[go: up one dir, main page]

KR102224848B1 - 발광 소자 패키지 제조 방법 - Google Patents

발광 소자 패키지 제조 방법 Download PDF

Info

Publication number
KR102224848B1
KR102224848B1 KR1020140134475A KR20140134475A KR102224848B1 KR 102224848 B1 KR102224848 B1 KR 102224848B1 KR 1020140134475 A KR1020140134475 A KR 1020140134475A KR 20140134475 A KR20140134475 A KR 20140134475A KR 102224848 B1 KR102224848 B1 KR 102224848B1
Authority
KR
South Korea
Prior art keywords
light
light emitting
emitting device
fluorescent film
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020140134475A
Other languages
English (en)
Other versions
KR20160040929A (ko
Inventor
정라파엘
임재형
곽영선
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140134475A priority Critical patent/KR102224848B1/ko
Priority to US14/741,192 priority patent/US9368694B2/en
Priority to CN201510642515.6A priority patent/CN105489735B/zh
Publication of KR20160040929A publication Critical patent/KR20160040929A/ko
Application granted granted Critical
Publication of KR102224848B1 publication Critical patent/KR102224848B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/8506Containers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8514Wavelength conversion means characterised by their shape, e.g. plate or foil
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8515Wavelength conversion means not being in contact with the bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • H10H20/853Encapsulations characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0658Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of emissivity or reradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • H10H20/0361Manufacture or treatment of packages of wavelength conversion means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • H10H20/0362Manufacture or treatment of packages of encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • H10H20/0363Manufacture or treatment of packages of optical field-shaping means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

발광 소자 패키지 제조 방법은 제1 면 및 제1 면에 대향하는 제2 면을 구비한 캐리어를 준비하는 단계와, 캐리어의 제1 면 상에 형광막을 형성하는 단계와, 캐리어의 제2 면 방향에서 테스트 발광 소자를 이용하여 제1 광을 방출하는 단계와, 제1 광 중 형광막을 통과한 제2 광을 분석하여, 형광막의 두께를 측정하는 단계를 포함한다.

Description

발광 소자 패키지 제조 방법{Method for fabricating light emitting device package}
본 발명의 기술적 사상은 발광 소자 패키지 및 그 제조 방법에 관한 것으로, 형광층을 구비하는 발광 소자 패키지의 제조 방법에 관한 것이다.
컴퓨터, 핸드폰, 프로젝터 등의 다양한 분야에서, 백색 LED 장치가 주목 받고 있다. 특히 LCD(Liquid Crystal Display)의 백라이트유닛(Back Light Unit; BLU), 조명 등에도 백색 LED 장치가 적용되는 등 그 응용범위가 점차 확대되고 있다. 이러한 백색 LED는 청색 LED 칩 및 형광층을 통해 구현할 수 있으며, 최근 형광층을 효율적으로 형성하기 위한 기술이 요구되고 있다.
본 발명의 기술적 사상이 이루고자 하는 기술적 과제는 형광층을 효율적으로 형성할 수 있는 발광 소자 패키지의 제조 방법을 제공하는 데에 있다.
본 발명의 기술적 사상에 의한 일 양태에 따른 발광 소자 패키지 제조 방법은 제1 면 및 상기 제1 면에 대향하는 제2 면을 구비한 캐리어를 준비하는 단계와, 상기 캐리어의 상기 제1 면 상에 형광막을 형성하는 단계와, 상기 캐리어의 상기 제2 면 방향에서 테스트 발광 소자를 이용하여 제1 광을 방출하는 단계와, 상기 제1 광 중 상기 형광막을 통과한 제2 광을 분석하여, 상기 형광막의 두께를 측정하는 단계를 포함한다.
일부 실시예들에서, 상기 형광막을 형성하는 단계는 상기 캐리어의 상기 제1 면 상에 형광 물질을 도포하는 단계와, 성형 툴을 이용하여 상기 형광 물질을 성형하는 단계를 포함할 수 있다. 상기 성형 툴은 블레이드 및 롤러 중 적어도 하나를 포함할 수 있다.
상기 제2 광은 상기 제1 광과 실질적으로 동일한 파장대를 가지는 제1 투과광 및 상기 제1 광과 상이한 파장대를 가지는 제2 투과광을 포함하고, 상기 형광막의 두께를 측정하는 단계는 상기 제1 투과광의 발광 강도 및 상기 제2 투과광의 발광 강도의 비율을 산정하여 상기 형광막의 두께를 측정할 수 있다.
일부 실시예들에서, 상기 테스트 발광 소자가 방출하는 상기 제1 광은 청색광을 포함할 수 있다. 상기 형광막에서 방출되는 상기 제2 광은 청색광 및 황색광을 포함할 수 있다.
상기 형광막의 두께를 측정하는 단계는 상기 제2 광의 파장에 따른 발광 강도 스펙트럼을 수집하는 단계와, 상기 스펙트럼에서의 상기 청색광의 최대 발광 강도(Ib) 및 상기 황색광의 최대 발광 강도(Iy)의 비율을 산정하는 단계를 포함할 수 있다. 상기 형광막의 두께(d)는 다음 식
Figure 112014095215034-pat00001
, (a1, b1은 상수)으로 표시될 수 있다.
상기 형광막의 두께를 측정하는 단계는 상기 제2 광의 파장에 따른 발광 강도 스펙트럼을 수집하는 단계와, 상기 청색광 파장 영역 내에서의 총 광량(Ibt) 및 상기 황색광 파장 영역 내에서의 총 광량(Iyt)의 비율을 산정하는 단계를 포함할 수 있다. 상기 형광막의 두께(d)는 다음 식
Figure 112014095215034-pat00002
, (a2, b2는 상수)으로 표시될 수 있다.
본 발명의 기술적 사상에 의한 다른 양태에 따른 발광 소자 패키지 제조 방법은 캐리어의 제1 면 상에 형광 물질을 도포하는 단계와, 성형 툴을 이용하여 상기 형광 물질로부터 형광막을 형성하는 단계와, 테스트 발광 소자 및 광 검출기를 이용하여 실시간으로 상기 형광막의 두께를 측정하는 단계와, 상기 형광막의 두께의 스펙 아웃 여부를 판단하는 단계와, 상기 성형 툴을 조정하여 상기 형광막의 두께를 조절하는 단계를 포함한다. 상기 형광막의 두께를 조절하는 단계는 상기 성형 툴의 높이를 조정하여 수행될 수 있다.
상기 테스트 발광 소자는 상기 캐리어의 상기 제1 면에 대향하는 제2 면 방향에 위치하고, 상기 광 검출기는 상기 캐리어의 상기 제1 면 방향에 위치할 수 있다.
일부 실시예들에서, 상기 광 검출기는 상기 형광막을 형성하는 시간 동안 연속적으로 상기 형광막으로부터 방출되는 광을 검출할 수 있다.
일부 실시예들에서, 상기 광 검출기는 상기 형광막을 형성하는 시간 중 임의로 선택되는 특정 구간을 샘플링하여 상기 형광막으로부터 방출되는 광을 검출할 수 있다.
본 발명의 기술적 사상에 의한 또 다른 양태에 따른 발광 소자 패키지 제조 방법은 캐리어 상에 형광 물질을 도포하는 단계와, 성형 툴을 이용하여 상기 형광 물질로부터 형광막을 형성하는 단계와, 테스트 발광 소자 및 광 검출기를 이용하여 실시간으로 상기 형광막의 두께를 측정하는 단계와, 상기 측정된 형광막의 두께를 피드백하여, 상기 형광막의 두께가 특정 스펙을 충족하도록 실시간으로 상기 성형 툴을 조정하는 단계와, 상기 형광막을 소잉하여 개별화된 형광층을 형성하는 소잉 단계를 포함한다.
상기 발광 소자 패키지 제조 방법은 발광 칩을 준비하는 단계와, 픽업 툴을 이용하여 상기 개별화된 형광층을 상기 발광 칩에 부착하는 단계를 더 포함할 수 있다.
상기 발광 소자 패키지 제조 방법은 상기 소잉 단계 이전에 상기 형광막 상에 복수의 발광 칩을 부착하는 단계를 더 포함하고, 상기 소잉 단계는 상기 복수의 발광 칩이 부착된 채로 수행될 수 있다.
일부 실시예들에서, 상기 테스트 발광 소자는 청색LED(light emitting device)이고, 상기 형광 물질은 황색 형광 물질일 수 있다.
상기 테스트 발광 소자는 상기 형광막을 형성하는 동안 일정한 스펙트럼을 가지는 광을 방출할 수 있다.
본 발명의 기술적 사상에 의한 발광 소자 패키지의 제조 방법에 의할 경우, 형광층의 성형 및 경화가 완료되기 이전에도 형광층의 두께를 용이하게 측정할 수 있게 된다. 또한, 형광층의 두께 측정 결과를 형광층의 성형 과정에 실시간으로 반영할 수 있게 되어, 궁극적으로 발광 소자 패키지를 제조하는 데에 요구되는 시간 및 비용을 절감할 수 있게 된다.
도 1은 본 발명의 기술적 사상에 의한 일 실시예에 따른 발광 소자 패키지 제조방법에 있어서, 기판 상에 발광 소자를 실장하는 모습을 예시적으로 나타낸 단면도이다.
도 2는 본 발명의 기술적 사상에 의한 일 실시예에 따른 발광 소자 패키지 제조 방법에 있어서, 형광막을 형성하는 모습을 예시적으로 나타낸 단면도이다.
도 3은 상기 형광막의 두께를 측정하는 방법을 설명하기 위한 도면으로서, 도 2의 K 영역 부분 확대도이다.
도 4는 상기 형광막의 두께를 측정하는 방법을 설명하기 위한 도면으로서, 형광막에서 방출되는 제2 광의 파장에 따른 발광 강도 스펙트럼을 나타낸 그래프이다.
도 5의 (a) 내지 (c)는 본 발명의 기술적 사상에 의한 일 실시예에 따른 발광 소자 패키지 제조 방법에 있어서, 형광층을 형성하여 발광 소자에 부착하는 모습을 예시적으로 나타낸 도면들이다.
도 6은 본 발명의 기술적 사상에 의한 다른 실시예에 따른 발광 소자 패키지 제조 방법에 있어서, 형광막을 형성하는 모습을 예시적으로 나타낸 단면도이다.
도 7은 본 발명의 기술적 사상에 의한 다른 실시예에 따른 발광 소자 패키지 제조 방법에 있어서, 형광막을 형성하는 모습을 예시적으로 나타낸 단면도이다.
도 8 및 도 9는 본 발명의 기술적 사상에의한 실시예들에 따른 발광 소자 패키지를 예시적으로 나타내는 단면도들이다.
도 10은 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지에서 방사되는 광에 대한 색온도 스펙트럼을 예시적으로 보여주는 도면이다.
도 11은 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지에 사용될 수 있는 양자점 구조를 예시적으로 보여주는 도면이다.
도 12는 본 발명의 기술적 사상에 의한 실시예들에 따른 청색 발광 소자를 사용한 백색 발광 소자 패키지의 응용 분야별 형광 물질 종류를 예시적으로 보여준다.
도 13a는 본 발명의기술적 사상에 의한 실시예들에 따른 발광 소자 패키지제조 방법에 의해 제조된 발광 소자 패키지가 배열된 발광 소자 어레이부를 포함하는 백라이트 어셈블리의 일 예를 나타내는 분리 사시도이다.
도 13b는 상기 백라이트 어셈블리에 포함될 수 있는 발광 모듈을 예시적으로 나타낸 단면도이다.
도 14는 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지 제조 방법에 의해 제조된 발광 소자 패키지가 배열된 발광소자 어레이부 및 발광소자 모듈을 포함하는 평판 조명 장치를 간략하게 나타내는 도면이다.
도 15는 본 발명의 LED 칩 제조 방법에 의해 제조된 LED 칩이 배열된 발광소자 어레이부 및 발광소자 모듈을 포함하는 조명 장치로서 벌브형 램프를 간략하게 나타내는 도면이다.
이하, 첨부 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고, 이들에 대한 중복된 설명은 생략한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것으로, 아래의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래의 실시예들로 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하며 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 영역, 층들, 부위 및/또는 구성 요소들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들, 부위 및/또는 구성 요소들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 특정 순서나 상하, 또는 우열을 의미하지 않으며, 하나의 부재, 영역, 부위, 또는 구성 요소를 다른 부재, 영역, 부위 또는 구성 요소와 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1 부재, 영역, 부위 또는 구성 요소는 본 발명의 가르침으로부터 벗어나지 않고서도 제2 부재, 영역, 부위 또는 구성 요소를 지칭할 수 있다. 예를 들어, 본 발명의 권리 범위로부터 이탈되지 않은 채 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
달리 정의되지 않는 한, 여기에 사용되는 모든 용어들은 기술 용어와 과학 용어를 포함하여 본 발명 개념이 속하는 기술 분야에서 통상의 지식을 가진 자가 공통적으로 이해하고 있는 바와 동일한 의미를 지닌다. 또한, 통상적으로 사용되는, 사전에 정의된 바와 같은 용어들은 관련되는 기술의 맥락에서 이들이 의미하는 바와 일관되는 의미를 갖는 것으로 해석되어야 하며, 여기에 명시적으로 정의하지 않는 한 과도하게 형식적인 의미로 해석되어서는 아니 될 것임은 이해될 것이다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 수행될 수도 있다.
첨부 도면에 있어서, 예를 들면, 제조 기술 및/또는 공차에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예들은 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조 과정에서 초래되는 형상의 변화를 포함하여야 한다.
도 1은 본 발명의 기술적 사상에 의한 일 실시예에 따른 발광 소자 패키지 제조방법에 있어서, 기판 상에 발광 소자를 실장하는 모습을 예시적으로 나타낸 단면도이다.
도 1을 참조하면, 발광 소자(110)를 실장하기 위한 기판(101)을 준비하고, 기판(101) 상에 발광 소자(110)를 실장할 수 있다.
기판(101)은 발광 소자(110)를 구동하기 위한 배선 구조가 형성된 기판이라면 구조 또는 종류에 구애 받지 않고 적용될 수 있다.
일부 실시예들에서, 기판(101)은 미리 복수 개로 분할된 상태로 제공되어 분할된 각 기판(101)에 하나 이상의 발광 소자(110)가 실장될 수 있다.
다른 일부 실시예들에서, 기판(101) 상에 복수의 발광 소자(110)가 실장된 후에, 각각의 발광 소자(110) 단위로 기판(101)을 분할할 수도 있다.
또 다른 일부 실시예들에서, 하나의 기판(101) 상에는 복수 개의 발광 소자(110)가 실장될 수도 있다.
본 실시예의 경우, 기판(101)은 미리 복수 개로 분할된 상태로 제공되고, 분할된 각 기판(101)에 하나의 발광 소자(110)가 실장된 경우를 예로 들어 도시하였다.
일부 실시예들에서, 발광 소자(110)는 발광 소자(110)의 하면(110B)을 통해 기판(101)과 전기적으로 연결되어, 상면(110T) 및 측면(110S) 중 적어도 하나의 면으로 빛을 방출하는 LED(light emitting diode) 칩일 수 있다.
발광 소자(110)는 AlInGaN와 같은 질화물 반도체를 이용하여 제조될수 있다. 예를 들어, 발광 소자(110)는 빛을 생성하는 활성층(미도시)과, 상기 활성층의 하부 또는 상부에 형성되어 음전자(electron)를 제공하는 n-type 질화물층(미도시) 및 상기 활성층을 기준으로 상기 n-type 질화물층의 반대편에 적층되어 양전자(hole)를 제공하는 p-type 질화물층(미도시)을 포함할 수 있다. 도시하지 않았으나, 발광 소자(110)의 하면(110B)에는 기판(101)과의 전기적 연결을 위한 전극들(미도시)이 형성될 수 있다. 발광 소자(110)에 대한 구체적인 예시 구조는 도 8 및 도 9를 참조하여 후술하기로 한다.
발광 소자(110)는 예를 들면 대략 100 ~ 430nm 파장대의 자외선, 대략 430 ~ 480 nm 파장대의 청색광, 대략 500~560 nm 파장대의 녹색광, 또는 대략 610~670 nm 파장대의 적색광을 방출하는 LED 칩일 수 있다.
도 2는 본 발명의 기술적 사상에 의한 일 실시예에 따른 발광 소자 패키지 제조 방법에 있어서, 형광막(120y)을 형성하는 모습을 예시적으로 나타낸 단면도이다.
도 2를 참조하면, 캐리어(130)가 제1 방향(X축 방향)에 따라 제1 축(A1)부터 제2 축(A2)까지 이동되는 동안에, 캐리어(130)의 일면(130T) 상에 형광막(120y)을 형성할 수 있다.
캐리어(130)는 테스트 발광 소자(162)에서 방출되는 광을 왜곡 없이 통과시킬 수 있다면, 구조 또는 종류에 구애 받지 않고 다양한 구조 및 종류를 가질 수 있다. 예를 들어, 캐리어(130)는 초박형 투명 플라스틱 필름(transparent plastic film) 또는 초박형 유리(thin glass) 등일 수 있다. 캐리어(130)는 유연성(flexibility) 및 투과성(penetrability)을 가질 수 있다.
일부 실시예들에서, 캐리어(130)는 제1 축(A1)에 감겨있는 상태로 준비되어, 형광막(120y) 형성 공정이 완료된 후에는 형광막(120y)과 함께 제2 축(A2)에 감겨있는 상태가 될 수 있다.
형광 물질 공급 유닛(150)은, 캐리어(130)가 제1 축(A1)으로부터 제2 축(A2)으로 이동되는 동안 캐리어(130)의 일면(130T) 상에 형광 물질(120x)로 이루어진 층을 형성한다. 본 실시예에서는 형광 물질(120x) 및 캐리어(130) 사이에 다른 층이 존재하지 않는 것으로 도시되었으나, 이에 한정되지 않고 형광 물질(120x) 및 캐리어(130) 사이에는 실리콘층, 또는 접착층 등이 추가적으로 형성될 수도 있다.
형광 물질(120x)은 발광 소자(110, 도 1 참조)에서 방출되는 빛을 백색광으로 변환하는 역할을 수행할 수 있으며, 이에 따라 형광 물질(120x)은 상기 발광 소자(110)가 방출하는 빛의 색, 즉 파장에 따라 상이한 조성을 가질 수 있다.
일부 실시예들에서, 상기 발광 소자(110)는 430 ~ 480 nm 파장대의 청색광을 방출하는 청색 LED 칩이고, 형광 물질(120x)은 황색 형광 물질일 수 있다. 상기 황색 형광 물질은 예를 들면 Ce로 도핑된((YGd)5Al5O3)와 같이 희토류 원소를 함유한 YAG 계열, 또는 Eu로 도핑된 Sr3SiO5와 같은 실리케이트(Silicate) 계열의 물질 등을 포함할 수 있다.
다른 일부 실시예들에서, 상기 발광 소자(110)는 500~560 nm 파장대의 녹색광을 방출하는 녹색 LED 칩이고, 형광 물질(120x)은 적색 형광 물질일 수 있다. 상기 적색 형광 물질은 예를 들면 Eu로 도핑된 SrBaCaAlSiN3와 같이 희토류 원소가 포함된 질화물 계열, Eu로 도핑된 Y2O3와 같은 산화물 계열, 또는 Eu로 도핑된 CaS와 같은 황화물 계열의 물질 등을 포함할 수 있다.
형광막(120y)은 성형 툴(140)을 이용하여 형광 물질(120x)을 성형함으로써 형성될 수 있다.
일부 실시예들에서, 성형 툴(140)은 제1 및 제2 블레이드(142_1, 142_2)를 포함할 수 있다. 본 실시예에서는 성형 툴(140)이 두 개의 블레이드를 포함하는 것으로 설명하였으나, 성형 툴(140)은 하나의 블레이드 만을 포함할 수도 있으며, 두 개 이상의 블레이드를 포함할 수도 있다.
제1 및 제2 블레이드(142_1, 142_2)는 캐리어(130)의 일면(130T)에 형성된 형광 물질(120x)을 성형하여, 일정한 두께(d, 도 3 참조)를 가지는 형광막(120y)을 형성할 수 있다.
제1 및 제2 블레이드(142_1, 142_2) 중 적어도 하나의 제2 방향(Y축 방향)에 따른 높이는 조절 가능할 수 있으며, 이에 따라 제1 및 제2 블레이드(142_1, 142_2)에 의해 형광막(120y)의 두께를 조절할 수 있다.
일부 실시예들에서, 제1 블레이드(142_1)에 의해 형성된 형광막(120y)의 두께를 테스트 발광 소자(162) 및 광 검출기(164)를 이용하여 측정한 후, 제2 블레이드(142_2)의 제2 방향(Y축 방향)에 따른 높이를 조절하여 형광막(120y)의 두께를 조절할 수 있다.
다른 일부 실시예들에서, 제1 블레이드(142_1)에 의해 형성된 형광막(120y)의 두께를 테스트 발광 소자(162) 및 광 검출기(164)를 이용하여 측정한 후, 제2 블레이드(142_2)의 제2 방향(Y축 방향)에 따른 높이를 조절하여 형광막(120y)의 두께를 조절할 수 있다.
일부 실시예들에서, 제1 및 제2 블레이드(142_1, 142_2) 중 적어도 하나는 다양한 모양으로 구성되어 패터닝된 형광막(120y)을 형성할 수도 있다.
형광막(120y)의 형성 과정에서, 테스트 발광 소자(162) 및 광 검출기(164)를 이용하여 형광막(120y)의 두께를 측정할 수 있다.
또한, 테스트 발광 소자(162) 및 광 검출기(164)를 이용하여 측정된 형광막(120y)의 두께에 따라, 원하는 형광막(120y)의 두께 형성을 위해 제1 및 제2 블레이드(142_1, 142_2) 중 적어도 하나의 제2 방향(Y축 방향)에 따른 높이가 조절될 수도 있다. 테스트 발광 소자(162) 및 광 검출기(164)를 이용하여 형광막(120y)의 두께를 측정하는 방법에 대한 상세한 설명은 도 3 및 도 4를 참조하여 후술하기로 한다.
일부 실시예들에서, 형광 물질(120x)의 도포 전에 플로잉(flowing) 공정 등에 의한 캐리어(130) 상의 미세 먼지 제거 공정과, 캐리어(130)의 일면(130T) 상에 접착제(adhesive), 본드(bond), 이형제와 같은 물질을 균일하게 제공하는 스프레이 공정 등이 추가적으로 수행될 수도 있다.
다른 일부 실시예들에서, 제1 및 제2 블레이드(142_1, 142_2)를 이용한 형광막(120y)의 가공 또는 형광막(120y)의 두께 측정 이후에 냉각 공정, 가열 공정, 및 건조 공정 등이 추가적으로 수행될 수도 있다.
도 3은 상기 형광막의 두께를 측정하는 방법을 설명하기 위한 도면으로서, 도 2의 K 영역 부분 확대도이다.
도 3에 있어서, 도 1 및 도 2에서와 동일한 참조 부호는 동일 부재를 나타내며, 여기서는 설명의 간략화를 위하여 이들에 대한 중복 설명은 생략한다.
도 3을 참조하면, 테스트 발광 소자(162) 및 광 검출기(164)를 이용하여 형광막(120y)의 두께를 측정할 수 있다.
테스트 발광 소자(162)는 캐리어(130)의 타면(130B) 방향으로 제1 광(Ls)을 방출할 수 있다 상기 제1 광(Ls)은 캐리어(130) 및 형광막(120y)을 통과하고, 이에 따라 형광막(120y)은 제2 광(Lr)을 방출하게 된다.
광 검출기(164)는 상기 제2 광(Lr)을 분석하여 형광막(120y)의 두께를 측정할 수 있다. 일부 실시예들에서, 광 검출기(164)는 제2 광(Lr)의 파장에 따른 발광 강도 스펙트럼(도 4 참조)을 수집할 수 있다.
일부 실시예들에서, 테스트 발광 소자(162)는 형광막(120y)의 형성 공정 동안 균일한 발광 강도를 가지는 제1 광(Ls)을 연속적으로 방출 할 수 있다. 다른 일부 실시예들에서, 형광막(120y)의 형성 공정 동안 특정 구간만을 샘플링하여 제1 광(Ls)을 방출할 수도 있다.
이와 유사하게, 광 검출기(164)는 형광막(120y)의 형성 공정 동안 연속적으로 제2 광(Lr)을 분석할 수 있으며, 이와 달리 특정 구간만을 샘플링하여 제2 광(Lr)을 분석할 수도 있다.
제1 광(Ls)은 테스트 발광 소자(162)의 종류에 따라 다양한 파장을 가질 수 있다. 도 1을 참조하여 설명한 발광 소자(110)와 유사하게, 테스트 발광 소자(162)는 대략 100 ~ 430 nm 파장대의 자외선, 대략 430 ~ 480 nm 파장대의 청색광, 대략 500~560 nm 파장대의 녹색광, 또는 대략 610~670 nm 파장대의 적색광을 방출하는 LED 칩일 수 있다.
본 실시예에서는 테스트 발광 소자(162)가 청색 LED 칩인 경우, 즉 제1 광(Ls)이 대략 430 ~ 480 nm 의 파장대를 가지는 경우를 예로 들어 설명하기로 한다. 한편, 테스트 발광 소자(162)가 청색 LED 칩인 경우, 황색 형광 물질(미도시)을 사용하여 백색광의 출력할 수 있으므로, 본 실시예에서의 형광막(120y)은 황색 형광 물질을 포함하는 경우를 예로 들어 설명하기로 한다.
테스트 발광 소자(162)로부터 방출된 제1 광(Ls)은 캐리어(130)의 타면(130B)으로 진입하여, 캐리어(130) 및 형광막(120y)을 통과한 후 형광막(120y)의 일면(120yT)에서 제2 광(Lr)으로 변환되어 출력될 수 있다.
제2 광(Lr)은 제1 광(Ls)과 유사한 파장대를 가지는 제1 투과광(미도시) 및 제1 광(Ls)과 상이한 파장대를 가지는 제2 투과광(미도시)을 포함할 수 있다.
예를 들어, 제2 광(Lr)은 상기 제2 투과광으로서 상기 황색 형광 물질에 의하여 대략 520 ~ 700 nm 파장대를 가지도록 변환된 황색광(Ly)과, 상기 제1 투과광으로서 황색광(Ly)으로 변환되지 않은 청색광(Lb)을 포함할 수 있다. 상기 청색광(Lb)은 제1 광(Ls)과 유사한 파장을 가질 수 있다.
청색광(Lb)의 발광 강도(Ib)는 형광막(120y)의 두께(d)와 수학식 1의 관계를 가질 수 있다.
Figure 112014095215034-pat00003
상기 수학식 1에서, Io는 캐리어(130)를 통과한 후의 제1 광(Lo)의 발광 강도, 즉 형광막(120y)의 타면(120yB) 영역에서의 제1 광(Lo)의 발광 강도를 의미하며, 상기 A는 손실계수를, 상기 a는 형광막(120y)의 광 흡수율을 의미할 수 있다.
황색광(Ly)의 발광 강도(Iy)는 형광막(120y)의 두께(d)와 수학식 2의 관계를 가질 수 있다.
Figure 112014095215034-pat00004
상기 수학식 2에서, 상기
Figure 112014095215034-pat00005
는 형광 물질의 물성, 즉 상기 형광 물질의 재료, 밀도 및 배합비 등에 따른 함수를 의미하며, 상기
Figure 112014095215034-pat00006
는 형광막(120y)의 두께(d)에 따른 방사광량의 변화량 함수를 의미한다.
상기 수학식 1 및 수학식 2로부터, 형광막(120y)의 두께(d)는 황색광(Ly)의 발광 강도(Iy) 및 청색광(Lb)의 발광 강도(Ib)와 수학식 3의 관계를 가짐을 알 수 있다.
Figure 112014095215034-pat00007
상기 수학식 3에서, 상기 A는 손실계수를, 상기 a는 형광막(120y)의 광 흡수율을 의미하는 상수이고, 상기
Figure 112014095215034-pat00008
는 상기 형광 물질의 물성에 따른 함수를 의미하므로, 형광막(120y)의 두께(d)와의 관계에서는 상수로써 취급될 수 있다.
또한, 상기
Figure 112014095215034-pat00009
는 형광막(120y)의 두께(d)에 따른 방사광량의 변화량 함수를 의미하나, 발광 소자 패키지 제조 공정에서 요구되는 형광막(120y)의 두께(d) 영역에서의 방사광량의 변화량은 상수로 취급할 수 있으므로, 형광막(120y)의 두께(d)는 황색광(Ly)의 발광 강도(Iy) 및 청색광(Lb)의 발광 강도(Ib)와 수학식 4의 관계를 가짐을 알 수 있다.
Figure 112014095215034-pat00010
상기 수학식 4에 따라, 광 검출기(164)로부터 측정된 발광 강도 스펙트럼(도 4 참조)에서의 황색광(Ly)의 발광 강도(Iy) 및 청색광(Lb)의 발광 강도(Ib)로부터, 형광막(120y)의 두께(d)를 알아낼 수 있게 된다. 이에 따라 형광막(120y)의 성형 및 경화가 완료되기 이전에도 형광막(120y)의 두께(d)를 용이하게 측정할 수 있다. 또한, 상기 형광막(120y)의 두께(d) 측정 결과를 형광막(120y)의 성형 과정에 실시간으로 반영할 수 있게 되어, 궁극적으로 발광 소자 패키지의 형광층(120, 도 3 참조)을 형성하는 데에 요구되는 시간 및 비용을 절감할 수 있게 된다.
도 4는 상기 형광막의 두께를 측정하는 방법을 설명하기 위한 도면으로서, 형광막(120y)에서 방출되는 제2 광(Lr)의 파장에 따른 발광 강도 스펙트럼을 나타낸 그래프이다. 도 4에 있어서, 도 1 내지 도 3에서와 동일한 참조 부호는 동일 부재를 나타내며, 여기서는 설명의 간략화를 위하여 이들에 대한 중복 설명은 생략한다.
도 4를 참조하면, 제2 광(Lr)의 파장(λ)에 따른 발광 강도 스펙트럼이 도시된다. 상기 발광 강도 스펙트럼에서의 각 파장 별 발광 강도(I)는 각 파장에서의 제2 광(Lr)의 출력을 비교하기 위한 임의 단위로서, 각 파장에서의 제2 광(Lr)의 출력을 비교할 수 있다면 특정 단위에 제한되지 않는다. 예를 들어, 발광 강도(I)는 방사 조도(W/m2)를 의미할 수 있다.
도 3을 참조하여 상술한 바와 같이, 황색광의 발광 강도(Iy) 및 청색광의 발광 강도(Ib)로부터 형광막(120y)의 두께(d)를 알아낼 수 있게 되며, 상기 황색광의 발광 강도(Iy) 및 청색광의 발광 강도(Ib)는 본 실시예의 발광 강도 스펙트럼으로부터 정해질 수 있다.
일부 실시예에서, 형광막(120y)의 두께(d)는 수학식 5와 같이 발광 강도 스펙트럼에서의 황색광의 최대 발광 강도(Iym) 및 청색광의 최대 발광 강도(Ibm)를 통해 얻어질 수 있다.
Figure 112014095215034-pat00011
상기 수학식 5에서, 상기 A는 손실계수를, 상기 a는 형광막(120y)의 광 흡수율을 의미하고, 상기
Figure 112014095215034-pat00012
는 형광 물질의 물성에 따른 함수를, 상기
Figure 112014095215034-pat00013
는 형광막(120y)의 두께(d)에 따른 방사광량의 변화량 함수를 의미할 수 있다. 상기 A, a,
Figure 112014095215034-pat00014
,
Figure 112014095215034-pat00015
는 도 3을 참조하여 설명한 바와 유사하게 상수로서 취급될 수 있으므로, 형광막(120y)의 두께(d)는 상기 황색광의 최대 발광 강도(Iym) 및 청색광의 최대 발광 강도(Ibm)를 통해 얻어질 수 있다.
상기 황색광의 최대 발광 강도(Iym)는 대략 520 ~ 700 nm의 황색광 영역에서의 최대 발광 강도(I)를 의미할 수 있다. 유사하게, 상기 청색광의 최대 발광 강도(Ibm)는 대략 430 ~ 480 nm의 청색광 영역에서의 최대 발광 강도(I)를 의미할 수 있다.
다른 일부 실시예들에서, 형광막(120y)의 두께(d)는 수학식 6과 같이 황색광 영역의 광량(Iyt) 및 청색광 영역의 광량(Ibt)을 통해 얻어질 수 있다.
Figure 112014095215034-pat00016
상기 수학식 6에서, 상기 A는 손실계수를, 상기 a는 형광막(120y)의 광 흡수율을 의미하고, 상기
Figure 112014095215034-pat00017
는 형광 물질의 물성에 따른 함수를, 상기
Figure 112014095215034-pat00018
는 형광막(120y)의 두께(d)에 따른 방사광량의 변화량 함수를 의미할 수 있다. 상기 A, a,
Figure 112014095215034-pat00019
,
Figure 112014095215034-pat00020
는 도 3을 참조하여 설명한 바와 유사하게 상수로서 취급될 수 있으므로, 형광막(120y)의 두께(d)는 황색광 영역의 광량(Iyt) 및 청색광 영역의 광량(Ibt)을 통해 얻어질 수 있다.
상기 황색광 영역의 광량(Iyt)은 예를 들면 수학식 7과 같이 상기 황색광 영역에서의 발광 스펙트럼(Sp_y)를 적분한 값으로부터 얻어질 수 있다.
Figure 112014095215034-pat00021
상기 수학식 7에서의 적분 구간(S1 ~ S2)은 대략 520 ~ 700 nm일 수 있다. 즉, 상기 황색광 영역은 대략 520 ~ 700 nm 의 파장 영역을 의미할 수 있다.
황색광 영역의 광량(Iyt)과 유사하게, 상기 청색광 영역의 광량(Ibt)은 수학식 8과 같이 상기 청색광 영역에서의 발광 스펙트럼(Sp_b)을 적분한 값으로부터 얻어질 수 있다.
Figure 112014095215034-pat00022
상기 수학식 8에서의 적분 구간 S3 ~ S4는 예를 들면 430 ~ 480 nm 일 수 있다. 즉, 상기 청색광 영역은 대략 430 ~ 480 nm 의 파장 영역을 의미할 수 있다.
수학식 6 내지 8을 참조하여 설명한 바와 같이, 형광막(120y)의 두께(d)를 황색광 영역의 광량(Iyt) 및 청색광 영역의 광량(Ibt)을 통해 얻음으로써 측정된 형광막(120y)의 두께(d)에 대한 신뢰성을 확보할 수 있다.
도 5의 (a) 내지 (c)는 본 발명의 기술적 사상에 의한 일 실시예에 따른 발광 소자 패키지 제조 방법에 있어서, 형광층을 형성하여 발광 소자에 부착하는 모습을 예시적으로 나타낸 도면들이다. 도 5의 (a) 내지 (c)에 있어서, 도 1 내지 도 4에서와 동일한 참조 부호는 동일 부재를 나타내며, 여기서는 설명의 간략화를 위하여 이들에 대한 중복 설명은 생략한다.
도 5의 (a)를 참조하면, 캐리어(130) 상에 형광막(120y)을 형성할 수 있다. 형광막(120y)의 형성 공정은 도 2 내지 도 4에서 상술한 바, 여기서는 생략하기로 한다.
도 5의 (b)를 참조하면, 형광막(120y)을 소잉하여 형광층(120)을 형성한다. 상기 형광층(120)을 형성하는 공정은 예를 들면 블레이드(미도시) 등을 이용한 소잉 공정일 수 있다.
도 5의 (c)를 참조하면, 소잉된 각각의 형광층(120)을 발광 소자(110)에 부착하여 발광 소자 패키지(100)를 완성한다. 상기 형광층(120)을 발광 소자(110)에 부착하는 공정은 각각의 형광층(120)을 픽업 툴(미도시)을 이용하여 각각의 발광 소자(110) 상에 위치하도록 이동시키는 공정과, 발광 소자(110) 및 형광층(120)을 접착제(미도시) 등으로 부착시키는 공정을 포함할 수 있다.
본 실시예에서는 형광막(120y)을 소잉하여 형광층(120)을 형성한 후 각각의 발광 소자(110) 상에 부착시키는 것을 예로 들었으나 이에 한정되지 않는다. 예를 들어, 형광막(120y) 상에 복수의 발광 소자들(미도시)을 부착한 후, 소잉 공정을 수행하여 형광층(120)을 형성할 수도 있다.
도 6은 본 발명의 기술적 사상에 의한 다른 실시예에 따른 발광 소자 패키지 제조 방법에 있어서, 형광막을 형성하는 모습을 예시적으로 나타낸 단면도이다. 도 6에 있어서, 도 1 및 도 5에서와 동일한 참조 부호는 동일 부재를 나타내며, 여기서는 설명의 간략화를 위하여 이들에 대한 중복 설명은 생략한다.
도 6을 참조하면, 캐리어(230) 상에 형광 물질(220x)을 도포한 후, 성형 툴(240)을 이용하여 형광막(220y)을 형성한다.
형광 물질(220x) 및 캐리어(230)는 도 2를 참조하여 설명한 형광 물질(120x) 및 캐리어(130)와 유사한 구조 및 역할을 수행할 수 있다. 다만, 본 실시예에서는 형광막(220y) 형성 과정 동안에 캐리어(230)가 움직이는 대신, 성형 툴(240)이 제1 방향(X축 방향)에 따라 이동하며 형광막(220y)을 형성하게 된다.
일부 실시예들에서, 성형 툴(240)은 블레이드(242) 및 롤러(244)를 포함할 수 있다. 본 실시예에서의 성형 툴(240)은 하나의 블레이드(242)를 포함하는 것으로 도시되었으나, 도 2를 참조하여 설명한 성형 툴(140)과 유사하게 하나 이상의 블레이드를 포함할 수 있다.
블레이드(242) 및 롤러(244) 각각은 형광 물질(220x)의 일면(220xT) 및 캐리어(230)의 타면(230B)에 위치하여, 제1 방향(X축 방향)을 따라 이동하며 형광막(220y)을 형성한다.
일부 실시예들에서, 블레이드(242) 및 롤러(244) 중 적어도 하나는 제2 방향(Y축 방향)에 따른 높이가 조절되며, 이에 따라 성형되는 형광막(220y)의 두께를 조절할 수 있다.
형광막(220y)의 형성 과정에서, 테스트 발광 소자(262) 및 광 검출기(264)를 이용하여 형광막(220y)의 두께를 측정할 수 있다.
일부 실시예에서, 테스트 발광 소자(262) 및 광 검출기(264)는 블레이드(242) 및 롤러(244)와 유사하게, 제1 방향(X축 방향)을 따라 이동하며 형광막(220y)의 두께를 측정한다. 테스트 발광 소자(262) 및 광 검출기(264)를 이용하여 형광막(220y)의 두께를 측정하는 방법은 도 3 및 도 4를 참조하여 상술한 형광막(120y)의 두께 측정 방법과 유사하게 수행될 수 있다.
도 7은 본 발명의 기술적 사상에 의한 다른 실시예에 따른 발광 소자 패키지 제조 방법에 있어서, 형광막을 형성하는 모습을 예시적으로 나타낸 단면도이다. 도 7에 있어서, 도 1 내지 도 6에서와 동일한 참조 부호는 동일 부재를 나타내며, 여기서는 설명의 간략화를 위하여 이들에 대한 중복 설명은 생략한다.
도 7을 참조하면, 캐리어(330) 상에 형광 물질(320x)을 도포한 후, 성형 툴(340)을 이용하여 형광막(320y)을 형성한다.
형광 물질(320x), 캐리어(330) 및 성형 툴(340)은 각각 도 6를 참조하여 설명한 형광 물질(220x), 캐리어(230) 및 성형 툴(240)와 유사한 구조 및 역할을 수행할 수 있다. 다만, 본 실시예에서의 성형 툴(340)은 블레이드(342), 제1 롤러(344) 및 제2 롤러(346)를 포함하는 점에 차이가 존재한다.
한편, 본 실시예에서의 성형 툴(340)은 하나의 블레이드(342)를 포함하는 것으로 도시되었으나, 도 2를 참조하여 설명한 성형 툴(140)과 유사하게 하나 이상의 블레이드를 포함할 수 있다.
본 실시예에서의 블레이드(342)는 제1 롤러(344)와 광 검출기(364) 사이에 위치하나, 블레이드(342)의 위치는 도 7에 도시된 것에 제한되지 않는다. 예를 들어, 블레이드(342)는 제1 롤러(344) 및 광 검출기(364)에 후속하여 위치할 수 있다. 즉, 광 검출기(364)가 블레이드(342) 및 제1 롤러(344) 사이에 개재될 수도 있다.
제1 롤러(344) 및 제2 롤러(346) 각각은 형광 물질(320x)의 일면(320xT) 및 캐리어(330)의 타면(330B)에 위치하여, 제1 방향(X축 방향)을 따라 이동하며 형광 물질(320x)을 캐리어(330)에 접합시키는 역할을 수행할 수 있다.
일부 실시예들에서, 형광 물질(320x)은 제1 롤러(344) 및 제2 롤러(346)에 의해 가해지는 압력과 열을 통해 캐리어(330)에 접합될 수 있다. 도 7에서, 형광 물질(320x)은 캐리어(330)에 접합되기 이전의 형광 물질을, 형광 물질(320x')은 캐리어(330)에 접합된 후의 형광 물질을 의미한다. 도 7에서 형광 물질(320x)의 타면(320xB)과 캐리어(330T)의 일면(330T)은 이격된 것으로 도시되었으나, 이는 형광 물질(320x)과 형광 물질(320x')을 개념적으로 분리하기 위한 것이며, 형광 물질(320x)의 타면(320xB)과 캐리어(330T)의 일면(330T)은 물리적으로 접촉되어 있을 수도 있다.
제1 롤러(344) 및 제2 롤러(346)에 의해 형광 물질(320x')을 캐리어(330)에 접합한 후, 블레이드(342)를 이용하여 형광 물질(320x')을 성형하여 형광막(320y)을 형성한다. 블레이드(342)는 도 6을 참조하여 설명한 블레이드(242)와 유사한 구조를 가질 수 있고, 유사한 역할을 수행할 수 있다.
형광막(320y)의 형성 과정에서, 테스트 발광 소자(362) 및 광 검출기(364)를 이용하여 형광막(320y)의 두께를 측정할 수 있다.
상기 형광막(320y)의 두께 측정 방법은 도 3 및 도 4를 참조하여 상술한 형광막(120y)의 두께 측정 방법과 유사하게 수행될 수 있다.
도 8 및 도 9는 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지를 예시적으로 나타내는 단면도들이다.
도 8을 참조하면, 광원으로서 역할을 수행하며 실장 기판(1820) 상에 실장된 LED 칩(1810)과, LED 칩(1810)에 부착된 형광층(1830)을 갖는 발광 소자 패키지(1800)가 도시되어 있다.
도 8에 도시된 발광 소자 패키지(1800)는 실장 기판(1820)과 실장 기판(1820)에 탑재된LED 칩(1810)을 포함할 수 있다.
상기 LED 칩(1810)은 기판(1801)의 일면 상에 배치된 발광 적층체(S)와, 상기 발광 적층체(S)를 기준으로 상기 기판(1801) 반대쪽에 배치된 제1 및 제2 전극 (1808a, 1808b)을 포함한다. 또한, 상기 LED 칩(1810)은 상기 제1 및 제2 전극(1808a, 1808b)을 덮도록 형성되는 절연부(1803)를 포함한다.
상기 제1 및 제2 전극(1808a, 1808b)은 제1 및 제2 전기연결부(1809a, 1809b)에 의해 제1 및 제2 전극 패드(1819a, 1819b)를 포함할 수 있다.
상기 발광 적층체(S)는 기판(1801) 상에 순차적으로 배치되는 제1 도전형 반도체층(1804), 활성층(1805) 및 제2 도전형 반도체층(1806)을 포함할 수 있다. 상기 제1 전극(1808a)은 상기 제2 도전형 반도체층(1806) 및 활성층(1805)을 관통하여 상기 제1 도전형 반도체층(1804)과 접속된 도전성 비아로 제공될 수 있다. 상기 제2 전극(1808b)은 제2 도전형 반도체층(1806)과 접속될 수 있다.
상기 비아는 하나의 발광 소자 영역에 복수 개 형성될 수 있다. 복수의 비아들이 제1 도전형 반도체과 접촉하는 영역의 평면 상에서 차지하는 면적은 발광 소자 영역의 면적의 약 1 % 내지 약 5 %의 범위가 되도록 비아 개수 및 접촉 면적이 조절될 수 있다. 비아의 제1 도전형 반도체와 접촉하는 영역의 평면 상의 반경은 예를 들어, 약 5㎛ 내지 약 50 ㎛의 범위일 수 있으며, 비아의 개수는 발광 소자 영역의 넓이에 따라, 발광 소자 영역 당 1개 내지 약 50개일 수 있다. 상기 비아는 발광 소자 영역의 넓이에 따라 다르지만 바람직하게는 3개 이상일 수 있으며, 각 비아 간의 거리는 약 100㎛ 내지 약 500㎛ 범위의 행과 열을 가지는 매트릭스 구조일 수 있으며, 더욱 바람직하게는 약 150㎛ 내지 약 450㎛ 범위일 수 있다. 각 비아간의 거리가 약 100㎛보다 작으면 비아의 개수가 증가하게 되고 상대적으로 발광면적이 줄어들어 발광 효율이 작아지며, 거리가 약 500㎛보다 커지면 전류 확산이 어려워 발광 효율이 떨어지는 문제점이 있을 수 있다. 비아의 깊이는 제2반도체층 및 활성층의 두께에 따라 다르나, 약 0.5 ㎛ 내지 약 5.0 ㎛의 범위일 수 있다.
상기 발광적층체 상에 도전성 오믹 물질을 증착하여 제1 및 제2 전극(1808a, 1808b)을 형성한다. 제1 및 제2 전극(1808a, 1808b)은 Ag, Al, Ni, Cr, Cu, Au, Pd, Pt, Sn, Ti, W, Rh, Ir, Ru, Mg, Zn 또는 이들을 포함하는 합금물질 중 적어도 하나를 포함하는 전극일 수 있다. 예들 들면 제2전극은 제2도전형 반도체층을 기준으로 Ag층의 오믹전극이 적층된다. 상기 Ag 오믹전극은 광의 반사층의 역할도 한다. 상기 Ag층 상에 선택적으로 Ni, Ti, Pt, W의 단일층 혹은 이들의 합금층이 교대로 적층 될 수 있다. 구체적으로 Ag층 아래에 Ni/Ti층, TiW/Pt층 혹은 Ti/W이 적층되거나 또는 이들 층이 교대로 적층될 수 있다.
제1전극은 제1도전형 반도체층을 기준으로 Cr층이 적층되고 상기 Cr층 상에 Au/Pt/Ti층이 순서대로 적층되거나 혹은 제2도전형 반도체층을 기준으로 Al층이 적층되고 상기 Al층 상에 Ti/Ni/Au층이 순서대로 적층 될 수 있다.
상기 제1 및 제2 전극은 오믹 특성 또는 반사 특성을 향상시키기 위해 상기 실시예 외에 다양한 재료 또는 적층구조를 적용 할 수 있다.
상기 절연부(1803)는 상기 제1 및 제2 전극(1808a, 1808b)의 적어도 일부를 노출시키도록 오픈 영역을 구비하며, 상기 제1 및 제2 전극 패드(1819a, 1819b)는 상기 제1 및 제2 전극(1808a, 1808b)과 접속될 수 있다. 절연층(1803)은 SiO2 및/또는 SiN CVD 공정을 통해 500 ℃ 이하에서 약 0.01㎛ 내지 약 3㎛ 두께로 증착될 수 있다.
제1 및 제2 전극(1809a, 1809b)은 서로 동일한 방향으로 배치될 수 있으며, 후술하는 바와 같이, 리드 프레임 등에 소위, 플립 칩(flip-chip) 형태로 실장될 수 있다. 이 경우, 제1 및 제2 전극(1809a, 1809b)은 서로 동일한 방향을 향하도록 배치될 수 있다.
특히, 상기 제1 전극(1808a)은 상기 제2 도전형 반도체층(1804) 및 활성층(1805)을 관통하여 상기 발광 적층체(S) 내부에서 상기 제1 도전형 반도체층(1804)에 연결된 도전성 비아를 갖는 제1 전극(1808a)에 의해 제1 전기연결부(1809a)가 형성될 수 있다.
도전성 비아와 상기 제1 전기 연결부(1809a)는 접촉 저항이 낮아지도록 개수, 형상, 피치, 제1 도전형 반도체층(1804)과의 접촉 면적 등이 적절히 조절될 수 있으며, 상기 도전성 비아와 상기 제1 전기 연결부(1809a)는 행과 열을 이루어 배열됨으로써 전류 흐름이 개선될 수 있다.
다른 한편의 전극구조는, 상기 제2 도전형 반도체층(1806) 상에 직접 형성되는 제2 전극(1808b)과 그 상부에 형성되는 제2 전기연결부(1809b)를 포함할 수 있다. 상기 제2 전극(1808b)은 상기 제2 도전형 반도체층(1806)과의 전기적 오믹을 형성하는 기능 외에 광 반사 물질로 이루어짐으로써, LED 칩(1810)을 플립칩 구조로 실장된 상태에서, 활성층(1805)에서 방출된 빛을 기판(1801) 방향으로 효과적으로 방출시킬 수 있다. 물론, 주된 광방출 방향에 따라, 상기 제2 전극(1808b)은 투명 전도성 산화물과 같은 광투과성 도전 물질로 이루어질 수도 있다.
상기 설명된 2개의 전극 구조는 절연부(1803)에 의하여 서로 전기적으로 분리될 수 있다. 절연부(1803)는 전기적으로 절연 특성을 갖는 물질이면 어느 것이나 사용할 수 있으며, 전기 절연성을 갖는 물체라면 어느 것이나 채용 가능하지만, 광흡수율이 낮은 물질을 사용하는 것이 바람직하다. 예를 들어, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물을 이용할 수 있을 것이다. 필요에 따라, 광투과성 물질 내에 광 반사성 필러를 분산시켜 광반사 구조를 형성할 수 있다.
상기 제1 및 제2 전극패드(1819a, 1819b)는 각각 제1 및 제2 전기연결부(1809a, 1809b)와 접속되어 LED 칩(1810)의 외부 단자로 기능할 수 있다. 예를 들어, 상기 제1 및 제2 전극 패드(1819a, 1819b)는 Au, Ag, Al, Ti, W, Cu, Sn, Ni, Pt, Cr, NiSn, TiW, AuSn 또는 이들의 공융(eutectic) 금속일 수 있다. 이 경우에, 실장 기판(1820)에 실장 시 공융 금속을 이용하여 접합될 수 있으므로, 플립 칩 본딩 시 일반적으로 요구되는 별도의 솔더 범프를 사용하지 않을 수 있다. 솔더 범프를 이용하는 경우에 비하여 공융 금속을 이용한 실장 방식에서 방열 효과가 더욱 우수한 장점이 있다. 이 경우, 우수한 방열 효과를 얻기 위하여 제1 및 제2 전극 패드(1819a, 1819b)는 넓은 면적을 차지하도록 형성될 수 있다.
상기 기판(1801) 및 상기 발광 적층체(S)는 반대되는 설명이 없는 한 앞서 설명된 내용을 참조하여 이해될 수 있다. 또한, 구체적으로 도시하지는 않았으나, 상기 발광구조물(S)과 기판(1801) 사이에는 버퍼층이 형성될 수 있으며, 버퍼층은 질화물 등으로 이루어진 언도프 반도체층으로 채용되어, 그 위에 성장되는 발광구조물의 격자 결함을 완화할 수 있다.
상기 기판(1801)은 서로 대향하는 제1및 제2 주면을 가질 수 있으며, 상기 제1 및 제2 주면 중 적어도 하나에는 요철 구조가 형성될 수 있다. 상기 기판(1801)의 일면에 형성된 요철 구조는 상기 기판(1801)의 일부가 식각되어 상기 기판과 동일한 물질로 이루어질 수 있으며, 상기 기판(1801)과 다른 이종 물질로 구성될 수도 있다.
본 예와 같이, 상기 기판(1801)과 상기 제1 도전형 반도체층(1804)의 계면에 요철 구조를 형성함으로써, 상기 활성층(1805)으로부터 방출된 광의 경로가 다양해 질 수 있으므로, 빛이 반도체층 내부에서 흡수되는 비율이 감소하고 광 산란 비율이 증가하여 광 추출 효율이 증대될 수 있다.
구체적으로, 상기 요철 구조는 규칙 또는 불규칙적인 형상을 갖도록 형성될 수 있다. 상기 요철을 이루는 이종 물질은 투명 전도체나 투명 절연체 또는 반사성이 우수한 물질을 사용할 수 있으며, 투명 절연체로는 SiO2, SiNx, Al2O3, HfO, TiO2 또는 ZrO와 같은 물질을, 투명 전도체는 ZnO나 첨가물(Mg, Ag, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Sn)이 함유된 인듐 산화물(indium oxide) 등과 같은 투명 전도성 산화물(TCO)을, 반사성 물질로는 Ag, Al, 또는 굴절율이 서로 다른 다층막의 DBR을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 기판(1801)은 상기 제1 도전형 반도체층(1804)으로부터 제거될 수 있다. 기판 제거에는 레이저를 이용한LLO (Laser Lift Off) 공정 또는 식각, 연마 공정을 사용 할 수 있다. 또한 기판의 제거 후, 제1 도전형 반도체 층의 표면에 요철을 형성할 수 있다.
도 8에 도시된 바와 같이, 상기 LED칩(1810)은 실장 기판(1820)에 탑재되어 있다. 상기 실장 기판(1820)은 기판 본체(1811) 상면 및 하면에 각각 상부 및 하부 전극층(1812b, 1812a)이 형성되고, 상기 상부 및 하부 전극층(1812b, 1812a)을 연결하도록 상기 기판 본체(1811)를 관통하는 비아(1813)를 포함한다. 상기 기판 본체(1811)는 수지, 세라믹 또는 금속일 수 있으며, 상기 상부 또는 하부 전극층(1812b, 1812a)은 Au, Cu, Ag, Al와 같은 금속층일 수 있다.
물론, 상술된 LED 칩(1810)이 탑재되는 기판은 도 8에 도시된 실장 기판(1820)의 형태에 한정되지 않으며, LED 칩(1810)을 구동하기 위한 배선 구조가 형성된 기판이라면 어느 것이나 적용 가능하다. 예를 들어, 한 쌍의 리드 프레임을 갖는 패키지 본체에 LED 칩이 실장된 패키지 구조로도 제공될 수 있다.
형광층(1830)은 LED 칩(1810)의 상면, 즉 기판(1801)의 상면(1801T) 상에 부착되어, LED 칩(1810)이 방출하는 광을 백색광으로 변환하는 역할을 수행할 수 있다. 예를 들어, LED 칩(1810)이 대략 430 ~ 480 nm 파장대의 청색광을 방출하는 청색 LED 칩인 경우, 형광층(1830)은 황색 형광 물질일 수 있으며, 이에 대한 상세한 설명은 도 2를 참조하여 상술한 바 여기서는 생략하도록 한다. 또한, 형광층(1830)은 도 1 내지 도 7을 참조하여 설명한 발광 소자 패키지 제조 공정과 유사한 공정에 의해 형성될 수 있다.
<LED 칩의 기타 예>
본 실시예에 따른 발광 소자 패키지에는 상술된 LED 칩 외에도 다양한 구조의 LED 칩이 사용될 수 있다. 예를 들어, LED 칩의 금속-유전체 경계에 표면 플라즈몬 폴라리톤(surface-plasmon polaritons: SPP)을 형성시켜 양자우물 엑시톤과 상호작용 시킴으로써 광추출효율을 크게 개선된 LED 칩도 유용하게 사용될 수 있다.
<발광 소자 패키지의 예 - 칩 스케일 패키지(CSP)>
상술한 발광 소자 패키지의 일 예로서, 칩 스케일 패키지(chip scale package: CSP) 구조를 갖는 LED 칩 패키지가 사용될 수 있다.
상기 칩 스케일 패키지는 상기 LED 칩 패키지의 사이즈를 줄이고 제조 공정을 단순화하여 대량 생산에 적합하며, LED 칩과 함께, 형광층과 같은 파장변환물질과 렌즈와 같은 광학 구조를 일체형으로 제조할 수 있으므로, 특히 조명 장치에 적합하게 사용될 수 있다.
도 9에는 이러한 칩 스케일 패키지의 일 예로서, 주된 광추출면과 반대 방향인 LED(1910)의 하면을 통해 전극이 형성되며 형광층(1907) 및 렌즈(1920)가 일체로 형성된 패키지 구조이다.
도 9에 도시된 칩 스케일 패키지(1900)는 기판(1911)에 배치된 발광 적층체(S), 제1 및 제2 단자부(Ta, Tb), 형광층(1907) 및 렌즈(1920)를 포함한다.
상기 발광 적층체(S)는 제1 및 제2 도전형 반도체층(1904, 1906)과 그 사이에 배치된 활성층(1905)을 구비하는 적층 구조이다. 본 실시 형태의 경우, 제1 및 제2 도전형 반도체층(1904, 1906)은 각각 p형 및 n형 반도체층이 될 수 있으며, 또한, 질화물 반도체, 예컨대, AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 이루어질 수 있다. 다만, 질화물 반도체 외에도 GaAs계 반도체나 GaP계 반도체도 사용될 수 있을 것이다.
상기 제1 및 제2 도전형 반도체층(1904, 1906) 사이에 형성되는 활성층(1905)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예컨대, InGaN/GaN, AlGaN/GaN 구조가 사용될 수 있다.
한편, 제1 및 제2 도전형 반도체층(1904, 1906)과 활성층(1905)은 당 기술 분야에서 공지된 MOCVD, MBE, HVPE 등과 같은 반도체층 성장 공정을 이용하여 형성될 수 있을 것이다.
도 9에 도시된 LED(1910)은 성장 기판이 제거된 상태이며, 성장 기판이 제거된 면에는 요철(P)이 형성될 수 있다. 또한, 요철이 형성된 면에 광변환층으로서 형광층(1907)이 적용된다.
상기 LED(1910)는 상기 제1 및 제2 도전형 반도체층(1904,1906)에 각각 접속된 제1 및 제2 전극(1909a, 1909b)을 가질 수 있다. 상기 제1 전극(1909a)은 상기 제2 도전형 반도체층(1906) 및 활성층(1905)을 관통하여 제2 도전형 반도체층(1904)에 접속된 도전성 비아(1908)를 구비한다. 상기 도전성 비아(1908)는 활성층(1905) 및 제2 도전형 반도체층(1906) 사이에는 절연층(1903)이 형성되어 단락을 방지할 수 있다.
상기 도전성 비아(1906)는 1개로 예시되어 있으나, 전류 분산에 유리하도록 상기 도전성 비아(1906)는 2개 이상 구비될 수 있고, 다양한 형태로 배열될 수 있다.
본 예에 채용된 실장 기판(1911)은 실리콘 기판과 같은 반도체 공정이 용이하게 적용될 수 있는 지지 기판으로 예시되어 있으나, 이에 한정되는 것은 아니다. 상기 실장 기판(1911)과 상기 LED(1910)은 본딩층(1902, 1912)에 의해 접합될 수 있다. 상기 본딩층(1902, 1912)은 전기 절연성 물질 또는 전기 전도성 물질로 이루어지며, 예를 들어 전기 절연성 물질의 경우, SiO2, SiN등과 같은 산화물, 실리콘 수지나 에폭시 수지 등과 같은 수지류의 물질, 전기 전도성 물질로는 Ag, Al, Ti, W, Cu, Sn, Ni, Pt, Cr, NiSn, TiW, AuSn 또는 이들의 공융 금속을 들 수 있다. 본 공정은 LED(1910)와 기판(1911)의 각 접합면에 제1 및 제2 본딩층(1902, 1912)을 적용한 후에 접합시키는 방식으로 구현될 수 있다.
상기 실장 기판(1911)에는 접합된 LED(1910)의 제1 및 제2 전극(1909a, 1909b)에 연결되도록 상기 실장 기판(1911)의 하면으로부터 비아가 형성된다. 상기 비아의 측면 및 상기 실장 기판(1911)의 하면에 절연체(1913)가 형성될 수 있다. 상기 실장 기판(1911)이 실리콘 기판일 경우에 상기 절연체(1913)는 열 산화공정을 통해서 실리콘 산화막으로 제공될 수 있다. 상기 비아에 도전성 물질을 충전함으로써 상기 제1 및 제2 전극(1909a, 1909b)에 연결되도록 제1 및 제2 단자(Ta, Tb)를 형성한다. 상기 제1 및 제2 단자(Ta, Tb)는 시드층(1918a, 1918b)과 상기 시드층(1918a, 1918b)을 이용하여 도금공정으로 형성된 도금 충전부(1919a, 1919b)를 포함할 수 있다.
도 10은 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지에서 방사되는 광에 대한 색온도 스펙트럼(Planckian spectrum)을 예시적으로 보여주는 도면이다. 도 11은 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지에 사용될 수 있는 양자점(QD) 구조를예시적으로 보여주는 도면이다.
도 10을 참조하면, 발광 소자 패키지의 발광 소자는 상기 발광 소자를 구성하는 화합물 반도체의 종류에 따라 청색, 녹색, 적색 등을 발광할 수 있다. 또는, 상기 LED 칩은 자외선을 발광할 수도 있다. 다른 일부 실시예들에서, 상기 발광 소자는 UV 광 다이오드 칩, 레이저 다이오드 칩, 또는 유기 발광 다이오드 칩으로 이루어질 수 있다. 그러나, 본 발명의 기술적 사상에 따르면 상기 발광 소자는 위에서 예시된 것들에 한정되지 않고 다양한 광 소자로 구성될 수 있다.
상기 발광 소자는 연색성(CRI)을 나트륨 등(연색지수 40)에서 태양광(연색지수 100) 수준으로 조절할 수 있으며 또한 색 온도를 2000K에서 20000K 수준으로 다양한 백색광을 발생시킬 수 있으며, 필요에 따라서는 보라색, 청색, 녹색, 적색, 오렌지색의 가시광 또는 적외선을 발생시켜 주위 분위기 또는 기분에 맞게 조명 색을 조절할 수 있다. 또한 식물 성장을 촉진할 수 있는 특수 파장의 광을 발생시킬 수도 있다.
상기 청색 LED에 황색, 녹색, 적색 형광 물질 및/또는 녹색, 적색 발광소자의 조합으로 만들어지는 백색광은 2개 이상의 피크 파장을 가지며 CIE 1931 좌표계의 (x, y)좌표가 (0.4476, 0.4074), (0.3484, 0.3516), (0.3101, 0.3162), (0.3128, 0.3292), (0.3333, 0.3333)을 잇는 선분 상에 위치할 수 있다. 또는 상기 선분과 흑체 복사 스펙트럼으로 둘러싸인 영역에 위치할 수 있다. 상기 백색광의 색온도는 약 2,000K ∼ 약 20,000K사이에 해당한다.
예로서, 본 발명의 실시예들에 사용될 수 있는 형광 물질은 아래와 같은 조성식 및 색상을 가질 수 있다.
산화물계: 황색 및 녹색 (Y, Lu, Se, La, Gd, Sm)3(Ga, Al)5O12:Ce, 청색 BaMgAl10O17:Eu, 3Sr3(PO4)2ㅇCaCl:Eu
실리케이트계: 황색 및 녹색 (Ba, Sr)2SiO4:Eu, 황색 및 등색 (Ba, Sr)3SiO5:Eu, 적색 Ca2SiO4:Eu에 해당하는 Ca1.2Eu0.8SiO4
질화물계: 녹색 β-SiAlON:Eu, 황색 (La, Gd, Lu, Y,Sc)3Si6N11:Ce, 등색 α-SiAlON:Eu, 적색 (Sr, Ca)AlSiN3:Eu, (Sr, Ca)AlSi(ON)3:Eu, (Sr, Ca)2Si5N8:Eu, (Sr, Ca)2Si5(ON)8:Eu, (Sr, Ba)SiAl4N7:Eu, SrLiAl3N4:Eu, Ln4-x(EuzM1-z)xSi12-yAlyO3+x+yN18-x-y (0.5≤x≤3, 0<z<0.3, 0<y≤4) (단, 여기서 Ln은 IIIa 족 원소 및 희토류 원소로 이루어지는 군에서 선택되는 적어도 한 종의 원소이고, M은 Ca, Ba, Sr 및 Mg로 이루어지는 군에서 선택되는 적어도 한 종의 원소일 수 있다.)
황화물계: 적색 (Sr, Ca)S:Eu, (Y, Gd)2O2S:Eu, 녹색 SrGa2S4:Eu
플루오라이드(fluoride)계: KSF계 적색 K2SiF6:Mn4+, K2TiF6:Mn4+, NaYF4:Mn4+, NaGdF4:Mn4+
형광 물질 조성은 기본적으로 화학양론(stoichiometry)에 부합하여야 하며, 각 원소들은 주기율표상 각 족들 내 다른 원소로 치환이 가능하다. 예를 들어 Sr은 알칼리토금속(II)족의 Ba, Ca, Mg 등으로, Y은 란탄계열의 Tb, Lu, Sc, Gd 등으로 치환이 가능하다. 또한 활성제인 Eu 등은 원하는 에너지 준위에 따라 Ce, Tb, Pr, Er, Yb등으로 치환이 가능하며, 활성제 단독 또는 특성 변형을 위해 부활성제등이 추가로 적용될 수 있다.
또한, 형광 물질 대체 물질로 양자점(quantum dot, QD) 등의 물질들이 적용될 수 있으며, LED에 형광 물질과 QD를 혼합 또는 단독으로 사용될 수 있다.
QD는 CdSe, InP 등의 코어(core)(3nm∼10nm)와 ZnS, ZnSe 등의 셸(shell) (0.5nm∼2nm)및 코어-셸의 안정화를 위한 리간드의 구조로 구성될 수 있으며, 크기에 따라 다양한 칼라를 구현할 수 있다.
도 12는 본 발명의 기술적 사상에 의한 실시예들에 따른 청색 발광 소자를 사용한 백색 발광 소자 패키지의 응용 분야별 형광 물질 종류를 예시적으로 보여준다.
형광 물질 또는 양자점(QD)의 도포 방식은 크게 LED 칩 또는 발광 소자에 뿌리는 방식, 또는 막 형태로 덮는 방식, 필름 또는 세라믹 형광 물질 등의 시트 형태를 부착(attach)하는 방식 중 적어도 하나를 사용할 수 있다.
뿌리는 방식으로는 디스펜싱(dispensing), 스프레이 코팅 등이 일반적이며 디스펜싱은 공압(pneumatic) 방식과 스크루(screw), 리니어(linear) 타입 등의 기계적 방식을 포함한다. 제트(jetting) 방식으로 미량 토출을 통한 도팅량 제어 및 이를 통한 색좌표 제어도 가능하다. 웨이퍼레벨 또는 발광소자 기판 상에 스프레이 방식으로 형광 물질을 일괄 도포하는 방식은 생산성 및 두께 제어가 용이할 수 있다.
발광소자 또는 LED 칩 위에 막 형태로 직접 덮는 방식은 전기영동, 스크린 프린팅 또는 형광 물질의 몰딩 방식으로 적용될 수 있으며 칩 측면의 도포 유무 필요에 따라 해당 방식의차이점을 가질 수 있다.
발광 파장이 다른 2종 이상의 형광 물질 중 단파장에서 발광하는 광을 재흡수하는 장파장발광 형광 물질의 효율을 제어하기 위하여 발광 파장이 다른 2종 이상의 형광 물질층을 구분할 수 있으며, LED 칩과 형광 물질 2종 이상의 파장 재흡수 및 간섭을 최소화하기 위하여 각 층 사이에 DBR (ODR) 층을 포함할 수 있다.
균일 도포막을 형성하기 위하여 형광 물질을 필름 또는 세라믹 형태로 제작 후 칩 또는 발광 소자 위에 부착할 수 있다.
광 효율, 배광 특성에 차이점을 주기 위하여 리모트 형식으로 광변환 물질을 위치할 수 있으며, 이 때 광변환 물질은 내구성, 내열성에 따라 투광성고분자, 유리등의 물질 등과 함께 위치한다.
형광 물질 도포 기술은 LED 소자에서 광특성을 결정하는 가장 큰 역할을 하게 되므로, 형광 물질 도포층의 두께, 형광 물질 균일 분산 등의 제어 기술들이 다양하게 연구되고 있다. QD도 형광 물질과 동일한 방식으로 LED 칩 또는 발광소자에 위치할 수 있으며, 유리 또는 투광성 고분자 물질 사이에 위치하여 광 변환을 할 수도 있다.
LED 칩 또는 발광소자를 외부 환경으로부터 보호하거나, 발광소자 외부로 나가는 광 추출 효율을 개선하기 위하여 충진재로 투광성 물질을 상기 LED 칩 또는 발광소자 상에 위치할 수 있다.
이 때 적용되는 투광성 물질은 에폭시, 실리콘(silicone), 에폭시와 실리콘의 하이브리드 등의 투명 유기 소재가 적용되며, 가열, 광 조사, 시간 경과 등의 방식으로 경화하여 사용할 수 있다.
상기 실리콘은 폴리디메틸실록산을 메틸계로, 폴리메틸페닐실록산을 페닐계로 구분하며, 메틸계와 페닐계에 따라 굴절률, 투습률, 광투과율, 내광안정성, 내열안정성에 차이를 가지게 된다. 또한, 가교제와 촉매제에 따라 경화 속도에 차이를 가지게 되어 형광 물질 분산에 영향을 준다.
충진재의 굴절률에 따라 광 추출 효율은 차이를 가지게 되며, 청색광이 방출되는 부분의 칩 최외각 매질의 굴절률과 공기 중으로 방출되는 굴절률의 차이를 최소로 해주기 위하여 굴절률이 다른 2종 이상의 실리콘을 순차적으로 적층할 수 있다.
일반적으로 내열 안정성은 메틸계가 가장 안정하며, 페닐계, 하이브리드, 에폭시 순으로 온도 상승에 변화율이 적다. 실리콘은 경도에 따라 젤 타입, 엘라스토머 타입, 수지 타입으로 구분할 수 있다.
광원에서 조사된 빛을 방사상으로 안내하기 위해 발광 소자에 렌즈를 더 포함할 수 있으며, 렌즈는 기 성형된 렌즈를LED 칩 또는 발광소자 위에 부착하는 방식과 유동성의 유기 용제를LED 칩 또는 발광소자가 실장된 성형틀에 주입하여 고형화하는 방식 등을 포함한다.
렌즈 부착 방식은 칩 상부의충진재에 직접 부착하거나, 발광소자 외곽과 렌즈 외곽만 접착하여 충진재와 공간을 두는 방식 등이 있다. 성형틀에 주입하는 방식으로는 사출 성형(injection molding), 트랜스퍼 성형(transfer molding), 압축 성형(compression molding) 등의 방식이 사용될 수 있다.
렌즈의 형상 (오목, 볼록, 요철, 원뿔, 기하학 구조) 등에 따라 배광 특성이 변형되며, 효율 및 배광 특성의 요구에 맞게 변형이 가능하다.
상기 발광 소자는 예를 들면 반도체로 이루어질 수 있다. 예를 들면, 질화물 반도체로 이루어질 수 있는데, 상기 질화물 반도체는 일반식이 AlxGayInzN(0≤x≤1, 0≤y≤1, 0≤z≤1, x+y+z=1)으로 나타내어질 수 있다. 상기 발광 소자는, 예를 들면, MOCVD법 등의 기상성장법에 의해, 기판 상에 InN, AlN, InGaN,AlGaN, InGaAlN 등의 질화물 반도체를 에피택셜 성장시켜 구성할 수 있다. 또한, 상기 발광 소자는, 질화물 반도체 이외에도 ZnO, ZnS, ZnSe, SiC, GaP, GaAlAs, AlInGaP 등의 반도체를 이용해서 형성해도 된다. 이들 반도체는, n형 반도체층, 발광층, p형 반도체층의 순으로 형성한 적층체를 이용할 수 있다. 발광층(활성층)은, 다중 양자 우물 구조나 단일 양자 우물 구조를 한 적층 반도체 또는 더블 헤테로 구조의 적층 반도체를 이용할 수 있다. 상기 발광 소자는, 청색을 발광하도록 구성된 소자일 수 있으나, 여기에 한정되는 것은 아니다. 상기 발광 소자는 임의의 파장의 광을 방출하는 것으로 선택될 수 있다.
도 13a는 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지제조 방법에 의해 제조된 발광 소자 패키지가 배열된 발광 소자 어레이부를 포함하는 백라이트 어셈블리의 일 예를 나타내는 분리 사시도이다. 도 13b는 상기 백라이트 어셈블리에 포함될 수 있는 발광 모듈을 예시적으로 나타낸 단면도이다.
도 13a에 도시된 바와 같이, 직하형 백라이트 어셈블리(3000)는 하부 커버(3005), 반사 시트(3007), 발광 모듈(3010), 광학 시트(3020), 액정 패널(3030) 및 상부 커버(3040)를 포함할 수 있다. 본 발명의 예시적 실시예에 따라, 본 발명의 발광소자 어레이부는 직하형 백라이트 어셈블리(3000)에 포함된 발광 모듈(3010)로서 사용될 수 있다.
본 발명의 예시적 실시예에 따라, 발광 모듈(3010)은 하나 이상의 발광 소자 패키지와 회로 기판을 포함하는 발광소자 어레이(3012) 및 랭크 저장부(3013)를 포함할수 있다. 발광소자 어레이(3012)는 도 1 내지 도 12를 참조하여 설명한 발광 소자 패키지 등을 포함할 수 있으며, 발광소자 어레이(3012)는 직하형 백라이트 어셈블리(3000) 외부의 발광소자 구동부로부터 발광을 위한 전력을 공급받을 수 있고, 발광소자 구동부는 발광소자 어레이(3012)에 공급하는 전류 등을 조절할 수 있다.
일 실시 예로서, 상기 발광 모듈은 도 13b에 도시된 바와 같이 메인 영역에 해당되는 제1 평면부(1002a)와 그 주위에 배치되어 적어도 일부가 꺾인 경사부(1002b)와, 상기 경사부(1002b)의 외측인 회로 기판 (1002)의 모서리에 배치된 제2 평면부(1002c)를 가질 수 있다. 상기 제1 평면부(1002a) 상에는 제1 간격(d1)에 따라 광원이 배열되며, 상기 경사부(1002b) 상에도 제2 간격(d2)으로 하나 이상의 광원(1001)이 배열될 수 있다. 상기 제1 간격(d1)은 상기 제2 간격(d2)과 동일할 수 있다. 상기 경사부(1002b)의 폭(또는 단면에서는 길이)은 제1 평면부(1002a)의 폭보다 작으며 제2 평면부(1002c)의 폭에 비해서는 길게 형성될 수 있다. 또한, 제2 평면부(1002c)에도 필요에 따라 적어도 하나의 광원이 배열될 수 있다.
상기 경사부(1002b)의 기울기는 제1 평면부(1002a)를 기준으로 0 °보다는 크며 90° 보다는 작은 범위 안에서 적절하게 조절할 수 있다. 회로 기판(1002)은 이러한 구조를 취함으로써 광학시트의 가장자리 부근에서도 균일한 밝기를 유지할 수 있다.
광학 시트(3020)는 발광 모듈(3010)의 상부에 구비되며, 확산 시트(3021), 집광 시트(3022), 보호 시트(3023) 등을 포함할 수 있다. 즉, 발광 모듈(3010) 상부에 상기 발광 모듈(3010)로부터 발광된 빛을 확산시키는 확신 시트(3021), 확산 시트(3021)로부터 확산된 광을 모아 휘도를 높여주는 집광 시트(3022), 집광 시트(3022)를 보호하고 시야각을 확보하는 보호 시트(3023)가 순차적으로 마련될 수 있다.
상부 커버(3040)는 광학 시트(3020)의 가장자리를 테두리 치며, 하부 커버(3005)와 조립 체결될 수 있다.
상기 광학 시트(3020)와 상부 커버(3040) 사이에는 액정 패널(3030)을 더 구비할 수 있다. 상기 액정 패널(3030)은 액정층을 사이에 두고 서로 대면 합착된 한 쌍의 제1 기판(미도시) 및 제2 기판(미도시)을 포함할 수 있다. 상기 제1 기판에는 다수의 게이트 라인과다수의 데이터 라인이 교차하여 화소 영역을 정의하고, 각 화소 영역의 교차점마다 박막 트랜지스터(TFT)가 구비되어 각 화소 영역에 실장된 화소전극과 일대일 대응되어 연결된다. 제2 기판에는 각 화소 영역에 대응되는 R, G, B 컬러의 컬러필터와 이들 각각의 가장자리와 게이트라인과 데이터 라인 그리고 박막 트랜지스터 등을 가리는 블랙 매트릭스를 포함할 수 있다.
도 14는 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지 제조 방법에 의해 제조된 발광 소자 패키지가 배열된 발광소자 어레이부 및 발광소자 모듈을 포함하는 평판 조명 장치(4100)를 간략하게 나타내는 도면이다.
도 14를 참조하면, 평판 조명 장치(4100)는 광원(4110), 전원공급장치(4120) 및 하우징(4130)을 포함할 수 있다. 광원(4110)은 본 발명의 실시예들에 따른 발광 소자 패키지를 포함하는 발광소자 어레이부를 포함할 수 있다.
광원(4110)은 발광소자 어레이부를 포함할 수 있고, 도 14에 도시된바와 같이 전체적으로 평면 현상을 이루도록 형성될 수 있다.
전원공급장치(4120)는 광원(4110)에 전원을 공급하도록 구성될 수 있다.
하우징(4130)은 광원(4110) 및 전원공급장치(4120)가 내부에 수용되도록 수용 공간이 형성될 수 있고, 일측면에 개방된 육면체 형상으로 형성되나 이에 한정되는 것은 아니다. 광원(4110)은 하우징(4130)의 개방된 일측면으로 빛을 발광하도록 배치될 수 있다.
도 15는 본 발명의 LED 칩 제조 방법에 의해 제조된 LED 칩이 배열된 발광소자 어레이부 및 발광소자 모듈을 포함하는 조명 장치로서 벌브형 램프를 간략하게 나타내는 도면이다.
도 15를 참조하면, 조명 장치(4200)는 소켓(4210), 전원부(4220), 방열부(4230), 광원(4240) 및 광학부(4250)를 포함할 수 있다. 본 발명의 예시적 실시예에 따라, 광원(4240)은 본 발명의 예시적 실시예에 따른 발광 소자 패키지를 포함하는 발광소자 어레이부를 포함할 수 있다.
소켓(4210)은 기존의 조명 장치와 대체 가능하도록 구성될 수 있다. 조명 장치(4200)에 공급되는 전력은 소켓(4210)을 통해서 인가될 수 있다. 도시된 바와 같이, 전원부(4220)는 제1 전원부(4221) 및 제2 전원부(4222)로 분리되어 조립될 수 있다.
방열부(4230)는 내부 방열부(4231) 및 외부 방열부(4232)를 포함할 수 있고, 내부 방열부(4131)는 광원(4240) 및/또는 전원부(4220)와 직접 연결될 수 있고, 이를 통해 외부 방열부(4232)로 열이 전달되게 할 수 있다. 광학부(4250)는 내부 광학부(미도시) 및 외부 광학부(미도시)를 포함할 수 있고, 광원(4240)이 방출하는 빛을 고르게 분산시키도록 구성될 수 있다.
광원(4240)은 전원부(4220)로부터 전력을 공급받아 광학부(4250)로 빛을 방출할 수 있다. 광원(4240)은 전술한 본 발명의 예시적실시예들에 따른 발광소자 어레이부를 포함할 수 있다. 광원(4240)은 하나 이상의 발광 소자 패키지(4241), 회로기판(4242) 및 랭크 저장부(4243)를 포함할 수 있고, 랭크 저장부(4243)는 발광 소자 패키지(4241)들의 랭크 정보를 저장할 수 있다.
광원(4240)이 포함하는 복수의 발광 소자 패키지(4241)는 동일한 파장의 빛을 발생시키는 동종(同種)일 수 있다. 또는 서로 상이한파장의 빛을 발생시키는 이종(異種)으로 다양하게 구성될 수도 있다. 예를 들어, 발광소자 패키지(4241)는 청색 발광소자에 황색, 녹색, 적색 또는 오렌지색의 형광체를 조합하여 백색광을 발하는 발광소자와 보라색, 청색, 녹색, 적색 또는 적외선 발광소자 중 적어도 하나를 포함하도록 구성하여 백색 광의 색 온도 및 연색성(Color Rendering Index: CRI)을 조절하도록 할 수 있다. 또는 LED 칩이 청색 광을 발광하는 경우, 황색, 녹색, 적색 형광체 중 적어도 하나를 포함한 발광소자 패키지는 형광체의 배합 비에 따라 다양한 색 온도의 백색 광을 발광하도록 할 수 있다. 또는 상기 청색 LED 칩에 녹색 또는 적색 형광체를 적용한 발광소자 패키지는 녹색 또는 적색 광을 발광하도록 할 수 있다. 상기 백색 광을 내는 발광소자 패키지와 상기 녹색 또는 적색 광을 내는 패키지를 조합하여 백색 광의 색온도 및 연색성을 조절하도록 할 수 있다. 또한, 보라색, 청색, 녹색, 적색 또는 적외선을 발광하는 발광소자 중 적어도 하나를 포함하게 구성할 수도 있다. 이 경우, 조명 장치(4200)는 연색성을 나트륨(Na)등에서 태양광 수준으로 조절할 수 있으며 또한 색 온도를 1500K에서 20000K 수준으로 다양한 백색광을 발생시킬 수 있으며, 필요에 따라서는 보라색, 청색, 녹색, 적색, 오렌지색의 가시광 또는 적외선을 발생시켜 주위 분위기 또는 기분에 맞게 조명 색을 조절할 수 있다. 또한, 식물 성장을 촉진할 수 있는 특수 파장의 광을 발생시킬 수도 있다.
도 16 및 도 17는 본 발명의 기술적 사상에 의한 실시예들에 따른 발광 소자 패키지를 포함하는 조명 시스템이 적용되는 홈 네트워크의 예를 보여주는 도면들이다.
도 16에 도시된바와 같이, 홈 네트워크는 홈 무선 라우터(2000), 게이트웨이 허브(2010), 지그비(ZigBee) 모듈(2020), LED 램프(2030), 창고(garage) 도어 락(door lock; 2040), 무선 도어 락(2050), 홈 어플리케이션(2060), 휴대폰(2070), 벽에 장착된 스위치(2080), 및 클라우드 망(2090)을 포함할 수 있다.
가정 내 무선 통신(ZigBee, WiFi 등)을 활용하여 침실, 거실, 현관, 창고, 가전제품 등의 동작 상태 및 주위 환경/상황에 따라 LED 램프(2030)의 조명 밝기를 자동으로 조절하는 기능을 수행할 수 있다.
예를 들면, 도 17에 도시된 바와 같이, TV(3030)에서 방송되고 있는 프로그램의 종류 또는 화면의 밝기에 따라 LED 램프(3020B)의 조명 밝기를 게이트웨이(3010) 및 지그비 모듈(3020A)을 이용하여 자동으로 조절될 수 있다. 예로서, 휴먼 드라마 등이 상영되어 아늑한 분위기가 필요할 때는 조명도 거기에 맞게 색 온도가 2,000K ~ 5,000K 범위 또는 2,000K이하로 낮아지도록 색감을 조절할 수 있다. 다른 예로서, 개그 프로그램과 같은 가벼운 분위기에서는 조명도색온도가 4,000 ~ 7,000K 범위 또는 7,000K 이상으로 높아지고, 푸른색계열의 백색조명으로 조절할 수 있다.
위의 지그비 모듈(2020, 3020A)은 광센서와 일체형으로 모듈화할 수 있으며, 예를 들면 발광 장치(4200)의 광원(4240)과 일체형으로 구성할수 있다.
가시광 무선통신 기술은 인간이 눈으로 인지할 수 있는 가시광 파장 대역의 빛을 이용하여 무선으로 정보를 전달하는 무선통신 기술이다. 이러한가시광 무선통신 기술은 가시광 파장 대역의 빛을 이용한다는 측면에서 기존의 유선 광통신기술 및 적외선 무선통신과 구별되며, 통신 환경이 무선이라는 측면에서 유선 광통신 기술과 구별된다. 또한, 가시광 무선통신 기술은RF 무선통신과 달리 주파수 이용 측면에서 규제 또는 허가를 받지 않고 자유롭게 이용할 수 있다는 편리성과 물리적 보안성이 우수하고 통신 링크를 사용자가 눈으로 확인할 수 있다는 차별성을 가지고 있으며, 무엇보다도 광원의고유 목적과 통신기능을 동시에 얻을 수 있다는 융합 기술로서의 특징을 가지고 있다. 따라서 상기 가시광 무선 통신 기능을 내장한 상기 스마트 광원(4240)을 이용하여 도 16 및 도 17에서 설명한 스마트 홈 네트워킹이 가능해 질 수 있다.
또한 LED조명은 차량용 내외부 광원으로 활용 가능하다. 내부 광원으로는 차량용 실내등, 독서등, 계기판의 각종 광원 등으로 사용 가능하며, 차량용 외부 광원으로 전조등, 브레이크등, 방향지시등, 안개등, 주행등 등 모든 광원에 사용 가능하다.
특수한 파장대를 이용한 LED는 식물의 성장을 촉지 시키고, 사람의기분을 안정시키거나 병을 치료 할 수도 있다. 로봇 또는 각종 기계 설비에 사용되는 광원으로 LED가 적용 될 수 있다. 상기 LED의 저소비전력 및 장수명과 결부하여 태양전지, 풍력 등 자연친화적인 신재생에너지 전원 시스템에 의한 조명 구현도 가능하다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.
101: 기판
110: 발광 소자
120: 형광층
130: 캐리어
140: 성형 툴
142: 블레이드
150: 형광 물질 공급 유닛
162: 테스트 발광 소자
164: 광 검출기
244, 344, 346: 롤러

Claims (10)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 제1 면 및 상기 제1 면에 대향하는 제2 면을 구비한 캐리어를 준비하는 단계와,
    상기 캐리어의 상기 제1 면 상에 형광막을 형성하는 단계와,
    상기 캐리어의 상기 제2 면 방향에서 테스트 발광 소자를 이용하여 제1 광을 방출하는 단계와,
    상기 제1 광 중 상기 형광막을 통과한 제2 광을 분석하여, 상기 형광막의 두께를 측정하는 단계를 포함하고,
    상기 형광막에서 방출되는 상기 제2 광은 청색광 및 황색광을 포함하고,
    상기 형광막의 두께를 측정하는 단계는
    상기 제2 광의 파장에 따른 발광 강도 스펙트럼을 수집하는 단계와,
    상기 스펙트럼에서의 상기 청색광의 최대 발광 강도(Ib) 및 상기 황색광의 최대 발광 강도(Iy)의 비율을 산정하는 단계를 포함하는 것을 특징으로 하는 발광 소자 패키지 제조 방법.
  5. 제4 항에 있어서,
    상기 형광막의 두께(d)는 다음 식
    Figure 112014095215034-pat00023
    , (a1, b1은 상수)
    으로 표시되는 것을 특징으로 하는 발광 소자 패키지 제조 방법.
  6. 제1 면 및 상기 제1 면에 대향하는 제2 면을 구비한 캐리어를 준비하는 단계와,
    상기 캐리어의 상기 제1 면 상에 형광막을 형성하는 단계와,
    상기 캐리어의 상기 제2 면 방향에서 테스트 발광 소자를 이용하여 제1 광을 방출하는 단계와,
    상기 제1 광 중 상기 형광막을 통과한 제2 광을 분석하여, 상기 형광막의 두께를 측정하는 단계를 포함하고,
    상기 형광막에서 방출되는 상기 제2 광은 청색광 및 황색광을 포함하고,
    상기 형광막의 두께를 측정하는 단계는
    상기 제2 광의 파장에 따른 발광 강도 스펙트럼을 수집하는 단계와,
    상기 청색광 파장 영역 내에서의 총 광량(Ibt) 및 상기 황색광 파장 영역 내에서의 총 광량(Iyt)의 비율을 산정하는 단계를 포함하는 것을 특징으로 하는 발광 소자 패키지 제조 방법.
  7. 제6 항에 있어서,
    상기 형광막의 두께(d)는 다음 식
    Figure 112014095215034-pat00024
    , (a2, b2는 상수)
    으로 표시되는 것을 특징으로 하는 발광 소자 패키지 제조 방법.
  8. 캐리어 상에 형광 물질을 도포하는 단계와,
    성형 툴을 이용하여 상기 형광 물질로부터 형광막을 형성하는 단계와,
    테스트 발광 소자 및 광 검출기를 이용하여 실시간으로 상기 형광막의 두께를 측정하는 단계와,
    상기 측정된 형광막의 두께를 피드백하여, 상기 형광막의 두께가 특정 스펙을 충족하도록 실시간으로 상기 성형 툴을 조정하는 단계와,
    상기 형광막을 소잉하여 개별화된 형광층을 형성하는 소잉 단계를 포함하는 발광 소자 패키지 제조 방법.
  9. 제8 항에 있어서,
    발광 칩을 준비하는 단계와,
    픽업 툴을 이용하여 상기 개별화된 형광층을 상기 발광 칩에 부착하는 단계를 더 포함하는 것을 특징으로 하는 발광 소자 패키지 제조 방법.
  10. 제8 항에 있어서,
    상기 테스트 발광 소자는 청색 LED(light emitting device)이고, 상기 형광 물질은 황색 형광 물질인 것을 특징으로 하는 발광 소자 패키지 제조 방법.
KR1020140134475A 2014-10-06 2014-10-06 발광 소자 패키지 제조 방법 Active KR102224848B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140134475A KR102224848B1 (ko) 2014-10-06 2014-10-06 발광 소자 패키지 제조 방법
US14/741,192 US9368694B2 (en) 2014-10-06 2015-06-16 Method of fabricating light-emitting device package
CN201510642515.6A CN105489735B (zh) 2014-10-06 2015-09-30 制造发光器件封装件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140134475A KR102224848B1 (ko) 2014-10-06 2014-10-06 발광 소자 패키지 제조 방법

Publications (2)

Publication Number Publication Date
KR20160040929A KR20160040929A (ko) 2016-04-15
KR102224848B1 true KR102224848B1 (ko) 2021-03-08

Family

ID=55633409

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140134475A Active KR102224848B1 (ko) 2014-10-06 2014-10-06 발광 소자 패키지 제조 방법

Country Status (3)

Country Link
US (1) US9368694B2 (ko)
KR (1) KR102224848B1 (ko)
CN (1) CN105489735B (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI637533B (zh) * 2015-01-16 2018-10-01 晶元光電股份有限公司 半導體發光元件
US9793436B2 (en) 2015-01-16 2017-10-17 Epistar Corporation Semiconductor light-emitting device
KR102471102B1 (ko) * 2015-10-23 2022-11-25 서울바이오시스 주식회사 분포 브래그 반사기를 가지는 발광 다이오드 칩
JP6670683B2 (ja) * 2016-06-07 2020-03-25 株式会社Screenラミナテック キャリア基板と樹脂層からなるワークの分離方法および分離装置
JP6819282B2 (ja) * 2016-12-27 2021-01-27 日亜化学工業株式会社 発光装置の製造方法
CN108807636B (zh) * 2017-04-28 2020-07-03 光宝光电(常州)有限公司 紫外光发光二极管封装结构、紫外光发光单元及其制造方法
TWI620351B (zh) * 2017-04-28 2018-04-01 光寶光電(常州)有限公司 紫外光發光二極體封裝結構、紫外光發光單元、及紫外光發光單元的製造方法
DE102018103171A1 (de) * 2017-11-23 2019-05-23 Tdk Electronics Ag Verfahren zum Bestimmen von Eigenschaften einer Beschichtung auf einer transparenten Folie, Verfahren zur Herstellung einer Kondensatorfolie und Einrichtung zum Bestimmen von Eigenschaften einer Beschichtung auf einer transparenten Folie
US10797027B2 (en) 2017-12-05 2020-10-06 Seoul Semiconductor Co., Ltd. Displaying apparatus having light emitting device, method of manufacturing the same and method of transferring light emitting device
CN110335925A (zh) * 2019-07-22 2019-10-15 广东省半导体产业技术研究院 一种芯片结构及其制作方法
US11694323B2 (en) * 2020-04-23 2023-07-04 Camx Power Llc Image-based sensor for measuring rotational position of a rotating shaft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145300A (ja) 2006-12-11 2008-06-26 Sharp Corp 蛍光体層厚み判定方法および発光装置の製造方法
JP2008205511A (ja) 2001-10-12 2008-09-04 Nichia Chem Ind Ltd 発光装置及びその製造方法
WO2012086483A1 (ja) 2010-12-21 2012-06-28 コニカミノルタオプト株式会社 蛍光体塗布装置および発光装置の製造方法
JP2012138536A (ja) * 2010-12-28 2012-07-19 Konica Minolta Advanced Layers Inc 発光装置の製造方法
JP2014127594A (ja) 2012-12-26 2014-07-07 Nichia Chem Ind Ltd 発光装置の製造方法およびスプレーコーティング装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1143394C (zh) 1996-08-27 2004-03-24 精工爱普生株式会社 剥离方法、溥膜器件的转移方法和薄膜器件
USRE38466E1 (en) 1996-11-12 2004-03-16 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US6252237B1 (en) 1998-07-15 2001-06-26 3M Innovation Properties Company Low cost thickness measurement method and apparatus for thin coatings
US7208725B2 (en) 1998-11-25 2007-04-24 Rohm And Haas Electronic Materials Llc Optoelectronic component with encapsulant
JP3906654B2 (ja) 2000-07-18 2007-04-18 ソニー株式会社 半導体発光素子及び半導体発光装置
EP1420463A4 (en) 2001-08-22 2008-11-26 Sony Corp NITRID SEMICONDUCTOR ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
JP2003218034A (ja) 2002-01-17 2003-07-31 Sony Corp 選択成長方法、半導体発光素子及びその製造方法
JP3815335B2 (ja) 2002-01-18 2006-08-30 ソニー株式会社 半導体発光素子及びその製造方法
JP3723845B2 (ja) 2002-03-26 2005-12-07 国立大学法人富山大学 有機エレクトロルミネッセンス素子に使用される有機薄膜の膜厚測定法および測定装置
JP2004012419A (ja) 2002-06-11 2004-01-15 Fuji Photo Film Co Ltd 蛍光体層成膜方法および蛍光体シート製造装置
KR100499129B1 (ko) 2002-09-02 2005-07-04 삼성전기주식회사 발광 다이오드 및 그 제조방법
US7002182B2 (en) 2002-09-06 2006-02-21 Sony Corporation Semiconductor light emitting device integral type semiconductor light emitting unit image display unit and illuminating unit
KR100714639B1 (ko) 2003-10-21 2007-05-07 삼성전기주식회사 발광 소자
KR100506740B1 (ko) 2003-12-23 2005-08-08 삼성전기주식회사 질화물 반도체 발광소자 및 그 제조방법
JP2006098339A (ja) * 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd 放射線像変換パネルの製造方法
KR100664985B1 (ko) 2004-10-26 2007-01-09 삼성전기주식회사 질화물계 반도체 소자
KR20060115452A (ko) 2005-05-06 2006-11-09 삼성에스디아이 주식회사 형광체 필름의 두께조절 방법 및 이를 이용한 형광체필름의 형성방법
KR100665222B1 (ko) 2005-07-26 2007-01-09 삼성전기주식회사 확산재료를 이용한 엘이디 패키지 및 그 제조 방법
KR100661614B1 (ko) 2005-10-07 2006-12-26 삼성전기주식회사 질화물계 반도체 발광소자 및 그 제조방법
KR100723247B1 (ko) 2006-01-10 2007-05-29 삼성전기주식회사 칩코팅형 led 패키지 및 그 제조방법
JP4749870B2 (ja) 2006-01-24 2011-08-17 新光電気工業株式会社 発光装置の製造方法
KR100735325B1 (ko) 2006-04-17 2007-07-04 삼성전기주식회사 발광다이오드 패키지 및 그 제조방법
KR100930171B1 (ko) 2006-12-05 2009-12-07 삼성전기주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
US9024349B2 (en) * 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
KR100855065B1 (ko) 2007-04-24 2008-08-29 삼성전기주식회사 발광 다이오드 패키지
KR100982980B1 (ko) 2007-05-15 2010-09-17 삼성엘이디 주식회사 면 광원 장치 및 이를 구비하는 lcd 백라이트 유닛
KR101164026B1 (ko) 2007-07-12 2012-07-18 삼성전자주식회사 질화물계 반도체 발광소자 및 그 제조방법
KR100891761B1 (ko) 2007-10-19 2009-04-07 삼성전기주식회사 반도체 발광소자, 그의 제조방법 및 이를 이용한 반도체발광소자 패키지
KR101332794B1 (ko) 2008-08-05 2013-11-25 삼성전자주식회사 발광 장치, 이를 포함하는 발광 시스템, 상기 발광 장치 및발광 시스템의 제조 방법
KR20100030470A (ko) 2008-09-10 2010-03-18 삼성전자주식회사 다양한 색 온도의 백색광을 제공할 수 있는 발광 장치 및 발광 시스템
KR101530876B1 (ko) 2008-09-16 2015-06-23 삼성전자 주식회사 발광량이 증가된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
US7858409B2 (en) 2008-09-18 2010-12-28 Koninklijke Philips Electronics N.V. White point compensated LEDs for LCD displays
US8008683B2 (en) 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device
JP5759790B2 (ja) * 2010-06-07 2015-08-05 株式会社東芝 半導体発光装置の製造方法
KR101767100B1 (ko) * 2010-11-10 2017-08-10 삼성전자주식회사 발광 디바이스 및 그 제조방법
KR20130014256A (ko) * 2011-07-29 2013-02-07 엘지이노텍 주식회사 발광 소자 패키지 및 이를 이용한 조명 시스템
JP5972571B2 (ja) 2011-12-28 2016-08-17 日東電工株式会社 光半導体装置および照明装置
KR20130125146A (ko) 2012-05-08 2013-11-18 삼성전자주식회사 파장변환층 형성 장치 및 이를 사용한 파장변환층 형성 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205511A (ja) 2001-10-12 2008-09-04 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2008145300A (ja) 2006-12-11 2008-06-26 Sharp Corp 蛍光体層厚み判定方法および発光装置の製造方法
WO2012086483A1 (ja) 2010-12-21 2012-06-28 コニカミノルタオプト株式会社 蛍光体塗布装置および発光装置の製造方法
JP2012138536A (ja) * 2010-12-28 2012-07-19 Konica Minolta Advanced Layers Inc 発光装置の製造方法
JP2014127594A (ja) 2012-12-26 2014-07-07 Nichia Chem Ind Ltd 発光装置の製造方法およびスプレーコーティング装置

Also Published As

Publication number Publication date
CN105489735A (zh) 2016-04-13
CN105489735B (zh) 2018-01-23
US20160099388A1 (en) 2016-04-07
US9368694B2 (en) 2016-06-14
KR20160040929A (ko) 2016-04-15

Similar Documents

Publication Publication Date Title
KR102224848B1 (ko) 발광 소자 패키지 제조 방법
US11631791B2 (en) Semiconductor light-emitting device
US10347804B2 (en) Light source package and display device including the same
KR102415331B1 (ko) 발광 소자 패키지, 및 이를 포함하는 장치
US9543475B2 (en) Light emitting device and method of manufacturing the same
US9905739B2 (en) Light emitting packages
KR101974354B1 (ko) 발광소자 패키지 및 그 제조 방법
KR20170121777A (ko) 반도체 발광장치
KR20160141302A (ko) 반도체 발광다이오드 칩 및 이를 구비한 발광장치
US20140070243A1 (en) Light-emitting device and method of manufacturing the same
KR20160130919A (ko) 발광다이오드 패키지
US9681509B2 (en) Light-emitting device package and electronic device including light-emitting device
KR20160057163A (ko) 발광 소자
KR20160098580A (ko) 광학 소자 및 이를 포함하는 광원 모듈
US20160284927A1 (en) Method of manufacturing semiconductor device package such as light-emitting diode package
KR20160149846A (ko) 발광 소자 패키지 및 그 제조 방법
KR20160143984A (ko) 광학 소자 및 이를 포함하는 광원 모듈

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20141006

PG1501 Laying open of application
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20190909

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20141006

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200807

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210219

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210302

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210303

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20240227

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20250225

Start annual number: 5

End annual number: 5