[go: up one dir, main page]

KR102136794B1 - 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 - Google Patents

우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 Download PDF

Info

Publication number
KR102136794B1
KR102136794B1 KR1020170029852A KR20170029852A KR102136794B1 KR 102136794 B1 KR102136794 B1 KR 102136794B1 KR 1020170029852 A KR1020170029852 A KR 1020170029852A KR 20170029852 A KR20170029852 A KR 20170029852A KR 102136794 B1 KR102136794 B1 KR 102136794B1
Authority
KR
South Korea
Prior art keywords
copper foil
copper
secondary battery
layer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020170029852A
Other languages
English (en)
Other versions
KR20180103231A (ko
Inventor
김승민
김선화
Original Assignee
케이씨에프테크놀로지스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이씨에프테크놀로지스 주식회사 filed Critical 케이씨에프테크놀로지스 주식회사
Priority to KR1020170029852A priority Critical patent/KR102136794B1/ko
Priority to JP2018029281A priority patent/JP6600023B2/ja
Priority to TW107107101A priority patent/TWI668903B/zh
Priority to US15/914,568 priority patent/US10741848B2/en
Priority to CN201810188003.0A priority patent/CN108574104B/zh
Publication of KR20180103231A publication Critical patent/KR20180103231A/ko
Application granted granted Critical
Publication of KR102136794B1 publication Critical patent/KR102136794B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/37Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0642Anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/12

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명의 일 실시예는, 구리층 및 상기 구리층 상에 배치된 보호층을 포함하고, 상기 보호층의 표면은 0.6㎛ 내지 3.5㎛의 최대 높이 조도(Rmax), 5개 내지 110개의 피크 밀도(Peak Density: PD) 및 22 at%(atomic %, 원자%) 내지 67at%의 산소 함량을 갖는 동박을 제공한다.

Description

우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법{COPPER FOIL HAVING IMPROVED ADHESHION PROPERTY, ELECTRODE COMPRISNG THE SAME, SECONDARY BATTERY COMPRISING THE SAME AND METHOD FOR MANUFACTURING THE SAME}
본 발명은 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법에 관한 것이다.
이차전지는 전기 에너지를 화학 에너지의 형태로 바꾸어 저장하였다가 전기가 필요할 때 화학 에너지를 다시 전기 에너지로 변환시킴으로써 전기를 발생시키는 에너지 변환 기기의 일종으로서, 재충전이 가능하다는 점에서 "충전식 전지(rechargeable battery)"로도 지칭된다.
이러한 이차전지로, 납 축전지, 니켈카드뮴 이차전지, 니켈수소 이차전지, 리튬 이차전지 등이 있다. 이 중 리튬 이차전지는 다른 이차전지들에 비해 크기 및 중량 대비 많은 에너지를 저장할 수 있다. 따라서, 휴대성 및 이동성이 중요한 정보통신기기 분야에서 특히 리튬 이차전지가 선호되고 있으며, 하이브리드 자동차 및 전기 자동차의 에너지 저장 장치로도 그 응용 범위가 확대되고 있다.
최근, 이차전지의 대용량화를 위해, 음극 활물질로 주석이나 실리콘 등을 포함하는 금속계 활물질들이 사용되고 있다. 이러한 금속계 활물질은 충방전시 큰 부피 팽창율을 가지기 때문에, 종래의 카본계 활물질과 비교하여 음극의 전류 집전체인 동박으루터 쉽게 탈리되며, 이러한 탈리에 의해 전지 수명이 단축되는 문제점 있다. 이를 해결하기 위해, 동박과 활물질간의 밀착력을 증대시키는 것이 필요하다.
동박과 음극 활물질과의 밀착력을 증가시키는 방법으로 동박의 표면 조도(Surface Roughness)를 높이는 방법이 있다. 그러나, 동박의 표면 조도를 높이는 것만으로는 동박과 음극 활물질과의 밀착력을 증가시키는데 한계가 있으며, 필요로 하는 밀착력을 얻을 수 없는 경우가 발생한다.
따라서, 본 발명은 위와 같은 관련 기술의 제한 및 단점들에 기인한 문제점들을 해결할 수 있는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법에 관한 것이다.
본 발명의 일 실시예는 동박 표면의 물리적 특성뿐만 아니라 화학적 특성이 개량되어, 활물질과의 우수한 밀착력을 갖는 동박을 제공하고자 한다.
본 발명의 다른 일 실시예는 특히, 동박 표면의 최대 높이 조도, 피크 밀도 및 산소 함량 조절에 의하여, 동박의 밀착력을 향상시키고자 한다.
본 발명의 또 다른 일 실시예는, 활물질과 우수한 밀착력을 갖는 동박을 포함하는 이차전지용 전극을 제공하고 한다.
본 발명의 또 다른 일 실시예는 이러한 이차전지용 전극을 포함하는 이차전지를 제공하고자 한다.
본 발명의 또 다른 일 실시예는, 활물질과 우수한 밀착력을 갖는 동박의 제조방법을 제공하고 한다.
위에서 언급된 본 발명의 관점들 외에도, 본 발명의 다른 특징 및 이점들이 이하에서 설명되거나, 그러한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이러한 과제를 해결하기 위해, 본 발명의 일 실시예는, 구리층 및 상기 구리층 상에 배치된 보호층을 포함하고, 상기 보호층의 표면은 0.6㎛ 내지 3.5㎛의 최대 높이 조도(Rmax), 5개 내지 110개의 피크 밀도(Peak Density: PD) 및 22 at%(atomic %, 원자%) 내지 67at%의 산소 함량을 갖는 동박을 제공한다.
상기 보호층은 크롬, 실란 화합물 및 질소 화합물 중 적어도 하나를 포함할 수 있다.
상기 동박은 25±15℃의 상온에서 25 kgf/mm2 이상의 항복 강도를 갖는다.
상기 동박은 25±15℃의 상온에서 2% 이상의 연신율을 갖는다.
상기 동박은 하기 식 1로 표현되는, 0.55 kgf/mm2 이상의 연신 강도율을 갖는다.
[식 1]
연신 강도율(kgf/mm2) = 항복강도(kgf/mm2) x 연신율 값
여기서, 연신율 값은 단위가 없다.
상기 동박은 4㎛ 내지 30㎛의 두께를 갖는다.
본 발명의 다른 일 실시예는, 동박 및 상기 동박 상에 배치된 활물질층을 포함하고, 상기 동박은 구리층 및 상기 구리층과 상기 활물질층 사이에 배치된 보호층을 포함하고, 상기 동박의 표면은 0.6㎛ 내지 3.5㎛의 높이 최대 조도(Rmax), 5개 내지 110개의 피크 밀도(PD) 및 22 at% 내지 67 at%의 산소 함량을 갖는 이차전지용 전극을 제공한다.
상기 보호층은 크롬, 실란 화합물 및 질소 화합물 중 적어도 하나를 포함할 수 있다.
상기 동박은 25±15℃의 상온에서 25 kgf/mm2 이상의 항복 강도를 갖는다.
상기 동박은 25±15℃의 상온에서 2% 이상의 연신율을 갖는다.
상기 동박은 0.55 이상의 연신 강도율을 갖는다.
상기 동박은 4㎛ 내지 30㎛의 두께를 갖는다.
본 발명의 또 다른 일 실시예는, 양극(cathode), 전술한 이차전지용 전극으로 이루어진 음극(anode), 상기 양극과 상기 음극 사이에 배치되어 리튬 이온이 이동할 수 있는 환경을 제공하는 전해질(electrolyte) 및 상기 양극과 상기 음극을 전기적으로 절연시켜 주는 분리막(separator)을 포함하는 이차전지를 제공한다.
본 발명의 또 다른 일 실시예는, 구리 이온을 포함하는 전해액 내에 서로 이격되게 배치된 양극판 및 회전 음극드럼을 40 내지 80 A/dm2의 전류밀도로 통전시켜 구리층을 형성하는 단계 및 크롬(Cr)을 포함하는 방청액 내에 상기 구리층을 침지시켜, 상기 구리층 상에 보호층을 형성시키는 단계를 포함하며, 상기 방청액은 1.5 내지 4.2의 pH 및 5ppm 미만의 용존 산소량을 갖는 동박의 제조방법을 제공한다.
상기 전해액은 70 내지 90 g/L의 구리 이온 및 80 내지 120 g/L의 황산을 포함한다.
상기 전해액 내의 전체 무기 탄소량(Total Inorganic Carbon, TIC)은 0.05 g/L 이하이다.
상기 전해액 내의 철(Fe) 이온의 농도는 0.30 g/L 이하이다.
상기 구리층 형성 단계는, 활성탄을 이용하여 상기 전해액을 여과하는 단계를 포함한다.
상기 구리층 형성 단계는, 상기 전해액을 오존(O3) 처리하는 단계를 포함한다.
상기 구리층 형성 단계는, 상기 전해액에 과산화수소 및 공기를 투입하는 단계를 포함한다.
상기 구리층 형성 단계는, 구리 와이어를 열처리하는 단계, 상기 열처리된 구리 와이어를 산세하는 단계 및 상기 산세된 구리 와이어를 전해액용 황산에 투입하는 단계를 포함한다.
상기 구리 와이어를 열처리하는 단계에서, 상기 구리 와이어는 600 내지 900℃의 온도에서 30 내지 60 분 동안 열처리된다.
상기 방청액의 상기 크롬(Cr)은 1.5 내지 3.0 g/L의 농도를 갖는다.
위와 같은 본 발명에 대한 일반적 서술은 본 발명을 예시하거나 설명하기 위한 것일 뿐으로서, 본 발명의 권리범위를 제한하지 않는다.
본 발명의 일 실시예에 따른 동박은 우수한 물리적 특성 및 화학적 특성을 가져 활물질에 대해 우수한 밀착력을 갖는다. 또한, 이러한 동박을 포함하는 이차전지용 전극은 우수한 박리방지 특성을 가지며, 이러한 이차전지용 전극을 포함하는 이차전지는 우수한 전기적 특성 및 내구성을 가질 수 있다.
첨부된 도면은 본 발명의 이해를 돕고 본 명세서의 일부를 구성하기 위한 것으로서, 본 발명의 실시예들을 예시하며, 발명의 상세한 설명과 함께 본 발명의 원리들을 설명한다.
도 1은 본 발명의 일 실시예에 따른 동박의 개략적인 단면도이다.
도 2는 ASME B46.1 규격에 따라 얻어진 표면 조도 프로파일이다.
도 3a는 오제 전자(Auger electron)의 발생을 설명하는 개략도이다.
도 3b는 오제 전자 분광법에 의해 측정된 원자 함량 그래프이다.
도 4는 본 발명의 다른 일 실시예에 따른 동박의 개략적인 단면도이다.
도 5는 본 발명의 또 다른 일 실시예에 따른 이차전지용 전극의 개략적인 단면도이다.
도 6은 본 발명의 또 다른 일 실시예에 따른 이차전지용 전극의 개략적인 단면도이다.
도 7은 본 발명의 또 다른 일 실시예에 따른 이차전지의 개략적인 단면도이다.
도 8는 도 4에 도시된 동박의 제조 공정에 대한 개략도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다.
본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위 내에서 본 발명의 다양한 변경 및 변형이 가능하다는 점은 당업자에게 자명할 것이다. 따라서, 본 발명은 특허청구범위에 기재된 발명 및 그 균등물의 범위 내의 변경과 변형을 모두 포함한다.
본 발명의 실시예들을 설명하기 위해 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로, 본 발명이 도면에 도시된 사항에 의해 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 구성 요소는 동일 참조 부호로 지칭될 수 있다.
본 명세서에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이라는 표현이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소가 단수로 표현된 경우, 특별히 명시적인 기재 사항이 없는 한 복수를 포함한다. 또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석된다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
다양한 구성요소들을 서술하기 위해, '제1', '제2' 등과 같은 표현이 사용되지만, 이들 구성요소들은 이러한 용어에 의해 제한되지 않는다. 이러한 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 동박(100)의 개략적인 단면도이다.
도 1을 참조하면, 동박(100)은 구리층(110) 및 구리층(110) 상에 배치된 보호층(210)을 포함한다.
본 발명의 일 실시예에 따른 구리층(110)은 매트면(matte surface)(MS) 및 그 반대편의 샤이니면(shiny surface)(SS)을 갖는다.
구리층(110)은, 예를 들어, 전기 도금을 통해 회전 음극드럼 상에 형성될 수 있다(도 8 참조). 이 때, 샤이니면(SS)은 전기 도금 과정에서 회전 음극드럼과 접촉하였던 면을 지칭하고, 매트면(MS)은 샤이니면(SS)의 반대 편 면을 지칭한다.
샤이니면(SS)이 매트면(MS)에 비해 더 낮은 표면조도(Rz)를 갖는 것이 일반적이기는 하지만, 본 발명의 일 실시예가 이에 한정되는 것은 아니며 샤이니면(SS)의 표면조도(Rz)가 매트면(MS)의 표면조도(Rz)와 동일하거나 더 높을 수도 있다.
보호층(210)은 구리층(110)의 매트면(MS) 및 샤이니면(SS) 중 적어도 하나에 배치될 수 있다. 도 1을 참조하면, 보호층(210)이 매트면(MS)에 배치된다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 보호층(210)은 샤이니면(SS)에만 배치될 수도 있고, 매트면(MS)과 샤이니면(SS) 모두에 배치될 수도 있다. 구리층(110)의 매트면(MS)에 배치된 보호층(210)을 제1 보호층이라고도 한다.
보호층(210)은 구리층(110)을 보호한다. 보호층(210)은 보존 과정에서 동박(100)이 산화되거나 변질되는 것을 방지할 수 있다.
본 발명의 일 실시예에 따르면, 보호층(210)은 크롬(Cr), 실란 화합물 및 질소 화합물 중 적어도 하나를 포함한다.
예를 들어, 크롬(Cr)을 포함하는 방청액, 예를 들어 크롬산 화합물을 포함하는 방청액에 의하여 보호층(210)이 만들어질 수 있다. 이러한 보호층(210)은 방청 기능을 가지며, 방청막이라고도 한다.
또한, 보호층(210)은 실란 화합물 및 질소 화합물 중 적어도 하나를 포함할 수도 있다. 실란 화합물은 올레핀기, 에폭시기, 아미노기, 또는 메르캅토기(mercapto group)를 가질 수 있다.
본 발명의 일 실시예에 다르면, 동박(100)은 구리층(110)을 기준으로 매트면(MS) 방향의 제1 면(S1) 및 샤이니면(SS) 방향의 제2 면(S2)을 갖는다. 동박(100)의 제1 면(S1)과 제2 면(S2)는 각각 동박(100)의 표면이다. 또한, 도 1을 참조하면, 동박(100)의 제1 면(S1)은 보호층(210)의 표면이다. 즉, 본 발명의 일 실시예에 따르면 동박(100)의 표면들(S1, S2) 중 제1 면(S1)과 보호층(210)의 표면은 동일하다.
도 1에 개시된 실시예를 설명함에 있어서, 동박(100)의 표면들(S1, S2) 중 하나인 제1 면(S1)을 보호층(210)의 표면이라도 하고, 동박(100)의 표면과 보호층(210)의 표면을 모두 지시 부호 "S1"으로 표시하기도 한다.
본 발명의 일 실시예에 따르면, 동박(100)의 표면인 제1 면(S1)과 제2 면(S2)은 각각 0.6㎛ 이상 3.5㎛ 이하의 최대 높이 조도(Maximum Height Roughness, Rmax), 5개 내지 110개의 피크 밀도(Peak Density: PD) 및 22 at%(atomic %, 원자%) 내지 67at%의 산소 함량을 갖는다.
보다 구체적으로, 보호층(210)의 표면은 0.6㎛ 내지 3.5㎛의 최대 높이 조도(Rmax)를 갖는다.
최대 높이 조도(Rmax)는 JIS B 0601-2001 규격에 따라 조도계로 측정될 수 있다. 구체적으로, 본 발명의 일 실시예에 따르면 Mitutoyo SJ-310 모델에 의해 최대 높이 조도(Rmax)가 측정될 수 있다. 이 때, 컷 오프(Cut off) 길이를 제외한 측정 길이는 4mm이며, 컷 오프(Cut off) 길이는 초기와 말기 각각 0.8mm로 할 수 있다. 또한, 스틸러스 팁(Stylus Tip)의 반지름(Radius)은 2㎛로 하고, 측정 압력은 0.75mN으로 할 수 있다. 이상과 같이 설정 후 측정하면, Rmax 값을 분석할 수 있으며, 이는 Mitutoyo 조도계 측정값 기준으로 최대 높이 조도(Rmax)에 해당된다.
보호층(210) 표면의 최대 높이 조도(Rmax)가 0.6㎛ 미만인 경우, 동박(100)이 이차전지용 전극의 전류 집전체로 사용될 때, 동박(100)과 활물질의 접촉 면적이 작아 동박(100)과 활물질 사이에 충분한 밀착력이 확보될 수 없다. 그에 따라, 이차전지의 충방전시 활물질의 박리가 발생할 수 있다.
반면, 보호층(210) 표면의 최대 높이 조도(Rmax)가 3.5㎛ 초과하는 경우 보호층(210)의 표면이 불균일하여, 동박(100)이 이차전지용 전극의 전류 집전체로 사용될 때, 활물질이 동박에 균일하게 코팅되지 않는다. 그에 따라, 동박(100)과 활물질 사이의 밀착력이 저하될 수 있다.
본 발명의 일 실시예에 따르면, 보호층(210)의 표면은 5개 내지 110개의 피크 밀도(PD)를 가진다.
이하, 도 2를 참조하여 피크 밀도(Peak Density, PD)를 설명한다. 도 2는 ASME B46.1 규격에 따라 정의된 Peak Density에 해당한다. 상기 규격의 정의에 따라 Mahr사의 조도계로 피크 밀도(Peak Density)가 측정될 수 있는데, 예를 들어, Mahr사의 Marsurf M300 모델이 사용될 수 있다. 이 때, 컷 오프(Cut off) 길이를 제외한 측정 길이는 4mm이며, Cut off 길이는 초기와 말기 각각 0.8mm로 한다. 또한, 스타일러스 팁(Stylus Tip)의 반지름(Radius)은 2㎛로 하고, 측정 압력은 0.7mN로 한다. 이상과 같이 설정 후 측정하면, 피크 밀도(Peak Density) 값을 분석할 수 있으며, Peak Density는 Mahr 조도계 측정값 기준으로 Rpc(피크 밀도)에 해당한다. 측정시 Peak Count Level은 Profile의 중심선을 기준으로 ±0.5㎛ 이다. 또한, 측정치는 단위 cm당 유효 피크의 수를 나타낸다.
구체적으로, 본 발명의 일 실시예에 따르면, 피크 밀도(PD)는 동박(100) 표면 중 임의의 3개 지점들의 피크 밀도(PD)를 측정하고, 그 측정값들의 평균값을 산출함으로써 얻어질 수 있다. 지점들 각각의 피크 밀도(PD)는 ASME B46.1 규격에 따라 얻어진 표면 조도 프로파일에서 측정길이 4mm로 설정하여 측정하였다. 0.5㎛의 상위 기준선(upper criteria line: C1) 위로 솟아 있는 유효 피크들(P1, P2, P3, P4)의 개수이다. 이때, 유효 피크들 중 이웃하는 유효 피크들 사이에는 -0.5㎛의 하위 기준선(lower criteria line: C2)보다 깊은 적어도 하나의 골(valley)이 존재한다. 만약, 상위 기준선(C1) 위로 솟아 있는 이웃하는 피크들 사이에 -0.5㎛의 하위 기준선(C2)보다 깊은 골이 하나도 존재하지 않는다면, 이러한 피크들 모두가 피크 밀도(PD)의 측정에 이용되는 "유효 피크"가 될 수는 없으며, "유효 피크" 개수를 구함에 있어서 이러한 피크들 중 상대적으로 더 낮은 피크는 무시된다.
보호층(210) 표면의 피크 밀도(PD)가 5개 미만인 경우, 동박(100)이 이차전지용 전극의 전류 집전체로 사용될 때, 활물질과 접촉할 수 있는 동박(100)의 활성 비표면적이 너무 적어 동박(100)과 활물질 사이에 충분한 밀착력이 확보될 수 없다. 반면, 피크 밀도(PD)가 110개를 초과하는 경우에는, 너무 많은 표면 요철들로 인해 활물질의 코팅 균일성이 저하되고, 이로 인해 동박(100)과 활물질 사이의 밀착력이 현저히 저하된다.
또한, 보호층(210)의 표면은 22 at% 내지 67at%의 산소 함량을 갖는다.
산소 함량은 오제 전자 분광법(Auger Electron Spectroscopy: AES)에 의해 측정될 수 있다.
보다 구체적으로, 동박(100)을 절단하여 2cmㅧ2cm의 측정용 샘플을 제조하고, 오제 전자 분광법(Auger Electron Spectroscopy: AES)용 기기인 PHI700 (ULVAC-PHI, INC.)을 이용하여 샘플의 표면으로부터 원자 개수들을 각각 측정한다. 분석 조건은 다음과 같다.
- 전자 에너지 분석기(Electron Energy Analyzer): CMA(Cylindrical Mirror Analyzer)
- 전자빔 에너지(Electron Beam Energy): 5 KeV
- 타겟 전류(Target Current): 10 nA
- 틸트(Tilt): 30 degrees
- 아르곤 식각율(Etching Rate): SiO2 기준 60 ㅕ/min (3 KV의 아르곤 이온빔)
도 3a는 오제 전자(Auger electron)의 발생을 설명하는 개략도이다.
오제 효과는 원자나 이온에서 방출되는 전자로 인해 또 다른 전자가 방출되는 물리적 현상을 말한다. 이때 발생하는 두 번째 방출전자를 오제 전자(Auger electron)라고 한다.
원자의 안쪽 준위(1s)에서 전자(E1) 하나가 제거되어 빈자리를 남게 되면, 높은 준위(2s)의 전자(E2) 하나가 빈자리를 채우게 되면서 높은 준위(2s)와 빈자리의 준위 차이만큼의 에너지가 발생한다. 이와 같이 발생된 에너지는 광자의 형태로 방출되거나 두 번째 전자를 추가로 방출하는 데 사용된다.
이와 같이 방출된 에너지가 두 번째 방출하는데 사용되어, 두번째 전자가 원자 밖으로 방출되는 현상이 오제 효과이며, 이 때 방출된 전자를 오제 전자(EAuger)라고 한다.
본 발명의 일 실시예에 따르면, 오제 전자 분광법(AES)에 따라, 아르곤(Ar) 이온빔이 시료에 조사되어 시료가 식각되면서 방출되는 오제 전자(Auger electron)를 분석하여 원자의 함량을 검출한다.
도 3b는 오제 전자 분광법(AES)에 의한 원자 함량 측정 그래프이다.
구체적으로. 도 3b는 아르곤(Ar) 이온빔에 의한 시료의 식각율(Argon Etching Rate)에 따른 구리와 산소의 함량(Atomic Amount)를 표시한다. 도 3b에서 식각율이 0인 지점에서의 산소 함량이 동박(100) 표면, 즉, 보호층(210) 표면의 산소 함량이다. 도 3b를 참조하면, 시료 표면의 산소 함량은 60at%이다.
보호층(210) 표면의 산소는, 동박(100)이 이차전지용 전극의 전류 집전체로 사용될 때, 동박(100)과 활물질 사이의 화학적 결합력에 기여할 수 있다. 예를 들어, 전기 음성도가 큰 산소는 활물질에 포함된 원소들과 친화성을 나타내어, 동박(100)과 활물질 사이의 화학적 결합력을 증가시킬 수 있다.
보호층(210) 표면의 산소 함량이 22at% 미만인 경우, 산소에 의한 동박(100)과 활물질 사이의 밀착력 증가 효과가 미미하다. 반면, 보호층(210) 표면의 산소 함량이 67at%를 초과하는 경우, 보호층(210)의 표면이 과도하게 산화되어 동박(100)과 활물질 사이의 밀착력이 감소될 수 있다.
본 발명의 일 실시예에 따르면, 동박(100)은 25±15℃의 상온에서 25 kgf/mm2 이상의 항복 강도를 가질 수 있다. 항복 강도는 만능시험기(UTM)를 이용하여 측정된다. 항복 강도 측정용 샘플의 폭은 12.7 mm이고, 그립(Grip)간 거리는 50 mm이며, 측정 속도는 50 mm/min이다.
동박(100)의 항복강도가 25 kgf/mm2 미만이면, 동박(100)의 제조 과정에서 찢김이 발생할 수 있으며, 동박(100)을 이용하여 이차전지용 전극 또는 이차전지를 제조하는 과정에서 주름 또는 찢김이 발생 할 수 있다.
한편, 동박(100)의 항복강도가 65 kgf/mm2를 초과하면, 동박(100)을 이용한 이차전지용 전극 또는 이차전지의 제조 공정에서 작업성이 저하될 수 있다. 따라서, 동박(100)의 항복강도는 65 kgf/mm2 이하로 조정될 수 있다.
동박(100)은 25±15℃의 상온에서 2% 이상의 연신율을 가질 수 있다. 연신율은 IPC-TM-650 Test Method Manual에 규정된 방법에 따라 만능시험기(UTM)에 의해 측정될 수 있다. 이때, 연신율 측정용 샘플의 폭은 12.7 mm이고, 그립(Grip)간 거리는 50 mm이며, 측정 속도는 50 mm/min이다.
동박(100)의 연신율이 2% 미만이면, 동박(100)을 이용한 이차전지용 전극 또는 이차전지의 제조 과정에서 가해지는 힘에 의해 동박(100)이 늘어나지 못하고 찢어질 위험이 생길 수 있다.
또한, 동박(100)은 0.55 이상의 연신 강도율을 갖는다.
본 발명의 일 실시예에 따르면, 연신 강도율은 아래 식 1에 의해 구해질 수 있다.
[식 1]
연신 강도율(kgf/mm2) = 항복강도(kgf/mm2) x 연신율 값
식 1에서, 연신율 값은 단위가 없는 값이다.
일반적으로 연신율은 % 단위로 표시되지만, 본 발명의 일 실시예에 따른 연신율 값은 단위가 수치 값이다. 연신율 값에 100을 곱한 후 %로 표시하면 연신율이 된다. 예를 들어, 2%의 연신율은 0.02의 연신율 값으로 환산된다. 따라서, 만능시험기(UTM)를 이용하여 항복강도와 연신율을 측정한 후, 식 1을 이용하여 연신 강도율을 계산할 수 있다.
본 발명의 일 실시예에 따르면, 연신 강도율은 동박(100)에 가해지는 힘과 동박(100)의 변형 사이의 상관관계를 평가할 수 있다.
동박(100)의 연신 강도율이 0.55kgf/mm2 미만인 경우, 동박(100)의 제조공정, 동박(100)을 이용한 이차전지용 전극 또는 이차전지의 제조공정에서 가해지는 힘에 의해 동박(100)이 변형되어 동박(100)에 주름이 발생할 수 있다. 이를 방지하기 위해 동박(100)은 0.55 kgf/mm2 이상의 연신 강도율을 가질 수 있다.
동박(100)의 연신 강도율은, 예를 들어, 동박(100)에 3분간 50℃의 열이 가해지고, 다시 6시간 동안 80℃의 열이 가해진 후 측정될 수 있다. 3분간 50℃의 열을 가하는 조건은 동박(100)을 이용한 이차전지용 전극 제조과정에서의 열이력에 대응되고, 6시간 동안 80℃의 열을 가하는 조건은 동박(100)을 이용한 이차전지 제조과정에서의 열이력에 대응된다.
또한, 동박(100)은 4㎛ 내지 30㎛의 두께를 가질 수 있다. 동박(100)의 두께가 4㎛ 미만인 경우, 동박(100)을 이용한 이차전지용 전극 또는 이차전지의 제조 과정에서 작업성이 저하된다. 동박(100)의 두께가 30㎛를 초과하는 경우, 동박(100)을 이용한 이차전지용 전극의 두께가 커지고, 이러한 큰 두께로 인하여 이차전지의 고용량 구현에 어려움이 발생할 수 있다.
도 4는 본 발명의 다른 일 실시예에 따른 동박(200)의 개략적인 단면도이다. 이하, 중복을 피하기 위하여 이미 설명된 구성요소에 대한 설명은 생략된다.
도 4를 참조하면, 본 발명의 다른 일 실시예에 따른 동박(200)은 구리층(110) 및 구리층(110)의 양면(MS, SS)에 각각 배치된 두 개의 보호층(210, 220)을 포함한다. 도 1에 도시된 동박(100)과 비교하여, 도 4에 도시된 동박(200)은 구리층(110)의 샤이니면(SS)에 배치된 보호층(220)을 더 포함한다.
이하, 설명의 편의를 위해, 두 개의 보호층(210, 220) 중 구리층(110)의 매트면(MS)에 배치된 보호층(210)을 제1 보호층이라고 하고, 샤이니면(SS)에 배치된 보호층(220)을 제2 보호층이라 한다.
도 4에 도시된 동박(200)은, 구리층(110)을 기준으로, 매트면(MS) 방향의 표면인 제1 면(S1)과 샤이니면(SS) 방향의 표면인 제2 면(S2)을 갖는다. 동박(100)의 표면들(S1, S2) 중 제2 면(S2)은 제2 보호층(220)의 표면과 동일하다.
제2 보호층(220)의 표면은 0.6㎛ 내지 3.5㎛의 최대 높이 조도(Rmax), 5개 내지 110개의 피크 밀도(PD) 및 22 at% 내지 67at%의 산소 함량을 갖는다.
또한, 제2 보호층(220)은 크롬, 실란 화합물 및 질소 화합물 중 적어도 하나를 포함할 수 있다.
도 4에 도시된 동박(200)은 25±15℃의 상온에서 25 kgf/mm2 이상의 항복 강도를 가지며, 2% 이상의 연신율을 갖는다. 또한, 동박(200)은 0.55 kgf/mm2 이상의 연신 강도율을 갖는다.
도 4에 도시된 동박(200)은 4㎛ 내지 30㎛의 두께를 갖는다.
도 5는 본 발명의 또 다른 일 실시예에 따른 이차전지용 전극(300)의 개략적인 단면도이다.
도 5에 도시된 이차전지용 전극(300)은, 예를 들어, 도 7에 도시된 이차 전지(500)에 적용될 수 있다.
도 5를 참조하면, 본 발명의 또 다른 일 실시예에 따른 이차전지용 전극(300)은 동박(100) 및 동박(100) 상에 배치된 활물질층(310)을 포함한다. 또한, 동박(100)은 구리층(110) 및 구리층(110)과 활물질층(310) 사이에 배치된 보호층(210)을 갖는다. 여기서, 동박(100)은 전류 집전체로 사용된다.
보다 구체적으로, 본 발명의 또 다른 일 실시예에 따른 이차전지용 전극(300)은 제1 면(S1)과 제2 면(S2)을 갖는 동박(100) 및 동박(100)의 제1 면(S1)과 제2 면(S2) 중 적어도 하나에 배치된 활물질층(310)을 포함한다. 동박(100)의 제1 면(S1)과 제2 면(S2)은 각각 동박(100)의 표면이다.
도 5에 전류 집전체로 도 1의 동박(100)이 이용된 것이 도시되어 있다. 그러나, 본 발명의 또 다른 일 실시예가 이에 한정되는 것은 아니며, 도 4에 도시된 동박(200)이 이차전지용 전극(300)의 집전체로 사용될 수도 있다.
또한, 동박(100)의 표면들(S1, S2) 중 제1 면(S1) 상에만 활물질층(310)이 배치된 구조가 도 5에 도시되어 있으나, 본 발명의 또 다른 일 실시예가 이에 한정되는 것은 아니며, 동박(100)의 제1 면(S1)과 제 2면(S2) 모두의 상에 활물질층이 각각 배치될 수 있다. 또한, 활물질층은 동박(100)의 제 2면(S2) 상에만 배치될 수도 있다.
도 5에 도시된 활물질층(310)은 전극 활물질로 이루어지며, 특히 음극 활물질로 이루어질 수 있다. 즉, 도 5에 도시된 이차전지용 전극(300)은 음극으로 사용될 수 있다.
활물질층(310)은, 탄소, 금속, 금속의 산화물 및 금속과 탄소의 복합체 중 적어도 하나를 포함할 수 있다. 금속으로, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 및 Fe 중 적어도 하나가 사용될 수 있다. 또한, 이차전지의 충방전 용량을 증가시키기 위하여, 활물질층(310)은 실리콘(Si)을 포함할 수 있다.
이차전지의 충방전이 반복됨에 따라 활물질층(310)의 수축 및 팽창이 번갈아 발생하고, 이것은 활물질층(310)과 동박(100)의 분리를 유발하여 이차전지의 충방전 효율을 저하시킨다. 따라서, 이차전지의 충방전 효율 저하를 억제하기 위해, 동박(100)과 활물질층(31) 사이의 밀착력 또는 접착 강도가 우수해야 한다.
일반적으로, 동박(100)의 표면조도(Rz) 제어를 통해 동박(100)과 활물질층(310) 사이의 밀착력 또는 접착 강도를 향상시킬 수 있다고 알려져 있다. 그러나, 실제로는, 표면조도(Rz)가 적절히 조정되더라도 동박(100)이 이차전지에 대해 요구되는 동박(100)과 활물질층(310) 간의 접착력을 반드시 만족시키는 것은 아니다. 특히, 이차전지의 고용량화를 위하여 활물질층(310)이 Si를 포함할 경우 동박(100)의 표면조도(Rz)와 이차전지의 용량 유지율 사이의 연관성이 낮아질 수 있다.
본 발명의 실시예들에 따르면, 동박(100)과 활물질층(310) 사이의 밀착력 확보에 있어서, 동박(100)의 표면조도(Rz)와 같은 물리적 특성 외에, 동박 표면의 산소 함량과 같은 화학적 특성이 중요한 인자들임이 확인되었다.
도 5를 참조하면, 구리층(110)은 매트면(matte surface)(MS) 및 그 반대편의 샤이니면(shiny surface)(SS)을 갖는다. 도 5에, 보호층(210)이 매트면(MS)에 배치된 구조가 되시되어 있으나, 본 발명의 또 다른 일 실시예가 이에 한정되는 것은 아니며, 보호층(210)은 샤이니면(SS)에만 배치될 수도 있고, 매트면(MS)과 샤이니면(SS) 모두에 배치될 수도 있다.
보호층(210)은, 예를 들어, 크롬(Cr)을 포함한다. 크롬(Cr)을 포함하는 방청액, 예를 들어 크롬산 화합물을 포함하는 방청액에 의하여 보호층(210)이 만들어질 수 있다.
또한, 보호층(210)은 실란 화합물 및 질소 화합물 중 적어도 하나를 포함할 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 동박(100)의 제1 면(S1)과 제2 면(S2)은 각각 0.6㎛ 이상 3.5㎛ 이하의 최대 높이 조도(Rmax), 5개 내지 110개의 피크 밀도(PD) 및 22 at% 내지 67at%의 산소 함량을 갖는다.
보다 구체적으로, 활물질층(310)과 접촉하는 동박(100)의 표면, 즉, 제1 면(S1)은 0.6㎛ 내지 3.5㎛의 최대 높이 조도(Rmax)를 갖는다. 최대 높이 조도(Rmax)는 JIS B 0601-2001 규격에 따라 조도계(예: Mitutoyo SJ-310 모델)에 의해 측정된다. 도 5에서, 동박(100) 표면의 최대 높이 조도(Rmax)는 보호층(210) 표면의 최대 높이 조도(Rmax)와 동일하다.
동박(100) 표면의 최대 높이 조도(Rmax)가 0.6㎛ 미만인 경우, 동박(100)과 활물질층(310)의 접촉 면적이 작아 동박(100)과 활물질층(310) 사이에 충분한 밀착력이 확보되기 어렵다. 그에 따라, 이차전지의 충방전시 활물질층(310)의 박리가 발생할 수 있다.
반면, 동박(100) 표면의 최대 높이 조도(Rmax)가 3.5㎛ 초과하는 경우 동박(100)의 표면(S1)이 불균일하여, 활물질이 동박(100)에 균일하게 코팅되지 않는다. 그에 따라, 동박(100)과 활물질층(310) 사이의 밀착력이 저하될 수 있다.
동박(100)의 표면은 5개 내지 110개의 피크 밀도(PD)를 가진다.
동박(100) 표면의 피크 밀도(PD)가 5개 미만인 경우, 활물질층(310)과 접촉할 수 있는 동박(100)의 활성 비표면적이 너무 적어 동박(100)과 활물질층(310) 사이에 충분한 밀착력이 확보될 수 없다. 반면, 피크 밀도(PD)가 110개를 초과하는 경우에는, 너무 많은 표면 요철들로 인해 활물질의 코팅 균일성이 저하되고, 이로 인해 동박(100)과 활물질층(310) 사이의 밀착력이 현저히 저하된다.
또한, 동박(100)의 표면은 22 at% 내지 67at%의 산소 함량을 갖는다.
동박(100) 표면의 산소는, 동박(100)과 활물질층(310) 사이의 화학적 결합력에 기여할 수 있다. 동박(100) 표면의 산소 함량이 22at% 미만인 경우, 산소에 의한 동박(100)과 활물질층(310) 사이의 밀착력 증가 효과가 미미하다. 반면, 동박(100) 표면의 산소 함량이 67at%를 초과하는 경우, 동박(100)의 표면이 과도하게 산화되어 동박(100)과 활물질층(310) 사이의 밀착력이 감소될 수 있다.
동박(100)은 25±15℃의 상온에서 25 kgf/mm2 이상의 항복 강도를 가질 수 있다. 보다 구체적으로, 동박(100)은 25±15℃의 상온에서 25 kgf/mm2 내지 65 kgf/mm2의 항복강도를 가질 수 있다.
동박(100)은 25±15℃의 상온에서 2% 이상의 연신율을 가질 수 있다.
또한, 동박(100)은 0.55 kgf/mm2 이상의 연신 강도율을 갖는다. 연신 강도율은 식 1에 의하여 구해질 수 있다.
동박(100)의 연신 강도율이 0.55 kgf/mm2 미만인 경우, 이차전지용 전극(300)이나 이차전지(도 7 참조)의 제조공정에서 가해지는 힘에 의하여 동박(100)이 변형되어 동박(100)에 주름이 발생할 수 있다.
동박(100)의 연신 강도율은, 예를 들어, 동박(100)에 3분간 50℃의 열이 가해지고, 다시 6시간 동안 80℃의 열이 가해진 후 측정될 수 있다. 3분간 50℃의 열을 가하는 조건은 동박(100)을 이용한 이차전지용 전극(300)의 제조과정에서의 열이력에 대응되고, 6시간 동안 80℃의 열을 가하는 조건은 동박(100)을 이용한 이차전지(도 7 참조)의 제조과정에서의 열이력에 대응된다.
또한, 동박(100)은 4㎛ 내지 30㎛의 두께를 가질 수 있다. 동박(100)의 두께가 4㎛ 미만인 경우, 이차전지용 전극(300) 또는 이차전지(도 7 참조) 의 제조 과정에서 작업성이 저하된다. 동박(100)의 두께가 30㎛를 초과하는 경우, 동박(100)을 이용한 이차전지용 전극(300)의 두께가 커지고, 이러한 큰 두께로 인하여 이차전지의 고용량 구현에 어려움이 발생한다.
도 6은 본 발명의 또 다른 일 실시예에 따른 이차전지용 전극(400)의 개략적인 단면도이다.
본 발명의 또 다른 일 실시예에 따른 이차전지용 전극(400)은 동박(200) 및 동박(200) 상에 배치된 활물질층(310, 320)을 포함한다. 동박(200)은 구리층(110) 및 구리층(110)과 활물질층(310, 320) 사이에 배치된 보호층(210, 220)을 포함한다.
보다 구체적으로, 도 6에 도시된 이차전지용 전극(300)은 제1 면(S1)과 제2 면(S2)을 갖는 동박(200) 및 동박(200)의 제1 면(S1)과 제2 면(S2)에 각각 배치된 두 개의 활물질층(310, 320)을 포함한다. 여기서, 동박(200)의 제1 면(S1) 상에 배치된 활물질층(310)을 제1 활물질층(310)이라 하고, 동박(200)의 제2 면(S2)에 배치된 활물질층(320)을 제2 활물질층(320)이라 한다.
제2 활물질층(320)은, 탄소, 금속, 금속의 산화물 및 금속과 탄소의 복합체 중 적어도 하나를 포함할 수 있다. 금속으로, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 및 Fe 중 적어도 하나가 사용될 수 있다. 또한, 이차전지의 충방전 용량을 증가시키기 위하여, 제2 활물질층(320)은 실리콘(Si)을 포함할 수 있다.
또한, 도 6을 참조하면, 보호층(210, 220)이 각각 구리층(110)의 매트면(MS)과 샤이니면(SS)에 배치되어 있다.
도 6을 참조하면, 동박(200)은 구리층(110)을 기준으로 매트면(MS) 방향의 제1 면(S1) 및 샤이니면(SS) 방향의 제2 면(S2)을 갖는다. 동박(200)의 제1 면(S1)과 제2 면(S2)는 각각 동박(200)의 표면이다.
본 발명의 또 다른 일 실시예에 따르면, 동박(300)의 양쪽 표면인 제1 면(S1)과 제2 면(S2)은 각각 0.6㎛ 이상 3.5㎛ 이하의 최대 높이 조도(Rmax), 5개 내지 110개의 피크 밀도(PD) 및 22 at% 내지 67at%의 산소 함량을 갖는다.
보다 구체적으로, 동박(200)의 제1 면(S1)과 제2 면(S2)은 각각 0.6㎛ 내지 3.5㎛의 최대 높이 조도(Rmax)를 갖는다.
동박(200)의 제1 면(S1)과 제2 면(S2)의 최대 높이 조도(Rmax)가 각각 0.6㎛ 미만인 경우, 동박(200)과 활물질층들(310, 320)의 접촉 면적이 작아 동박(200)과 활물질층들(310, 320) 사이에 충분한 밀착력이 확보되기 어렵다. 그에 따라, 이차전지의 충방전시 활물질층들(310, 320)의 박리가 발생할 수 있다.
동박(200)의 제1 면(S1)과 제2 면(S2)은 각각 5개 내지 110개의 피크 밀도(PD)를 가진다.
동박(200)의 제1 면(S1)과 제2 면(S2)의 피크 밀도(PD)가 5개 미만인 경우, 활물질층들(310, 320)과 접촉할 수 있는 동박(200)의 활성 비표면적이 너무 적어 동박(200)과 활물질층들(310, 320) 사이에 충분한 밀착력이 확보될 수 없다. 반면, 피크 밀도(PD)가 110개를 초과하는 경우에는, 너무 많은 표면 요철들로 인해 활물질의 코팅 균일성이 저하되고, 이로 인해 동박(200)과 활물질층들(310, 320) 사이의 밀착력이 현저히 저하된다.
또한, 동박(200)의 제1 면(S1)과 제2 면(S2)은 각각 22 at% 내지 67at%의 산소 함량을 갖는다.
동박(200)의 제1 면(S1)과 제2 면(S2)의 산소 함량이 각각 22at% 미만인 경우, 산소에 의한 동박(200)과 활물질층들(310, 320) 사이의 밀착력 증가 효과가 미미하다. 반면, 동박(200)의 제1 면(S1)과 제2 면(S2)의 산소 함량이 각각 67at%를 초과하는 경우, 동박(200)의 제1 면(S1)과 제2 면(S2)이 과도하게 산화되어 동박(200)과 활물질층들(310, 320) 사이의 밀착력이 감소될 수 있다.
동박(200)은 25±15℃의 상온에서 25 kgf/mm2 이상의 항복 강도를 가질 수 있다. 보다 구체적으로, 동박(100)은 25±15℃의 상온에서 25 kgf/mm2 내지 65 kgf/mm2의 항복강도를 가질 수 있다.
동박(200)은 25±15℃의 상온에서 2% 이상의 연신율을 가질 수 있다.
또한, 동박(200)은 0.55 kgf/mm2 이상의 연신 강도율을 갖는다. 연신 강도율은 식 1에 의하여 구해질 수 있다.
동박(200)의 연신 강도율이 0.55 kgf/mm2 미만인 경우, 이차전지용 전극(400)이나 이차전지(도 7 참조)의 제조공정에서 가해지는 힘에 의하여 동박(200)이 용이하게 변형되어 동박(200)에 주름이 발생할 수 있다.
또한, 동박(200)은 4㎛ 내지 30㎛의 두께를 가질 수 있다. 동박(200)의 두께가 4㎛ 미만인 경우, 이차전지용 전극(400) 또는 이차전지(도 7 참조) 의 제조 과정에서 작업성이 저하된다. 동박(200)의 두께가 30㎛를 초과하는 경우, 동박(200)을 이용한 이차전지용 전극(400)의 두께가 커지고, 이러한 큰 두께로 인하여 이차전지의 고용량 구현에 어려움이 발생한다.
도 7은 본 발명의 또 다른 일 실시예에 따른 이차전지(500)의 개략적인 단면도이다. 도 7에 도시된 이차전지(500)는, 예를 들어, 리튬 이차전지이다.
도 7을 참조하면, 이차전지(500)는, 서로 대향하는 양극(cathode)(370)과 음극(anode)(340), 양극(370)과 음극(340) 사이에서 이온이 이동할 수 있는 환경을 제공하는 전해질(electrolyte)(350), 및 양극(370)과 음극(340)을 전기적으로 절연시켜 주는 분리막(separator)(360)을 포함한다. 여기서, 양극(370)과 음극(340) 사이에서 이동하는 이온은 리튬 이온이다. 분리막(360)은 하나의 전극에서 발생된 전하가 이차전지(500)의 내부를 통해 다른 전극으로 이동함으로써 무익하게 소모되는 것을 방지하기 위해 양극(370)과 음극(340)을 분리한다. 도 7을 참조하면, 분리막(360)은 전해질(350) 내에 배치된다.
양극(370)은 양극 집전체(371) 및 양극 활물질층(372)을 포함한다. 양극 활물질층(372)과 결합되는 양극 집전체(371)로 알루미늄 호일(foil)이 사용될 수 있다.
음극(340)은 음극 집전체(341) 및 활물질층(310)을 포함한다. 음극(340)의 활물질층(310)은 음극 활물질을 포함한다.
음극 집전체(341)로, 도 1 및 4에 개시된 동박(100, 200)이 사용될 수 있다. 또한, 도 5 및 도 6에 도시된 이차전지용 전극(300, 400)이 도 7에 도시된 이차전지(500)의 음극(340)으로 사용될 수 있다.
이하, 도 8을 참조하여, 본 발명의 다른 실시예에 따른 동박(200)의 제조방법을 구체적으로 설명한다.
도 8은 도 4에 도시된 동박(400)의 제조방법에 대한 개략도이다.
먼저, 구리 이온을 포함하는 전해액(11) 내에 서로 이격되어 배치된 양극판(13) 및 회전 음극드럼(12)을 40 내지 80 ASD(A/dm2)의 전류밀도로 통전시켜 구리층(110)을 형성한다.
전해액(11)은 70 내지 90 g/L의 구리 이온 및 80 내지 120 g/L의 황산을 포함한다. 또한, 전해액(11)은 1 내지 10ppm의 유기 첨가제를 포함할 수 있다. 유기 첨가제로, 예를 들어, 하이드록시에틸 셀룰로오스(HEC), 유기 황화물, 유기 질화물 및 티오요소(thiourea) 중에서 선택된 적어도 하나가 사용될 수 있다.
예를 들어, 전해조(10)에 담긴 전해액(11) 내에 서로 이격되게 배치된 양극판(13) 및 회전 음극드럼(12)이 40 내지 80 ASD(A/dm2)의 전류밀도로 통전되면 음극드럼(12) 상에 구리가 전착(electrodeposit)되어 구리층(110)이 형성된다. 양극판(13)과 회전 음극드럼(12) 사이의 간격은 8 내지 13 mm일 수 있다.
양극판(13)과 회전 음극드럼(12) 사이에 인가되는 전류밀도가 높을수록 균일한 도금이 이루어져, 구리층(110)의 매트면(MS)의 표면조도가 감소하고, 그에 따라 동박(200)의 표면, 예를 들어, 제1 면(S1)의 최대 높이 조도(Rmax)가 감소한다.
양극판(13)과 회전 음극드럼(12) 사이에 인가되는 전류밀도로가 40 ASD 미만인 경우, 결정립 생성으로 인해 구리층(110)의 표면 조도가 증가하여, 동박(200)의 표면, 예를 들어, 제1 면(S1)의 최대 높이 조도(Rmax)가 3.5㎛를 초과하게 된다.
반면, 양극판(13)과 회전 음극드럼(12) 사이에 인가되는 전류밀도로가 80 ASD를 초과하는 경우, 결정립 미세화가 가속화되어 구리층(110)의 표면 조도가 감소하여, 동박(200)의 표면, 예를 들어, 제1 면(S1)의 최대 높이 조도(Rmax)가 0.6㎛ 미만이 된다. 이 경우, 구리층(110)에서의 경정립 미세화로 인하여 동박(200)의 연신율이 2% 미만으로 감소된다.
구리층(110) 형성 과정에서, 전해액(11)은 40 내지 60 ℃로 유지될 수 있고, 전해조(10)로 공급되는 전해액(11)의 유량은 30 내지 50 m3/hour일 수 있다. 전해조(10)로 공급되는 전해액(11)의 유량 편차는 2% 이내로 조절될 수 있다.
전류밀도 또는 전해액(11)의 조성과 같은 구리층(110) 형성 조건이 조절됨으로써 구리층(110)의 매트면(MS)의 표면 조도가 제어될 수 있다.
구리층(110)의 샤이니면(SS)의 표면 조도는 회전 음극드럼(12)의 표면의 연마 정도에 따라 달라질 수 있다. 샤이니면(SS)의 표면 조도 조절을 위해, 예를 들어, #800 내지 #1500의 입도(Grit)를 갖는 연마 브러시로 회전 음극드럼(12)의 표면이 연마될 수 있다.
전해액(11) 내의 전체 무기 탄소량(Total Inorganic Carbon, TIC)은 0.05 g/L 이하이다. 전해액(11) 내의 전체 무기 탄소량(TIC)이 0.05 g/L 이하로 유지되어야, 동박(200) 표면(S1)의 최대 높이 조도(Rmax)가 0.6㎛ 내지 3.5㎛로 유지되고, 피크 밀도(PD)가 5개 내지 110개로 유지될 수 있다.
보다 구체적으로, 전해액(11) 내의 전체 무기 탄소량(TIC)이 0.05 g/L를 초과하는 경우, 무기계 탄화물이 구리층(110)의 표면에서 구리 도금의 균일화를 촉진하여 구리층(110)의 표면 조도가 감소된다. 그에 따라, 동박(200) 표면의 피크 밀도(PD)가 5개 미만으로 감소된다.
전해액(11) 내의 전체 무기 탄소량(TIC)이 0.05 g/L 이하로 유지되도록 하기 위해, 구리 이온의 재료가 되는 구리 와이어를 열처리하고, 열처리된 구리 와이어를 산세한 후, 산세된 구리 와이어를 전해액용 황산에 투입할 수 있다.
보다 구체적으로, 산소 분위기 하에서 600 내지 900℃의 온도에서 30 내지 60 분 동안 구리 와이어를 열처리하여 구리 와이어에 잔류하는 유기물을 제거하고, 10% 농도의 황산 용액을 이용하여 열처리된 구리 와이어를 산세하고, 산세된 구리 와이어를 전해액용 황산에 투입함으로써 불순물이 전혀 또는 거의 없는 전해액(11)을 준비할 수 있다.
또한, 전기 도금이 수행되는 동안 전해액(11)에 잔류하는 탄소를 제거하기 위해, 활성탄을 이용하여 전해액(11)을 여과할 수 있다. 전해액(11)은 30 내지 45 m3/hr의 유량으로 연속 또는 순환 여과될 수 있다.
또한, 전해액(11)을 오존 처리하여 전해액(11) 내의 유기물을 분해함으로써, 전해액(11) 내의 전체 무기 탄소량(TIC)를 낮출 수도 있다.
또한, 전해액(11) 내의 철(Fe) 이온의 농도는 0.30 g/L 이하로 유지된다. 철(Fe) 이온의 농도가 0.30 g/L를 초과하는 경우, 결정립 생성으로 인해 구리층(110)의 표면 조도가 증가하여, 동박(200) 표면의 최대 높이 조도(Rmax)가 3.5㎛를 초과하게 된다.
전해액(11) 내의 철(Fe) 이온의 농도를 0.30 g/L 이하로 만들기 위해, 전해액(11)용 황산에 구리 와이어를 투입하기 전 이물질 제거 및 세척 과정을 거칠 수 있다.
또한, 전기 도금에 의해 구리층(110)이 형성되는 동안 과산화수소 및 공기를 전해액(11)에 투입함으로써 전해액(11)의 청정도를 유지 또는 향상시킬 수 있다.
다음, 세정조(20)에서 구리층(110)이 세정된다.
예를 들어, 구리층(110) 표면 상의 불순물, 예를 들어, 수지 성분 또는 자연 산화막(natural oxide) 등을 제거하기 위한 산세(acid cleaning) 및 산세에 사용된 산성 용액 제거를 위한 수세(water cleaning)가 순차적으로 수행될 수도 있다. 산세 공정을 위한 산성 용액으로서, 염산 용액, 황산 용액, 황산-과산화수소 용액, 또는 이들 중 적어도 2 이상의 혼합물이 사용될 수 있다. 산성 용액의 농도 및 온도는 생산라인의 특성에 따라 조정될 수 있다.
세정 공정은 생략될 수도 있다.
다음, 구리층(110) 상에 보호층(210, 220)이 형성된다.
보호층(210, 220) 형성 단계는, 예를 들어, 방청조(30)에 담긴 방청액(31)을 이용하여 구리층(110)의 표면을 크롬(Cr) 처리하는 단계를 포함할 수 있다. 크롬 처리에 의해 크롬을 포함하는 보호층(210, 220)이 형성된다.
도 8을 참조하면, 크롬을 포함하는 방청액(31) 내에 구리층(110)이 침지되어, 구리층(110) 상에 보호층(210, 220)이 형성된다. 방청액(31) 내에서 크롬은 이온 상태로 존재할 수 있다.
방청액(31)은 0.5 내지 5 g/L의 크롬을 포함할 수 있으며, 보다 구체적으로, 1.5 내지 3.0 g/L의 크롬을 포함할 수 있다. 보호층(210, 220)을 형성을 위해, 방청액(31)의 온도는 20 내지 40℃로 유지될 수 있다. 이와 같은 크롬 처리를 방청처리라고도 하며, 이러한 보호층(210, 220)을 방청막이라고도 한다.
방청액(31)은 1.5 내지 4.2의 pH 및 5ppm 미만의 용존 산소량을 가질 수 있다. 방청액(31)의 pH와 용존 산소량 조절에 의하여, 동박(200)의 표면(S1, S2) 또는 보호막(210, 220) 표면의 산소 함량이 조절될 수 있다.
방청액(31)의 pH가 1.5 미만이면, 보호층(210, 220) 형성 과정 중 동박(200)의 표면에서 산소와 결합할 수 있는 활성자리가 감소되어 동박(200) 표면(S1, S2)의 산소 함량이 22at% 미만이 된다.
반면, 방청액(31)의 pH가 4.2를 초과하고, 또한 용존 산소량이 5ppm을 초과하면 동박(200)의 표면(S1, S2)에서 산소와 결합할 수 있는 활성자리가 증가하고, 방청액(31) 내의 과다한 용존 산소로 인해 동박(200) 표면(S1, S2)에 다량의 산소가 결합하게 된다. 그에 따라, 동박(200) 표면(S1, S2)의 산소 함량이 67at%를 초과하게 된다.
한편, 보호층(210, 220)은 실란 처리에 의한 실란 화합물을 포함할 수도 있고, 질소 처리에 의한 질소 화합물을 포함할 수도 있다.
이러한 보호층(210, 220) 형성에 의해 동박(200)이 만들어진다.
다음, 동박(200)이 세정조(40)에서 세정된다. 이러한 세정 공정은 생략될 수 있다.
다음, 건조 공정이 수행된 후 동박(200)이 와인더(WR)에 권취된다.
이하, 제조예들 및 비교예들을 통해 본 발명을 구체적으로 설명한다. 다만, 하기의 제조예들은 본 발명의 이해를 돕기 위한 것일 뿐으로, 본 발명의 권리범위가 이들 제조예들로 제한되지 않는다.
제조예 1-6 및 비교예 1-6
전해조(10), 전해조(10)에 배치된 회전드럼(12) 및 회전드럼(12)과 소정간격으로 이격된 양극판(13)을 포함하는 제박기를 이용하여 동박을 제조하였다. 전해액(11)은 황산동 용액이며, 황산동 용액의 구리이온 농도는 75g/L, 황산 농도는 100g/L이었고, 황산동 용액의 온도는 55℃로 유지되었다.
전해액(11)인 황산동 용액에 포함된 전체 무기 탄소량(TIC) 및 철(Fe) 이온의 농도는 하기 표 1에 개시된 바와 같다.
회전드럼(12)과 양극판(13) 사이에 표 1에 개시된 바와 같은 전류밀도를 인가하여 구리층(110)을 제조하였다.
다음, 세정조(20)를 이용하여, 구리층(110)을 세정하였다.
다음, 방청조(30)에 담긴 방청액(31)에 구리층(110)을 침지시켜 구리층(110) 표면에 크롬을 포함하는 보호층(210, 220)을 형성하였다. 그 결과, 제조예 1-6 및 비교예 1-6의 동박들이 제조되었다. 이때, 방청액(31)의 온도는 30℃로 유지되었다.
보호층(210, 220) 형성에 사용된 방청액(31)은 2.2g/L의 크롬(Cr)을 포함한다. 크롬은 이온 상태로 존재할 수 있다. 방청액(31)의 pH와 방청액(31)에 포함된 용존 산소량은 표 1과 같다. 방청액의 pH는 황산 및 1M의 수산화나트륨 수용액을 투입하여 조정할 수 있다.
구분 전류밀도
(ASD)
전체무기탄소
(TIC) (g/L)
철(Fe) 이온
(g/L)
pH 용존산소
(ppm)
제조예 1 78 0.02 0.12 2.9 3
제조예 2 42 0.02 0.12 2.9 3
제조예 3 60 0.04 0.12 2.9 3
제조예 4 60 0.02 0.29 2.9 3
제조예 5 60 0.02 0.12 1.6 3
제조예 6 60 0.02 0.12 4.1 5
비교예 1 82 0.02 0.12 2.9 3
비교예 2 38 0.02 0.12 2.9 3
비교예 3 60 0.06 0.12 2.9 3
비교예 4 60 0.02 0.32 2.9 3
비교예 5 60 0.02 0.12 1.3 3
비교예 6 60 0.02 0.12 4.3 7
이와 같이 제조된 제조예 1-6 및 비교예 1-6의 동박들에 대해 (i) 최대 높이 조도(Rmax), (ii) 피크 밀도(PD), (iii) 연신 강도율 및 (iv) 표면 산소 함량을 측정하였다. 그 결과는 표 2에 개시되어 있다.
(i) 최대 높이 조도(Rmax)
JIS B 0601-2001 규격에 따라 조도계(Mitutoyo SJ-310 모델)를 사용하여 동박 표면의 최대 높이 조도(Rmax)를 측정하였다. 이 때, 컷 오프(Cut off) 길이를 제외한 측정 길이는 4mm, 컷 오프(Cut off) 길이는 초기와 말기 각각 0.8mm로 하였다. 또한, 스틸러스 팁(Stylus Tip)의 반지름(Radius)은 2㎛로 하고, 측정 압력은 0.75mN으로 하였다. 이상과 같이 설정 후 측정하여 Mitutoyo 조도계 측정값 기준으로 최대 높이 조도(Rmax) 값을 얻었다.
(ii) 피크 밀도(PD)
ASME B46.1 규격에 따라 얻어진 표면 조도 프로파일에서 4mm의 단위 샘플링 길이당 0.5㎛의 상위 기준선 위로 솟아 있는 유효 피크들의 개수를 확인하여 피크 밀도(PD)를 측정하였다.
(iii) 연신 강도율
만능시험기(UTM)를 이용하여 IPC-TM-650 Test Method Manual에 규정된 방법에 따라 연신율과 항복 강도를 측정된다. 연신율과 항복 강도 측정용 샘플의 폭은 12.7 mm이고, 그립(Grip)간 거리는 50 mm이며, 측정 속도는 50 mm/min이다.
샘플은 50℃에서 3분 및 80℃에서 6시간 열처리되었다.
연신율과 항복 강도를 이용하여, 식 1에 따라 연신 강도율을 계산하였다.
[식 1]
연신 강도율(kgf/mm2) = 항복강도(kgf/mm2) x 연신율 값
식 1에서, 연신율 값은 단위가 없는 값이다.
(iv) 표면 산소 함량
동박을 절단하여 2cmㅧ2cm의 측정용 샘플을 제조하고, 오제 전자 분광법(Auger Electron Spectroscopy: AES)용 기기인 PHI700 (ULVAC-PHI, INC.)을 이용하여 샘플 제1 면(S1)의 원자 개수들을 측정하였다. 분석 조건은 다음과 같다.
- 전자 에너지 분석기(Electron Energy Analyser): CMA(Cylindrical Mirror Analyzer)
- 전자빔 에너지(Electron Beam Energy): 5 KeV
- 타겟 전류(Target Current): 10 nA
- 틸트(Tilt): 30 degrees
- 아르곤 식각율(Etching Rate): SiO2 기준 60 ㅕ/min (3 KV의 아르곤 이온빔)
아르곤 이온빔이 샘플에 조사되어 샘플이 식각될 때, 식각율이 0인 지점에서의 산소 함량이 동박(200)의 표면에서의 산소 함량이다.
다음, 제조예 1-6 및 비교예 1-6에서 제조된 동박들의 표면에 음극 활물질을 코팅한 후 밀착력을 평가하였다.
(v) 밀착력
1-1) 음극 활물질 제조
음극 활물질로 인조 흑연 및 SiO2 혼합물(95% : 5%), 바인더로서 스티렌-부타디엔 고무 및 증점제로 카르복시메틸 셀룰로오스를 97:1.5:1.5의 중량비로 혼합한 후, 물에 분산시켜 음극 활물질용 슬러리를 제조하였다.
1-2) 음극 활물질 코팅
제조예 1-6 및 비교예 1-6에서 제조된 동박을 표면이 깨끗한 유리판 위에 올려 놓은 후 주름, 구겨짐이 생기지 않도록 펼쳐 놓고, 바 코터(Bar coater)를 이용하여 동박 위에 음극 활물질용 슬러리를 코팅하였다. 음극 활물질용 슬러리의 코팅량은 9.0±0.5mg/㎠이었다. 이때, 바 코터(Bar coater)의 속도는 10~15mm/s이었다.
음극 활물질용 슬러리가 코팅된 동박을 100℃로 가열된 건조 오븐(Oven)에 넣고 15분 동안 건조하였다.
1-3) 프레스(Press)
음극 활물질용 슬러리가 코팅된 후 건조된 동박 시료를 롤프레스(Roll press)를 사용하여 압착하여 전극을 제조하였다. 이 때, 전극 밀도가 1.55±0.05g/㏄가 되도록 4단 압착하였다. 이와 같은 압착에 의하여 동박에 부착된 음극 활물질을 포함하는 전극이 완성되었다.
2) 밀착력 측정
2-1) 밀착력 측정용 시료 제작
밀착력을 측정하고자 하는 전극을 폭 10mm x 길이 100mm로 절단하였다.
절단된 전극의 음극 활물질 부분과 보강판을 양면 테이프로 부착하였다. 이때 제작되는 모든 시료는 균일한 힘으로 부착될 수 있도록 하였다.
2-2) 밀착력의 측정
IPC-TM-650 규격에 따라 만능시험기(UTM)를 이용하여 동박과 음극 활물질층의 박리 강도를 측정하였다. 측정 샘플의 폭은 12.7mm이고, 측정속도는 50mm/분 이었다. 이 때, 90ㅀ 박리력이 측정된다(90ㅀ Peeling 테스트). 즉, 보강판과 음극 활물질층을 양면테이프로 부착시키고 동박을 90ㅀ로 박리하면서 박리강도를 측정함으로써 밀착력을 측정하였다.
측정 결과는 표 2에 개시되어 있다.
구분 Rmax
(㎛)
피크밀도
(개, ea/cm)
연신 강도율
(kgf/mm2)
동박 표면의 산소 함량
(at%)
밀착력
(N/m)
제조예 1 0.63 55 0.57 45.3 29.5
제조예 2 3.48 55 2.58 45.2 28.7
제조예 3 1.99 6 1.25 45.2 28.6
제조예 4 1.98 108 1.45 45.3 27.3
제조예 5 1.97 54 1.68 23.1 29.1
제조예 6 2.00 54 1.67 66.5 27.5
비교예 1 0.58 55 0.53 45.4 22.8
비교예 2 3.55 56 2.72 45.3 23.9
비교예 3 1.98 4 1.08 45.3 23.6
비교예 4 1.97 112 1.24 45.1 24.2
비교예 5 1.98 55 1.66 20.8 22.1
비교예 6 1.99 55 1.67 67.4 23.7
표 2를 참조하면, 다음의 동박을 이용하여 제조된 이차전지용 전극은 충분한 밀착력을 가지지 못함을 알 수 있다(25N/mm2 이하의 밀착력).
(1) 구리층(110) 형성 과정에서의 전류 밀도가 80 ADS를 초과하는 비교예 1 및 40 ADS 미만인 비교예 2;
(2) 전해액 내의 전체 무기 탄소량(TIC)이 0.05g/L를 초과하는 비교예 3;
(3) 전해액 내의 철(Fe) 이온 농도가 0.30 g/L를 초과하는 비교예 4;
(4) 방청액의 pH가 1.5 미만인 비교예 5 및 4.2를 초과하는 비교예 6;
(5) 방청액의 용존 산소량이 5ppm 이상인 비교예 6;
(6) 최대 높이 조도(Rmax)가 0.6㎛ 미만인 비교예 1 및 3.5㎛를 초과하는 비교예 2;
(7) 피크 밀도(PD)가 5개 미만인 비교예 3 및 110를 초과하는 비교예 4;
(8) 연신 강도율이 0.55 미만인 비교예 1; 및
(9) 동박 표면의 산소 함량이 22 at% 미만인 비교예 5 및 67at%를 초과하는 비교예 6.
반면, 본 발명의 실시예들에 따른 조건 범위에서 제조된 제조예 1 내지 6의 전극은 우수한 밀착력을 가지는 것으로 확인된다.
이상에서 설명된 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니며, 본 발명의 기술적 사항을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이다. 그러므로, 본 발명의 범위는 후술하는 특허청구범위에 의하여 표현되며, 특허청구범위의 의미, 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
100, 200: 동박 210, 220: 보호막
310: 활물질층 300, 400: 이차전지용 전극
340: 이차전지용 음극 370: 이차전지용 양극
MS: 매트면 SS: 샤이니면

Claims (15)

  1. 구리층; 및
    상기 구리층 상에 배치된 보호층;을 포함하고,
    상기 보호층의 표면은 0.6㎛ 내지 3.5㎛의 최대 높이 조도(Rmax), 5개 내지 110개의 피크 밀도(Peak Density: PD) 및 22 at%(atomic %, 원자%) 내지 67at%의 산소 함량을 갖는 동박.
  2. 제1항에 있어서,
    상기 보호층은 크롬, 실란 화합물 및 질소 화합물 중 적어도 하나를 포함하는 동박.
  3. 제1항에 있어서,
    25±15℃의 상온에서 25 kgf/mm2 이상의 항복 강도를 갖는 동박.
  4. 제1항에 있어서,
    25±15℃의 상온에서 2% 이상의 연신율을 갖는 동박.
  5. 제1항에 있어서,
    하기 식 1로 표현되는, 0.55 kgf/mm2 이상의 연신 강도율을 갖는 동박:
    [식 1]
    연신 강도율(kgf/mm2) = 항복강도(kgf/mm2) x 연신율 값
    여기서, 연신율 값은 단위가 없다.
  6. 제1항에 있어서,
    4㎛ 내지 30㎛의 두께를 갖는 동박.
  7. 동박; 및
    상기 동박 상에 배치된 활물질층;을 포함하고,
    상기 동박은,
    구리층; 및
    상기 구리층과 상기 활물질층 사이에 배치된 보호층;을 포함하고,
    상기 동박의 표면은 0.6㎛ 내지 3.5㎛의 높이 최대 조도(Rmax), 5개 내지 110개의 피크 밀도(PD) 및 22 at% 내지 67 at%의 산소 함량을 갖는 이차전지용 전극.
  8. 제7항에 있어서,
    상기 보호층은 크롬, 실란 화합물 및 질소 화합물 중 적어도 하나를 포함하는 이차전지용 전극.
  9. 제7항에 있어서,
    상기 동박은 25±15℃의 상온에서 25 kgf/mm2 이상의 항복 강도 및 2% 이상의 연신율을 갖는 이차전지용 전극.
  10. 양극(cathode);
    제7항 내지 제9항 중 어느 한 항의 이차전지용 전극으로 이루어진 음극(anode);
    상기 양극과 상기 음극 사이에 배치되어 리튬 이온이 이동할 수 있는 환경을 제공하는 전해질(electrolyte); 및
    상기 양극과 상기 음극을 전기적으로 절연시켜 주는 분리막(separator);
    을 포함하는 이차전지.
  11. 구리 이온을 포함하는 전해액 내에 서로 이격되게 배치된 양극판 및 회전 음극드럼을 40 내지 80 A/dm2의 전류밀도로 통전시켜 구리층을 형성하는 단계; 및
    크롬(Cr)을 포함하는 방청액 내에 상기 구리층을 침지시켜, 상기 구리층 상에 보호층을 형성시키는 단계;를 포함하며,
    상기 방청액은 1.5 내지 4.2의 pH 및 5ppm 미만의 용존 산소량을 갖는,
    동박의 제조방법.
  12. 제11항에 있어서,
    상기 전해액은 70 내지 90 g/L의 구리 이온 및 80 내지 120 g/L의 황산을 포함하는 동박의 제조방법.
  13. 제11항에 있어서,
    상기 전해액 내의 전체 무기 탄소량(Total Inorganic Carbon, TIC)은 0.05 g/L 이하인 동박의 제조방법.
  14. 제11항에 있어서,
    상기 전해액 내의 철(Fe) 이온의 농도는 0.30 g/L 이하인 동박의 제조방법.
  15. 제11항에 있어서,
    상기 구리층 형성 단계는, 활성탄을 이용하여 상기 전해액을 여과하는 단계를 포함하는 동박의 제조방법.
KR1020170029852A 2017-03-09 2017-03-09 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 Active KR102136794B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020170029852A KR102136794B1 (ko) 2017-03-09 2017-03-09 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
JP2018029281A JP6600023B2 (ja) 2017-03-09 2018-02-22 優れた密着力を有する銅箔、それを含む電極、それを含む二次電池、およびその製造方法
TW107107101A TWI668903B (zh) 2017-03-09 2018-03-02 具有改進的黏附力的銅箔、包含其之電極、包含其之二次電池及其製造方法
US15/914,568 US10741848B2 (en) 2017-03-09 2018-03-07 Copper foil having improved adhesive force, electrode including the same, secondary battery including the same, and method of manufacturing the same
CN201810188003.0A CN108574104B (zh) 2017-03-09 2018-03-07 铜箔、包含其的电极、包含其的二次电池及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170029852A KR102136794B1 (ko) 2017-03-09 2017-03-09 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법

Publications (2)

Publication Number Publication Date
KR20180103231A KR20180103231A (ko) 2018-09-19
KR102136794B1 true KR102136794B1 (ko) 2020-07-22

Family

ID=63446566

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170029852A Active KR102136794B1 (ko) 2017-03-09 2017-03-09 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법

Country Status (5)

Country Link
US (1) US10741848B2 (ko)
JP (1) JP6600023B2 (ko)
KR (1) KR102136794B1 (ko)
CN (1) CN108574104B (ko)
TW (1) TWI668903B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581081B1 (en) 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
CN109881200B (zh) * 2019-04-10 2021-05-11 深圳市铿东科技有限公司 一种碱性蚀刻液再生及其铜回收方法
CN110943228B (zh) * 2019-05-31 2021-06-08 宁德时代新能源科技股份有限公司 负极集流体、负极极片及电化学装置
TWI697574B (zh) * 2019-11-27 2020-07-01 長春石油化學股份有限公司 電解銅箔、電極及包含其之鋰離子電池
CN114990643B (zh) * 2022-06-17 2024-02-13 江西华创新材有限公司 一种生箔一体机及其生产工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100543193C (zh) * 2007-01-26 2009-09-23 湖北中科铜箔科技有限公司 一种低轮廓高性能电解铜箔及其制备方法
WO2008132987A1 (ja) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. リチウム二次電池用電解銅箔及び該銅箔の製造方法
JP2010027304A (ja) * 2008-07-16 2010-02-04 Furukawa-Sky Aluminum Corp 正極集電体用アルミニウム箔
TWI466367B (zh) * 2010-12-27 2014-12-21 Furukawa Electric Co Ltd A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
WO2012117850A1 (ja) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 液晶ポリマーフィルムベース銅張積層板及びその製造方法
WO2014178327A1 (ja) 2013-04-30 2014-11-06 古河電気工業株式会社 リチウムイオン二次電池負極集電体用銅箔
KR101449342B1 (ko) * 2013-11-08 2014-10-13 일진머티리얼즈 주식회사 전해동박, 이를 포함하는 전기부품 및 전지
CN104099652A (zh) * 2014-07-09 2014-10-15 山东金宝电子股份有限公司 一种电子铜箔的表面处理粗化工艺
HUE059762T2 (hu) * 2015-06-24 2022-12-28 Sk Nexilis Co Ltd Elektrolitos rézfólia, ugyanezen elektrolitos rézfóliát magában foglaló áramgyûjtõ, ugyanezen áramgyûjtõt magában foglaló elektród, ugyanezen elektródot magában foglaló másodlagos akkumulátor, és eljárás ugyanennek gyártására
KR101897474B1 (ko) * 2015-06-26 2018-09-12 케이씨에프테크놀로지스 주식회사 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
CN107923047B (zh) * 2015-07-29 2020-05-01 纳美仕有限公司 粗糙化处理铜箔、覆铜层叠板及印刷电路板
KR101798195B1 (ko) * 2015-10-21 2017-11-15 엘에스엠트론 주식회사 전해 동박, 그리고 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지
US10383222B2 (en) * 2016-01-04 2019-08-13 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
KR102318603B1 (ko) * 2016-08-23 2021-10-27 에스케이넥실리스 주식회사 이차전지의 용량 유지율을 향상시킬 수 있는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법

Also Published As

Publication number Publication date
CN108574104A (zh) 2018-09-25
CN108574104B (zh) 2021-04-02
JP2018152331A (ja) 2018-09-27
TW201834303A (zh) 2018-09-16
KR20180103231A (ko) 2018-09-19
US10741848B2 (en) 2020-08-11
US20180261850A1 (en) 2018-09-13
JP6600023B2 (ja) 2019-10-30
TWI668903B (zh) 2019-08-11

Similar Documents

Publication Publication Date Title
KR102158241B1 (ko) 전해 동박, 그것을 포함하는 집전체, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
EP3288101B1 (en) Electrolytic copper foil capable of improving capacity retention rate of secondary battery, electrode including the same, secondary battery including the same, and method of manufacturing the same
KR102136794B1 (ko) 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR102725487B1 (ko) 최적화된 피크 조도를 갖는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
US10811689B2 (en) Easily handleable electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
JP6505169B2 (ja) 電解銅箔、それを含む電極、それを含む二次電池およびその製造方法
KR102745621B1 (ko) 높은 내부식성을 갖고 활물질과의 접착력이 우수한 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR102721378B1 (ko) 주름 및 말림이 최소화된 고강도 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR20170085425A (ko) 동박, 그 제조방법, 그것을 포함하는 전극, 및 그것을 포함하는 이차전지
KR102132695B1 (ko) 이차전지의 용량 유지율을 향상시킬 수 있는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR20250044852A (ko) 동박, 그 제조방법, 그것을 포함하는 전극, 및 그것을 포함하는 이차전지

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20170309

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20180308

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
A201 Request for examination
A302 Request for accelerated examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20190925

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20170309

Comment text: Patent Application

PA0302 Request for accelerated examination

Patent event date: 20190925

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20170309

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200107

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20200526

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200716

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200716

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20240522

Start annual number: 5

End annual number: 5