintered body and sputtering target
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
TWI649293B (en) Sintered body, sputtering target and manufacturing method thereof
JP5156181B2 (en) Method for producing indium oxide / zinc oxide sintered body
JP2008214169A (en) ITiO SINTERED COMPACT FOR VACUUM VAPOR DEPOSITION AND ITS PRODUCTION METHOD
JP5952031B2 (en) Oxide sintered body manufacturing method and target manufacturing method
JP5907086B2 (en) Indium oxide-based oxide sintered body and method for producing the same
JP6453990B2 (en) Sintered body, sputtering target and manufacturing method thereof
JP2012193073A (en) Oxide molded product, oxide sintered compact, and transparent conductive film-forming material
JP5993700B2 (en) Method for producing zinc oxide-based sintered body
JP2014058731A (en) Zinc oxide sputtering target, and manufacturing method thereof
JP2012197216A (en) Oxide sintered compact, method for manufacturing the same and target using the same
JP2006002202A (en) Sputtering target for producing transparent electrically conductive thin film and its production method
JP6551683B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
WO2021019854A1 (en) Method for manufacturing vacuum deposition tablet, oxide transparent conductive film, and tin-oxide-based sintered body
JP5919792B2 (en) Composite oxide sintered body, manufacturing method thereof, and target
JP5689378B2 (en) Transparent conductive film
JP6027844B2 (en) Method for producing zinc oxide-based sintered body
WO2015037462A1 (en) Production method for silicon oxide sintered body, and silicon oxide sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250