[go: up one dir, main page]

KR102256534B1 - 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
KR102256534B1
KR102256534B1 KR1020170148248A KR20170148248A KR102256534B1 KR 102256534 B1 KR102256534 B1 KR 102256534B1 KR 1020170148248 A KR1020170148248 A KR 1020170148248A KR 20170148248 A KR20170148248 A KR 20170148248A KR 102256534 B1 KR102256534 B1 KR 102256534B1
Authority
KR
South Korea
Prior art keywords
active material
silicon
negative active
carbon composite
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020170148248A
Other languages
English (en)
Other versions
KR20190052514A (ko
Inventor
김용석
나재호
최연주
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020170148248A priority Critical patent/KR102256534B1/ko
Priority to US16/180,617 priority patent/US10991939B2/en
Priority to EP18204456.0A priority patent/EP3483959B1/en
Priority to CN201811317715.4A priority patent/CN109755496B/zh
Publication of KR20190052514A publication Critical patent/KR20190052514A/ko
Application granted granted Critical
Publication of KR102256534B1 publication Critical patent/KR102256534B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 상기 음극 활물질은 결정질 탄소 및 실리콘 입자를 포함하는 실리콘-탄소 복합체를 포함하는 리튬 이차 전지용 음극 활물질로서, 상기 실리콘-탄소 복합체는 알칼리 금속 또는 알칼리 토금속을 더 포함하고, 상기 알칼리 금속 또는 알칼리 토금속의 함량은 상기 실리콘-탄소 복합체에 대하여 500ppm 이상, 5000ppm 미만이다.

Description

리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지{NEGATIVE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERY AND RECHARGEABLE LITHIUM BATTERY INCLUDING SAME}
리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
모바일 장비 또는 휴대용 전지의 수요가 증가함으로 인해 리튬 이차 전지의 고용량을 구현하기 위해 기술 개발이 지속적으로 진행되고 있다.
리튬 이차 전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1 - xCoxO2(0 < x < 1)등과 같이 리튬 이온의 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물이 주로 사용된다.
음극 활물질로는 리튬의 삽입/탈리가 가능한 인조, 천연 흑연, 하드 카본을 포함한 다양한 형태의 탄소계 재료 또는 Si, Sn 등을 포함하는 Si계 활물질을 사용할 수 있고, 특히 고용량 측면에서는 Si계 활물질이 주로 사용되고 있다.
리튬 이차 전지의 전해질로는 리튬염이 용해된 유기 용매가 사용되고 있다.
최근 이동 정보 단말기의 소형화 및 경량화가 급격히 진전되어, 그 구동 전원인 리튬 이차 전지의 보다 고용량화가 요구되고 있다. 또한, 리튬 이차 전지를 하이브리드 자동차나 전지 자동차의 구동용 전원 또는 전력 저장용 전원으로 사용하기 위하여, 고율 특성이 양호하며 급속 충방전이 가능하고 우수한 사이클 특성을 갖는 전지 개발에 대한 연구도 활발하게 진행되고 있다.
본 개시의 일 구현예는 고효율 및 우수한 수명 특성을 갖는 리튬 이차 전지용 음극 활물질을 제공하는 것이다.
다른 일 구현예는 상기 음극 활물질을 포함하는 리튬 이차 전지를 제공하는 것이다.
본 발명의 일 구현예는 결정질 탄소 및 실리콘 입자를 포함하는 실리콘-탄소 복합체를 포함하는 리튬 이차 전지용 음극 활물질로서, 상기 실리콘-탄소 복합체는 알칼리 금속 또는 알칼리 토금속을 더 포함하고, 상기 알칼리 금속 또는 알칼리 토금속의 함량은 상기 실리콘-탄소 복합체에 대하여 500ppm 이상, 5000ppm 미만인 리튬 이차 전지용 음극 활물질을 제공한다.
상기 음극 활물질에서 상기 알칼리 금속 또는 알칼리 토금속은 마그네슘일 수 있다.
상기 실리콘 입자는 X선 광전자 분광법(XPS) 분석에 의할 때 Si2 +, Si1 +, 및 Si0의 비율이 60at% 이상일 수 있다.
상기 실리콘 입자는 X선 광전자 분광법(XPS) 분석에 의할 때 Si0의 비율이 15at% 내지 25at%일 수 있다.
상기 알칼리 금속 또는 알칼리 토금속은 상기 실리콘-탄소 복합체의 표면 또는 복합체 내부에 존재할 수 있다.
상기 실리콘-탄소 복합체는 산소를 더 포함하고, 산소의 함량은 상기 실리콘-탄소 복합체에 대하여 5wt% 내지 9wt%일 수 있다.
또 다른 일 규현예는, 전류 집전체, 및 상기 음극 활물질을 포함하는 음극 활물질층을 포함하는 리튬 이차 전지용 음극을 제공한다.
또 다른 일 구현예는 상기 음극; 양극 활물질을 포함하는 양극; 및 비수 전해질을 포함하는 리튬 이차 전지를 제공한다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
일 구현예에 따른 리튬 이차 전지용 음극 활물질은 우수한 사이클 수명 특성을 나타낼 수 있다.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 실시예 1 내지 4 및 비교예 1 내지 4의 리튬 이차 전지에 대한 수명 특성을 나타낸 그래프이다.
이하, 본 발명의 구현 예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에 따른 리튬 이차 전지용 음극 활물질은 결정질 탄소 및 실리콘 입자를 포함하는 실리콘-탄소 복합체를 포함하는 리튬 이차 전지용 음극 활물질로서, 상기 실리콘-탄소 복합체는 알칼리 금속 또는 알칼리 토금속을 더 포함하고, 상기 알칼리 금속 또는 알칼리 토금속의 함량은 상기 실리콘-탄소 복합체에 대하여 500ppm 이상, 5000ppm 미만일 수 있다. 여기서, 상기 알칼리 금속 또는 알칼리 토금속은 마그네슘일 수 있다.
상기 알칼리 금속 또는 알칼리 토금속의 함량이 상기 실리콘-탄소 복합체에 대하여 500ppm 이상, 5000ppm 미만인 경우, 이 음극 활물질을 포함하는 음극의 효율 및 수명을 향상시킬 수 있어 바람직하다. 즉, 실리콘 음극소재에 알칼리 금속 또는 알칼리 토금속을 도입하여 환원 처리를 하는 경우, 음극의 효율을 높일 수 있지만 실리콘 구조체가 손상되어 수명이 감소하는 문제가 있었다. 그러나, 본 발명의 일 구현예에 따른 리튬 이차 전지용 음극 활물질에서는, 실리콘-탄소 복합체에 대해 알칼리 금속 또는 알칼리 토금속이 500ppm 이상, 5000ppm 미만의 양으로 포함되도록 처리하는 것에 의해, 효율이 증가할 뿐만 아니라, 구조의 손상도 발생하지 않아 수명 증가를 구현할 수 있다. 또한 알칼리 금속 또는 알칼리 토금속이 500ppm 이상, 5000ppm 미만의 양으로 포함되는 것에 의해 음극 활물질의 전도도 역시 향상될 수 있다.
알칼리 금속 또는 알칼리 토금속은 실리콘 소재의 근본적인 문제 중 하나인 전기 전도성을 증가시키는 역할을 한다. 이 때문에, 알칼리 금속 또는 알칼리 토금속이 500ppm 미만으로 포함될 경우, 전기 전도성 개선 효과가 미흡하여 수명이 감소하므로 바람직하지 않고, 알칼리 금속 또는 알칼리 토금속이 5000ppm 이상 포함될 경우에는 알칼리 금속 또는 알칼리 토금속이 리튬 이온과 반응하게 되어 수명 저하를 유발할 수 있는바 바람직하지 않다.
상기 알칼리 금속 또는 알칼리 토금속은 나트륨, 칼륨, 루비듐, 세슘, 프랑슘, 칼슘, 스트론튬, 바륨, 라듐, 베릴륨, 및 마그네슘으로부터 선택된 1종 이상일 수 있고, 이들 중 바람직하게는 마그네슘일 수 있다.
알칼리 금속 또는 알칼리 토금속은, 제조가 완료된 실리콘-탄소 복합체에 대하여 알칼리 금속 또는 알칼리 토금속 분말을 혼합하여 열처리하는 것에 의해 실리콘-탄소 복합체에 도입될 수 있다.
상기 실리콘-탄소 복합체는 결정질 탄소 및 실리콘 입자를 포함하는 실리콘-탄소 복합체일 수 있다. 상기 실리콘-탄소 복합체는 적어도 일부분에 형성된 비정질 탄소층을 더욱 포함할 수 있다. 상기 결정질 탄소는 인조 흑연, 천연 흑연 또는 이들의 조합일 수 있다. 상기 비정질 탄소 전구체로는 석탄계 핏치, 메조페이스 핏치(mesophase pitch), 석유계 핏치, 석탄계 오일, 석유계 중질유 또는 페놀 수지, 퓨란 수지, 폴리이미드 수지 등의 고분자 수지를 사용할 수 있다. 이때, 실리콘의 함량은 실리콘-탄소 복합체 전체 중량에 대하여 10 중량% 내지 50 중량%일 수 있다. 또한, 상기 결정질 탄소의 함량은 실리콘-탄소 복합체 전체 중량에 대하여 10 중량% 내지 70 중량%일 수 있고, 상기 비정질 탄소의 함량은 실리콘-탄소 복합체 전체 중량에 대하여 20 중량% 내지 40 중량%일 수 있다. 또한, 상기 비정질 탄소 코팅층의 두께는 5nm 내지 100nm일 수 있다. 상기 실리콘-탄소 복합체에서 코어는 기공을 더욱 포함할 수도 있다. 상기 실리콘 입자의 평균 입경(D50)은 10nm 내지 200nm일 수 있다. 본 명세서에서, 별도의 정의가 없는 한, 평균 입경(D50)은 입도 분포에서 누적 체적이 50 부피%인 입자의 지름을 의미한다.
상기 실리콘-탄소 복합체에 대하여, 알칼리 금속 또는 알칼리 토금속 분말을 혼합하여 열처리하는 것에 의해 본 발명의 알칼리 금속 또는 알칼리 토금속을 포함하는 실리콘-탄소 복합체를 얻을 수 있지만, 이에 한정되는 것은 아니다. 예를 들면, 알칼리 금속 또는 알칼리 토금속 증기를 포함하는 분위기에서 열처리하는 것에 의해서도 얻어질 수 있다.
이 때, 적절한 열처리 온도는 550℃ 내지 700℃ 이며, 열처리 시간은 1시간 내지 10시간, 바람직하게는 2시간 내지 5시간일 수 있다.
이와 같은 열처리에 의해, 실리콘-탄소 복합체는 적절히 환원되고, 실리콘-탄소 복합체의 표면 또는 복합체의 내부에 알칼리 금속 또는 알칼리 토금속이 도입된다. 특히, 실리콘-탄소 복합체의 환원에 의해 실리콘-탄소 복합체에 포함된 산소의 함량이 실리콘-탄소 복합체에 대하여 5wt% 내지 9wt%가 될 수 있다. 산소의 함량이 5wt% 미만일 경우 수명 열화가 심해져서 바람직하지 않고, 9wt% 초과일 경우 산소로 인한 비가역이 심화되어 효율이 크게 감소하는바 음극 소재로 활용하기 어려워져서 바람직하지 않다.
아울러, 알칼리 금속 또는 알칼리 토금속에 의해 실리콘-탄소 복합체가 적절히 환원되었는지 여부는, 실리콘 원자에 대해 XPS 분석을 통해 산화 가수에 따른 실리콘 원자의 함량을 측정하는 것에 의해서도 확인될 수 있다. 즉, 알칼리 금속 또는 알칼리 토금속이 500ppm 이상, 5000ppm 미만으로 적절히 포함될 경우, 산화 가수가 2 이하인 Si의 비율이 높아져서 산화 가수가 2 이하인 Si, 즉, Si0, Si1 +, Si2+인 원자의 비율이 60at% 이상이 되고, 나아가서, Si0의 비율이 15at% 내지 25at%가 될 수 있다.
본 발명에 있어서, 상기 알칼리 금속 또는 알칼리 토금속을 포함하는 실리콘-탄소 복합체로 이루어진 음극 활물질은 단독으로 사용할 수도 있고, 다른 종류의 음극 활물질을 더욱 혼합하여 사용할 수도 있다. 예를 들면, 제1 음극 활물질로 알칼리 금속 또는 알칼리 토금속을 포함하는 실리콘-탄소 복합체를 포함할 수 있고, 제2 음극 활물질로 결정질 탄소를 포함할 수 있다. 음극 활물질로 2종 이상의 음극 활물질을 혼합하여 사용하는 경우, 이들의 혼합비는 적절하게 조절할 수 있으나, 음극 활물질 전체 중량에 대하여 Si의 함량이 3 중량% 내지 50 중량%가 되도록 조절하는 것이 적절할 수 있다.
일 구현예에 따르면, 전류 집전체; 및 이 전류 집전체에 형성되고 상기 음극 활물질을 포함하는 음극 활물질층을 포함하는 리튬 이차 전지용 음극을 제공한다.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수성 바인더, 수성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수성 바인더로는 고무계 바인더 또는 고분자 수지 바인더를 들 수 있다. 상기 고무계 바인더는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버(SBR), 아크릴로니트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무 및 이들의 조합에서 선택되는 것일 수 있다. 상기 고분자 수지 바인더는 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌프로필렌공중합체, 폴리에틸렌옥시드, 폴리비닐피롤리돈, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스틸렌, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜으로 및 이들의 조합에서 선택되는 것일 수 있다.
상기 음극 바인더로 수성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 들 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
다른 일 구현예는 상기 음극, 양극, 및 비수 전해질을 포함하는 리튬 이차 전지를 제공한다.
상기 양극은 전류 집전체 및 이 전류 집전체에 형성되고, 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있으며, 구체적으로는 코발트, 망간, 니켈, 및 이들의 조합으로부터 선택되는 금속과 리튬과의 복합 산화물중 1종 이상의 것을 사용할 수 있다. 보다 구체적인 예로는 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다. LiaA1 - bXbD2(0.90 ≤ a ≤1.8, 0 ≤ b ≤ 0.5); LiaA1 - bXbO2 - cDc(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); LiaE1-bXbO2-cDc(0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); LiaE2 - bXbO4 - cDc(0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); LiaNi1 -b- cCobXcDα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.5, 0 < α ≤ 2); LiaNi1 -b- cCobXcO2 - αTα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1 -b- cCobXcO2 - αT2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1 -b- cMnbXcDα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2); LiaNi1 -b- cMnbXcO2 - αTα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1 -b- cMnbXcO2 - αT2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNibEcGdO2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1); LiaNibCocMndGeO2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤ 0.5, 0.001 ≤ e ≤ 0.1); LiaNiGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaCoGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaMn1 -bGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaMn2GbO4(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaMn1 - gGgPO4(0.90 ≤ a ≤ 1.8, 0 ≤ g ≤ 0.5); QO2; QS2; LiQS2; V2O5; LiV2O5; LiZO2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); LiaFePO4(0.90 ≤ a ≤ 1.8)
상기 화학식에 있어서, A는 Ni, Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 O, F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti, Mo, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr, V, Fe, Sc, Y, 및 이들의 조합으로 이루어진 군에서 선택되며; J는 V, Cr, Mn, Co, Ni, Cu, 및 이들의 조합으로 이루어진 군에서 선택된다.
물론 이 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 코팅 원소의 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 및 코팅 원소의 하이드록시카보네이트로 이루어진 군에서 선택되는 적어도 하나의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
일 구현예에 따르면, 상기 양극 활물질로 LiaNi1 -b- cCobXcDα(0.90 ≤ a ≤1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.5, 0 ≤ α ≤ 2); LiaNi1 -b- cCobXcO2 - αTα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 ≤ α < 2); LiaNi1 -b- cCobXcO2 - αT2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 ≤ α ≤ 2); LiaNi1 -b- cMnbXcDα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 ≤ α ≤ 2); LiaNi1 -b- cMnbXcO2 - αTα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 ≤ α ≤ 2); LiaNi1 -b-cMnbXcO2-αT2( 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 ≤ α ≤ 2); LiaNibEcGdO2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1); LiaNibCocMndGeO2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1); LiaNiGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1)와 같은 니켈계 양극 활물질 중 적어도 두 종을 혼합하여 사용할 수 있고, 또는 상기 니켈계 양극 활물질과 상기 양극 활물질의 화학식 중 상기 니켈계 양극 활물질을 제외한 다른 활물질을 혼합하여 사용할 수도 있다.
특히, 상기 니켈계 양극 활물질로 LiaNib1Coc1Xd1Gz1O2(0.90 ≤ a ≤1.8, 0.5 ≤ b1 ≤ 0.98, 0 < c1 ≤ 0.3, 0 < d1 ≤ 0.3, 0 ≤ z1 ≤ 0.1, b1 + c1 + d1 + z1=1, X는 Mn, Al 또는 이들의 조합이고, G는 Cr, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합임)을 적절하게 사용할 수 있다.
이들을 혼합하여 사용하는 경우, 이 혼합비는 목적하는 물성에 따라 적절하게 혼합하여 사용할 수 있다. 일 예로 상기 니켈계 양극 활물질과 다른 활물질을 혼합하여 사용하는 경우에는 양극 활물질 전체 중량에 대하여, 상기 니켈계 양극 활물질의 함량을 30 중량% 내지 97 중량%로 사용할 수 있다.
상기 양극에서, 상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
본 발명의 일 구현예에 있어서, 상기 양극 활물질층은 바인더 및 도전재를 더욱 포함할 수 있다. 이때, 상기 바인더 및 도전재의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 들 수 있다.
상기 전류 집전체로는 알루미늄 박, 니켈 박 또는 이들의 조합을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 비수성 유기 용매 및 리튬염을 포함한다.
상기 비수성 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 데카놀라이드(decanolide), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우, 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 비수성 유기용매를 혼합하여 사용하는 경우, 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트의 혼합 용매; 환형 카보네이트와 프로피오네이트계 용매의 혼합 용매; 또는 환형 카보네이트, 사슬형 카보네이트 및 프로피오네이트계 용매의 혼합 용매를 사용할 수 있다. 상기 프로피오네이트계 용매로는 메틸프로피오네이트, 에틸프로피오네이트, 프로필프로피오네이트 또는 이들의 조합을 사용할 수 있다.
이때, 환형 카보네이트와 사슬형 카보네이트 또는 환형 카보네이트와 프로피오네이트계 용매를 혼합 사용하는 경우에는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. 또한, 환형 카보네이트, 사슬형 카보네이트 및 프로피오네이트계 용매를 혼합하여 사용하는 경우에는 1:1:1 내지 3:3:4 부피비로 혼합하여 사용할 수 있다. 물론, 상기 용매들의 혼합비는 원하는 물성에 따라 적절하게 조절할 수도 있다.
상기 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 1의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 1]
Figure 112017110966296-pat00001
(상기 화학식 1에서, R1 내지 R6는 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.)
상기 방향족 탄화수소계 유기용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 2의 에틸렌 카보네이트계 화합물을 수명 향상 첨가제로 더욱 포함할 수도 있다.
[화학식 2]
Figure 112017110966296-pat00002
(상기 화학식 2에서, R7 및 R8은 서로 동일하거나 상이하며, 수소, 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되며, 상기 R7과 R8중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되나, 단 R7 및 R8이 모두 수소는 아니다.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지(supporting) 전해염으로 포함한다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
도 1에 본 발명의 일 구현예에 따른 리튬 이차 전지의 분해 사시도를 나타내었다. 일 구현예에 따른 리튬 이차 전지는 각형인 것을 예로 설명하지만, 본 발명이 이에 제한되는 것은 아니며, 원통형, 파우치형 등 다양한 형태의 전지에 적용될 수 있다.
도 1을 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 양극(10)과 음극(20) 사이에 세퍼레이터(30)를 개재하여 귄취된 전극 조립체(40)와, 상기 전극 조립체(40)가 내장되는 케이스(50)를 포함할 수 있다. 상기 양극(10), 상기 음극(20) 및 상기 세퍼레이터(30)는 전해액(미도시)에 함침되어 있을 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
(실시예 1)
평균 입경 10㎛의 인편상 인조 흑연 미세 입자를 로터리 밀(rotary mill)에서 밀링하여, 평균 입경 10㎛의 인조 흑연 코어를 제조하였다. 이 밀링 공정에서 상기 미세 입자가 서로 응집되면서, 제조된 인조 흑연 코어 내부에 폐기공 및 개기공 형태의 기공이 형성되었다. 이때, 응집 과정에서 흑연 코어의 내부에 형성되는 기공도는 40%로 형성하였다.
이어서, 비즈밀(beads mill)을 이용하여 실리콘을 분쇄하여 실리콘 나노 입자를 제조하였다. 이때 실리콘 나노 입자의 평균 입경(D50)은 100nm이었다.
상기 실리콘 나노 입자를 이소프로필 알코올에 첨가하여 실리콘 나노 입자 액을 제조하였다. 이때, 실리콘 나노 입자의 첨가량은 이소프로필 알코올과 실리콘 나노 입자가 서로 상분리되지 않는, 슬러리가 얻어지는 정도로 하였다. 상기 실리콘 나노 입자 액에 상기 인조 흑연 코어를 침지시켰다. 이때, 모세관 현상으로 실리콘 나노 입자 액이 인조 흑연 코어 내부에 개기공으로 삽입되었다.
이어서, 얻어진 생성물과 석유 핏치를 혼합하고, 900℃에서 3시간 동안 열처리하여 실리콘-탄소 복합체를 제조하였다. 이 열처리 공정에 따라 석유 핏치가 탄화되어 비정질 카본으로 전환되면서, 인조 흑연 코어 내부의 폐기공 및 개기공으로 삽입되고, 코어 표면에 쉘로 형성되었다.
이에 의해 얻어진 실리콘-탄소 복합체와 마그네슘 분말(평균 입경 44μm)을 중량비 10:1로 혼합하여 질소 또는 아르곤 분위기에서 약 650에서 약 2시간 동안 열처리하여 마그네슘을 포함하는 실리콘-탄소 복합체를 포함하는 음극 활물질을 얻었다. 활물질내의 마그네슘 중 일부를 제거하여 함량을 제어하기 위해 묽은 염산용액을 제조하여 마그네슘을 아래와 같은 반응식으로 일부 제거하는 것에 의해 음극 활물질에서의 마그네슘 함량을 1075.9ppm으로 조절하였다.
MgO + 2HCl→MgCl2 + H2O
상기 마그네슘 함량은 ICP-AES(Inductively Coupled Plasma Atomic Emission Spectroscopy, 유도 결합 플라즈마 원자 방출 분광기)를 이용하여 측정하였다.
상기 음극 활물질 94 중량%, 덴카 블랙 3 중량% 및 폴리비닐리덴 플루오라이드 바인더를 N-메틸 피롤리돈 용매 중에서 혼합하여 음극 활물질 슬러리를 제조하고, 이 슬러리를 Cu 포일 전류 집전체에 코팅, 건조 및 압연하여 음극을 제조하였다.
상기 음극, 리튬 금속 대극 및 전해질을 이용하여 이론 용량이 900mAh인 반쪽 전지를 제조하였다. 상기 전해질은 1.0M LiPF6가 용해된 에틸렌 카보네이트 및 디에틸 카보네이트(50:50 부피비)를 사용하였다.
(실시예 2)
상기 실시예 1와 동일한 방법에 의해 마그네슘을 포함하는 실리콘-탄소 복합체를 포함하는 음극 활물질을 얻었다. 다만 염산용액과 반응시간을 조절하여 음극 활물질에서의 마그네슘 함량을 600.9ppm으로 조절하였다.
얻어진 음극 활물질을 이용하여 실시예 1과 동일한 방법으로 음극 및 이를 이용한 코인풀셀 전지를 제조하였다.
(실시예 3)
상기 실시예 1와 동일한 방법에 의해 마그네슘을 포함하는 실리콘-탄소 복합체를 포함하는 음극 활물질을 얻었다. 다만 염산용액과 반응시간을 조절하여 음극 활물질에서의 마그네슘 함량을 635.7ppm으로 조절하였다.
얻어진 음극 활물질을 이용하여 실시예 1과 동일한 방법으로 음극 및 이를 이용한 코인풀셀 전지를 제조하였다.
(실시예 4)
상기 실시예 1와 동일한 방법에 의해 마그네슘을 포함하는 실리콘-탄소 복합체를 포함하는 음극 활물질을 얻었다. 다만 염산용액과 반응시간을 조절하여 음극 활물질에서의 마그네슘 함량을 4897.6ppm으로 조절하였다. 얻어진 음극 활물질을 이용하여 실시예 1과 동일한 방법으로 음극 및 이를 이용한 코인풀셀 전지를 제조하였다.
(비교예 1)
상기 실시예 1와 동일한 방법에 의해 마그네슘을 포함하는 실리콘-탄소 복합체를 포함하는 음극 활물질을 얻었다. 다만 염산용액과 반응시간을 조절하여 음극 활물질에서의 마그네슘 함량을 338.5ppm으로 조절하였다.얻어진 음극 활물질을 이용하여 실시예 1과 동일한 방법으로 음극 및 이를 이용한 코인풀셀 전지를 제조하였다.
(비교예 2)
상기 실시예 1와 동일한 방법에 의해 마그네슘을 포함하는 실리콘-탄소 복합체를 포함하는 음극 활물질을 얻었다. 다만 염산용액과 반응시간을 조절하여 음극 활물질에서의 마그네슘 함량을 5328.1ppm으로 조절하였다. 얻어진 음극 활물질을 이용하여 실시예 1과 동일한 방법으로 음극 및 이를 이용한 코인풀셀 전지를 제조하였다.
실시예 1 내지 4 및 비교예 1, 2에 따라 제조된 반쪽 전지를 25℃에서, 2.5V 내지 4.2V 범위 내에 1C로 충방전을 100회 실시하여, 1회 방전 용량에 대한 100회 방전 용량 비율을 계산하여 용량 유지율을 구하고, 이를 사이클 수명으로 하였다.
결과는 하기 표 1 및 도 2에 나타내었다.
마그네슘 함량(ppm) 용량유지율 @100 cycle (%)
실시예 1 1075.9 77.3
실시예 2 600.9 75.0
실시예 3 635.7 74.2
실시예 4 4897.6 75.6
비교예 1 338.5 59.7
비교예 2 5328.1 67.7
상기 표 1에 나타낸 것과 같이, 마그네슘의 함량이 500~5000ppm 범위에 있는 실시예 1 내지 4의 경우, 용량 유지율이 74% 이상인 동시에 초기 효율 역시 83% 이상으로 우수함을 확인할 수 있었다. 반면, 마그네슘이 너무 적게, 또는 너무 많이 포함되어 그 함량이 500~5000ppm 범위를 벗어나는 비교예 1 및 2의 경우, 용량 유지율이 매우 낮아 수명 면에서 특성이 열악함을 확인할 수 있었다.
* 산소 함량 측정 및 XPS 분석
상기 실시예 1 내지 4 및 비교예 1, 2에서 제조된 음극 활물질에 대해, XPS 표면 분석을 통한 분석을 행하고 산소 함량을 측정하였다.
즉, 산소 함량 측정을 위해, 상기 실시예 1 내지 4 및 비교예 1, 2에 따른 음극 활물질의 샘플들을 최고 3000℃까지 가열하여 생성되는 CO 및 CO2를 적외선 측정기로 분석하여 산소 함량을 wt%로 계산하였다. 그 결과 얻은 산소 함량을 하기 표 2에 나타내었다.
아울러, XPS 표면 분석을 위해, 금속판에 카본 양면 테이프를 부착하고, 그 위에 상기 실시예 1 내지 4 및 비교예 1, 2에 따른 음극 활물질의 샘플들을 각각 상기 양면 테이프가 보이지 않는 두께로 뿌린 후, 표면을 편평하게 하고 압착한 후 폴더에 고정시킨 상태로 X선 광전자 분광 분석을 하였다. 그 결과, XPS 스펙트럼 조성 분석을 통해 얻은 Si 원자의 산화 가수에 따른 비율을 하기 표 2에 함께 나타내었다.
측정을 위한 X선 광전자 분광기로는 ESCA 250 spectrometer를 이용하였다.
산소함량(wt%) Si0(at%) Si+1(at%) Si+2(at%) Si0+Si+1+Si+2(at%) Si+3(at%) Si+4(at%)
실시예 1 8.4 22.9 15.3 24.9 63.1 31.4 5.4
실시예 2 8.0 14.5 21.8 33.2 69.5 24.0 6.4
실시예 3 7.5 18.7 20.6 23.6 62.9 32.7 4.4
실시예 4 8.1 21.9 19.4 21.0 62.3 28.7 9.0
비교예 1 4.8 23.5 7.1 18.1 48.7 47.6 3.8
비교예 2 9.2 11.6 23.8 15.9 51.3 42.8 5.9
상기 표 2에 나타낸 것과 같이, 실시예 1 내지 4에서는 마그네슘 열처리를 통해 적절하게 환원이 이루어져서 산소 함량이 5 내지 9 중량% 범위 내에 있음을 확인할 수 있다. 반면, 마그네슘 함량이 500 내지 5000ppm 범위 밖인 비교예 1, 2의 경우 산소 함량 역시 5 내지 9 중량% 밖임을 확인할 수 있고, 이 경우 앞서 확인한 바와 같이 효율 및 수명 면에서 열악한 효과를 나타냄을 알 수 있다.
또한, 실시예 1, 2에서는, 마그네슘 열처리를 통해 적절하게 환원이 이루어져서 Si 원자들 중 산화가수가 2 이하인 원자의 비율이 60at% 이상이고, Si0의 비율이 15at% 내지 25at% 임을 확인할 수 있었다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (8)

  1. 결정질 탄소 및 실리콘 입자를 포함하는 실리콘-탄소 복합체를 포함하는 리튬 이차 전지용 음극 활물질로서,
    상기 실리콘-탄소 복합체는 알칼리 금속 또는 알칼리 토금속을 더 포함하고,
    상기 알칼리 금속 또는 알칼리 토금속의 함량은 상기 실리콘-탄소 복합체에 대하여 500ppm 이상, 5000ppm 미만이고,
    상기 음극 활물질에서 상기 알칼리 금속 또는 알칼리 토금속은 마그네슘인 리튬 이차 전지용 음극 활물질.
  2. 삭제
  3. 제1항에 있어서,
    상기 실리콘 입자는 X선 광전자 분광법(XPS) 분석에 의할 때 Si2 +, Si1 +, 및 Si0의 비율이 60at% 이상인 리튬 이차 전지용 음극 활물질.
  4. 제3항에 있어서,
    상기 실리콘 입자는 X선 광전자 분광법(XPS) 분석에 의할 때 Si0의 비율이 15at% 내지 25at%인 리튬 이차 전지용 음극 활물질.
  5. 제1항에 있어서,
    상기 알칼리 금속 또는 알칼리 토금속은 상기 실리콘-탄소 복합체의 표면 또는 복합체 내부에 존재하는 리튬 이차 전지용 음극 활물질.
  6. 제1항에 있어서,
    상기 실리콘-탄소 복합체는 산소를 더 포함하고, 산소의 함량은 상기 실리콘-탄소 복합체에 대하여 5wt% 내지 9wt%인 리튬 이차 전지용 음극 활물질.
  7. 전류 집전체; 및
    제1항 및 제3항 내지 제6항 중 어느 한 항의 음극 활물질을 포함하는 음극 활물질층
    을 포함하는 리튬 이차 전지용 음극.
  8. 제7항의 음극;
    양극 활물질을 포함하는 양극; 및
    비수 전해질
    을 포함하는 리튬 이차 전지.
KR1020170148248A 2017-11-08 2017-11-08 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 Active KR102256534B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020170148248A KR102256534B1 (ko) 2017-11-08 2017-11-08 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
US16/180,617 US10991939B2 (en) 2017-11-08 2018-11-05 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
EP18204456.0A EP3483959B1 (en) 2017-11-08 2018-11-05 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
CN201811317715.4A CN109755496B (zh) 2017-11-08 2018-11-07 可再充电锂电池用负极活性物质和含它的可再充电锂电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170148248A KR102256534B1 (ko) 2017-11-08 2017-11-08 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지

Publications (2)

Publication Number Publication Date
KR20190052514A KR20190052514A (ko) 2019-05-16
KR102256534B1 true KR102256534B1 (ko) 2021-05-25

Family

ID=64172423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170148248A Active KR102256534B1 (ko) 2017-11-08 2017-11-08 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지

Country Status (4)

Country Link
US (1) US10991939B2 (ko)
EP (1) EP3483959B1 (ko)
KR (1) KR102256534B1 (ko)
CN (1) CN109755496B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210061009A (ko) * 2019-11-19 2021-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR102511822B1 (ko) 2021-02-18 2023-03-17 에스케이온 주식회사 리튬 이차 전지용 음극 활물질 이를 포함하는 리튬 이차 전지
KR20230017051A (ko) * 2021-07-27 2023-02-03 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012278A1 (en) 2014-01-30 2017-01-12 Robert Bosch Gmbh Condensed silicon-carbon composite
US20190097222A1 (en) 2015-08-14 2019-03-28 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595896B1 (ko) * 2003-07-29 2006-07-03 주식회사 엘지화학 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4623283B2 (ja) * 2004-03-26 2011-02-02 信越化学工業株式会社 珪素複合体粒子及びその製造方法並びに非水電解質二次電池用負極材
JP2006196234A (ja) * 2005-01-12 2006-07-27 Hitachi Industries Co Ltd リチウム二次電池用負極材料とその製造方法及びリチウム二次電池
WO2007055007A1 (ja) 2005-11-10 2007-05-18 Pionics Co., Ltd. リチウム二次電池用の負極活物質粒子、それを用いた負極及びそれらの製造方法
JP4618308B2 (ja) * 2007-04-04 2011-01-26 ソニー株式会社 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
US9012073B2 (en) * 2008-11-11 2015-04-21 Envia Systems, Inc. Composite compositions, negative electrodes with composite compositions and corresponding batteries
KR101424544B1 (ko) * 2009-12-21 2014-07-31 가부시키가이샤 도요다 지도숏키 비수계 2차 전지용 부극 활물질, 그 제조 방법 및 비수계 2차 전지
KR20130106687A (ko) * 2012-03-20 2013-09-30 삼성에스디아이 주식회사 음극 활물질 및 이를 포함하는 리튬 전지
US10096820B2 (en) * 2012-08-06 2018-10-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method preparing the same and rechargeable lithium battery including the same
KR101630008B1 (ko) 2013-02-19 2016-06-13 주식회사 엘지화학 Si/C 복합체, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
US9831491B2 (en) 2013-02-19 2017-11-28 Lg Chem, Ltd. Si/C composite, method of preparing the same, and anode active material for lithium secondary battery including the Si/C composite
CN110112377A (zh) * 2013-03-14 2019-08-09 14族科技公司 包含锂合金化的电化学改性剂的复合碳材料
DE102013204799A1 (de) * 2013-03-19 2014-09-25 Wacker Chemie Ag Si/C-Komposite als Anodenmaterialien für Lithium-Ionen-Batterien
JP6114178B2 (ja) * 2013-12-25 2017-04-12 信越化学工業株式会社 非水電解質二次電池用負極活物質及びその製造方法
DE102014202156A1 (de) * 2014-02-06 2015-08-06 Wacker Chemie Ag Si/G/C-Komposite für Lithium-Ionen-Batterien
KR102192087B1 (ko) 2014-02-26 2020-12-16 삼성전자주식회사 음극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
CN104009235B (zh) * 2014-05-13 2016-06-08 昆明理工大学 一种多孔硅/石墨烯复合材料的制备方法
KR102234287B1 (ko) 2014-08-08 2021-03-31 삼성에스디아이 주식회사 음극 활물질, 이를 채용한 음극과 리튬 전지, 및 상기 음극 활물질의 제조방법
KR20170091149A (ko) * 2014-12-05 2017-08-08 셀가드 엘엘씨 개선된 리튬 전지용 코팅 분리막 및 이와 관련된 방법
JP2017007930A (ja) 2015-06-23 2017-01-12 パナソニックIpマネジメント株式会社 シリコン−炭素複合材料およびその製造方法
KR20170044360A (ko) * 2015-10-15 2017-04-25 지에스에너지 주식회사 이차전지용 음극활물질 및 이의 제조방법
CN105633368A (zh) * 2015-12-31 2016-06-01 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池负极材料及其制备方法
KR102048343B1 (ko) * 2016-05-27 2019-11-25 주식회사 엘지화학 음극활물질 및 이를 포함하는 리튬 이차전지
EP3497055B1 (de) * 2016-08-11 2022-03-16 Wacker Chemie AG Herstellung von si/c-präkompositpartikeln
CN108232173A (zh) * 2018-01-31 2018-06-29 金山电池国际有限公司 锂离子电池负极材料、其制备方法、其负极和锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012278A1 (en) 2014-01-30 2017-01-12 Robert Bosch Gmbh Condensed silicon-carbon composite
US20190097222A1 (en) 2015-08-14 2019-03-28 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials

Also Published As

Publication number Publication date
US10991939B2 (en) 2021-04-27
CN109755496B (zh) 2022-04-15
US20190140262A1 (en) 2019-05-09
CN109755496A (zh) 2019-05-14
KR20190052514A (ko) 2019-05-16
EP3483959A1 (en) 2019-05-15
EP3483959B1 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
KR101155909B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102377948B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR101155913B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP2020043069A (ja) リチウム二次電池用負極活物質、その製造方法、これを含む負極およびこれを含むリチウム二次電池
KR102487626B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20240077481A (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102108283B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102270155B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20210037657A (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR102665408B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102256534B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR102287331B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR20230124422A (ko) 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR20190123561A (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102665407B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102542650B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR20210099888A (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR20210055506A (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR102690050B1 (ko) 리튬 이차 전지용 음극 활물질, 이를 포함하는 리튬 이차 전지용 음극, 및 이를 포함하는 리튬 이차 전지
KR102628435B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20220061721A (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
KR102665406B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20210053060A (ko) 리튬 이차 전지용 음극 활물질 및 리튬 이차 전지
KR20190108814A (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR102743443B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20171108

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20190926

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20171108

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20201204

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210318

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210520

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210520

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20240425

Start annual number: 4

End annual number: 4