KR102031464B1 - Coated steel sheet for hot press forming, hot press formed part using the sheet, and method for manufacturing thereof - Google Patents
Coated steel sheet for hot press forming, hot press formed part using the sheet, and method for manufacturing thereof Download PDFInfo
- Publication number
- KR102031464B1 KR102031464B1 KR1020170180302A KR20170180302A KR102031464B1 KR 102031464 B1 KR102031464 B1 KR 102031464B1 KR 1020170180302 A KR1020170180302 A KR 1020170180302A KR 20170180302 A KR20170180302 A KR 20170180302A KR 102031464 B1 KR102031464 B1 KR 102031464B1
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- hot press
- plating layer
- plated steel
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 102
- 239000010959 steel Substances 0.000 title claims abstract description 102
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 38
- 238000007747 plating Methods 0.000 claims description 78
- 229910018125 Al-Si Inorganic materials 0.000 claims description 47
- 229910018520 Al—Si Inorganic materials 0.000 claims description 47
- 229910052782 aluminium Inorganic materials 0.000 claims description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000000465 moulding Methods 0.000 claims description 14
- 238000001771 vacuum deposition Methods 0.000 claims description 11
- 230000006698 induction Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 238000007733 ion plating Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 238000002207 thermal evaporation Methods 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- 229910052742 iron Inorganic materials 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 10
- 238000005275 alloying Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 5
- 229910001335 Galvanized steel Inorganic materials 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 239000008397 galvanized steel Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
본 발명은 자동차 등의 부품에 사용되는 열간 프레스용 도금강판과 상기 도금강판을 이용하여 제조된 열간 프레스 성형품 및 이들을 재조하는 방법에 관한 것이다.The present invention relates to a hot press plated steel sheet used in parts such as automobiles, a hot press molded product manufactured using the plated steel sheet, and a method of manufacturing the same.
Description
본 발명은 자동차 등의 부품에 사용되는 열간 프레스용 도금강판과 상기 도금강판을 이용하여 제조된 열간 프레스 성형품 및 이들을 재조하는 방법에 관한 것이다. The present invention relates to a hot press plated steel sheet used in parts such as automobiles, a hot press molded product manufactured using the plated steel sheet, and a method of manufacturing the same.
최근 자동차의 내충격특성 향상 및 경량화를 위해 고강도강의 활용이 증가하고 있으며, 자동차 등의 사용되는 복잡한 부품을 제조하기 위해 상기 고강도강을 가공하는 방법으로서, 열간 프레스 성형(Hot Press Forming, HPF) 이 적용되고 있다. 상기 열간 프레스 성형은 핫 스탬핑(hot stamping)이라고도 한다. Recently, the use of high strength steel has been increasing to improve impact resistance and light weight of automobiles, and hot press forming (HPF) is applied as a method of processing the high strength steel to manufacture complex parts used in automobiles. It is becoming. The hot press forming is also called hot stamping.
상기 HPF는 강판(또는 블랭크)를 오스테나이트 영역 이상을 가열한 상태에서 가공과 동시에 급냉을 실시함으로써, 강판의 조직을 마르텐사이트로 변태시켜 고강도의 정밀한 형상을 가진 제품을 만들 수 있는 방법이다.The HPF is a method in which a steel sheet (or blank) is quenched at the same time as the steel plate (or blank) is heated in the austenite region or more, thereby transforming the structure of the steel sheet into martensite to produce a product having a high-precision, precise shape.
한편, 철은 산업에서 가장 많이 사용되는 소재 중 하나로, 뛰어난 물리적, 기계적인 특성을 가지고 있지만, 쉽게 산화되어 물리적, 기계적 특성이 저하되는 문제가 있다. 이 때문에 오래전부터 철의 산화를 방지하는 기술에 대한 연구가 되어 왔다. 철의 산화를 방지하는 방법 중 하나는 철보다 산소와 반응성이 높은 금속을 보호막으로 소재 표면에 코팅함으로써 보호막이 철보다 먼저 산화되어 부동태를 형성하여 부식을 지연시키는 방법으로, 대표적으로 아연 또는 아연계 피막을 형성하는 것이다. 또 다른 방법은 치밀한 보호막으로 산화를 방지하도록 하는 것으로 대표적인 것이 알루미늄 또는 알루미늄계 피막을 형성하는 것이다. On the other hand, iron is one of the most used materials in the industry, but has excellent physical and mechanical properties, but there is a problem that the physical and mechanical properties are easily oxidized is degraded. For this reason, research has been made on the technology for preventing the oxidation of iron for a long time. One of the methods to prevent the oxidation of iron is to coat the surface of the material with a metal that is more reactive with oxygen than iron, so that the protective film is oxidized before iron to form a passivation to delay corrosion. To form a film. Another method is to prevent oxidation with a dense protective film, which is representative of forming an aluminum or aluminum based film.
상기 아연 또는 아연계 도금 강판을 이용하여 열간 프레스 성형을 행하게 되면, 철과 아연의 상호 확산에 의하여 합금화가 진행되는데 이때 합금화가 충분히 진행되지 않으며 도금층 중에 일부 아연 함량이 높은 부위는 액상 아연으로 존재하고, 열간 프레스 성형시 오스테나이트 결정립계를 따라 침투되고 결정립계를 약화시켜 소위 마크로 크랙(macro crack)이라 불리른 액상취화 균열을 유발하게 되며, 발생 양상은 기본적으로 도금 부착량 및 합금화도에 의존한다.When hot press forming is performed using the zinc or zinc-based galvanized steel sheet, alloying proceeds by mutual diffusion of iron and zinc. At this time, alloying does not proceed sufficiently, and a portion of the high zinc content in the plating layer is present as liquid zinc. In hot press forming, the austenite grain boundary penetrates and weakens the grain boundary, causing a so-called embrittlement of embrittlement cracks called macro cracks. The pattern of occurrence is basically dependent on the coating weight and the degree of alloying.
한편, 도금 부착량과 합금화를 적절히 진행하더라도 블랭크와 금형 면 사하에 마찰이 발생하는 인장변형부에서는 마이크로 균열(micro crack) 즉, 표면 마찰에 의하여 발생된 전단응력이 표면측에서부터 균열을 만들어 도금층을 관통하여 마르텐사이트 기지까지 전파되는 균열이 발생되는 문제점을 가지고 있다.On the other hand, in the tensile deformation portion where friction occurs under the blank and the mold surface even if the plating adhesion amount and alloying proceed properly, micro crack, that is, shear stress generated by surface friction, cracks from the surface side and penetrates the plating layer. Thus, there is a problem in that cracks propagate to the martensite base.
상기 아연계 도금강판의 문제점으로 인하여, 알루미늄계 도금강판을 열간 프레스 성형하는 기술(특허문헌 1)이 있다. 그러나 알루미늄계 도금강판은 희생방식 특성이 열위하여 자동차 부품 등에서 요구되는 내식성을 충분히 충족하지 못하는 것어로 알려져 있다. 뿐만 아니라, 최근 다양한 산업환경에서 우수한 내식성을 요구하고 있다. 이러한 이유로 상기 알루미늄계 도금에 희생방식 특성을 갖는 성분(대표적으로 마그네슘)을 이용하는 방법이 제시되고 있다.Due to the problem of the zinc-based galvanized steel sheet, there is a technique (hot patent document 1) for hot press molding an aluminum-based galvanized steel sheet. However, aluminum-based galvanized steel sheet is known to not satisfactorily satisfies the corrosion resistance required for automotive parts due to inferior sacrificial characteristics. In addition, the recent demand for excellent corrosion resistance in a variety of industrial environments. For this reason, a method of using a component (typically magnesium) having sacrificial anticorrosive properties for the aluminum plating has been proposed.
대표적으로 특허문헌 2는 강판의 부식을 방지하기 위해서 마그네슘-알루미늄 용융 코팅에 관한 것이고, 특허문헌 3은 진공 코팅을 이용하여 마그네슘-알루미늄 합금층을 강판에 코팅하는 기술을 제시하고 있다.Representatively, Patent Document 2 relates to a magnesium-aluminum melt coating to prevent corrosion of the steel sheet, and Patent Document 3 proposes a technique of coating a magnesium-aluminum alloy layer on the steel sheet using a vacuum coating.
그러나 도금강판을 열간 프레스 성형하는 과정에서 표면 산화스케일의 발생이 문제되고, 이를 해결하기 위한 방안이 요구되고 있는 실정이다. However, in the process of hot press forming the plated steel sheet, the occurrence of surface oxide scale is a problem, and a situation for solving this problem is required.
본 발명의 일측면은 열간 프레스 성형(Hot Press Forming, HPF) 공정 중 표면 스케일(scale, 산화물)의 발생을 억제하고, 우수한 내식성을 확보할 수 있는 열간 프레스 성형용 도금강판과, 이를 이용하여 제조된 열간 프레스 성형품 및 이들을 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is a plated steel sheet for hot press forming to suppress the occurrence of surface scale (oxide, oxide) during the hot press forming (HPF) process, and to ensure excellent corrosion resistance, and manufactured using the same It is an object of the present invention to provide a hot press molded article and a method of manufacturing the same.
본 발명의 과제는 상술한 사항에 한정되지 아니한다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The subject of this invention is not limited to the above-mentioned matter. Further objects of the present invention are described in the general description, and those skilled in the art will have no difficulty understanding the additional objects of the present invention from the contents described in the specification of the present invention.
본 발명의 일태양은 소지강판; One aspect of the present invention is a steel sheet;
상기 소지강판 상에 형성된 Fe-Al-Si계 도금층; 및Fe—Al—Si based plating layer formed on the base steel sheet; And
상기 Fe-Al-Si계 도금층 상에 형성된 Mg 도금층을 포함하는 열간 프레스 성형용 도금강판에 관한 것이다.The present invention relates to a hot-rolled plated steel sheet including an Mg plating layer formed on the Fe—Al—Si-based plating layer.
본 발명의 또다른 일태양은 소지강판을 준비하는 단계; Another aspect of the present invention comprises the steps of preparing a steel sheet;
상기 소지강판 표면에 Al-Si계 도금층을 형성하여 알루미늄계 도금강판을 제조하는 단계;Manufacturing an aluminum-based plated steel sheet by forming an Al-Si-based plating layer on the surface of the base steel sheet;
상기 알루미늄계 도금강판을 600~750℃의 온도로 10~90초간 열처리하여, Fe-Al-Si계 도금층을 갖는 도금강판을 제조하는 단계; 및Heat-treating the aluminum-based plated steel sheet at a temperature of 600 to 750 ° C. for 10 to 90 seconds to produce a plated steel sheet having a Fe—Al—Si-based plating layer; And
상기 Fe-Al-Si계 도금층 상에 Mg 도금층을 형성하는 단계를 포함하는 열간 프레스 성형용 도금강판의 제조방법에 관한 것이다.It relates to a method for manufacturing a hot-rolled plated steel sheet comprising the step of forming an Mg plating layer on the Fe-Al-Si-based plating layer.
본 발명의 또다른 일태양은 열간 프레스 성형된 성형 소지 강판;Another aspect of the present invention is hot-molded molded base steel sheet;
상기 성형 소지 강판 표면에 형성된 Fe-Al-Si계 도금층; 및Fe-Al-Si-based plating layer formed on the surface of the molded steel sheet; And
상기 Fe-Al-Si계 도금층 상에 형성된 산화물층을 포함하고,An oxide layer formed on the Fe-Al-Si-based plating layer,
상기 산화물층은 Mg 산화물을 포함하는 열간 프레스 성형품에 관한 것이다. The oxide layer relates to a hot press formed article containing Mg oxide.
본 발명의 또다른 일태양은 상기 소지강판 표면에 Al-Si계 도금층을 형성하여 알루미늄계 도금강판을 제조하고, 상기 알루미늄계 도금강판을 600~750℃의 온도로 10~90초간 열처리하여, Fe-Al-Si계 도금층을 갖는 도금강판을 제조한 후, 상기 Fe-Al-Si계 도금층 상에 Mg 도금층을 형성하여 열간 프레스 성형용 도금강판을 준비하는 단계;Another embodiment of the present invention forms an Al-Si-based plating layer on the surface of the base steel sheet to produce an aluminum-based plated steel sheet, heat-treated the aluminum-based plated steel sheet at a temperature of 600 ~ 750 ℃ for 10 to 90 seconds, Fe Preparing a plated steel sheet for hot press forming by forming a plated steel sheet having an Al-Si-based plating layer and then forming an Mg plating layer on the Fe-Al-Si-based plating layer;
상기 열간 프레스 성형용 도금강판을 850~950℃의 온도로 가열하는 단계; 및Heating the hot-rolled plated steel sheet at a temperature of 850 ° C. to 950 ° C .; And
상기 가열된 열간 프레스 성형용 도금강판을 성형 및 냉각하는 단계를 포함하는 열간 프레스 성형품의 제조방법.에 관한 것이다.It relates to a method for producing a hot press molded article comprising the step of forming and cooling the heated hot press plated steel sheet.
본 발명에 의하면 우수한 내식성 확보는 물론, 열간 프레스 성형(Hot Press Forming, HPF) 공정에서 표면 스케일(scale, 산화물) 발생이 억제되어, 성형품의 우수한 표면 품질을 확보할 수 있다. 또한, 제품에 미소 크랙(micro crack)을 발생하지 않아, 우수한 품질의 제품을 제공할 수 있다. According to the present invention, as well as ensuring excellent corrosion resistance, the occurrence of surface scale (oxide) in the hot press forming (Hot Press Forming (HPF)) process is suppressed, it is possible to ensure excellent surface quality of the molded article. In addition, a micro crack does not occur in the product, thereby providing a product of excellent quality.
도 1은 본 발명의 열간 프레스 성형용 도금강판의 구조를 개략적으로 나타낸 모식도이다.
도 2는 본 발명의 실시예 중 비교예 1의 도금강판의 단면 GDS 평과 결과(a), 도금강판의 단면을 관찰한 사진(b) 및 열간 프레스 성형 후 단면을 관찰한 사진(c)이다.
도 3은 본 발명의 실시예 중 발명예 1의 도금강판의 단면 GDS 평과 결과(a), 도금강판의 단면을 관찰한 사진(b) 및 열간 프레스 성형 후 단면을 관찰한 사진(c)이다.
도 4는 본 발명의 실시예의 열간 프레스 성형 후 표면 스케일 발생을 관찰한 사진이다.1 is a schematic diagram schematically showing the structure of a plated steel sheet for hot press forming of the present invention.
Figure 2 is a cross-sectional GDS evaluation results (a) of the plated steel sheet of Comparative Example 1 of the embodiment of the present invention, a photograph (b) observed the cross section of the plated steel sheet and a photograph (c) observed the cross section after hot press molding.
3 is a cross-sectional GDS evaluation result (a) of the plated steel sheet of Inventive Example 1 of the examples of the present invention, a photograph (b) of observing the cross section of the plated steel sheet and a photograph (c) of the cross section after hot press forming.
Figure 4 is a photograph observing the generation of the surface scale after hot press molding of the embodiment of the present invention.
본 발명의 발명자들은 알루미늄계 도금강판을 이용하여 열간 프레스 성형(Hot Press Forming, HPF)을 하여 성형품(부품)을 제조하는 경우에, 우수한 내식성을 확보하고, HPF 공정 중 산화 스케일(scale, 철산화물)이 발생하는 문제를 해결하기 위해서 깊이 연구하였다. 그 결과, 알루미늄계 도금강판의 도금층에 순수한 알루미늄 영역이 없도록 열처리하고, 그 표면에 마그네슘(Mg) 도금층을 형성하는 방안을 고안하여, 본 발명에 이르게 되었다.The inventors of the present invention secure excellent corrosion resistance when manufacturing a molded part (part) by hot press forming (Hot Press Forming) using an aluminum-based galvanized steel sheet, the oxidation scale (iron oxide) during the HPF process In order to solve the problems that occur) As a result, the present invention has devised a method of heat-treating the plated layer of an aluminum-based plated steel sheet so that there is no pure aluminum region, and forming a magnesium (Mg) plated layer on the surface thereof.
이하, 본 발명에 대해서 상세히 설명한다. 먼저, 본 발명의 일구현예인 열간 프레스 성형용 도금강판에 대해서 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail. First, a plated steel sheet for hot press forming, which is an embodiment of the present invention, will be described in detail.
상기 열간 프레스 성형용 도금강판은 도 1에 도시된 바와 같이 소지강판(10), 소지강판 상에 형성된 Fe-Al-Si계 도금층(21) 및 상기 Fe-Al-Si계 도금층(21) 상에 형성된 Mg 도금층(22)을 포함한다.As shown in FIG. 1, the hot press-plated steel sheet may be formed on the
상기 소지강판은 열간 프레스 성형에 사용될 수 있는 소재로서, 본 발명이 속하는 기술분야에서 통상의 기술자가 사용가능한 것이면 가능하며, 특별히 제한되는 것은 아니다. 열연강판, 냉연강판, 선재 등 그 종류나 형태를 특별히 제한하지 않는다. 일예로, 본 발명의 소지강판은 통상 도금 열간 프레스 성형(HPF)용으로 사용되는 강판은 적용될 수 있다.The steel sheet is a material that can be used for hot press molding, as long as it can be used by those skilled in the art to which the present invention pertains, and is not particularly limited. The type and shape of the hot rolled steel sheet, the cold rolled steel sheet, the wire rod, etc. are not particularly limited. For example, the steel sheet of the present invention is a steel sheet which is usually used for plating hot press molding (HPF) can be applied.
상기 소지강판 상에 Fe-Al-Si계 도금층이 존재하는 것이 바람직하다. 상기 Fe-Al-Si계 도금층은 다양한 방법으로 형성될 수 있으나, 일예로서 Al-Si 도금층을 열처리하여, 소지강판의 Fe와 Al-Si 도금층의 합금화 반응을 이용하여 얻어질 수 있다. 상기 Al-Si 도금층은 특별히 한정되지 않으나, Si 함량이 12중량% 이하인 것이 바람직하다. 일예로, 상기 Fe-Al-Si계 도금층은 Fe와 Al의 합금상에 Si이 일부 고용되어 있으며, 상기 Fe, Al 및 Si의 합량이 95중량% 이상을 차지한다. 바람직하게는 상기 Fe-Al-Si계 도금층은 표면까지 합금화된다. It is preferable that a Fe—Al—Si-based plating layer is present on the base steel sheet. The Fe-Al-Si-based plating layer may be formed by various methods. For example, the Fe-Al-Si-based plating layer may be obtained by heat-treating the Al-Si plating layer, using an alloying reaction of Fe and Al-Si plating layer of the steel sheet. The Al-Si plating layer is not particularly limited, but Si content is preferably 12% by weight or less. In one example, the Fe-Al-Si-based plating layer is partially dissolved in Si on the alloy of Fe and Al, the total amount of Fe, Al and Si occupies more than 95% by weight. Preferably, the Fe-Al-Si-based plating layer is alloyed to the surface.
상기 Fe-Al-Si계 도금층은 순수한 알루미늄 영역이 최소화되는 것이 바람직하다. 상기 Fe-Al-Si계 도금층 내에 순수한 알루미늄이 남아있게 되면, Fe-Al-Si계 도금층 상부에 Mg 도금층을 형성한 후 800~950℃의 열간 성형 온도로 가열하면, 소지철의 Fe와 Al 성분의 반응에 의해 마그네슘 산화물층이 치밀하게 형성되지 않게 된다. The Fe—Al—Si-based plating layer is preferably a pure aluminum region is minimized. When pure aluminum remains in the Fe-Al-Si-based plating layer, when the Mg plating layer is formed on the Fe-Al-Si-based plating layer and heated to a hot forming temperature of 800 ~ 950 ℃, Fe and Al components of the base iron By reaction of the magnesium oxide layer is not formed densely.
본 발명의 열간 프레스 성형용 도금강판은 상기 Fe-Al-Si계 도금층 상에 형성된 Mg 도금층을 포함한다. 상기 Mg 도금층은 열간 성형 전에 Mg에 의한 희생방식성을 가질 수 있으며, 열간 성형 후 치밀한 Mg계 도금층이 형성되어 내식성이 향상된다. 상기 Mg 도금층은 0.1~10㎛의 두께를 갖는 것이 바람직하다. 보다 바람직하게는 1~5㎛의 두께를 갖는다. 상기 Mg 도금층의 두께가 0.1㎛ 미만인 경우에는 열간 성형 후 치밀한 마그네슘 산화물층이 형성되지 않을 수 있으며, 10㎛를 초과하는 경우에는 다공성의 마그네슘 산화물층이 형성되어 다량의 스케일이 발생할 수 있다.The plated steel sheet for hot press forming of the present invention includes an Mg plating layer formed on the Fe—Al—Si-based plating layer. The Mg plating layer may have sacrificial corrosion resistance by Mg before hot forming, and a dense Mg-based plating layer is formed after hot forming to improve corrosion resistance. It is preferable that the said Mg plating layer has a thickness of 0.1-10 micrometers. More preferably, it has a thickness of 1-5 micrometers. When the thickness of the Mg plating layer is less than 0.1 μm, a dense magnesium oxide layer may not be formed after hot forming. When the Mg plating layer exceeds 10 μm, a porous magnesium oxide layer may be formed to generate a large amount of scale.
이하, 본 발명의 열간 프레스 성형용 도금강판을 제조하는 일구현예에 대해서 상세히 설명한다.Hereinafter, one embodiment of manufacturing the plated steel sheet for hot press forming of the present invention will be described in detail.
상기 HPF 도금강판을 제조하기 위해서, 소지강판을 준비, 상기 준비된 소지강판의 표면에 Al-Si계 도금층 형성하여 알루미늄계 도금강판을 제조하고, 상기 알루미늄계 도금강판의 표면에 Mg 도금층을 형성하는 과정을 포함한다.In order to manufacture the HPF plated steel sheet, a base plate is prepared, an Al-Si plated layer is formed on the surface of the prepared base plate to manufacture an aluminum plated steel sheet, and a process of forming an Mg plated layer on the surface of the aluminum plated steel sheet. It includes.
상기 소지강판의 준비는 본 발명의 속하는 기술분야에서 통상 행해지는 방안으로 행한다. 상기 소지강판은 특별히 한정되지 않으며, 통상 열간 성형에 사용될 수 있는 강판이면 충분하다. 일예로, 상기 소지강판은 중량%로, C: 0.15~0.5%, Mn: 0.5~3%, Si: 0.1~0.5%, Cr: 0.01~1.0%, Ti: 0.2% 이하, Al: 0.1% 이하, P: 0.1% 이하, S: 0.05% 이하, B: 0.0005~0.08%, 나머지는 Fe와 불가피한 불순물을 포함할 수 있다.Preparation of the steel sheet is carried out by a method usually performed in the technical field of the present invention. The base steel sheet is not particularly limited, and a steel sheet that can be used for hot forming is usually sufficient. For example, the steel sheet is in weight%, C: 0.15 ~ 0.5%, Mn: 0.5 ~ 3%, Si: 0.1 ~ 0.5%, Cr: 0.01 ~ 1.0%, Ti: 0.2% or less, Al: 0.1% or less , P: 0.1% or less, S: 0.05% or less, B: 0.0005 to 0.08%, and the rest may include Fe and unavoidable impurities.
상기 준비된 소지강판 표면에 Al-Si계 도금층을 형성하여 알루미늄계 도금강판을 제조한다. 상기 알루미늄계 도금강판을 제조하는 방법은 용융 도금, 전기 도금, 진공 증착 등 그 방법을 특별히 한정하지 않는다. An aluminum-based plated steel sheet is manufactured by forming an Al-Si-based plated layer on the prepared steel sheet surface. The method for producing the aluminum-based plated steel sheet is not particularly limited to those methods such as hot dip plating, electroplating, and vacuum deposition.
바람직한 일예로, 용융 도금을 이용하여, Al-Si계 도금층을 형성하는 경우에, 도금욕에 상기 소지강판을 침지하여 도금을 한다. 상기 Si의 함량은 12 중량%이고, 나머지는 Al인 것이 바람직하다. In a preferred embodiment, when the Al-Si-based plating layer is formed using hot dip plating, the base steel sheet is immersed in the plating bath to perform plating. The content of Si is 12% by weight, the remainder is preferably Al.
한편, 상기 Al-Si계 도금층의 도금 부착량은 20~120g/㎡일 수 있다. On the other hand, the plating deposition amount of the Al-Si-based plating layer may be 20 ~ 120g / ㎡.
상기 준비된 알루미늄계 도금강판을 600~750℃의 온도에서 10~90초의 시간 동안 열처리하여, Fe-Al-Si계 도금층을 갖는 도금강판을 제조한다. 상기 온도가 600℃ 미만이거나, 시간이 10초 미만일 경우에는 충분한 합금화가 이루어지지 않아서, Fe-Al-Si계 도금층 내 순수한 Al 영역이 과도하게 형성될 수 있고, 열처리 온도가 750℃를 초과하거나, 90초를 넘는 경우에는 합금화의 효과가 포화되고, 경제적으로 바람직하지 않다.The prepared aluminum-based plated steel sheet is heat-treated at a temperature of 600 to 750 ° C. for 10 to 90 seconds to prepare a plated steel sheet having a Fe—Al—Si-based plating layer. If the temperature is less than 600 ℃, or less than 10 seconds time is not sufficient alloying, the pure Al region in the Fe-Al-Si-based plating layer may be excessively formed, the heat treatment temperature exceeds 750 ℃, In the case of more than 90 seconds, the effect of alloying is saturated and economically undesirable.
상기 Fe-Al-Si계 도금층 상에 Mg 도금층을 형성한다. 상기 Mg 도금층은 진공증착법으로 형성할 수 있다. 상기 진공증착법은 전자빔법, 스퍼터링법, 열증발법, 유도가열 증발법, 이온 플레이팅법 등이 적용될 수 있으며, 바람직하게는 생산속도 향상을 위해 고속 증착이 가능하며, 전자기 교반 효과(Electromagnetic Stirring)를 가지는 전자기 부양 유도가열 방법에 의하여 형성할 수 있다. 상기 전자기 부양 유도 가열에 의한 진공증착시, 진공도는 10×e-4 torr 이하를 유지하고, Mg 코팅시 Al과 Mg의 합금화를 방지하기 위해 소재의 온도는 300℃ 이하를 유지할 수 있다.An Mg plating layer is formed on the Fe—Al—Si-based plating layer. The Mg plating layer may be formed by a vacuum deposition method. The vacuum deposition method may be applied to the electron beam method, sputtering method, thermal evaporation method, induction heating evaporation method, ion plating method, and the like, preferably high-speed deposition to improve the production speed, the electromagnetic stirring effect (Electromagnetic Stirring) The branches can be formed by an electromagnetic levitation induction heating method. When vacuum deposition by the electromagnetic flotation induction heating, the degree of vacuum can be maintained at 10 × e -4 torr or less, and the temperature of the material can be maintained at 300 ℃ or less to prevent alloying of Al and Mg during Mg coating.
이하, 본 발명의 또 다른 구현예인 열간 프레스 성형품에 대해서 상세히 서설명한다. 본 발명의 열간 프레스 성형품은 열간 프레스 성형된 성형 소지 강판, 상기 성형 소지 강판 표면에 형성된 Fe-Al-Si계 도금층; 및 상기 Fe-Al-Si계 도금층 상에 형성된 산화물층을 포함한다. Hereinafter, a hot press molded article which is another embodiment of the present invention will be described in detail. The hot press-molded article of the present invention comprises a hot-molded molded base steel sheet, a Fe-Al-Si-based plating layer formed on the molded base steel sheet surface; And an oxide layer formed on the Fe—Al—Si-based plating layer.
상기 성형 소지 강판은 열간 프레스 성형과정에서 오스테나이트 영역으로 가열된 후 급냉 처리되어 높은 강도를 갖는 것이 바람직하다. The molded steel sheet is preferably heated to an austenite region in the hot press molding process and then quenched to have high strength.
상기 산화물층은 마그네슘 산화물(MgO)을 포함하는 것이 바람직하다. 상기 산화물층은 치밀하게 구성되어 스케일 발생을 억제하여, 향후 스케일 제거를 위한 공정을 생략할 수 있을 뿐만 아니라, 표면 및 단면 내식성 향상에도 도움을 준다.The oxide layer preferably includes magnesium oxide (MgO). The oxide layer is densely configured to suppress scale generation, thereby eliminating the process for removing scale in the future, and also helps to improve surface and cross-sectional corrosion resistance.
상기 본 발명의 열간 프레스 성형품을 제조하는 방법은 전술한 열간 프레스용 도금강판을 800~950℃의 온도로 가열한 후, 성형 및 냉각하는 과정을 포함한다. 상기 열간 프레스 성형 공정은 통상의 방법으로 행한다.The method for manufacturing the hot press-formed product of the present invention includes a process of forming and cooling after heating the above-described hot press plated steel sheet at a temperature of 800 to 950 ° C. The hot press forming step is performed by a conventional method.
이하, 본 발명의 실시예에 대해서 상세히 설명한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the Example of this invention is described in detail. However, it is necessary to note that the following examples are only for illustrating the present invention in more detail, and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예)(Example)
알루미늄 및 실리콘의 함량이 각각 약 91~92 중량%, 약 8~9 중량%이고, 두께 약 18㎛의 Al-Si계 도금층을 갖는 알루미늄 도금강판을 준비하였다. 상기 Al-Si 도금은 용융도금으로 제조하였다.The aluminum and silicon contents of about 91 to 92% by weight, about 8 to 9% by weight, respectively, and an aluminum plated steel sheet having an Al—Si based plating layer having a thickness of about 18 μm were prepared. The Al-Si plating was prepared by hot dip plating.
상기와 같이 준비된 알루미늄 도금강판을 하기 표 1의 열처리 조건으로 열처리한 후, 전자기 유도에 의한 진공증착으로 1.5~3㎛ 두께의 마그네슘(Mg) 도금층을 코팅하였다. The aluminum plated steel sheet prepared as described above was heat-treated under the heat treatment conditions shown in Table 1, and then coated with a magnesium (Mg) plating layer having a thickness of 1.5 to 3 μm by vacuum deposition by electromagnetic induction.
이렇게 제조된 열간 프레스 성형용 도금강판을 900℃에서 약 6분간 HPF 열처리를 한 후, 산화 스케일 발생 여부를 확인하고 그 결과를 표 1에 함께 나타내었다. 한편, 산화 스케일 발생은 테이프 필링(tape peeling) 테스트를 통해, 스케일이 묻어나오는 정도를 관찰하여 나타낸 것이다.The hot press plated steel sheet thus prepared was subjected to HPF heat treatment at 900 ° C. for about 6 minutes, and then confirmed whether an oxide scale was generated and the results are shown in Table 1 together. On the other hand, the generation of oxidized scale is shown by observing the degree of the scale coming out through a tape peeling test.
한편, 도 2는 상기 비교예 1의 도금강판의 단면 GDS 평과 결과(a), 도금강판의 단면을 관찰한 사진(b) 및 열간 프레스 성형 후 단면을 관찰한 사진(c)이고, 도 3은 상기 발명예 1의 도금강판의 단면 GDS 평과 결과(a), 도금강판의 단면을 관찰한 사진(b) 및 열간 프레스 성형 후 단면을 관찰한 사진(c)이다,On the other hand, Figure 2 is a cross-sectional GDS evaluation results (a) of the plated steel sheet of Comparative Example 1, a photograph (b) observed the cross section of the plated steel sheet and a photograph (c) observed the cross section after hot press molding, Figure 3 The cross section GDS evaluation result (a) of the plated steel sheet of the invention example 1, the photograph (b) which observed the cross section of the plated steel sheet, and the photograph (c) which observed the cross section after hot press molding,
도 2에 나타난 바와 같이, 비교예의 열간 프레스 성형용 도금 강판은 알루미늄계 도금층에 미합금화된 Al 영역이 존재하며, 이를 열간 프레스 성형 후, 열간 프레스 성형을 위한 열처리 과정에서 알루미늄과 철과의 합금화에 의해 최상부 마그네슘 도금층이 불균일하고 기공이 많은 산화층으로 형성되면서, 많은 산화 스케일을 발생시켰다. 반면 도 3에 나타난 발명예의 경우에는 알루미늄계 도금층이 전부 Fe-Al-Si 합금화되어, 열간 프레스 성형 후에 치밀하고 균일한 마그네슘 산화물층이 형성되어 있어, 산화 스케일 발생이 저감된 것을 알 수 있다.As shown in FIG. 2, the plated steel sheet for hot press forming of the comparative example has an unalloyed Al region in the aluminum-based plating layer, and after the hot press forming, an alloy of aluminum and iron in the heat treatment process for hot press forming is performed. As a result, the uppermost magnesium plating layer was formed into an oxide layer with a large amount of non-uniformity and a large amount of pores, resulting in many oxidation scales. On the other hand, in the case of the invention shown in Fig. 3, all of the aluminum-based plating layers are Fe-Al-Si alloyed, and a dense and uniform magnesium oxide layer is formed after hot press molding, and it can be seen that the generation of oxidative scale is reduced.
도 4는 각각, 상기 표 1의 발명예와 비교예 간 프레스 성형을 위한 열처리 후, 표면에 발생한 산화 스케일을 확인하기 위해서, 테이프 필링(tape peeling) 테스트한 결과를 나타낸 것이다. 도 4에 나타난 바와 같이, 발명예에서는 산화 스케일이 비교예에 비해 훨씬 저감된 것을 알 수 있다. Figure 4 shows the results of the tape peeling test, in order to confirm the oxidation scale generated on the surface after the heat treatment for press molding between the invention example and the comparative example of Table 1, respectively. As shown in FIG. 4, in the invention example, it can be seen that the oxidation scale is much reduced compared to the comparative example.
Claims (10)
상기 소지강판 상에 형성된 Fe-Al-Si계 도금층; 및
상기 Fe-Al-Si계 도금층 상에 형성된 Mg 도금층을 포함하는 열간 프레스 성형용 도금강판.
Steel plate;
Fe—Al—Si based plating layer formed on the base steel sheet; And
Plated steel sheet for hot press forming comprising an Mg plating layer formed on the Fe-Al-Si-based plating layer.
상기 Mg 도금층은 0.1~10㎛의 두께를 갖는 열간 프레스 성형용 도금강판.
The method according to claim 1,
The Mg plating layer is a plated steel sheet for hot press forming having a thickness of 0.1 ~ 10㎛.
상기 Fe-Al-Si계 도금층은 표면까지 합금화된 열간 프레스 성형용 도금강판.
The method according to claim 1,
The Fe-Al-Si-based plating layer is a plated steel sheet for hot press molding alloyed to the surface.
소지강판을 준비하는 단계;
상기 소지강판 표면에 Al-Si계 도금층을 형성하여 알루미늄계 도금강판을 제조하는 단계;
상기 알루미늄계 도금강판을 600~750℃의 온도로 10~90초간 열처리하여, Fe-Al-Si계 도금층을 갖는 도금강판을 제조하는 단계; 및
상기 Fe-Al-Si계 도금층 상에 Mg 도금층을 형성하는 단계
를 포함하는 열간 프레스 성형용 도금강판의 제조방법.
As a method for producing a plated steel sheet for hot press forming according to claim 1,
Preparing a steel sheet;
Manufacturing an aluminum-based plated steel sheet by forming an Al-Si-based plating layer on the surface of the base steel sheet;
Heat-treating the aluminum-based plated steel sheet at a temperature of 600 to 750 ° C. for 10 to 90 seconds to produce a plated steel sheet having a Fe—Al—Si-based plating layer; And
Forming an Mg plating layer on the Fe-Al-Si-based plating layer
Method of manufacturing a plated steel sheet for hot press molding comprising a.
상기 Mg 도금층은 진공증착 방법으로 형성하는 열간 프레스 성형용 도금강판의 제조방법.
The method according to claim 4,
The Mg plating layer is a method of manufacturing a plated steel sheet for hot press forming formed by a vacuum deposition method.
상기 진공증착 방법은 전자빔법, 스퍼터링법, 열증발법, 유도가열 증발법 및 이온 플레이팅법 중 어느 하나인 열간 프레스 성형용 도금강판의 제조방법.
The method according to claim 5,
The vacuum deposition method is any one of the electron beam method, sputtering method, thermal evaporation method, induction heating evaporation method and ion plating method of manufacturing a plated steel sheet for hot press forming.
상기 진공증착시 진공도는 10×e-4 torr 이하인 열간 프레스 성형용 도금강판의 제조방법.
The method according to claim 5,
The vacuum deposition at the time of vacuum deposition is 10 × e -4 torr or less manufacturing method of the hot-pressed plated steel sheet.
상기 진공증착시 강판의 온도는 300℃ 이하인 열간 프레스 성형용 도금강판의 제조방법.
The method according to claim 5,
The temperature of the steel sheet during the vacuum deposition is a method of manufacturing a plated steel sheet for hot press molding is 300 ℃ or less.
열간 프레스 성형된 성형 소지 강판;
상기 성형 소지 강판 표면에 형성된 Fe-Al-Si계 도금층; 및
상기 Fe-Al-Si계 도금층 상에 형성된 산화물층을 포함하고,
상기 산화물층은 Mg 산화물을 포함하는 열간 프레스 성형품.
As a hot press molded article using the plated steel sheet for hot press forming of Claim 1,
Hot-molded molded steel sheet;
Fe-Al-Si-based plating layer formed on the surface of the molded steel sheet; And
An oxide layer formed on the Fe-Al-Si-based plating layer,
The oxide layer is hot press molded article containing Mg oxide.
상기 소지강판 표면에 Al-Si계 도금층을 형성하여 알루미늄계 도금강판을 제조하고, 상기 알루미늄계 도금강판을 600~750℃의 온도로 10~90초간 열처리하여, Fe-Al-Si계 도금층을 갖는 도금강판을 제조한 후, 상기 Fe-Al-Si계 도금층 상에 Mg 도금층을 형성하여 열간 프레스 성형용 도금강판을 준비하는 단계;
상기 열간 프레스 성형용 도금강판을 850~950℃의 온도로 가열하는 단계; 및
상기 가열된 열간 프레스 성형용 도금강판을 성형 및 냉각하는 단계
를 포함하는 열간 프레스 성형품의 제조방법.
As a method for producing a hot press molded article according to claim 9,
Forming an Al-Si-based plating layer on the surface of the base steel sheet to produce an aluminum-based plated steel sheet, and heat-treated the aluminum-based plated steel sheet at a temperature of 600 ~ 750 ℃ for 10 to 90 seconds, having a Fe-Al-Si-based plating layer Preparing a plated steel sheet for hot press forming by preparing a plated steel sheet and then forming an Mg plating layer on the Fe—Al—Si-based plating layer;
Heating the hot-rolled plated steel sheet at a temperature of 850 ° C. to 950 ° C .; And
Molding and cooling the heated hot press plated steel sheet
Method for producing a hot press molded article comprising a.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170180302A KR102031464B1 (en) | 2017-12-26 | 2017-12-26 | Coated steel sheet for hot press forming, hot press formed part using the sheet, and method for manufacturing thereof |
PCT/KR2018/015533 WO2019132309A1 (en) | 2017-12-26 | 2018-12-07 | Plated steel sheet for hot press forming, hot press formed product using same, and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170180302A KR102031464B1 (en) | 2017-12-26 | 2017-12-26 | Coated steel sheet for hot press forming, hot press formed part using the sheet, and method for manufacturing thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190078415A KR20190078415A (en) | 2019-07-04 |
KR102031464B1 true KR102031464B1 (en) | 2019-10-11 |
Family
ID=67063899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170180302A Active KR102031464B1 (en) | 2017-12-26 | 2017-12-26 | Coated steel sheet for hot press forming, hot press formed part using the sheet, and method for manufacturing thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102031464B1 (en) |
WO (1) | WO2019132309A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2924492B2 (en) * | 1992-09-21 | 1999-07-26 | 住友金属工業株式会社 | Al alloy plated metal sheet with excellent end face corrosion resistance and its manufacturing method |
FR2780984B1 (en) | 1998-07-09 | 2001-06-22 | Lorraine Laminage | COATED HOT AND COLD STEEL SHEET HAVING VERY HIGH RESISTANCE AFTER HEAT TREATMENT |
KR100957928B1 (en) | 2004-12-24 | 2010-05-13 | 주식회사 포스코 | Manufacturing method of aluminum-magnesium alloy film |
JP5655263B2 (en) | 2007-09-19 | 2015-01-21 | 新日鐵住金株式会社 | Molten Mg-Al alloy plated steel |
KR20120075196A (en) * | 2010-12-28 | 2012-07-06 | 주식회사 포스코 | Al-mg alloy plated steel sheet having excellent coating adhesion and corrosion resistance, and method for manufacturing the same |
KR102015200B1 (en) * | 2013-04-18 | 2019-08-27 | 닛폰세이테츠 가부시키가이샤 | Plated steel sheet for hot pressing, process for hot-pressing plated steel sheet and automobile part |
KR101829763B1 (en) * | 2016-04-14 | 2018-02-19 | 주식회사 포스코 | Alloy-coated steel sheet and method for manufacturing the same |
-
2017
- 2017-12-26 KR KR1020170180302A patent/KR102031464B1/en active Active
-
2018
- 2018-12-07 WO PCT/KR2018/015533 patent/WO2019132309A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
KR20190078415A (en) | 2019-07-04 |
WO2019132309A1 (en) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5476676B2 (en) | Hot-pressed member and manufacturing method thereof | |
KR101849480B1 (en) | Vehicle component and vehicle component manufacturing method | |
TWI453300B (en) | Steel sheets to be hot-pressed and method for manufacturing hot-pressed members from the same | |
JP5614496B2 (en) | Hot stamped high strength parts with excellent post-painting corrosion resistance and manufacturing method thereof | |
JP5444650B2 (en) | Plated steel sheet for hot press and method for producing the same | |
KR101008042B1 (en) | Aluminum plated steel sheet with excellent corrosion resistance, hot press-formed products using the same and manufacturing method thereof | |
CN107614733B (en) | HPF molded part having excellent peeling resistance and method for producing same | |
KR20190078438A (en) | Plated steel for hot press forming, forming part by using the same and manufacturing method thereof | |
WO2018221738A1 (en) | Hot stamp member | |
JP5251272B2 (en) | Automotive parts with excellent corrosion resistance after painting and Al-plated steel sheet for hot pressing | |
KR20110118621A (en) | Method of manufacturing coated parts using hot forming technology | |
WO2015001705A1 (en) | Method of manufacturing hot press member | |
JP2023503151A (en) | Thermoformed parts with excellent paint film adhesion and method for producing same | |
JP2014118628A (en) | MOLTEN Al PLATED STEEL PLATE FOR HOT STAMP, METHOD OF PRODUCING THE SAME, AND HOT STAMP PRODUCT | |
KR101528011B1 (en) | Plated steel sheet for hot-press forming and hot-press formed products, method for manufacturing thereof | |
CN105324519B (en) | Hot pressing steel plate | |
WO2016092720A1 (en) | Method for manufacturing hot press molded product and hot press molded product | |
CN100471595C (en) | Hot pressing method of high-strength parts using steel plate and hot-pressed parts | |
CN110760773A (en) | Hot-dip galvanized high-strength steel plate with high surface quality and excellent corrosion resistance and manufacturing method thereof | |
CN108431286B (en) | Hot press molded article with suppressed microcrack and process for producing the same | |
KR102031464B1 (en) | Coated steel sheet for hot press forming, hot press formed part using the sheet, and method for manufacturing thereof | |
JP3845271B2 (en) | Aluminum or aluminum-galvanized steel sheet suitable for high temperature forming and having high strength after high temperature forming and method for producing the same | |
JP4132950B2 (en) | Aluminum or aluminum-galvanized steel sheet suitable for high temperature forming and having high strength after high temperature forming and method for producing the same | |
WO2019066063A1 (en) | Plated steel sheet, plated steel sheet coil, method for producing hot pressed article, and automobile component | |
JP2008195999A (en) | Steel sheet for hot press, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20171226 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20190514 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20190805 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20191004 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20191004 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20221004 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20241002 Start annual number: 6 End annual number: 6 |