[go: up one dir, main page]

KR101857606B1 - Use of Mutated Anthranilate Synthase Gene Resistant to 5-Methyltryptophan for Selection Marker of Plant Transformation - Google Patents

Use of Mutated Anthranilate Synthase Gene Resistant to 5-Methyltryptophan for Selection Marker of Plant Transformation Download PDF

Info

Publication number
KR101857606B1
KR101857606B1 KR1020150174926A KR20150174926A KR101857606B1 KR 101857606 B1 KR101857606 B1 KR 101857606B1 KR 1020150174926 A KR1020150174926 A KR 1020150174926A KR 20150174926 A KR20150174926 A KR 20150174926A KR 101857606 B1 KR101857606 B1 KR 101857606B1
Authority
KR
South Korea
Prior art keywords
ala
val
glu
arg
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020150174926A
Other languages
Korean (ko)
Other versions
KR20160078240A (en
Inventor
강권규
정유진
조용구
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Publication of KR20160078240A publication Critical patent/KR20160078240A/en
Application granted granted Critical
Publication of KR101857606B1 publication Critical patent/KR101857606B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/03Oxo-acid-lyases (4.1.3)
    • C12Y401/03027Anthranilate synthase (4.1.3.27)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 5-메틸트립토판에 대해 저항성을 갖는 안트라닐레이트 합성효소 변이체 코딩 폴리뉴클레오타이드의 형질전환 식물체 선별용 마커로서의 용도에 관한 것이다. 본 발명의 5-메틸트립토판에 대해 저항성을 갖는 안트라닐레이트 합성효소 변이체 코딩 폴리뉴클레오타이드의 형질전환 식물체 선별용 마커는 종래에 사용되던 항생제 마커를 대체할 수 있으며, 항생제 유전자를 포함하지 않는 GM (Genetically modified) 작물 개발이 가능한 효과를 갖는다. The present invention relates to the use of anthranilate synthase mutant coding polynucleotides resistant to 5-methyltryptophan as markers for transgenic plant selection. The transgenic plant screening markers for anthranilate synthase mutant coding polynucleotides which are resistant to 5-methyltryptophan of the present invention can replace the antibiotic markers used in the past, and GM (Genetically modified) crops.

Description

5-메틸트립토판 저항성 안트라닐레이트 합성효소 변이체 유전자의 형질전환식물체 선별마커로서의 용도{Use of Mutated Anthranilate Synthase Gene Resistant to 5-Methyltryptophan for Selection Marker of Plant Transformation}{Use of Mutant Anthranilate Synthase Gene Resistant to 5-Methyltryptophan for Selective Marker of Plant Transformation of 5-Methyltryptophan Resistant Anthranilate Synthase Mutant Gene [

본 발명은 5-메틸트립토판 저항성 안트라닐레이트 합성효소 변이체 유전자의 형질전환식물체 선별마커로서의 용도에 관한 것이다. The present invention relates to the use of 5-methyltryptophan-resistant anthranilate synthase mutant genes as transgenic plant selection markers.

약 50종의 선별 마커 유전자들이 형질전환식물체 연구 또는 작물 개발에서 효율성, 생물학적 안전성 및 과학적 적용 및 상업화가 가능한 지 여부에 대해 평가되고 있다. 선별 마커 유전자들은 포지티브 선별(positive selection) 또는 네가티브 선별(negative selection)인지 여부와 외부 기질의 존재 여부에 따라 조건적인지 또는 비조건적인지에 따라 분류될 수 있다. 포지티브 선별 마커 유전자는 형질전환체의 성장을 촉진하는 유전자인데 반해, 네가티브 선별 마커 유전자는 형질전환체의 사멸을 유도하는 마커 유전자이다. 최초에는 항생제, 제초제 또는 약물과 같은 독성물질의 사용에 조건적인 포지티브 선별 마커 유전자가 개발되고 사용되었다. 최근에는 형질전환 조직체의 성장과 분화를 유도하기 위한 기질(substrate)이 될 수 있는 비독성제와 같은 포지티브 선별 마커 유전자가 개발되고 있다. Approximately 50 selectable marker genes are evaluated for efficiency, biological safety and scientific application and commercialization in transgenic plant studies or crop development. Selective marker genes can be classified according to whether they are positive or negative selection and whether they are conditional or unconditional, depending on the presence of an external substrate. The positive selection marker gene is a gene that promotes the growth of the transformant, whereas the negative selection marker gene is a marker gene that induces the death of the transformant. Initially, a positive selectable marker gene was developed and used for the use of toxic agents such as antibiotics, herbicides or drugs. Recently, a positive selectable marker gene such as a non-toxic agent which can be a substrate for inducing the growth and differentiation of the transformed tissue has been developed.

안트라닐레이트 합성효소(Anthranilate Synthase)는 방향족 아미노산 시키메이트(shikimate)로부터 트립토판을 생합성하는 반응의 최초 반응인 코리스메이트(chorismate)를 안트라닐레이트로 변환하는 반응을 촉매하는 효소이다. 고등식물에서 트립토판 생합성 경로는 단백질 합성을 위한 아미노산을 제공하는 제1의 목적이외에, 중요하고 다양한 2차 대사산물의 합성에 필요한 전구체를 생성하는데 사용된다. 트립토판 생합성의 최초 반응을 촉매하는 효소인 안트라닐레이트 합성효소는 트립토판에 의한 피드백 억제(feedback inhibition)를 받는다. 트립토판 유사체(analog)인 5-메틸트립토판(5-methyltryptophan, 5-MT)이 포함된 배지에서 성장할 수 있는 세포는 세포내 트립토판 생합성계에 이상이 생겨 피드백 억제(feedback inhibition) 작용을 하지 못하도록 변이가 된 것이라고 추정된다. Anthranilate Synthase is an enzyme that catalyzes the conversion of chorismate to anthranilate, the initial reaction of tryptophan biosynthesis from an aromatic amino acid shikimate. In higher plants, the tryptophan biosynthetic pathway is used to generate precursors necessary for the synthesis of important and diverse secondary metabolites, in addition to the primary purpose of providing amino acids for protein synthesis. Anthranilate synthase, an enzyme that catalyzes the initial reaction of tryptophan biosynthesis, is subjected to feedback inhibition by tryptophan. Cells that can grow in a medium containing 5-methyltryptophan (5-MT), a tryptophan analogue, are mutated to prevent feedback inhibition due to abnormalities in the intracellular tryptophan biosynthetic system .

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

대한민국 공개특허 제10-2009-0050189호Korea Patent Publication No. 10-2009-0050189

본 발명자들은 형질전환식물체에서 형질전환 여부를 확인하고 선별하기 위한 선별마커를 개발하기 위해 연구 노력하였다. 그 결과, 트립토판 유사체인 5-메틸트립토판(5-methyltryptophan, 5-MT)이 포함된 배지에서도 성장성을 부여하는 안트라닐레이트 합성효소(Anthranilate Synthase)의 변이체를 성공적으로 분리하였고, 이렇게 분리된 안트라닐레이트 합성효소 변이체 유전자가 형질전환 식물체를 선별할 수 있는 선별마커로 사용될 수 있음을 실험적으로 증명하여 본 발명을 완성하였다. The present inventors have sought to develop selective markers for identifying and screening for transformation in transgenic plants. As a result, a mutant of anthranilate synthase, which imparts growth properties to a medium containing 5-methyltryptophan (5-MT), which is a tryptophan analogue, was successfully isolated. The present inventors have completed the present invention by experimentally proving that a gene encoding a lyase-synthesizing enzyme can be used as a selectable marker for selecting transgenic plants.

따라서, 본 발명의 목적은 5-메틸트립토판에 대해 저항성을 부여하는 안트라닐레이트 합성효소 변이체 코딩 폴리뉴클레오타이드를 포함하는 형질전환 식물세포 선별용 재조합 벡터를 제공하는 데에 있다. It is therefore an object of the present invention to provide a recombinant vector for screening transgenic plant cells comprising an anthranilate synthase mutant coding polynucleotide which confers resistance to 5-methyltryptophan.

본 발명의 다른 목적은 (a) 5-메틸트립토판에 대해 저항성을 갖는 안트라닐레이트 합성효소(Anthranilate Synthase) 변이체 코딩 폴리뉴클레오타이드를 포함하는 재조합 벡터; 및 (b) 5-메틸트립토판을 포함하는 형질전환 식물세포 선별용 키트를 제공하는 데에 있다. Another object of the present invention is to provide a recombinant vector comprising (a) an anthranilate synthase mutant coding polynucleotide having resistance to 5-methyltryptophan; And (b) 5-methyltryptophan. The present invention also provides a kit for screening a transformed plant cell.

본 발명의 또 다른 목적은 상기 재조합 벡터를 사용하여 형질전환된 식물세포를 선별하는 방법을 제공하는 데에 있다. It is still another object of the present invention to provide a method for screening plant cells transformed using the recombinant vector.

본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 명확하게 된다. The objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 5-메틸트립토판에 대해 저항성을 부여하는 안트라닐레이트 합성효소(Anthranilate Synthase) 변이체 코딩 폴리뉴클레오타이드를 포함하는 형질전환 식물세포 선별용 재조합 벡터를 제공한다. According to one aspect of the present invention, there is provided a recombinant vector for screening transformed plant cells comprising an anthranilate synthase mutant coding polynucleotide which confers resistance to 5-methyltryptophan.

본 명세서에서 “안트라닐레이트 합성효소”는 식물의 트립토판 생합성 경로에서 트립토판의 생합성 속도를 조절하는 핵심 효소로서, 이 효소의 α-서브유닛이 생합성 경로의 최종산물인 트립토판에 의한 피드백 억제를 받는 것으로 알려져 있는 효소이다. As used herein, the term " anthranilate synthase " is a key enzyme that regulates the rate of tryptophan biosynthesis in the tryptophan biosynthetic pathway of a plant, and the α-subunit of this enzyme undergoes feedback suppression by tryptophan, the final product of the biosynthetic pathway It is a known enzyme.

본 발명의 안트라닐레이트 합성효소의 변이체는 야생형 효소의 아미노산 서열에서 F124V의 단일변이(single mutation) 또는 S126F 및 L530D의 이중변이(double mutation)를 포함하며, 이러한 변이로 인해 트립토판에 의한 피드백 억제 작용이 소멸 또는 완화된 변이체인 것으로 추정된다. Variants of the anthranilate synthase of the present invention include a single mutation of F124V or a double mutation of S126F and L530D in the amino acid sequence of the wild-type enzyme. Due to such mutation, the mutation of tryptophan- Is thought to be extinguished or alleviated.

본 발명의 안트라닐레이트 합성효소의 변이체를 갖는 식물 세포는 트립토판 유사체(tryptophan analog)인 5-메틸트립토판(5-methyltryptophan)의 존재하에서도 생장이 가능한 5-메틸트립토판 저항성을 갖는다. The plant cell having a variant of the anthranilate synthase of the present invention has 5-methyltryptophan resistance which can grow even in the presence of a tryptophan analog, 5-methyltryptophan.

본 발명의 일 구현예에 따르면, 본 발명에서 상기 5-메틸트립토판에 대해 저항성을 부여하는 안트라닐레이트 합성효소 변이체는 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진다. According to one embodiment of the present invention, the anthranilate synthase mutant which imparts resistance to 5-methyltryptophan in the present invention comprises the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

본 발명의 다른 구현예에 따르면, 본 발명에서 상기 재조합 벡터는 도 3에 도시된 벡터의 구성을 갖는다. According to another embodiment of the present invention, the recombinant vector in the present invention has the structure of the vector shown in Fig.

본 명세서에서 용어 “폴리뉴클레오타이드”는 “핵산 분자”, “폴리뉴클레오타이드 분자” 또는 “폴리뉴클레오타이드 서열”과 동일한 의미로 사용된다. 폴리뉴클레오타이드 분자는 뉴클레오타이드 모노머(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오타이드의 폴리머(polymer)로 일정한 길이 이상의 DNA(deoxyribonucleic acid) 또는 RNA(ribonucleic acid) 가닥을 의미한다. The term "polynucleotide" as used herein has the same meaning as "nucleic acid molecule", "polynucleotide molecule" or "polynucleotide sequence". A polynucleotide molecule is a polymer of nucleotides in which a nucleotide monomer is linked by a covalent bond in a long chain, and means a DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) strand longer than a certain length.

본 발명의 다른 구현예에 따르면, 상기 안트라닐레이트 합성효소 변이체를 코딩하는 폴리뉴클레오타이드는 서열번호 3 또는 서열번호 4에 개시된 폴리뉴클레오타이드 서열을 갖는다. According to another embodiment of the present invention, the polynucleotide encoding the anthranilate synthase mutant has the polynucleotide sequence set forth in SEQ ID NO: 3 or SEQ ID NO: 4.

본 발명의 재조합 벡터는 상기 안트라닐레이트 합성효소 변이체를 코딩하는 폴리뉴클레오타이드(핵산 분자)를 형질전환 식물세포 또는 형질전환 식물체 선별용 마커로서 포함한다. The recombinant vector of the present invention includes a polynucleotide (nucleic acid molecule) encoding the anthranilate synthase mutant as a marker for screening transgenic plant cells or transformed plants.

본 발명의 재조합 벡터는 예를 들어 플라스미드, 또는 셔틀(shuttle) 벡터, 박테리아 발현용 또는 클로닝용의 원핵세포용 벡터일 수 있으며, 효모세포용 벡터, 곤충세포용 벡터, 식물세포용, 동물세포용 벡터와 같은 진핵성 벡터일 수 있으나, 이에 한정되지 않는다. The recombinant vector of the present invention may be, for example, a plasmid or a shuttle vector, a vector for prokaryotic cells for bacterial expression or cloning, and may be a vector for yeast cells, a vector for insect cells, But are not limited to, eukaryotic vectors such as vectors.

본 발명의 벡터는 DNA 재조합 기술을 이용한 공지된 방법에 따라 당업자가 용이하게 제조할 수 있으며, 이에 관한 내용은 예를 들어 선행 문헌 “Sambrook et al., Molecular Cloning, A Laboratory Manual(2nd ed. 1989; 3rd ed., 2001)”; “Kriegler, Gene Transfer and Expression: A Laboratory Manual(1990)”; 및 “Current Protocols in Molecular Biology(Ausubel et al., supra. Bacterial expression systems for expressing the ZFP are available in, e.g., E. coli, Bacillus sp., and Salmonella (Palva et al., Gene 22:229- 235(1983))”에 설명되어 있으며, 이들 문헌은 본 명세서에 참조로 삽입된다. The vector of the present invention can be easily produced by a person skilled in the art according to a known method using DNA recombinant technology, for example, in Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd ed. 1989 ; 3rd ed., 2001); "Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990)"; And Bacillus sp., And Salmonella (Palva et al., Gene 22: 229-235), for example, in Bacillus spp., And in Current Protocols in Molecular Biology (Ausubel et al., Supra. (1983)), which are incorporated herein by reference.

본 발명의 재조합 벡터에서 안트라닐레이트 합성효소 변이체를 코딩하는 폴리뉴클레오타이드 서열은 발현조절서열(예컨대 프로모터 서열)에 작동 가능하게 연결될 수 있다. 본 명세서에서 용어 “작동 가능하게 연결된”은 발현조절서열이 안트라닐레이트 합성효소 변이체를 코딩하는 폴리뉴클레오타이드 서열의 전사(transcription) 및 번역(translation)을 조절하도록 연결된 것을 의미하며, 발현 조절 서열의 조절하에 폴리뉴클레오타이드 서열이 발현되어 폴리뉴클레오타이드 서열에 의해 코딩되는 안트라닐레이트 합성효소 변이체가 생성되도록 번역 프레임(translation frame)이 정확히 유지되는 것을 포함한다. A polynucleotide sequence encoding an anthranilate synthase variant in the recombinant vector of the present invention may be operably linked to an expression control sequence (e.g., a promoter sequence). As used herein, the term " operably linked " means that an expression control sequence is linked to regulate transcription and translation of a polynucleotide sequence encoding an anthranilate synthase variant, and the regulation of the expression control sequence In which the polynucleotide sequence is expressed so that an anthranilate synthase variant encoded by the polynucleotide sequence is generated.

본 발명의 재조합 벡터에서 사용될 수 있는 프로모터는 식물 세포에서의 항시성(constitutive) 또는 유도성(inducible) 프로모터를 포함한다. 식물세포에서 사용할 수 있는 프로모터는 예컨대, 애기장대(A. thaliana)의 유비퀴틴-3(ubi-3) 유래 프로모터 서열(Callis, et al., 1990, J. Biol. Chem. 265-12486-12493), 아그로박테리움 투메파시엔스(A. tumifaciens) 만노핀 합성효소 유래 프로모터 서열(미국특허 제6,730,824호), 및/또는 CsVMV(Cassava vein mosaic virus) 유래 프로모터 서열(Verdaguer et al., 1996, Plant Molecular Biology 31:1129-1139)을 들 수 있으나, 이에 한정되지 않는다. Promoters that may be used in the recombinant vectors of the invention include constitutive or inducible promoters in plant cells. Promoters that can be used in plant cells include, for example, the ubiquitin-3 promoter sequences of A. thaliana (Callis, et al., 1990, J. Biol. Chem. 265-12486-12493) , The promoter sequence derived from the A. tumefaciens mannopin synthase-derived promoter sequence (US Patent No. 6,730,824), and / or the CsVMV (Cassava vein mosaic virus) -derived promoter sequence (Verdaguer et al., 1996, Plant Molecular Biology 31: 1129-1139).

본 발명의 재조합 벡터는 전형적으로 원핵 또는 진핵 숙주세포에서 핵산을 발현시키는 데에 요구되는 모든 추가적인 요소를 함유하는 발현 카세트 또는 전사 단위를 포함할 수 있다. 따라서, 본 발명의 재조합 벡터는 안트라닐레이트 합성효소를 코딩하는 폴리뉴클레오타이드 서열과 작동적으로 연결된 프로모터 이외에, 전사체의 효율적인 폴리아데닐화 서열, 전사 종결, 리보솜 결합 부위, 또는 번역 종결에 요구되는 신호서열을 포함하며, 부가적 요소로서, 증강요소(enhancer element), 이종 스플라이싱 신호 또는 핵 국재화 신호(NLS) 등이 포함될 수 있다. The recombinant vector of the present invention may typically comprise an expression cassette or transcription unit containing all the additional elements required to express the nucleic acid in a prokaryotic or eukaryotic host cell. Thus, the recombinant vector of the present invention may contain, in addition to a promoter operably linked to a polynucleotide sequence encoding an anthranilate synthase, an efficient polyadenylation sequence, transcription termination, ribosome binding site, or signal required for translation termination of the transcript Sequence, and may include, as an additional element, an enhancer element, a heterologous splicing signal or a nuclear localization signal (NLS).

본 발명의 다른 양태에 따르면, 본 발명은 (a) 5-메틸트립토판에 대해 저항성을 갖는 안트라닐레이트 합성효소(Anthranilate Synthase) 변이체 코딩 폴리뉴클레오타이드를 포함하는 재조합 벡터; 및 (b) 5-메틸트립토판을 포함하는 형질전환 식물세포 선별용 키트를 제공한다. According to another aspect of the present invention, there is provided a recombinant vector comprising (a) a recombinant vector comprising an anthranilate synthase mutant coding polynucleotide having resistance to 5-methyltryptophan; And (b) 5-methyltryptophan.

본 발명의 일 구현예에 따르면, 상기 5-메틸트립토판에 대해 저항성을 갖는 안트라닐레이트 합성효소 변이체는 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루진다. According to an embodiment of the present invention, the anthranilate synthase mutant having resistance to 5-methyltryptophan comprises the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

본 발명의 재조합 벡터에 대한 내용은 상기 본 발명의 다른 양태인 형질전환 식물세포 선별용 재조합 벡터에서 설명된 내용과 동일하므로, 명세서의 과도한 복잡성을 피하기 위해 중복하여 설명하지 않는다. The contents of the recombinant vector of the present invention are the same as those described in another recombinant vector for selecting transgenic plant cells, which is another aspect of the present invention, and thus are not duplicated in order to avoid excessive complexity of the specification.

본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 형질전환된 식물체를 선별하는 방법을 제공한다: (a) 상기 재조합 벡터로 식물세포를 형질전환시키는 단계; (b) 상기 형질전환된 식물세포를 5-메틸트립토판이 포함된 배지에서 배양하는 단계; 및 (c) 상기 배양된 배지에서 성장된 식물세포를 선별하는 단계. According to another aspect of the present invention, the present invention provides a method for screening a transformed plant comprising the steps of: (a) transforming a plant cell with the recombinant vector; (b) culturing the transformed plant cells in a medium containing 5-methyltryptophan; And (c) screening the plant cells grown in the cultured medium.

본 발명의 방법에 따르면, 본 발명의 재조합 벡터에는 5-메틸트립토판에 대한 저항성을 부여하는 안트라닐레이트 합성효소 변이체 코딩 폴리뉴클레오타이드 선별 마커가 포함되어 있으므로, 형질전환된 식물세포를 5-메틸트립토판이 포함된 배지에서 배양하면서 성장된 식물세포만을 선별하면 상기 재조합 벡터로 형질전환된 식물세포을 선택적으로 선별할 수 있다. According to the method of the present invention, the recombinant vector of the present invention includes an anthranilate synthase mutant coding polynucleotide selectable marker that confers resistance to 5-methyltryptophan, so that the transformed plant cell is transformed with 5-methyltryptophan The plant cell transformed with the recombinant vector can be selectively screened by selecting only the plant cell that has grown while culturing in the contained medium.

본 발명에서 사용되는 용어 “형질전환”과 “도입”은 서로 동일한 의미로 사용되며, 사용된 방법에 관계없이 외래 폴리뉴클레오타이드 서열을 숙주 세포로 전달하는 것을 포함한다. As used herein, the terms "transformation" and "introduction" are used interchangeably and include transferring an exogenous polynucleotide sequence to a host cell, regardless of the method used.

본 발명의 재조합 벡터를 사용한 형질전환에 이용될 수 있는 식물조직은 기관 발생이나 배 발생에 의하여 클론 번식이 가능하여, 전체의 식물체가 조직으로부터 재생될 수 있는 조직이다. 형질전환에 이용되는 특정 조직은 형질전환될 특정 종에서 이용 가능한 것으로서 가장 적합한 클론 번식 시스템에 따라 다양하게 선택된다. 예컨대 전형적인 형질전환 타겟 조직은 잎 디스크, 종자, 화분, 배, 자엽, 하배축, 대배우체, 캘러스 조직, 분열조직(예를 들면, 정단 분열조직, 액아, 및 뿌리 분열 조직), 및 유도된 분열조직(예를 들면, 자엽 분열조직 및 하배축 분열조직)을 포함한다. The plant tissue that can be used for transformation using the recombinant vector of the present invention is a tissue capable of cloning propagation by organogenesis or embryogenesis and allowing the entire plant to be regenerated from the tissue. The particular tissue used for the transformation will be available in a particular species to be transformed and will be selected according to the most suitable clonal propagation system. For example, typical transgenic target tissues include, but are not limited to, leaf discs, seeds, pollen, stomach, cotyledon, hypocotyl, large gammgut, callus tissue, fissured tissue (e.g., apical mitotic tissue, (E.g., cotyledonary tissue and hypocotyledonous tissue).

본 발명에서 도입되는 안트라닐레이트 합성효소 변이체 코딩 폴리뉴클레오타이드는 일시적으로 또는 안정적으로 숙주 세포에 도입되며 예를 들면, 플라스미드처럼 비통합적으로 유지될 수 있으며, 또는 숙주의 지놈(genome)안으로 통합될 수 있다. 제조된 형질전환 식물 세포는 당업자에게 주지된 방식으로 형질전환 식물을 재생하는데 사용된다. The anthranilate synthase mutant coding polynucleotides introduced in the present invention can be transiently or stably introduced into the host cell, for example, can be maintained as a non-integrative like a plasmid, or integrated into the genome of the host have. The transgenic plant cells produced are used to regenerate transgenic plants in a manner known to those skilled in the art.

본 발명에서 사용될 수 있는 형질전환 방법은 리포좀, 전기천공법, 유리 DNA 흡수를 증가시키는 화학물질, 식물체 내로 DNA의 직접적인 주입, 입자총 충격법, 바이러스 또는 화분을 이용한 형질전환 및 미세주입법(microprojection), 원형질에 대한 칼슘/폴리에틸렌글리콜법(Krenset et al, 1982; Negrutiu et al, 1987), 원형질의 전기천공법(Shillito et al, 1985), 미세주사법(microinjection)(Crossway et al, 1986), DNA 또는 RNA 코팅된 입자 충격법(Klein et al, 1987), 바이러스 감염에 의한 방법, 및 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)-매개 형질전환법을 포함하나, 이에 한정되지 않는다. Transformation methods that can be used in the present invention include, but are not limited to, liposomes, electroporation, chemicals that increase absorption of free DNA, direct injection of DNA into plants, particle gun stunting, transformation or microprojection using viruses or pollen, (Krenset et al, 1982; Negrutiu et al, 1987), electroporation of protoplasm (Shillito et al, 1985), microinjection (Crossway et al, 1986), DNA Or RNA coated particle impact method (Klein et al, 1987), methods by virus infection, and Agrobacterium tumefaciens-mediated transformation methods.

온전한 식물로 재생되는 체세포의 형질전환 외에, 식물의 분열조직 특히 종자로 발달하는 세포의 형질전환이 가능하다. 이 경우에, 형질전환된 종자는 자연적인 식물 발달 과정을 거쳐 형질전환 식물이 된다. 예를 들어, 형질전환시킬 식물체의 종자를 재조합 발현 벡터를 갖는 아그로박테리움 투메파시엔스로 처리하여 형질전환된 종자를 얻고, 형질전환된 종자가 형질전환 식물체로 생장된다. In addition to transgenic somatic cells that are reproduced as whole plants, it is possible to transform cells that develop into the splitting tissue of plants, especially seeds. In this case, the transformed seed is transformed through natural plant development. For example, seeds of the plant to be transformed are treated with Agrobacterium tumefaciens having a recombinant expression vector to obtain transformed seeds, and the transformed seeds are grown into transgenic plants.

본 발명의 형질전환 식물체는 바람직하게는 벼, 밀, 보리, 옥수수, 대두, 감자, 밀, 팥, 귀리, 수수 등의 식량 작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 및 당근 등의 채소 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 및 유채 등의 특용 작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 및 바나나 등의 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 및 튤립 등의 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 및 페레니얼라이그라스 등의 사료 작물류을 포함하나, 이에 한정되지 않는다. 상기 형질전환 식물체는 바람직하게는 벼, 밀, 보리, 옥수수, 담배, 감자, 토마토, 또는 고구마이며, 가장 바람직하게는 벼이다. The transgenic plants of the present invention are preferably food crops such as rice, wheat, barley, corn, soybean, potato, wheat, red bean, oats, sorghum; Vegetable crops such as Arabidopsis, cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, squash, onions, onions and carrots; Special crops such as ginseng, tobacco, cotton, sesame, sugar cane, beet, perilla, peanut and rape; Apple trees, pears, jujube trees, peaches, sheep grapes, grapes, citrus fruits, persimmons, plums, apricots and banana; Roses, gladiolus, gerberas, carnations, chrysanthemums, lilies and tulips; And feed crops such as ragras, red clover, orchardgrass, alpha-alpha, tall fescue and perennialla grass. The transgenic plants are preferably rice, wheat, barley, corn, tobacco, potatoes, tomatoes, or sweet potatoes, most preferably rice.

본 발명은 5-메틸트립토판에 대해 저항성을 갖는 안트라닐레이트 합성효소 변이체 코딩 폴리뉴클레오타이드의 형질전환 식물체 선별용 마커로서의 용도에 관한 것이다. 본 발명의 5-메틸트립토판에 대해 저항성을 갖는 안트라닐레이트 합성효소 변이체 코딩 폴리뉴클레오타이드의 형질전환 식물체 선별용 마커는 종래에 사용되던 항생제 마커를 대체할 수 있으며, 항생제 유전자를 포함하지 않는 GM (Genetically modified) 작물 개발이 가능한 효과를 갖는다. The present invention relates to the use of anthranilate synthase mutant coding polynucleotides resistant to 5-methyltryptophan as markers for transgenic plant selection. The transgenic plant screening markers for anthranilate synthase mutant coding polynucleotides which are resistant to 5-methyltryptophan of the present invention can replace the antibiotic markers used in the past, and GM (Genetically modified) crops.

도 1은 식물에서의 트립토판 생합성 경로를 모식적으로 보여준다. 안트라닐레이트 합성효소(anthranilate synthase)는 트립토판 생합성의 핵심 효소이다.
도 2는 야생형과 변이형 벼의 표현형을 나타낸다. 5-메틸트립토판 처리 후 14일 후의 사진이다.
도 3은 벼에서 제초제 저항성 유전자 Bar(phosphinotricine acetyltransferase gene)을 과발현을 위한 Ti-플라스미드 벡터 구조를 보여준다. PGD1 프로모터 및 CaMV 35s 프로모터 유전자, 선별마커로 사용되는 OsASA2 유전자, 3′PINII: 프로테아제 억제자 II 종결자 유전자, 및 3’nos(nopaline synthase terminator) 유전자가 표시되어 있다.
도 4는 아그로박테리움 매개 형질전환법을 통해 변이체 OsASA2 유전자를 도입하는 과정을 보여준다. 종자를 N6D 배지에 침종, 접종, 2N6-AS 배지에서 공동배양, 2N6-C 배지에서 캘러스 성장, 줄기(shoot) 형성 및 성장, 뿌리 형성 및 성장, 및 순화의 과정을 프로토콜에 따라 실시하였다.
도 5의 패널 A는 형질전환 벼 계통에서 도입된 유전자(Bar, PGD1 :: OsASA2)의 PCR 증폭결과를 보여준다. 증폭산물을 1.5% 아가로즈젤상에서 분리하였다. Lane M; DNA ladder, Lane WT; 야생형 식물, Lane MC; Mock 대조구, Lane 1-2; 개별의 형질전환벼 계통(S-TG; 단일 점 변이체, D-TG; 이중 점 변이체). 패널 B는 역전사 PCR 방법에 의해 얻은 형질전환체 계통에서 OsASA2 발현을 분석한 결과이다. 총 RNA를 각 식물체로부터 분리하고, 0.5μg의 RNA를 유전자 특이적 프라이머로 증폭하였다. 로딩 대조군으로서, 액틴 유전자에 대해 특이적인 프라이머로 증폭한 샘플도 로딩하였다.
도 6은 형질전환 벼에서 단일 카피(single copy) 선별을 위해 TaqMan 프로브를 사용하여 행한 TaqMan PCR 분석결과를 보여준다.
도 7은 벼에서 야생형, mock 대조군 및 OsASA2 형질전환체의 표현형을 보여준다. (S-TG; 단일 점 변이체, D-TG; 이중 점 변이체). 패널 A는 T1 세대, 패널 B는 T2 세대.
도 8은 야생형(WT) 및 OsASA2 형질전환체(S-TG 및 D-TG) 벼 종자계통에서의 대표 크로마토그램을 보여준다. 추출물을 PDA 검출과 조합한 HPLC에 의한 대사 프로파일링을 수행하였다. 패널 A는 트립토판 및 IAN(Indole-3-acetonitrile)이고 패널 B는 IAA(Indole-3-acetic acid)이다.
도 9는 논에서 성장시킨 형질전환체들로부터 유래한 종자들의 Trp, IAN 및 IAA 함량을 측정한 결과이다. 유리 Trp, IAN 및 IAA의 양을 S-TG, D-TG 또는 야생형(WT) 식물체의 동일한 종자내에서 정량하였다. 데이터는 건조 종자 중량의 그램당 분석물의 나노몰로 표현하였고, 6개 종자의 3개 그룹로부터 측정한 평균± SD으로 나타내었다.
도 10의 패널 A는 식물에서 트립토판의 생합성 경로를 보여준다. 본 발명에서 언급된 관련 경로를 나타내었다. 트립토판으로부터 안트라닐레이트 합성효소(anthranilate synthase)로의 곡선은 억제적 피드백 조절을 나타낸다. 패널 B는 트립토판 대사와 관련된 몇 개 유전자들의 발현 수준을 나타낸다.
도 11은 25 mg/L 5-메틸트립토판을 포함한 Murashige and Skoog 배지(1/2MS)에서 종자를 생장시켜 다양한 계통의 종자를 스크리닝한 결과를 보여준다. 변이체 계통 5MT-4 및 5MT-5는 줄기와 뿌리가 잘 생장하였다(패널 A, 및 B). 야생형은 동진벼를 사용하였다.
도 12에는 5MT를 25ppm 함유한 배지에서 야생형 동진(Dongjin)벼 캘러스와 상기 실시예 3에서 제조한 pSP1-5MT 벡터를 형질전환시킨 형질전환 동진벼 캘러스를 배양한 결과를 보여준다.
Fig. 1 schematically shows the pathway of tryptophan biosynthesis in plants. Anthranilate synthase is a key enzyme in tryptophan biosynthesis.
Figure 2 shows the phenotype of wild type and mutant rice. 14 days after treatment with 5-methyltryptophan.
FIG. 3 shows a Ti-plasmid vector structure for overexpression of a phosphinotricine acetyltransferase gene in rice. The PGD1 promoter and the CaMV 35s promoter gene, the OsASA2 gene used as a selection marker, the 3'PINII: protease inhibitor II terminator gene, and the 3'nos (nopaline synthase terminator) gene.
Fig. 4 shows the process of introducing the mutant OsASA2 gene through Agrobacterium-mediated transformation. Seeds were seeded in N6D medium, inoculated, co-cultured in 2N6-AS medium, callus growth in 2N6-C medium, shoot formation and growth, roots formation and growth, and purification procedures were performed according to the protocol.
Panel A of Figure 5 shows the PCR amplification results of the transformed gene (Bar, PGD1 :: OsASA2) introduced in rice lines. The amplified product was isolated on a 1.5% agarose gel. Lane M; DNA ladder, Lane WT; Wild type plant, Lane MC; Mock control, Lane 1-2; Individual transgenic rice lines (S-TG; single point mutant, D-TG; double point mutant). Panel B shows the results of analysis of OsASA2 expression in the transformant strain obtained by the reverse transcription PCR method. Total RNA was isolated from each plant and 0.5 μg of RNA was amplified with gene-specific primers. As a loading control, samples amplified with primers specific for the actin gene were also loaded.
Figure 6 shows the results of a TaqMan PCR analysis performed using a TaqMan probe for single copy selection in transgenic rice plants.
Figure 7 shows the phenotype of wild type, mock control and OsASA2 transformants in rice. (S-TG; single point mutant, D-TG; double point mutant). Panel A is T1 generation, Panel B is T2 generation.
Figure 8 shows representative chromatograms in wild-type (WT) and OsASA2 transformants (S-TG and D-TG) rice seed lines. Metabolic profiling by HPLC combined with PDA detection was performed on the extract. Panel A is tryptophan and IAN (Indole-3-acetonitrile) and Panel B is IAA (Indole-3-acetic acid).
FIG. 9 shows the results of measurement of Trp, IAN and IAA contents of the seeds derived from the transformants grown in rice field. The amounts of free Trp, IAN, and IAA were quantified in the same seeds of S-TG, D-TG or wild-type (WT) plants. Data are expressed as nanomoles of the analyte per gram of dry seed weight and expressed as the mean ± SD measured from three groups of six seeds.
Panel A of Figure 10 shows the biosynthetic pathway of tryptophan in plants. The relevant path referred to in the present invention is shown. The curve from tryptophan to anthranilate synthase indicates inhibitory feedback regulation. Panel B shows the expression levels of several genes associated with tryptophan metabolism.
FIG. 11 shows the results of screening various strains of seeds by growing seeds in Murashige and Skoog medium (1 / 2MS) containing 25 mg / L 5-methyltryptophan. The mutant strains 5MT-4 and 5MT-5 were well grown in stem and root (panels A and B). Wild type was Dongjin rice.
Fig. 12 shows the results of culturing wild type Dongjin rice calli and the transformed Dongjin beetle callus transformed with the pSP1-5MT vector prepared in Example 3 in a medium containing 25 ppm of 5MT.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예 Example

실시예 1: 5-메틸트립토판 저항성 벼 돌연변이체의 선별 Example 1: Screening of 5-methyltryptophan resistant rice mutants

벼에 EMS 처리를 하여 돌연변이를 유도하였으며, 벼 돌연변이체를 5-메틸트립토판(5-methyltryptophan) 25 ppm을 포함한 MS 배지에서 배양하여 5-메틸트립토판 저항성 벼 계통을 선별하였다. 5-메틸트립토판 저항성 계통으로 확인된 #2 계통(Mutant line 2)와 #4 계통(Mutant line 4)를 5-메틸트립토판 50 ppm을 포함한 MS 배지에서 14일간 생육시킨 후 벼를 관찰한 사진을 도 2에 나타내었다. 도 2에서 보여지는 바와 같이, 5-메틸트립토판 저항성 계통 #2와 #4 계통의 뿌리 및 줄기의 생육은 정상적이었으며, 대조구에서는 생육이 되지 않았다. 상기 결과는 5-메틸트립토판이 포함된 배지에서 생육할 수 있는 벼는 세포내 트립토판 생합성계에 이상이 생겨 피드백 억제 작용을 하지 못하도록 변이가 유도되어 결국 세포내에 트립토판의 함량이 높아지는 현상에 기인한다. 초기 5-메틸트립토판 저항성 돌연변이체에서 트립토판의 함량이 대조구에 비해 8배 이상 높게 나타났다. Rice mutants were induced by EMS treatment. Rice mutants were cultured in MS medium containing 25 ppm of 5-methyltryptophan to select 5-methyltryptophan-resistant rice strain. Mice were observed for 14 days after culturing in # 2 strain (Mutant line 2) and # 4 strain (Mutant line 4) identified as 5-methyltryptophan resistance strain in MS medium containing 50 ppm of 5-methyltryptophan Respectively. As shown in Fig. 2, the growth of roots and stems of the 5-methyltryptophan resistant strains # 2 and # 4 lines was normal, and the growth was not observed in the control. The above results are due to the fact that the rice that can be grown in the medium containing 5-methyltryptophan has an abnormality in the intracellular tryptophan biosynthetic system and the mutation is induced so as not to inhibit the feedback, thereby increasing the content of tryptophan in the cell. The content of tryptophan in the initial 5-methyltryptophan-resistant mutant was 8 times higher than that of the control.

실시예 2: 5-메틸트립토판 저항성 돌연변이 ASA2 유전자의 구조 분석 Example 2: Structural analysis of 5-methyltryptophan-resistant mutant ASA2 gene

트립토판 생합성 경로의 핵심 효소인 안트라닐레이트 합성효소(Anthranilate synthase)를 코딩하는 유전자는 OsASA1과 OsASA2로 알려져 있다(NCBI database). 이들 유전자는 3번 염색체상에 위치하고 있으며, OsASA1는 short arm에 존재하며 11개의 엑손으로 구성되어 있으며, 총 1831bp의 ORF로 이루어졌다. 또한 OsASA2유전자는 3번 염색체 long arm에 위치하며, 10개의 엑손영역과 9개의 인트론 영역으로 1821bp의 ORF로 이루어져 있다. 5-메틸트립토판 저항성 변이체는 트립토판 생합성 경로중의 합성 조절의 핵심 효소인 안트라닐레이트 합성효소 α-서브유닛 유전자가 변이되어 최종 산물인 트립토판에 의한 피드백 억제가 낮게 나타난 것으로 추정되었다. 따라서, 저항성 변이체의 안트라닐레이트 합성효소 유전자에 대해 변이 여부를 확인하기 위해, 상기 효소의 클로닝을 위한 프라이머 세트를 제작하였다. 제작한 프라이머는 다음과 같다: 프라이머 : [정방향: 5′-ATGGAGTCCATCGCCGCCGCCA-3′(서열번호 5), 역방향: 5′-AGCTTTCGTAGACAAGGAATAG-3′(서열번호 6)]. Genes coding for anthranilate synthase, a key enzyme in the tryptophan biosynthetic pathway, are known as OsASA1 and OsASA2 (NCBI database). These genes are located on chromosome 3, OsASA1 is in short arm and consists of 11 exons, and consists of a total of 1831 bp ORF. The OsASA2 gene is located on the long arm of chromosome 3 and consists of 10 exons and 9 introns with an 1821 bp ORF. The 5-methyltryptophan-resistant mutant was presumed to have a low feedback inhibition by the final product, tryptophan, due to mutation of the anthranilate synthase α-subunit gene, which is a key enzyme in the synthesis regulation of tryptophan biosynthesis pathway. Therefore, in order to confirm the mutation of the anthranilate synthase gene of the resistant mutant, a primer set for cloning of the enzyme was prepared. The prepared primers are as follows: Primer: [forward direction: 5'-ATGGAGTCCATCGCCGCCGCCA-3 '(SEQ ID NO: 5), reverse direction: 5'-AGCTTTCGTAGACAAGGAATAG-3' (SEQ ID NO: 6)].

지놈 DNA의 분리는 CTAB(Cetyltrimethyl ammonium bromide) 법을 이용하였다. 식물로부터 0.5g의 잎을 채취하여 액체 질소를 이용하여 미세하게 분쇄하였고, DNA 추출 완충액[100mM Tris-HCl (pH 8.0), 50mM EDTA, 500mM NaCl] 400 가 담긴 1.5 ml 원심분리용 튜브에 분쇄한 조직을 넣고 상하로 20회 흔들어 혼합하였다. 그 후, 2X CTAB 완충액 [2% (w/v) CTAB, 100mM Tris-HCl (pH8.0), 20mM EDTA, 1.4M NaCl, 1% pvp-40 (polyvinylpyrrolidine)] 200 를 첨가하여 같은 방법으로 혼합하고 10% SDS를 넣고 10회 정도 상하로 흔들어 혼합한 후, 65℃ 항온수조에 20분간 방치하였다. 5M 포타슘 아세테이트(potassium acetate, pH 7.5) 200를 첨가하고 50회 정도로 상하로 흔들어 섞어준 후, PCI [Phenol/Chloroform/Isoamylalchol (25: 24: 1)]를 700넣고 30회 정도 상하로 섞어 실온에서 12,000rpm, 10분간 원심분리 하여 단백질을 분리해냈다. 상층 400 정도를 새로운 1.5 ml 튜브로 옮긴 후 동량의 이소프로판올(isoprophanol)을 첨가하여 -20℃ 냉동고에 20분간 보관하였다가 4℃의 12,000rpm에서 15분간 원심분리 하여 DNA를 침전시켰다. 침전된 DNA를 70% 에탄올 1 ml를 넣고 세척한 다음 실온에서 완전히 건조시키고 RNase (1mg/ml) 2 가 첨가된 TE 완충액(10mM Tris-HCl, 1mM EDTA, pH7.4) 50 에 충분히 녹인 후 37℃에서 1시간 방치한 후 사용하였다. Separation of genomic DNA was performed by CTAB (Cetyltrimethyl ammonium bromide) method. 0.5 g of the leaf was collected from the plant and finely pulverized using liquid nitrogen and pulverized into a 1.5 ml centrifuge tube containing DNA extraction buffer [100 mM Tris-HCl (pH 8.0), 50 mM EDTA, 500 mM NaCl] Tissue was added and shaken 20 times up and down. Then, 2X CTAB buffer (2% w / v CTAB, 100 mM Tris-HCl (pH 8.0), 20 mM EDTA, 1.4 M NaCl, 1% pvp-40 (polyvinylpyrrolidine) 10% SDS was added, and the mixture was shaken up and down about 10 times, and then left in a constant temperature water bath at 65 ° C for 20 minutes. After adding PCI (Phenol / Chloroform / Isoamylalchol (25: 24: 1)) to the mixture, the mixture was stirred at room temperature for 30 times. Proteins were separated by centrifugation at 12,000 rpm for 10 minutes. The supernatant was transferred to a new 1.5 ml tube and equilibrated with isoprophanol, stored in a -20 ° C freezer for 20 minutes, and centrifuged at 12,000 rpm for 4 minutes at 4 ° C for 15 minutes to precipitate the DNA. The precipitated DNA was washed with 1 ml of 70% ethanol, completely dried at room temperature, sufficiently dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.4) 50 to which RNase (1 mg / Lt; 0 > C for 1 hour.

제작한 프라이머를 사용하여 PCR을 95℃에서 5분간 전-변성(pre-denaturation)시킨 후 94℃에서 1분간 변성(denaturation), 58℃에서 1분간 어닐링(annealing), 72℃에서 2분간 연장(extension)의 과정을 35 사이클 행하였으며, 마지막으로 72℃에서 5분간 연장을 실시하였다. PCR 산물을 0.8% 아가로즈젤에 전기영동한 결과 예상했던 1.2 kb 밴드가 검출되었다. 이들 밴드를 젤로부터 회수하여 pGEM T-easy 벡터에 삽입한 후 염기서열을 분석하였다. 그 결과 유전자의 전장은 2248bp 이었으며, 1824bp의 ORF와 35bp크기의 5UTR, 349bp의 3UTR으로 이루어졌다. 5-메틸트립토판 저항성의 7개 계통의 변이체에서 #2와 #5 계통은 124 번째 아미노산 위치에서 아미노산 F(Phenylalanie)가 V(Valine)으로 바뀌었으며, 나머지 계통들에서는 2개의 점돌연변이가 각각 126번 아미노산 위치에서 TCC(Serine) -> TTC(Phenylalanine)으로, 530번 아미노산 위치에서 CTT(Leucine) -> GAC(Aspartic acid)으로 바뀌어 나타났다(표 1). PCR was carried out by pre-denaturation at 95 ° C for 5 minutes, followed by denaturation at 94 ° C for 1 minute, annealing at 58 ° C for 1 minute, extension at 72 ° C for 2 minutes extension) was performed for 35 cycles, followed by extension at 72 ° C for 5 minutes. The PCR product was electrophoresed on 0.8% agarose gel and the expected 1.2 kb band was detected. These bands were recovered from the gel and inserted into the pGEM T-easy vector, and the nucleotide sequences were analyzed. As a result, the total length of the gene was 2248 bp, consisting of 1824 bp ORF, 35 bp 5UTR and 349 bp 3UTR. At the 124th amino acid position, the amino acid F (phenylalanie) was changed to V (Valine) in the 5-methyltryptophan-resistant 7 strains, and the 2 point mutations in the other strains were 126 (TAC) -> TTC (phenylalanine) at amino acid position and CTT (Leucine) -> GAC (aspartic acid) at amino acid position 530 (Table 1).

Figure 112015120554467-pat00001
Figure 112015120554467-pat00001

실시예Example 3:  3: OsASA2OsASA2 변이체Mutant 유전자를  Gene 선발마커로As a selection marker 포함하는  Included TiTi -플라스미드 벡터의 구축 - Construction of plasmid vectors

식물 형질전환용 운반체는 pPDG1 벡터(MYONGJI UNIVERSITY)를 모벡터로 사용하였고, 목표 유전자의 발현을 검정하기 위하여 Bar 유전자를 CaMV 35S 프로모터에 연결하여 제작하였다. 형질전환된 캘러스 및 식물체의 선발을 위해서는 PDG1 프로모터에 의해 제어되는 변이체 OsASA2(anthranilate synthase) 유전자를 이용하였다. 실험에 사용된 운반체의 모식도는 도 3에 나타내었다. 식물 발현용 벡터 구축이 확인된 플라스미드를 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) LBA 4404에 형질전환시켰다. 28℃에서 동일한 방법으로 제조된 아그로박테리움 투메파시엔스 컴피턴트 세포(A. tumefaciens competent cell) LBA4404 를 얼음에서 녹인 후 플라스미드 DNA 1μL와 혼합한 후 전기충격 큐벳에 주입하였다. 그 다음 1,440 V로 전기충격을 가하여 형질전환시킨 후 SOC 배지 1 mL을 주입하여 혼합한 후, 멸균된 시험관에 넣고 28℃에서 200 rpm으로 1시간 동안 배양하였다. 배양액은 카나마이신 50 mg/L을 포함한 AB 아가(Agar) 배지에 200μL를 피펫으로 떨어뜨려서 도말하고, 28℃ 항온기에서 페트리 디쉬에 2-3일 동안 배양하여 콜로니를 관찰하였다. 콜로니 PCR 방법으로 형질전환 여부를 확인하고, 확인된 균주의 배양은 카나마이신 50 mg/L이 첨가된 AB 액체배지에 접종한 후, 2-3일 동안 28℃ 인큐베이터에서 200 rpm으로 배양하였다. 배양액은 50% 글리세롤을 동량 첨가하여 초저온 냉동고(-80℃)에 저장하였다. The pPDG1 vector (MYONGJI UNIVERSITY) was used as the parent vector for transfection of the plant, and Bar gene was constructed by connecting to the CaMV 35S promoter in order to test the expression of the target gene. For selection of transformed calli and plants, the mutant OsASA2 (anthranilate synthase) gene, which is controlled by the PDG1 promoter, was used. A schematic diagram of the carrier used in the experiment is shown in Fig. Plasmid confirmed for vector construction for plant expression was transformed into Agrobacterium tumefaciens LBA4404. Agrobacterium tumefaciens competent cell LBA4404 prepared by the same method at 28 < 0 > C was dissolved in ice, mixed with 1 mu L of plasmid DNA, and injected into an electric shock cuvette. Then, the cells were transformed by electric shock at 1,440 V, mixed with 1 mL of SOC medium, and placed in a sterilized test tube and cultured at 28 ° C for 1 hour at 200 rpm. The culture broth was dropped on an AB agar medium containing 50 mg / L of kanamycin by pipette, and colonies were observed on a Petri dish for 2 to 3 days at 28 ° C in a thermostat. Colony PCR method was used to confirm the transformation. Cultures of the identified strains were inoculated into AB liquid medium supplemented with kanamycin 50 mg / L and cultured at 200 rpm in a 28 ° C incubator for 2-3 days. The culture was added to the same amount of 50% glycerol and stored in a cryogenic freezer (-80 ° C).

실시예 4: 5-메틸트립토판 저항성 OsASA2 변이체 유전자 도입 형질전환 벼의 제작 Example 4: Production of 5-methyltryptophan-resistant OsASA2 mutant transgenic rice

벼에 형질전환하기 위해 일반적으로 많이 이용되는 방법은 벼 종자에서 캘러스를 유기한 후 캘러스에 아그로박테리움균과 함께 접종하는 방법이 주로 이용되고 있는데 보통 형질전환체를 얻기까지 약 4 개월이 소요된다. 본 실험에서는 벼 형질전환에 소모되는 시간을 단축시키고자 벼 성숙종자를 세척한 후 N6 액체배지에 24시간 침종한 후 배반 부분이 부풀어 오르기 시작한 종자를 이용하여 아그로박테리움 접종을 시도하였다. 표면 살균한 종자를 2 mg/L의 2,4-D가 포함된 N6 액체배지[Chu CC, Wang CS, Sun CC, Hsu C, Yin KC, Chu CY (1975) Establishment of anefficient medium for anther culture of rice through comparative experiments on thenitrogen sources. Sci Sinica 18:659-668]에 침종하여 30℃ 암상태에서 24시간 동안 발아시켜, 배 부분이 부풀어 오르며 식물체가 분화가 되기 시작한 종자를 15 mL의 아그로박테리움 현탁액이 담겨있는 튜브에 담가 약 20 분간 접종한 다음 멸균한 필터페이퍼 위에 종자를 올려놓아 여분의 아그로박테리움을 제거하였다. 아그로박테리움을 접종한 종자를 1 mM의 DTT(dithiothreitol), 3 mg/L의 AgNO3(silver nitrate), 0.5% gelrite가 포함된 2N6-AS 배지 위에 필터페이퍼를 깔고 그 위에 치상하여 25℃ 암조건에서 3일간 공동 배양하였고, 그 후 배지 성분의 영향력을 높이기 위해 필터페이퍼를 제거한 배지에 치상하여 25℃ 암조건에서 4일간 공동 배양하였다. 공동배양 기간 동안 아그로박테리움의 과도한 성장을 막고 아그로박테리움 도입에 따른 식물세포의 방어기작으로 생성될 수 있는 물질을 줄이기 위해 1 mM의 DTT(dithiothreitol), 3 mg/L의 AgNO3(silver nitrate) 등을 배지에 포함하였다. 7일간의 공동 배양 후 호르몬에 따른 캘러스 형성율을 살펴본 결과 박테리움에 감염 후 캘러스 형성 및 생육은 감염되지 않았을 경우 보다 효율적이지 못하였다. 공동배양 시 아그로박테리움의 과도한 생육을 억제할 수 있는 항산화 물질의 첨가와 더불어 사용되는 호르몬의 적절한 조절은 공동배양 과정에서 효율적인 캘러스 형성 및 아그로박테리움에 의한 목표 유전자의 도입을 가능하게 할 수 있을 것으로 판단되었다. 본 실험에서 사용한 종자는 아직 캘러스 증식이 충분치 않은 상태이기 때문에, 건전한 상태의 캘러스를 증식시키고 아그로박테리움의 생장 억제를 위해 400 mg/L의 카르베니실린(carbenicillin)만이 포함된 N6D 배지에 옮겨 32℃의 지속 광조건으로 1주 동안 배양하여 캘러스를 증식하였다. 캘러스 증식 1주 후 건전한 상태의 캘러스를 이용하여 유전자가 삽입된 캘러스 선발을 위해 25 mg/L 5-메틸트립토판(5-MT)와 400 mg/L 카르베니실린이 포함된 N6D 배지에 옮겨 32℃ 지속 광조건으로 2주 동안 배양하였다. A common method commonly used to transform rice plants is to inoculate the callus in rice seeds and then inoculate the callus with Agrobacterium spp. It usually takes about 4 months to obtain the transformant . In this experiment, agar bacterium was inoculated with seeds that had been swollen at the blastocyst stage after washing rice seed matured seeds to shorten the time consumed for transplanting the rice, and soaking them in N6 liquid medium for 24 hours. The surface-sterilized seeds were cultured in N6 liquid medium containing 2 mg / L of 2,4-D (Chu CC, Wang CS, Sun CC, Hsu C, Yin KC, and Chu CY (1975) rice through comparative experiments on thenitrogen sources. Sci Sinica 18: 659-668] and germinated for 24 hours at 30 ° C in a dark state. The seeds in which the abdomen swelled and the plant began to differentiate were immersed in a tube containing 15 mL of Agrobacterium suspension, The seeds were placed on sterilized filter paper after inoculation for a minute to remove excess Agrobacterium. The seeds inoculated with Agrobacterium were placed on filter paper on 2N6-AS medium containing 1 mM DTT (dithiothreitol), 3 mg / L AgNO 3 (silver nitrate) and 0.5% gelrite, For 3 days. Then, in order to increase the influence of the medium component, the filter paper was dentated to the medium in which the filter paper was removed, and co-cultured at 25 ° C for 4 days. 1 mM DTT (dithiothreitol) and 3 mg / L AgNO3 (silver nitrate) were added to prevent the excessive growth of Agrobacterium during co-cultivation and to reduce the substances that could be produced by the defense mechanism of plant cells due to the introduction of Agrobacterium. Were included in the medium. After 7 days of coculture, the callus formation rate after hormone treatment was less effective than the callus formation and growth after infection with bacterium. In addition to the addition of antioxidants that can inhibit excessive growth of Agrobacterium during co-culture, proper regulation of the hormones used may enable efficient callus formation and introduction of target genes by Agrobacterium in co-culture Respectively. Since the seeds used in this experiment are not yet sufficient for callus proliferation, they are transferred to N6D medium containing only 400 mg / L of carbenicillin for propagation of healthy calli and inhibiting Agrobacterium growth. Lt; 0 > C for 1 week to proliferate callus. After 1 week of callus proliferation, the cells were transferred to N6D medium containing 25 mg / L 5-methyltryptophan (5-MT) and 400 mg / L carbenicillin for callus insertion with the calli using a healthy callus, And cultured for 2 weeks with continuous light.

배양 후 배반으로부터 왕성하게 증식하는 캘러스를 SF(shoot formation) 배지로 옮겨 식물체의 재분화를 유도하였다. 항생제가 포함된 배지에서 2주가 지난 후부 터 캘러스에서 그린 스팟(green spot)이 형성되기 시작하였고(도 4 참조), 약 3주의 배양기간 후에는 캘러스에서 줄기(shoot)가 형성되기 시작하였다(도 4 참조). 항생제 배지에서 SF 배지로 옮긴 후 그린 스팟 형성 및 재분화 효율은 접종하는 유전자에 따라 다른 양상을 보였다. 지상부가 재분화된 식물체를 RF(root formation) 배지(도 4)로 옮겨 뿌리 발생을 유도하였으며, 순화된 벼 형질전환 식물체를 온실에서 포트에 이식하여 재배하였다(도 4). 본 실험에서 사용한 동진 벼는 형질전환 캘러스 115개 중 총 35개의 형질전환 식물체를 얻어 높은 형질전환 효율을 보였다. After cultivation, the calli propagating proliferately from the blastocyst were transferred to SF (shoot formation) medium to induce plant regeneration. Green spots began to form on the callus after two weeks in the medium containing antibiotics (see FIG. 4), and shoot formation was initiated in the callus after approximately 3 weeks of culture 4). After transferring from antibiotic medium to SF medium, the efficiency of green spot formation and regeneration was different depending on the gene inoculated. The ground regeneration plant was transferred to a root formation medium (FIG. 4) to induce root development, and the purified rice transgenic plants were transplanted from the greenhouse into the pot (FIG. 4). A total of 35 transgenic plants were obtained from 115 transgenic calli.

실시예 5: 형질전환후대에서 도입 OsASA2 유전자 확인 및 유전자 발현 해석 Example 5: Identification of transgenic OsASA2 gene and gene expression analysis

형질전환 실험에서 얻어진 형질전환 후대 식물체를 대상으로 벼 게놈상에서 OsASA2 유전자의 도입 여부 및 유전자의 발현 양상을 살펴본 결과는 도 5에 나타내었다. 먼저 유전자 도입의 확인은 T0 식물체로부터 종자를 얻어 벼 유묘상자에 계통당 20개씩 종자를 파종하고, 발아시킨 후, 14 일경에 4ppm의 bastar 처리를 통해 저항성을 보인 식물체를 이용하여 도입유전자 Bar 및 OsASA2 유전자 특이 증폭용 프라이머 세트(primer set)를 이용하여 PCR 분석을 수행하였다. 조사한 단일 변이(single mutation)을 일으킨 ASA2 유전자 및 이중 변이(double mutation)을 일으킨 ASA2 유전자를 도입한 형질전환 후대에서 Bar 및 OsASA2 유전자가 검출되었다(도 5의 패널 A). 또한 이들 식물체에서 도입 유전자가 대조구 및 Mock 에서보다 많이 발현하였다(도 4의 패널 B). 이는 OsASA2 유전자가 벼 게놈에 잘 도입되어 후대에 잘 전이되었으며, 유전자의 발현이 잘 되고 있음을 의미한다. The transgenic plants obtained in the transgenic experiments were examined for the introduction of the OsASA2 gene and the gene expression patterns in the rice genome, and the results are shown in FIG. In order to confirm the gene transfer, seeds were obtained from T0 plants and seeds were seeded at a rate of 20 per plant in rice seedlings box. After germination, seeds with resistance of 4ppm bastar treatment were used at 14 days and transgenic Bar and OsASA2 PCR analysis was performed using a primer set for gene-specific amplification. Bar and OsASA2 genes were detected in the transgenic lines transfected with the ASA2 gene causing the single mutation and the ASA2 gene causing the double mutation (panel A in FIG. 5). Also, transgenes were more expressed in these plants than in control and Mock (panel B of FIG. 4). This suggests that the OsASA2 gene was introduced into the rice genome well and transferred to the later stage, and the gene was expressed well.

실시예 6: 단일카피(Single copy) 도입 형질전환체의 선발 Example 6: Selection of a single copy introduced transformant

단일 카피가 도입된 형질전환 벼의 선발은 TaqMan PCR 법으로 행하였다. TaqMan PCR법에 의한 단일카피(single copy) 도입 형질전환체를 선발하기 위하여 Takara사로부터 제공받은 프로토콜에 따라 OsASA2 유전자 말단에 있는 nos 종결자 영역의 특이적 서열에 결합하는 표지된 프로브 프라이머를 이용하였다. 형질전환체는 bar 및 OsASA2 유전자로 PCR 분석에 의해 확인된 20개 식물체 게놈을 대상으로 게놈내 OsASA2 유전자의 정량을 위한 절대표준농도(absolute standard concentration)을 계산할 수 있었다. 총 20개체의 형질전환 T0 개체 중에서 16개 식물체가 도입유전자가 단일 카피(single copy)로 삽입되어 있었다(도 6). Selection of transgenic rice with single copy was carried out by TaqMan PCR method. In order to select a single copy introduced transfectant by TaqMan PCR method, a labeled probe primer that binds to a specific sequence of the nos terminator region at the terminal of OsASA2 gene was used according to the protocol provided by Takara Co. . Transformants were able to calculate the absolute standard concentration for the quantification of the OsASA2 gene in the genome in 20 plant genomes identified by PCR analysis with bar and OsASA2 genes. Of the total 20 transgenic T0 individuals, 16 plants were inserted with a single copy of the transgene (Fig. 6).

실시예 7: 형질전환체의 아미노산 분석 Example 7: Amino acid analysis of transformants

단일변이(single mutation)을 일으킨 ASA2 유전자 및 이중변이(double mutation)을 일으킨 ASA2 유전자를 도입한 형질전환 후대에서 유리 아미노산 총량은 대조구에 비해 약 10-30 배로 높게 나타났다. 단일 변이(single mutation) 유전자가 이중 변이(double mutation) 보다도 높게 나타났다. 특히 트립토판, 페닐알라닌, 트레오닌, 세린 및 발린 함량에서 대조구에 비해 6.7, 4.6, 3.6, 2.8 및 2.0 배가 높게 나타났다(표 2). 따라서 OsASA2 유전자를 과발현시키면, 트립토판 생합성 회로상에서 피드백 억제(feedback inhibition)가 둔감하게 되어 아미노산 함량이 전체적으로 높아지고, 특정 아미노산이 높은 결과를 초래하였다. 하기 표 2에서 # 데이터는 아미노산 나노몰/g 건조 종자 중량으로 나타내었고, 야생형(동진벼), Mock 대조구(Ti-플라스미드 벡터) 또는 5-MT 저항성 형질전환 식물체(단일 점 변이 및 이중 점 변이체)의 6개 종자의 평균±SD이다. 동일한 문자에 의해 표시된 평균 값들은 5% 수준(Student’s t test)에서 유의한 차이가 없었다. The total amount of free amino acids in ASA2 gene which caused single mutation and ASA2 gene which caused double mutation was about 10-30 times higher than that of the control. The single mutation gene was higher than the double mutation. The contents of tryptophan, phenylalanine, threonine, serine and valine were 6.7, 4.6, 3.6, 2.8 and 2.0 times higher than the control, respectively (Table 2). Overexpression of the OsASA2 gene resulted in insensitivity to feedback inhibition on the tryptophan biosynthesis circuit, resulting in an overall increase in amino acid content and a high specific amino acid yield. In Table 2 below, # data are expressed as amino acid nano-mol / g dry seed weight and are based on the wild type (Dongjinbara), Mock control (Ti-plasmid vector) or 5-MT resistant transgenic plants (single point mutants and double point mutants) Mean ± SD of 6 seeds. Mean values indicated by the same letter were not significantly different at the 5% level (Student's t test).

Figure 112015120554467-pat00002
Figure 112015120554467-pat00002

실시예 8: 형질전환체의 농업형질 분석 Example 8: Analysis of agricultural traits of transformants

선발된 단일 카피(single copy)를 가지고 호모계통이면서 유전자 사이(intergenic) 형질전환체를 오창 생명공학연구소 GMO 포장에 계통별로 파종하여 수확하였다(도 7). 형질전환체의 농업 형질조사는 출수 일수, 간장, 수장, 분얼수, 임실율, 임실/식물체, 종자건물중/30식물체, 화분임성, 1000립중 등을 2013년 10월 2일에 수확하여 측정한 결과는 표 3에 나타내었다. 출수 일수는 100일 정도, 간장은 78-81 cm, 수장은 18-20 cm 등 대조품종인 동안벼와 MOCK 등의 결과와 거의 유사한 결과를 얻었다. 이런 의미는 형질전환체가 T2 세대에서 대조구와 거의 유사한 형질을 보여, 유전자 도입에 따른 영향이 크게 없는 것으로 간주된다. Homozygous and intergenic transgenic plants were harvested by sowing on a GMO packaging basis at the Biotech Institute of Biotechnology with a single copy selected (Fig. 7). The agronomic traits of the transgenic crops were harvested on October 2, 2013, including the number of days of heading, number of shoots, number of shoots, number of tillers, lambing rate, densities / The results are shown in Table 3. The number of days of heading was about 100 days, the soybean was 78-81 cm, and the head was 18-20 cm. This means that the transgenic plants show similar traits to the control in T2 generation and are considered to have little effect on gene transfer.

Figure 112015120554467-pat00003
Figure 112015120554467-pat00003

a: 임실율(Spikelet fertility)은 2012년에 10개 식물체의 모든 이삭과 2013년에 60개 식물체의 주 줄기의 3개 이삭에 대해서 기록하였다. a: Spikelet fertility is recorded for all spikes of 10 plants in 2012 and 3 spikes in 60 stems of 2013 plants.

b: 공기 건조한 수확한 종자의 평균건중량에서 종자는 약 10-15%의 수분함량을 포함한 것으로 추정된다. b: From the average dry weight of air-dried harvested seeds, seeds are estimated to contain approximately 10-15% moisture content.

c: 화분임성(Pollen fertility)은 3개의 무작위로 선별된 각 식물체의 3개의 작은이삭에 대해 기록하였다. c: Pollen fertility was recorded for three small heads of each of three randomly selected plants.

d: 1000개 종자의 중량은 20 또는 100 낟알의 것으로부터 측정하였다. d: 1000 seed weights were measured from 20 or 100 grains.

실시예 9: ASA 유전자 도입 형질전환체를 이용한 트립토판 생합성계 제어 해석 Example 9: Control analysis of tryptophan biosynthesis system using ASA transgenic transformant

ASA2 변이 유전자의 도입에 의한 유리 Trp 함량이 증가한 벼 호모 계통(T3 세대)을 육성했다. 이 종자의 유리 Trp 함량은 비재조합에 비해 15-33배 증가했고, 벼 종자 단백질인 프로모터에 의한 발현을 제어한 계통에서는 종자의 건물중의 차이는 약 0.4%에 달했다. 고 Trp 함량 종자는 정상적으로 발아, 생장하고 임성을 가지고 있었다. 이들 식물체 중 아미노산 함량이 가장 많이 변한 계통을 이용하여 도 7에 나타낸 부분마다 80% 아세톤에서 추출하여, 추출물을 역상계의 고체 카트리지를 사용하여 정제한 뒤 LC/MS/MS분석를 수행하였다(도 8). (T3 generation) in which the free Trp content was increased by the introduction of the ASA2 mutation gene. The free Trp content of the seeds was increased by 15-33 times compared with non-recombinant, and the difference in the seeds of the plants that controlled the expression by the rice seed protein promoter reached about 0.4%. High Trp content seeds germinated and grown normally and had finesse. Using the system in which the amino acid content was most changed among the plants, the extract was extracted from 80% acetone for each portion shown in FIG. 7, and the extract was purified by using a reverse-phase solid cartridge, followed by LC / MS / MS analysis ).

단일 돌연변이 유전자 도입 형질전환체(S-TG)와 이중 돌연변이 유전자 도입 형질전환체(D-TG)의 Trp, IAN 및 IAA 아미노산 함량을 뿌리, 줄기, 제1잎, 제2잎, 제3잎을 나누어 측정한 결과, Trp의 경우 모든 부위에서 형질전환체가 높게 나타났으며, 특히 leaf 3에서 대조구에 비해 월등히 높게 나타났다. IAN 및 IAA 함량은 거의 유사한 패턴을 보였다. 이들 결과로부터 OASA2 도입 벼는 대조구에 비해 IAA 함량은 식물체의 생장으로 유의로 증가하고 있었다. 흥미롭게도 IAA의 식물 체내에 생합성 분포는 Trp 축적과 같은 경향을 나타내고 있었다. 또한 IAN도 이들 두 성분과 같은 추세로 증가하고 있으며, 축적하고 있는 IAA가 Trp에서 IAN을 거쳐 생합성되고 있는 것으로 나타났다(도 9). Trp, IAN and IAA amino acid contents of single mutant transgenic transformants (S-TG) and double mutant transgenic transformants (D-TG) were measured by root, stem, first leaf, second leaf and third leaf As a result, Trp was found to be high in all the transformants, especially in leaf 3. IAN and IAA contents showed similar patterns. From these results, the IAA content of OASA2 transgenic rice plants was significantly increased by plant growth compared to the control. Interestingly, the distribution of biosynthesis in the plant body of IAA showed the same tendency as Trp accumulation. In addition, IAN is also increasing with the same trend as these two components, and accumulating IAA is biosynthesized by IAN through Trp (FIG. 9).

OASA2 변이체 유전자가 도입된 형질전환체는 Trp, IAA 함량이 대조구에 비해 높게 나타난 결과로부터 Trp의 축적량은 생화학적인 효소 기능을 반영하고 있음이 명백하며, 효소의 피드백 저해의 강약의 차이를 이용해 세포내에 Trp축적 농도를 어느 정도 제어하는 것이 드러났다. 벼의 Trp 생합성 경로 상류에 위치한 chorismate 경로에 관련된 효소들의 기본 유전자 중에서 특히 대사 제어에 중요하다고 추정한 DAHP 합성 효소 4 종류, chorismate kinase 3종류, EPSP 합성 효소 1 종류에 대해서 단백질 합성을 하고 효소 등 기본 기능 해석을 실시했다. chorismate kinase는 방향족 아미노산 및 관련 화합물의 생합성에 중요하며, 탄닌 등의 이차 대사물의 전구체도 된다. 본 발명의 효소 발현 해석에서 S-GT, GT-ST, ATR1 유전자에서 형질전환체들에서 발현량이 월등히 높게 나타났다. 이런 의미는 식물체내에 트립토판 함량이 높아져 IAA 함량 및 2차 대사산물인 S-GT, GT-ST, ATR1 유전자를 코딩하는 단백질이 높게 발현하고 있다고 할 수 있다(도 10). The Trp and IAA contents of the transformants transfected with the OASA2 mutant gene were higher than those of the control. Therefore, it is clear that the accumulation amount of Trp reflects biochemical enzyme function, It has been revealed that the Trp accumulation concentration is controlled to some extent. Among the basic genes of enzymes involved in the chorismate pathway upstream of the Trp biosynthetic pathway in rice, four kinds of DAHP synthase, chorismate kinase, and EPSP synthase, which are presumed to be important for metabolic control, Function analysis. Chorismate kinase is important for the biosynthesis of aromatic amino acids and related compounds, and is also a precursor to secondary metabolites such as tannins. In the expression analysis of the enzyme of the present invention, the expression levels of S-GT, GT-ST and ATR1 genes were significantly higher in the transformants. This means that the tryptophan content in the plant is high, and the IAA content and the protein encoding the secondary metabolites S-GT, GT-ST and ATR1 gene are highly expressed (FIG. 10).

실시예 10: 5MT에서 형질전환체 선발 가능 시험Example 10: Selection test of transformants at 5MT

아미노산 함량을 분석한 결과 5MT-4, 5 계통의 경우 트립토판 함량이 야생형에 비해 각각 22배 및 30배 증가하였는데, 5MT-2의 경우 트립토판의 함량이 야생형과 비교했을 때 크게 차이가 없어서 기존에 선발한 5MT-2, 4, 5 계통의 후대를 증식하여 5MT에 저항성 검정을 다시 실시하였다. 그 결과 도 11에서 보는 바와 같이 5MT-2는 전세대에서는 저항성을 보였으나, 후대에서는 야생형과 마찬가지로 25 mg/L 5-메틸트립토판이 포함된 배지에서 생육하지 못하는 것으로 나타났다. Amino acid contents of 5MT-4 and 5 strains were increased by 22 and 30 fold, respectively, compared to wild-type strains. The content of tryptophan in 5MT-2 was not significantly different from that of wild-type strains. 5MT-2, 4, and 5 strains were proliferated and the resistance test was performed again on 5MT. As a result, as shown in FIG. 11, 5MT-2 showed resistance in all ages but it did not grow in the medium containing 25 mg / L 5-methyltryptophan in the same manner as the wild type.

실시예Example 11: 511: 5 -- 메틸트립토판Methyltryptophan 저항성 돌연변이  Resistant mutation ASA2ASA2 유전자가 포함된 벡터를 이용한 형질전환 식물체의 선발 시험  Screening of transgenic plants using vectors containing genes

도 12에는 5MT를 25ppm 함유한 배지에서 야생형 캘러스(callus)와, 상기 실시예 3에서 제조한 벡터(pSP1-5MT 벡터)를 형질전환시킨 캘러스를 각각 배양한 결과를 보여준다. 도 12의 패널 A는 야생형 동진(Dongjin)벼의 캘러스를 5MT 25 ppm을 함유한 배지에 배양한 결과이고, 패널 B는 pSP1-5MT 벡터를 도입시킨 형질전환된 동진 벼 캘러스를 5MT 25 ppm를 함유한 배지에서 배양한 결과이다. 패널 A의 결과와 비교하여 패널 B의 pSP1-5MT 벡터로 형질전환된 캘러스는 OsASA2 변이체 유전자 선별마커를 포함한 pSP1-5MT 벡터가 도입됨에 따라 뿌리의 발생도 가능함을 알 수 있다. 따라서, 본 발명의 OsASA2 변이체 유전자 선별마커를 포함한 pSP1-5MT 벡터는 5MT가 포함된 배지에서 재분화된 개체를 선발하는데 매우 유용함을 확인하였다. Fig. 12 shows the results of culturing wild type callus and callus transformed with the vector (pSP1-5MT vector) prepared in Example 3 in a medium containing 25 ppm of 5MT. Panel A of FIG. 12 shows the result of culturing the callus of wild-type Dongjin rice in a medium containing 25 ppm of 5MT. Panel B shows the results of culturing the transformed Dongjin cotton callus transfected with pSP1-5MT vector with 25 ppm of 5MT It is the result of culturing in one medium. Compared with the results of Panel A, the callus transformed with the pSP1-5MT vector of Panel B shows that the introduction of the pSP1-5MT vector containing the OsASA2 mutant gene selection marker is also possible. Thus, the pSP1-5MT vector containing the OsASA2 variant gene selection marker of the present invention was found to be very useful for screening individuals regenerated in a medium containing 5MT.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Chungbuk National University Industry Academic Cooperation Foundation <120> Use of Mutated Anthranilate Synthase Gene for Selection Marker of Plant Transformation <130> MP14-0315 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 606 <212> PRT <213> Oryza sativa L. <400> 1 Met Glu Ser Ile Ala Ala Ala Thr Phe Thr Pro Ser Arg Leu Ala Ala 1 5 10 15 Arg Pro Ala Thr Pro Ala Ala Ala Ala Ala Pro Val Arg Ala Arg Ala 20 25 30 Ala Val Ala Ala Gly Gly Arg Arg Arg Thr Ser Arg Arg Gly Gly Val 35 40 45 Arg Cys Ser Ala Gly Lys Pro Glu Ala Ser Ala Val Ile Asn Gly Ser 50 55 60 Ala Ala Ala Arg Ala Ala Glu Glu Asp Arg Arg Arg Phe Phe Glu Ala 65 70 75 80 Ala Glu Arg Gly Ser Gly Lys Gly Asn Leu Val Pro Met Trp Glu Cys 85 90 95 Ile Val Ser Asp His Leu Thr Pro Val Leu Ala Tyr Arg Cys Leu Val 100 105 110 Pro Glu Asp Asn Met Glu Thr Pro Ser Phe Leu Val Glu Ser Val Glu 115 120 125 Gln Gly Pro Glu Gly Thr Thr Asn Val Gly Arg Tyr Ser Met Val Gly 130 135 140 Ala His Pro Val Met Glu Val Val Ala Lys Glu His Lys Val Thr Ile 145 150 155 160 Met Asp His Glu Lys Gly Lys Val Thr Glu Gln Val Val Asp Asp Pro 165 170 175 Met Gln Ile Pro Arg Ser Met Met Glu Gly Trp His Pro Gln Gln Ile 180 185 190 Asp Gln Leu Pro Asp Ser Phe Thr Gly Gly Trp Val Gly Phe Phe Ser 195 200 205 Tyr Asp Thr Val Arg Tyr Val Glu Lys Lys Lys Leu Pro Phe Ser Gly 210 215 220 Ala Pro Gln Asp Asp Arg Asn Leu Pro Asp Val His Leu Gly Leu Tyr 225 230 235 240 Asp Asp Val Leu Val Phe Asp Asn Val Glu Lys Lys Val Tyr Val Ile 245 250 255 His Trp Val Asn Leu Asp Arg His Ala Thr Thr Glu Asp Ala Phe Gln 260 265 270 Asp Gly Lys Ser Arg Leu Asn Leu Leu Leu Ser Lys Val His Asn Ser 275 280 285 Asn Val Pro Lys Leu Ser Pro Gly Phe Val Lys Leu His Thr Arg Gln 290 295 300 Phe Gly Thr Pro Leu Asn Lys Ser Thr Met Thr Ser Asp Glu Tyr Lys 305 310 315 320 Asn Ala Val Met Gln Ala Lys Glu His Ile Met Ala Gly Asp Ile Phe 325 330 335 Gln Ile Val Leu Ser Gln Arg Phe Glu Arg Arg Thr Tyr Ala Asn Pro 340 345 350 Phe Glu Val Tyr Arg Ala Leu Arg Ile Val Asn Pro Ser Pro Tyr Met 355 360 365 Ala Tyr Val Gln Ala Arg Gly Cys Val Leu Val Ala Ser Ser Pro Glu 370 375 380 Ile Leu Thr Arg Val Arg Lys Gly Lys Ile Ile Asn Arg Pro Leu Ala 385 390 395 400 Gly Thr Val Arg Arg Gly Lys Thr Glu Lys Glu Asp Glu Met Gln Glu 405 410 415 Gln Gln Leu Leu Ser Asp Glu Lys Gln Cys Ala Glu His Ile Met Leu 420 425 430 Val Asp Leu Gly Arg Asn Asp Val Gly Lys Val Ser Lys Pro Gly Ser 435 440 445 Val Lys Val Glu Lys Leu Met Asn Ile Glu Arg Tyr Ser His Val Met 450 455 460 His Ile Ser Ser Thr Val Ser Gly Glu Leu Asp Asp His Leu Gln Ser 465 470 475 480 Trp Asp Ala Leu Arg Ala Ala Leu Pro Val Gly Thr Val Ser Gly Ala 485 490 495 Pro Lys Val Lys Ala Met Glu Leu Ile Asp Glu Leu Glu Val Thr Arg 500 505 510 Arg Gly Pro Tyr Ser Gly Gly Leu Gly Gly Ile Ser Phe Asp Gly Asp 515 520 525 Met Leu Ile Ala Leu Ala Leu Arg Thr Ile Val Phe Ser Thr Ala Pro 530 535 540 Ser His Asn Thr Met Tyr Ser Tyr Lys Asp Thr Glu Arg Arg Arg Glu 545 550 555 560 Trp Val Ala His Leu Gln Ala Gly Ala Gly Ile Val Ala Asp Ser Ser 565 570 575 Pro Asp Asp Glu Gln Arg Glu Cys Glu Asn Lys Ala Ala Ala Leu Ala 580 585 590 Arg Ala Ile Asp Leu Ala Glu Ser Ala Phe Val Asp Lys Glu 595 600 605 <210> 2 <211> 606 <212> PRT <213> Oryza sativa L. <400> 2 Met Glu Ser Ile Ala Ala Ala Thr Phe Thr Pro Ser Arg Leu Ala Ala 1 5 10 15 Arg Pro Ala Thr Pro Ala Ala Ala Ala Ala Pro Val Arg Ala Arg Ala 20 25 30 Ala Val Ala Ala Gly Gly Arg Arg Arg Thr Ser Arg Arg Gly Gly Val 35 40 45 Arg Cys Ser Ala Gly Lys Pro Glu Ala Ser Ala Val Ile Asn Gly Ser 50 55 60 Ala Ala Ala Arg Ala Ala Glu Glu Asp Arg Arg Arg Phe Phe Glu Ala 65 70 75 80 Ala Glu Arg Gly Ser Gly Lys Gly Asn Leu Val Pro Met Trp Glu Cys 85 90 95 Ile Val Ser Asp His Leu Thr Pro Val Leu Ala Tyr Arg Cys Leu Val 100 105 110 Pro Glu Asp Asn Met Glu Thr Pro Ser Phe Leu Phe Glu Phe Val Glu 115 120 125 Gln Gly Pro Glu Gly Thr Thr Asn Val Gly Arg Tyr Ser Met Val Gly 130 135 140 Ala His Pro Val Met Glu Val Val Ala Lys Glu His Lys Val Thr Ile 145 150 155 160 Met Asp His Glu Lys Gly Lys Val Thr Glu Gln Val Val Asp Asp Pro 165 170 175 Met Gln Ile Pro Arg Ser Met Met Glu Gly Trp His Pro Gln Gln Ile 180 185 190 Asp Gln Leu Pro Asp Ser Phe Thr Gly Gly Trp Val Gly Phe Phe Ser 195 200 205 Tyr Asp Thr Val Arg Tyr Val Glu Lys Lys Lys Leu Pro Phe Ser Gly 210 215 220 Ala Pro Gln Asp Asp Arg Asn Leu Pro Asp Val His Leu Gly Leu Tyr 225 230 235 240 Asp Asp Val Leu Val Phe Asp Asn Val Glu Lys Lys Val Tyr Val Ile 245 250 255 His Trp Val Asn Leu Asp Arg His Ala Thr Thr Glu Asp Ala Phe Gln 260 265 270 Asp Gly Lys Ser Arg Leu Asn Leu Leu Leu Ser Lys Val His Asn Ser 275 280 285 Asn Val Pro Lys Leu Ser Pro Gly Phe Val Lys Leu His Thr Arg Gln 290 295 300 Phe Gly Thr Pro Leu Asn Lys Ser Thr Met Thr Ser Asp Glu Tyr Lys 305 310 315 320 Asn Ala Val Met Gln Ala Lys Glu His Ile Met Ala Gly Asp Ile Phe 325 330 335 Gln Ile Val Leu Ser Gln Arg Phe Glu Arg Arg Thr Tyr Ala Asn Pro 340 345 350 Phe Glu Val Tyr Arg Ala Leu Arg Ile Val Asn Pro Ser Pro Tyr Met 355 360 365 Ala Tyr Val Gln Ala Arg Gly Cys Val Leu Val Ala Ser Ser Pro Glu 370 375 380 Ile Leu Thr Arg Val Arg Lys Gly Lys Ile Ile Asn Arg Pro Leu Ala 385 390 395 400 Gly Thr Val Arg Arg Gly Lys Thr Glu Lys Glu Asp Glu Met Gln Glu 405 410 415 Gln Gln Leu Leu Ser Asp Glu Lys Gln Cys Ala Glu His Ile Met Leu 420 425 430 Val Asp Leu Gly Arg Asn Asp Val Gly Lys Val Ser Lys Pro Gly Ser 435 440 445 Val Lys Val Glu Lys Leu Met Asn Ile Glu Arg Tyr Ser His Val Met 450 455 460 His Ile Ser Ser Thr Val Ser Gly Glu Leu Asp Asp His Leu Gln Ser 465 470 475 480 Trp Asp Ala Leu Arg Ala Ala Leu Pro Val Gly Thr Val Ser Gly Ala 485 490 495 Pro Lys Val Lys Ala Met Glu Leu Ile Asp Glu Leu Glu Val Thr Arg 500 505 510 Arg Gly Pro Tyr Ser Gly Gly Leu Gly Gly Ile Ser Phe Asp Gly Asp 515 520 525 Met Asp Ile Ala Leu Ala Leu Arg Thr Ile Val Phe Ser Thr Ala Pro 530 535 540 Ser His Asn Thr Met Tyr Ser Tyr Lys Asp Thr Glu Arg Arg Arg Glu 545 550 555 560 Trp Val Ala His Leu Gln Ala Gly Ala Gly Ile Val Ala Asp Ser Ser 565 570 575 Pro Asp Asp Glu Gln Arg Glu Cys Glu Asn Lys Ala Ala Ala Leu Ala 580 585 590 Arg Ala Ile Asp Leu Ala Glu Ser Ala Phe Val Asp Lys Glu 595 600 605 <210> 3 <211> 1821 <212> DNA <213> Oryza sativa L. <400> 3 atggagtcca tcgccgccgc cacgttcacg ccctcgcgcc tcgccgcccg ccccgccact 60 ccggcggcgg cggcggcccc ggttagagcg agggcggcgg tagcggcagg agggaggagg 120 aggacgagta ggcgcggcgg cgtgaggtgc tccgcgggga agccagaggc aagcgcggtg 180 atcaacggga gcgcggcggc gcgggcggcg gaggaggaca ggaggcgctt cttcgaggcg 240 gcggagcgtg ggagcgggaa gggcaacctg gtgcccatgt gggagtgcat cgtctccgac 300 cacctcaccc ccgtgctcgc ctaccgctgc ctcgtccccg aggacaacat ggagacgccc 360 agcttcctcg tcgagtccgt cgagcagggg cccgagggca ccaccaacgt cggtcgctat 420 agcatggtgg gagcccaccc agtgatggag gtcgtggcaa aggagcacaa ggtcacaatc 480 atggaccacg agaagggcaa ggtgacggag caggtcgtgg atgatcctat gcagatcccc 540 aggagcatga tggaaggatg gcacccgcag cagatcgatc agctccccga ttccttcacc 600 ggtggatggg tcgggttctt ttcctatgat acagtccgtt atgttgaaaa gaagaagctg 660 cccttctccg gtgctcccca ggacgatagg aaccttcctg atgttcacct tgggctttat 720 gatgatgttc tcgtcttcga caatgtcgag aagaaagtat atgtcatcca ttgggtaaat 780 cttgatcggc atgcaaccac cgaggatgca ttccaagatg gcaagtcccg gctgaacctg 840 ttgctatcta aagtgcacaa ttcaaatgta cccaagcttt ctccaggatt tgtaaagtta 900 cacactcggc agtttggtac acctttgaac aaatcaacca tgacaagtga tgagtacaag 960 aatgctgtta tgcaggctaa ggagcatatt atggctggtg atattttcca gattgtttta 1020 agccagaggt ttgagaggcg aacatacgcc aatccatttg aagtctatcg agctttacga 1080 attgtgaacc caagtccata catggcatat gtacaggcaa gaggctgtgt cctggtagca 1140 tctagtccag aaattcttac tcgtgtgagg aagggtaaaa ttattaaccg tccacttgct 1200 gggactgttc gaaggggcaa gacagagaag gaagatgaaa tgcaagagca acagctacta 1260 agtgatgaaa aacagtgtgc tgaacatatt atgcttgtag atttgggaag gaatgatgtt 1320 ggaaaggtct ccaaacctgg atctgtgaag gtggagaaat taatgaacat tgaacgctac 1380 tcccatgtca tgcacatcag ttccacggtg agtggagagt tggatgatca tctccaaagt 1440 tgggatgccc tgcgagccgc gttgcctgtt ggaacagtta gtggagcacc aaaggtgaaa 1500 gccatggagc tgatagacga gctagaggtc acaagacgag gaccatacag tggcggcctt 1560 ggagggatat catttgacgg agacatgctt atcgctcttg cactccgcac cattgtgttc 1620 tcaacagcgc caagccacaa cacgatgtac tcatacaaag acaccgagag gcgccgggag 1680 tgggtcgctc accttcaggc tggtgctggc attgtcgctg atagcagccc agacgacgag 1740 caacgtgaat gcgagaacaa ggcagccgct ctggctcgag ccatcgatct tgctgaatca 1800 gctttcgtag acaaggaata g 1821 <210> 4 <211> 1821 <212> DNA <213> Oryza sativa L. <400> 4 atggagtcca tcgccgccgc cacgttcacg ccctcgcgcc tcgccgcccg ccccgccact 60 ccggcggcgg cggcggcccc ggttagagcg agggcggcgg tagcggcagg agggaggagg 120 aggacgagta ggcgcggcgg cgtgaggtgc tccgcgggga agccagaggc aagcgcggtg 180 atcaacggga gcgcggcggc gcgggcggcg gaggaggaca ggaggcgctt cttcgaggcg 240 gcggagcgtg ggagcgggaa gggcaacctg gtgcccatgt gggagtgcat cgtctccgac 300 cacctcaccc ccgtgctcgc ctaccgctgc ctcgtccccg aggacaacat ggagacgccc 360 agcttcctct tcgagttcgt cgagcagggg cccgagggca ccaccaacgt cggtcgctat 420 agcatggtgg gagcccaccc agtgatggag gtcgtggcaa aggagcacaa ggtcacaatc 480 atggaccacg agaagggcaa ggtgacggag caggtcgtgg atgatcctat gcagatcccc 540 aggagcatga tggaaggatg gcacccgcag cagatcgatc agctccccga ttccttcacc 600 ggtggatggg tcgggttctt ttcctatgat acagtccgtt atgttgaaaa gaagaagctg 660 cccttctccg gtgctcccca ggacgatagg aaccttcctg atgttcacct tgggctttat 720 gatgatgttc tcgtcttcga caatgtcgag aagaaagtat atgtcatcca ttgggtaaat 780 cttgatcggc atgcaaccac cgaggatgca ttccaagatg gcaagtcccg gctgaacctg 840 ttgctatcta aagtgcacaa ttcaaatgta cccaagcttt ctccaggatt tgtaaagtta 900 cacactcggc agtttggtac acctttgaac aaatcaacca tgacaagtga tgagtacaag 960 aatgctgtta tgcaggctaa ggagcatatt atggctggtg atattttcca gattgtttta 1020 agccagaggt ttgagaggcg aacatacgcc aatccatttg aagtctatcg agctttacga 1080 attgtgaacc caagtccata catggcatat gtacaggcaa gaggctgtgt cctggtagca 1140 tctagtccag aaattcttac tcgtgtgagg aagggtaaaa ttattaaccg tccacttgct 1200 gggactgttc gaaggggcaa gacagagaag gaagatgaaa tgcaagagca acagctacta 1260 agtgatgaaa aacagtgtgc tgaacatatt atgcttgtag atttgggaag gaatgatgtt 1320 ggaaaggtct ccaaacctgg atctgtgaag gtggagaaat taatgaacat tgaacgctac 1380 tcccatgtca tgcacatcag ttccacggtg agtggagagt tggatgatca tctccaaagt 1440 tgggatgccc tgcgagccgc gttgcctgtt ggaacagtta gtggagcacc aaaggtgaaa 1500 gccatggagc tgatagacga gctagaggtc acaagacgag gaccatacag tggcggcctt 1560 ggagggatat catttgacgg agacatggac atcgctcttg cactccgcac cattgtgttc 1620 tcaacagcgc caagccacaa cacgatgtac tcatacaaag acaccgagag gcgccgggag 1680 tgggtcgctc accttcaggc tggtgctggc attgtcgctg atagcagccc agacgacgag 1740 caacgtgaat gcgagaacaa ggcagccgct ctggctcgag ccatcgatct tgctgaatca 1800 gctttcgtag acaaggaata g 1821 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 5 atggagtcca tcgccgccgc ca 22 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 6 agctttcgta gacaaggaat ag 22 <110> Chungbuk National University Industry Academic Cooperation Foundation <120> Use of Mutated Anthranilate Synthase Gene for Selection Marker of          Plant Transformation <130> MP14-0315 <160> 6 <170> Kopatentin 2.0 <210> 1 <211> 606 <212> PRT <213> Oryza sativa L. <400> 1 Met Glu Ser Ile Ala Ala Thr Phe Thr Pro Ser Arg Leu Ala Ala   1 5 10 15 Arg Pro Ala Thr Pro Ala Ala Ala Ala Ala Pro Val Arg Ala Arg Ala              20 25 30 Ala Val Ala Ala Gly Arg Arg Arg Thr Ser Arg Arg Gly Gly Val          35 40 45 Arg Cys Ser Ala Gly Lys Pro Glu Ala Ser Ala Val Ile Asn Gly Ser      50 55 60 Ala Ala Ala Arg Ala Ala Glu Glu Asp Arg Arg Phe Phe Glu Ala  65 70 75 80 Ala Glu Arg Gly Ser Gly Lys Gly Asn Leu Val Pro Met Trp Glu Cys                  85 90 95 Ile Val Ser Asp His Leu Thr Pro Val Leu Ala Tyr Arg Cys Leu Val             100 105 110 Pro Glu Asp Asn Met Glu Thr Pro Ser Phe Leu Val Glu Ser Val Glu         115 120 125 Gln Gly Pro Glu Gly Thr Thr Asn Val Gly Arg Tyr Ser Met Val Gly     130 135 140 Ala His Pro Val Met Glu Val Val Ala Lys Glu His Lys Val Thr Ile 145 150 155 160 Met Asp His Glu Lys Gly Lys Val Thr Glu Gln Val Val Asp Asp Pro                 165 170 175 Met Gln Ile Pro Arg Ser Met Met Glu Gly Trp His Pro Gln Gln Ile             180 185 190 Asp Gln Leu Pro Asp Ser Phe Thr Gly Gly Trp Val Gly Phe Phe Ser         195 200 205 Tyr Asp Thr Val Arg Tyr Val Glu Lys Lys Lys Leu Pro Phe Ser Gly     210 215 220 Ala Pro Gln Asp Asp Arg Asn Leu Pro Asp Val His Leu Gly Leu Tyr 225 230 235 240 Asp Asp Val Leu Val Phe Asp Asn Val Glu Lys Lys Val Tyr Val Ile                 245 250 255 His Trp Val Asn Leu Asp Arg His Ala Thr Thr Glu Asp Ala Phe Gln             260 265 270 Asp Gly Lys Ser Arg Leu Asn Leu Leu Leu Ser Lys Val His Asn Ser         275 280 285 Asn Val Pro Lys Leu Ser Pro Gly Phe Val Lys Leu His Thr Arg Gln     290 295 300 Phe Gly Thr Pro Leu Asn Lys Ser Thr Met Thr Ser Asp Glu Tyr Lys 305 310 315 320 Asn Ala Val Met Gln Ala Lys Glu His Ile Met Ala Gly Asp Ile Phe                 325 330 335 Gln Ile Val Leu Ser Gln Arg Phe Glu Arg Arg Thr Tyr Ala Asn Pro             340 345 350 Phe Glu Val Tyr Arg Ala Leu Arg Ile Val Asn Pro Ser Pro Tyr Met         355 360 365 Ala Tyr Val Gln Ala Arg Gly Cys Val Leu Val Ala Ser Ser Pro Glu     370 375 380 Ile Leu Thr Arg Val Arg Lys Gly Lys Ile Ile Asn Arg Pro Leu Ala 385 390 395 400 Gly Thr Val Arg Arg Gly Lys Thr Glu Lys Glu Asp Glu Met Gln Glu                 405 410 415 Gln Gln Leu Leu Ser Asp Glu Lys Gln Cys Ala Glu His Ile Met Leu             420 425 430 Val Asp Leu Gly Arg Asn Asp Val Gly Lys Val Ser Lys Pro Gly Ser         435 440 445 Val Lys Val Glu Lys Leu Met Asn Ile Glu Arg Tyr Ser His Val Met     450 455 460 His Ile Ser Ser Thr Val Ser Gly Glu Leu Asp Asp His Leu Gln Ser 465 470 475 480 Trp Asp Ala Leu Arg Ala Leu Pro Val Gly Thr Val Ser Gly Ala                 485 490 495 Pro Lys Val Lys Ala Met Glu Leu Ile Asp Glu Leu Glu Val Thr Arg             500 505 510 Arg Gly Pro Tyr Ser Gly Gly Leu Gly Gly Ile Ser Phe Asp Gly Asp         515 520 525 Met Leu Ile Ala Leu Ala Leu Arg Thr Ile Val Phe Ser Thr Ala Pro     530 535 540 Ser His Asn Thr Met Tyr Ser Tyr Lys Asp Thr Glu Arg Arg Arg Glu 545 550 555 560 Trp Val Ala His Leu Gln Ala Gly Ala Gly Ile Val Ala Asp Ser Ser                 565 570 575 Pro Asp Asp Glu Gln Arg Glu Cys Glu Asn Lys Ala Ala Ala Leu Ala             580 585 590 Arg Ala Ile Asp Leu Ala Glu Ser Ala Phe Val Asp Lys Glu         595 600 605 <210> 2 <211> 606 <212> PRT <213> Oryza sativa L. <400> 2 Met Glu Ser Ile Ala Ala Thr Phe Thr Pro Ser Arg Leu Ala Ala   1 5 10 15 Arg Pro Ala Thr Pro Ala Ala Ala Ala Ala Pro Val Arg Ala Arg Ala              20 25 30 Ala Val Ala Ala Gly Arg Arg Arg Thr Ser Arg Arg Gly Gly Val          35 40 45 Arg Cys Ser Ala Gly Lys Pro Glu Ala Ser Ala Val Ile Asn Gly Ser      50 55 60 Ala Ala Ala Arg Ala Ala Glu Glu Asp Arg Arg Phe Phe Glu Ala  65 70 75 80 Ala Glu Arg Gly Ser Gly Lys Gly Asn Leu Val Pro Met Trp Glu Cys                  85 90 95 Ile Val Ser Asp His Leu Thr Pro Val Leu Ala Tyr Arg Cys Leu Val             100 105 110 Pro Glu Asp Asn Met Glu Thr Pro Ser Phe Leu Phe Glu Phe Val Glu         115 120 125 Gln Gly Pro Glu Gly Thr Thr Asn Val Gly Arg Tyr Ser Met Val Gly     130 135 140 Ala His Pro Val Met Glu Val Val Ala Lys Glu His Lys Val Thr Ile 145 150 155 160 Met Asp His Glu Lys Gly Lys Val Thr Glu Gln Val Val Asp Asp Pro                 165 170 175 Met Gln Ile Pro Arg Ser Met Met Glu Gly Trp His Pro Gln Gln Ile             180 185 190 Asp Gln Leu Pro Asp Ser Phe Thr Gly Gly Trp Val Gly Phe Phe Ser         195 200 205 Tyr Asp Thr Val Arg Tyr Val Glu Lys Lys Lys Leu Pro Phe Ser Gly     210 215 220 Ala Pro Gln Asp Asp Arg Asn Leu Pro Asp Val His Leu Gly Leu Tyr 225 230 235 240 Asp Asp Val Leu Val Phe Asp Asn Val Glu Lys Lys Val Tyr Val Ile                 245 250 255 His Trp Val Asn Leu Asp Arg His Ala Thr Thr Glu Asp Ala Phe Gln             260 265 270 Asp Gly Lys Ser Arg Leu Asn Leu Leu Leu Ser Lys Val His Asn Ser         275 280 285 Asn Val Pro Lys Leu Ser Pro Gly Phe Val Lys Leu His Thr Arg Gln     290 295 300 Phe Gly Thr Pro Leu Asn Lys Ser Thr Met Thr Ser Asp Glu Tyr Lys 305 310 315 320 Asn Ala Val Met Gln Ala Lys Glu His Ile Met Ala Gly Asp Ile Phe                 325 330 335 Gln Ile Val Leu Ser Gln Arg Phe Glu Arg Arg Thr Tyr Ala Asn Pro             340 345 350 Phe Glu Val Tyr Arg Ala Leu Arg Ile Val Asn Pro Ser Pro Tyr Met         355 360 365 Ala Tyr Val Gln Ala Arg Gly Cys Val Leu Val Ala Ser Ser Pro Glu     370 375 380 Ile Leu Thr Arg Val Arg Lys Gly Lys Ile Ile Asn Arg Pro Leu Ala 385 390 395 400 Gly Thr Val Arg Arg Gly Lys Thr Glu Lys Glu Asp Glu Met Gln Glu                 405 410 415 Gln Gln Leu Leu Ser Asp Glu Lys Gln Cys Ala Glu His Ile Met Leu             420 425 430 Val Asp Leu Gly Arg Asn Asp Val Gly Lys Val Ser Lys Pro Gly Ser         435 440 445 Val Lys Val Glu Lys Leu Met Asn Ile Glu Arg Tyr Ser His Val Met     450 455 460 His Ile Ser Ser Thr Val Ser Gly Glu Leu Asp Asp His Leu Gln Ser 465 470 475 480 Trp Asp Ala Leu Arg Ala Leu Pro Val Gly Thr Val Ser Gly Ala                 485 490 495 Pro Lys Val Lys Ala Met Glu Leu Ile Asp Glu Leu Glu Val Thr Arg             500 505 510 Arg Gly Pro Tyr Ser Gly Gly Leu Gly Gly Ile Ser Phe Asp Gly Asp         515 520 525 Met Asp Ile Ala Leu Ala Leu Arg Thr Ile Val Phe Ser Thr Ala Pro     530 535 540 Ser His Asn Thr Met Tyr Ser Tyr Lys Asp Thr Glu Arg Arg Arg Glu 545 550 555 560 Trp Val Ala His Leu Gln Ala Gly Ala Gly Ile Val Ala Asp Ser Ser                 565 570 575 Pro Asp Asp Glu Gln Arg Glu Cys Glu Asn Lys Ala Ala Ala Leu Ala             580 585 590 Arg Ala Ile Asp Leu Ala Glu Ser Ala Phe Val Asp Lys Glu         595 600 605 <210> 3 <211> 1821 <212> DNA <213> Oryza sativa L. <400> 3 atggagtcca tcgccgccgc cacgttcacg ccctcgcgcc tcgccgcccg ccccgccact 60 ccggcggcgg cggcggcccc ggttagagcg agggcggcgg tagcggcagg agggaggagg 120 aggacgagta ggcgcggcgg cgtgaggtgc tccgcgggga agccagaggc aagcgcggtg 180 atcaacggga gcgcggcggc gcgggcggcg gaggaggaca ggaggcgctt cttcgaggcg 240 gcggagcgtg ggagcgggaa gggcaacctg gtgcccatgt gggagtgcat cgtctccgac 300 cacctcaccc ccgtgctcgc ctaccgctgc ctcgtccccg aggacaacat ggagacgccc 360 agcttcctcg tcgagtccgt cgagcagggg cccgagggca ccaccaacgt cggtcgctat 420 agcatggtgg gagcccaccc agtgatggag gtcgtggcaa aggagcacaa ggtcacaatc 480 atggaccacg agaagggcaa ggtgacggag caggtcgtgg atgatcctat gcagatcccc 540 aggagcatga tggaaggatg gcacccgcag cagatcgatc agctccccga ttccttcacc 600 ggtggatggg tcgggttctt ttcctatgat acagtccgtt atgttgaaaa gaagaagctg 660 cccttctccg gtgctcccca ggacgatagg aaccttcctg atgttcacct tgggctttat 720 gatgatgttc tcgtcttcga caatgtcgag aagaaagtat atgtcatcca ttgggtaaat 780 cttgatcggc atgcaaccac cgaggatgca ttccaagatg gcaagtcccg gctgaacctg 840 ttgctatcta aagtgcacaa ttcaaatgta cccaagcttt ctccaggatt tgtaaagtta 900 cacactcggc agtttggtac acctttgaac aaatcaacca tgacaagtga tgagtacaag 960 aatgctgtta tgcaggctaa ggagcatatt atggctggtg atattttcca gattgtttta 1020 agccagaggt ttgagaggcg aacatacgcc aatccatttg aagtctatcg agctttacga 1080 attgtgaacc caagtccata catggcatat gtacaggcaa gaggctgtgt cctggtagca 1140 tctagtccag aaattcttac tcgtgtgagg aagggtaaaa ttattaaccg tccacttgct 1200 gggactgttc gaaggggcaa gacagagaag gaagatgaaa tgcaagagca acagctacta 1260 agtgatgaaa aacagtgtgc tgaacatatt atgcttgtag atttgggaag gaatgatgtt 1320 ggaaaggtct ccaaacctgg atctgtgaag gtggagaaat taatgaacat tgaacgctac 1380 tcccatgtca tgcacatcag ttccacggtg agtggagagt tggatgatca tctccaaagt 1440 tgggatgccc tgcgagccgc gttgcctgtt ggaacagtta gtggagcacc aaaggtgaaa 1500 gccatggagc tgatagacga gctagaggtc acaagacgag gaccatacag tggcggcctt 1560 ggagggatat catttgacgg agacatgctt atcgctcttg cactccgcac cattgtgttc 1620 tcaacagcgc caagccacaa cacgatgtac tcatacaaag acaccgagag gcgccgggag 1680 tgggtcgctc accttcaggc tggtgctggc attgtcgctg atagcagccc agacgacgag 1740 caacgtgaat gcgagaacaa ggcagccgct ctggctcgag ccatcgatct tgctgaatca 1800 gctttcgtag acaaggaata g 1821 <210> 4 <211> 1821 <212> DNA <213> Oryza sativa L. <400> 4 atggagtcca tcgccgccgc cacgttcacg ccctcgcgcc tcgccgcccg ccccgccact 60 ccggcggcgg cggcggcccc ggttagagcg agggcggcgg tagcggcagg agggaggagg 120 aggacgagta ggcgcggcgg cgtgaggtgc tccgcgggga agccagaggc aagcgcggtg 180 atcaacggga gcgcggcggc gcgggcggcg gaggaggaca ggaggcgctt cttcgaggcg 240 gcggagcgtg ggagcgggaa gggcaacctg gtgcccatgt gggagtgcat cgtctccgac 300 cacctcaccc ccgtgctcgc ctaccgctgc ctcgtccccg aggacaacat ggagacgccc 360 agcttcctct tcgagttcgt cgagcagggg cccgagggca ccaccaacgt cggtcgctat 420 agcatggtgg gagcccaccc agtgatggag gtcgtggcaa aggagcacaa ggtcacaatc 480 atggaccacg agaagggcaa ggtgacggag caggtcgtgg atgatcctat gcagatcccc 540 aggagcatga tggaaggatg gcacccgcag cagatcgatc agctccccga ttccttcacc 600 ggtggatggg tcgggttctt ttcctatgat acagtccgtt atgttgaaaa gaagaagctg 660 cccttctccg gtgctcccca ggacgatagg aaccttcctg atgttcacct tgggctttat 720 gatgatgttc tcgtcttcga caatgtcgag aagaaagtat atgtcatcca ttgggtaaat 780 cttgatcggc atgcaaccac cgaggatgca ttccaagatg gcaagtcccg gctgaacctg 840 ttgctatcta aagtgcacaa ttcaaatgta cccaagcttt ctccaggatt tgtaaagtta 900 cacactcggc agtttggtac acctttgaac aaatcaacca tgacaagtga tgagtacaag 960 aatgctgtta tgcaggctaa ggagcatatt atggctggtg atattttcca gattgtttta 1020 agccagaggt ttgagaggcg aacatacgcc aatccatttg aagtctatcg agctttacga 1080 attgtgaacc caagtccata catggcatat gtacaggcaa gaggctgtgt cctggtagca 1140 tctagtccag aaattcttac tcgtgtgagg aagggtaaaa ttattaaccg tccacttgct 1200 gggactgttc gaaggggcaa gacagagaag gaagatgaaa tgcaagagca acagctacta 1260 agtgatgaaa aacagtgtgc tgaacatatt atgcttgtag atttgggaag gaatgatgtt 1320 ggaaaggtct ccaaacctgg atctgtgaag gtggagaaat taatgaacat tgaacgctac 1380 tcccatgtca tgcacatcag ttccacggtg agtggagagt tggatgatca tctccaaagt 1440 tgggatgccc tgcgagccgc gttgcctgtt ggaacagtta gtggagcacc aaaggtgaaa 1500 gccatggagc tgatagacga gctagaggtc acaagacgag gaccatacag tggcggcctt 1560 ggagggatat catttgacgg agacatggac atcgctcttg cactccgcac cattgtgttc 1620 tcaacagcgc caagccacaa cacgatgtac tcatacaaag acaccgagag gcgccgggag 1680 tgggtcgctc accttcaggc tggtgctggc attgtcgctg atagcagccc agacgacgag 1740 caacgtgaat gcgagaacaa ggcagccgct ctggctcgag ccatcgatct tgctgaatca 1800 gctttcgtag acaaggaata g 1821 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 5 atggagtcca tcgccgccgc ca 22 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 6 agctttcgta gacaaggaat ag 22

Claims (8)

서열번호 1의 아미노산 서열로 표시되는, 5-메틸트립토판에 대해 저항성을 갖는 안트라닐레이트 합성효소(Anthranilate Synthase) 변이체.
Anthranilate Synthase mutant having the resistance to 5-methyltryptophan, which is represented by the amino acid sequence of SEQ ID NO: 1.
제 1 항의 안트라닐레이트 합성효소 변이체를 코딩하는 폴리뉴클레오타이드를 포함하는 형질전환 식물세포 선별용 재조합 벡터.
A recombinant vector for screening a transformed plant cell comprising a polynucleotide encoding the anthranilate synthase mutant of claim 1.
제 2 항에 있어서, 상기 재조합 벡터는 도 3에 도시된 벡터의 구성을 갖는 것을 특징으로 하는 재조합 벡터.
3. The recombinant vector according to claim 2, wherein the recombinant vector has the structure of the vector shown in Fig.
(a) 서열번호 1의 아미노산 서열로 표시되고 5-메틸트립토판에 대해 저항성을 갖는, 안트라닐레이트 합성효소(Anthranilate Synthase) 변이체를 코딩하는 폴리뉴클레오타이드를 포함하는 재조합 벡터; 및 (b) 5-메틸트립토판을 포함하는 형질전환 식물세포 선별용 키트.
(a) a recombinant vector comprising a polynucleotide encoding an anthranilate synthase variant represented by the amino acid sequence of SEQ ID NO: 1 and having resistance to 5-methyltryptophan; And (b) 5-methyltryptophan.
삭제delete 다음의 단계를 포함하는 형질전환된 식물세포를 선별하는 방법:
(a) 제 2 항 및 제 3 항 중 어느 한 항 기재의 재조합 벡터로 식물세포를 형질전환시키는 단계;
(b) 상기 형질전환된 식물세포를 5-메틸트립토판이 포함된 배지에서 배양하는 단계; 및
(c) 상기 배양된 배지에서 성장된 식물세포를 선별하는 단계.
A method for screening transformed plant cells comprising the steps of:
(a) transforming a plant cell with the recombinant vector according to any one of claims 2 and 3;
(b) culturing the transformed plant cells in a medium containing 5-methyltryptophan; And
(c) selecting the plant cells grown in the cultured medium.
제 6 항에 있어서, 상기 식물 세포는 벼, 밀, 보리, 옥수수, 담배, 감자, 토마토, 또는 고구마의 세포인 것을 특징으로 하는 방법.
The method according to claim 6, wherein the plant cell is a cell of rice, wheat, barley, corn, tobacco, potato, tomato, or sweet potato.
제 1 항의 안트라닐레이트 합성효소 변이체 코딩 폴리뉴클레오타이드를 포함하는 형질전환 식물체.A transgenic plant comprising the anthranilate synthase mutant coding polynucleotide of claim 1.
KR1020150174926A 2014-12-24 2015-12-09 Use of Mutated Anthranilate Synthase Gene Resistant to 5-Methyltryptophan for Selection Marker of Plant Transformation Expired - Fee Related KR101857606B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140188533 2014-12-24
KR20140188533 2014-12-24

Publications (2)

Publication Number Publication Date
KR20160078240A KR20160078240A (en) 2016-07-04
KR101857606B1 true KR101857606B1 (en) 2018-05-14

Family

ID=56501545

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150174926A Expired - Fee Related KR101857606B1 (en) 2014-12-24 2015-12-09 Use of Mutated Anthranilate Synthase Gene Resistant to 5-Methyltryptophan for Selection Marker of Plant Transformation

Country Status (1)

Country Link
KR (1) KR101857606B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118747A (en) * 2017-12-08 2020-12-22 驰若莫塞尔公司 Tryptophan derivatives as sweeteners

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917574B1 (en) 2007-11-15 2009-09-15 한국생명공학연구원 Preparation of Transgenic Potato Plants Using Toxoflavin Degrading Enzyme as a Selection Marker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Plant Biotechnology. Vol. 26, No. 5, 페이지 523-533 (2009.11.02.)*

Also Published As

Publication number Publication date
KR20160078240A (en) 2016-07-04

Similar Documents

Publication Publication Date Title
CA2540348C (en) Methods 0f enhancing stress tolerance in plants and compositions thereof
JP6103607B2 (en) Plant suitable for high-density planting and use thereof
JP2001501098A (en) Globin protein expression in plants
CN101048507B (en) A method for increasing seed size
KR101346586B1 (en) Method for producing transgenic plant with increased ability of immune response against pathogen using reca1 gene from arabidopsis thaliana and the plant thereof
KR101596562B1 (en) Composition for promoting cytokinin translocation comprising abcg14
US9139841B2 (en) Plant having resistance to low-temperature stress and method of production thereof
KR101857606B1 (en) Use of Mutated Anthranilate Synthase Gene Resistant to 5-Methyltryptophan for Selection Marker of Plant Transformation
KR101987663B1 (en) Method for reducing ethylene production by LeMADS-RIN gene editing using CRISPR/Cas9 system in plant
CN116622666A (en) Methods for regulating plant drought resistance and application of TaMPK3 in regulating plant drought resistance
WO2004092372A1 (en) Gene capable of imparting salt stress resistance
CN111154772A (en) Pear sugar transport gene PbSWEET4 and its application
KURIA et al. Maize bioengineering with c-repeat binding factor 1 (CBF1) as a technique for drought tolerance
KR102744700B1 (en) OsPUB7 gene from Oryza sativa for controlling drought stress tolerance of plant and uses thereof
CN110499326B (en) Application of RGGA in regulating crop agronomic characters
KR20150048299A (en) Anthranilate Synthase Mutant Having Activity of Increasing Amino Acid Content in Plant and Use Thereof
KR101815737B1 (en) Gene for promoting plant growth and a transgenic plant comprising the same
KR101648559B1 (en) Novel Gene Related to Removement of an Abnormal Protein and Use Thereof
KR100965422B1 (en) Stress Resistant Plants Transformed by Genes of the Ap2 (Apetala 2) Domain
KR20120110438A (en) Transgenic plant with enhanced growth
Kuria et al. Maize bioengineering with c-repeat binding factor 1 (CBF1) as a technique for desiccation toleration
Gapper Role of cytokinin and ethylene during senescence in broccoli (Brassica oleracea var. Italica): a thesis submitted for the degree of Doctor of Philosophy at Massey University
JP2001238555A (en) Method for producing transgenic plant having improved amino acid composition
KR20120046615A (en) Gene and use thereof
CN105985415A (en) Polypeptide for improving absorption and utilization capability of plants on nitrogen, encoding nucleic acid thereof and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20151209

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20161013

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20170825

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20180219

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20180508

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20180509

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20210420

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20220221

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20230315

Start annual number: 6

End annual number: 6

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20250219