CN111154772A - Pear sugar transport gene PbSWEET4 and its application - Google Patents
Pear sugar transport gene PbSWEET4 and its application Download PDFInfo
- Publication number
- CN111154772A CN111154772A CN202010083362.7A CN202010083362A CN111154772A CN 111154772 A CN111154772 A CN 111154772A CN 202010083362 A CN202010083362 A CN 202010083362A CN 111154772 A CN111154772 A CN 111154772A
- Authority
- CN
- China
- Prior art keywords
- pbsweet4
- gene
- leaves
- sugar
- pear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 59
- 235000014443 Pyrus communis Nutrition 0.000 title claims abstract description 47
- 235000000346 sugar Nutrition 0.000 title claims abstract description 46
- 244000307700 Fragaria vesca Species 0.000 claims abstract description 42
- 230000009261 transgenic effect Effects 0.000 claims abstract description 20
- 239000013604 expression vector Substances 0.000 claims abstract description 12
- 238000003259 recombinant expression Methods 0.000 claims abstract description 8
- 230000002028 premature Effects 0.000 claims abstract description 7
- 230000009758 senescence Effects 0.000 claims abstract description 7
- 229930006000 Sucrose Natural products 0.000 claims abstract description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims abstract description 6
- 239000005720 sucrose Substances 0.000 claims abstract description 6
- 235000016970 Fragaria moschata Nutrition 0.000 claims abstract description 5
- 235000014828 Fragaria vesca ssp. americana Nutrition 0.000 claims abstract description 5
- 235000012660 Fragaria virginiana Nutrition 0.000 claims abstract description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 5
- 235000021012 strawberries Nutrition 0.000 claims abstract description 5
- 150000007523 nucleic acids Chemical group 0.000 claims abstract description 4
- 241000220223 Fragaria Species 0.000 claims abstract 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 2
- 235000016623 Fragaria vesca Nutrition 0.000 claims description 25
- 235000011363 Fragaria x ananassa Nutrition 0.000 claims description 25
- 241000196324 Embryophyta Species 0.000 claims description 24
- 239000013598 vector Substances 0.000 claims description 17
- 230000014634 leaf senescence Effects 0.000 claims description 13
- 230000002018 overexpression Effects 0.000 claims description 12
- 239000002299 complementary DNA Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 108010078791 Carrier Proteins Proteins 0.000 claims description 5
- 238000010367 cloning Methods 0.000 claims description 5
- 230000001737 promoting effect Effects 0.000 claims description 4
- 108700026244 Open Reading Frames Proteins 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 241000894006 Bacteria Species 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 45
- 230000008569 process Effects 0.000 abstract description 6
- 238000009825 accumulation Methods 0.000 abstract 1
- 230000033228 biological regulation Effects 0.000 abstract 1
- 238000007599 discharging Methods 0.000 abstract 1
- 230000003828 downregulation Effects 0.000 abstract 1
- 238000012795 verification Methods 0.000 abstract 1
- 241000220324 Pyrus Species 0.000 description 51
- 230000014509 gene expression Effects 0.000 description 26
- 244000061456 Solanum tuberosum Species 0.000 description 21
- 235000002595 Solanum tuberosum Nutrition 0.000 description 21
- 108020004414 DNA Proteins 0.000 description 20
- 235000013399 edible fruits Nutrition 0.000 description 19
- 230000000694 effects Effects 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 241000589158 Agrobacterium Species 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 229930002875 chlorophyll Natural products 0.000 description 8
- 235000019804 chlorophyll Nutrition 0.000 description 8
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 7
- 230000032258 transport Effects 0.000 description 7
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 6
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 6
- 238000011529 RT qPCR Methods 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 235000009508 confectionery Nutrition 0.000 description 5
- 229930027917 kanamycin Natural products 0.000 description 5
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 5
- 229960000318 kanamycin Drugs 0.000 description 5
- 229930182823 kanamycin A Natural products 0.000 description 5
- 230000011890 leaf development Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 235000021017 pears Nutrition 0.000 description 5
- 238000009331 sowing Methods 0.000 description 5
- 230000004960 subcellular localization Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 241000219194 Arabidopsis Species 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 244000061176 Nicotiana tabacum Species 0.000 description 4
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 4
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 4
- 239000012154 double-distilled water Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000219195 Arabidopsis thaliana Species 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000003208 gene overexpression Methods 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012257 pre-denaturation Methods 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 3
- 229960001225 rifampicin Drugs 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108091052347 Glucose transporter family Proteins 0.000 description 2
- 102000042092 Glucose transporter family Human genes 0.000 description 2
- 244000017020 Ipomoea batatas Species 0.000 description 2
- 235000002678 Ipomoea batatas Nutrition 0.000 description 2
- 244000179970 Monarda didyma Species 0.000 description 2
- 235000010672 Monarda didyma Nutrition 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 241000219000 Populus Species 0.000 description 2
- 244000173166 Pyrus ussuriensis Species 0.000 description 2
- 235000011572 Pyrus ussuriensis Nutrition 0.000 description 2
- 102000000070 Sodium-Glucose Transport Proteins Human genes 0.000 description 2
- 108010080361 Sodium-Glucose Transport Proteins Proteins 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000001339 epidermal cell Anatomy 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000001573 invertase Substances 0.000 description 2
- 235000011073 invertase Nutrition 0.000 description 2
- 108010034529 leucyl-lysine Proteins 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- LWUWMHIOBPTZBA-DCAQKATOSA-N Ala-Arg-Lys Chemical compound NC(=N)NCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@@H](CCCCN)C(O)=O LWUWMHIOBPTZBA-DCAQKATOSA-N 0.000 description 1
- CZPAHAKGPDUIPJ-CIUDSAMLSA-N Ala-Gln-Pro Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N1CCC[C@H]1C(O)=O CZPAHAKGPDUIPJ-CIUDSAMLSA-N 0.000 description 1
- XSTZMVAYYCJTNR-DCAQKATOSA-N Ala-Met-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O XSTZMVAYYCJTNR-DCAQKATOSA-N 0.000 description 1
- HOVPGJUNRLMIOZ-CIUDSAMLSA-N Ala-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](C)N HOVPGJUNRLMIOZ-CIUDSAMLSA-N 0.000 description 1
- ARHJJAAWNWOACN-FXQIFTODSA-N Ala-Ser-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O ARHJJAAWNWOACN-FXQIFTODSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 101000840469 Arabidopsis thaliana Isochorismate synthase 1, chloroplastic Proteins 0.000 description 1
- 101000611106 Arabidopsis thaliana Serine/threonine-protein kinase TOR Proteins 0.000 description 1
- FNXCAFKDGBROCU-STECZYCISA-N Arg-Ile-Tyr Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 FNXCAFKDGBROCU-STECZYCISA-N 0.000 description 1
- COXMUHNBYCVVRG-DCAQKATOSA-N Arg-Leu-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O COXMUHNBYCVVRG-DCAQKATOSA-N 0.000 description 1
- BTJVOUQWFXABOI-IHRRRGAJSA-N Arg-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCNC(N)=N BTJVOUQWFXABOI-IHRRRGAJSA-N 0.000 description 1
- HAJWYALLJIATCX-FXQIFTODSA-N Asn-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)N)CN=C(N)N HAJWYALLJIATCX-FXQIFTODSA-N 0.000 description 1
- ACRYGQFHAQHDSF-ZLUOBGJFSA-N Asn-Asn-Asn Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O ACRYGQFHAQHDSF-ZLUOBGJFSA-N 0.000 description 1
- XVVOVPFMILMHPX-ZLUOBGJFSA-N Asn-Asp-Asp Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O XVVOVPFMILMHPX-ZLUOBGJFSA-N 0.000 description 1
- KPNUCOPMVSGRCR-DCAQKATOSA-N Asp-His-Arg Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O KPNUCOPMVSGRCR-DCAQKATOSA-N 0.000 description 1
- CRNKLABLTICXDV-GUBZILKMSA-N Asp-His-Glu Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)O)N CRNKLABLTICXDV-GUBZILKMSA-N 0.000 description 1
- -1 BEH Amide Chemical class 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- VOUSELYGTNGEPB-NUMRIWBASA-N Gln-Thr-Asp Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O VOUSELYGTNGEPB-NUMRIWBASA-N 0.000 description 1
- SDSMVVSHLAAOJL-UKJIMTQDSA-N Gln-Val-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)N)N SDSMVVSHLAAOJL-UKJIMTQDSA-N 0.000 description 1
- JJKKWYQVHRUSDG-GUBZILKMSA-N Glu-Ala-Lys Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(O)=O JJKKWYQVHRUSDG-GUBZILKMSA-N 0.000 description 1
- JGHNIWVNCAOVRO-DCAQKATOSA-N Glu-His-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(O)=O)C(O)=O JGHNIWVNCAOVRO-DCAQKATOSA-N 0.000 description 1
- DNPCBMNFQVTHMA-DCAQKATOSA-N Glu-Leu-Gln Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O DNPCBMNFQVTHMA-DCAQKATOSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- TZOVVRJYUDETQG-RCOVLWMOSA-N Gly-Asp-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CN TZOVVRJYUDETQG-RCOVLWMOSA-N 0.000 description 1
- ZOTGXWMKUFSKEU-QXEWZRGKSA-N Gly-Ile-Met Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCSC)C(O)=O ZOTGXWMKUFSKEU-QXEWZRGKSA-N 0.000 description 1
- DHNXGWVNLFPOMQ-KBPBESRZSA-N Gly-Phe-His Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)NC(=O)CN DHNXGWVNLFPOMQ-KBPBESRZSA-N 0.000 description 1
- GYXDQXPCPASCNR-NHCYSSNCSA-N His-Val-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N GYXDQXPCPASCNR-NHCYSSNCSA-N 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- HDODQNPMSHDXJT-GHCJXIJMSA-N Ile-Asn-Ser Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O HDODQNPMSHDXJT-GHCJXIJMSA-N 0.000 description 1
- DSDPLOODKXISDT-XUXIUFHCSA-N Ile-Leu-Val Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O DSDPLOODKXISDT-XUXIUFHCSA-N 0.000 description 1
- YJRSIJZUIUANHO-NAKRPEOUSA-N Ile-Val-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)O)N YJRSIJZUIUANHO-NAKRPEOUSA-N 0.000 description 1
- HGCNKOLVKRAVHD-UHFFFAOYSA-N L-Met-L-Phe Natural products CSCCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 HGCNKOLVKRAVHD-UHFFFAOYSA-N 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- LIINDKYIGYTDLG-PPCPHDFISA-N Leu-Ile-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LIINDKYIGYTDLG-PPCPHDFISA-N 0.000 description 1
- DRWMRVFCKKXHCH-BZSNNMDCSA-N Leu-Phe-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CC=CC=C1 DRWMRVFCKKXHCH-BZSNNMDCSA-N 0.000 description 1
- IRMLZWSRWSGTOP-CIUDSAMLSA-N Leu-Ser-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O IRMLZWSRWSGTOP-CIUDSAMLSA-N 0.000 description 1
- AIQWYVFNBNNOLU-RHYQMDGZSA-N Leu-Thr-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O AIQWYVFNBNNOLU-RHYQMDGZSA-N 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- WGCKDDHUFPQSMZ-ZPFDUUQYSA-N Lys-Asp-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCCCN WGCKDDHUFPQSMZ-ZPFDUUQYSA-N 0.000 description 1
- XIZQPFCRXLUNMK-BZSNNMDCSA-N Lys-Leu-Phe Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CCCCN)N XIZQPFCRXLUNMK-BZSNNMDCSA-N 0.000 description 1
- RIJCHEVHFWMDKD-SRVKXCTJSA-N Lys-Lys-Asn Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O RIJCHEVHFWMDKD-SRVKXCTJSA-N 0.000 description 1
- HVAUKHLDSDDROB-KKUMJFAQSA-N Lys-Lys-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O HVAUKHLDSDDROB-KKUMJFAQSA-N 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- OCRSGGIJBDUXHU-WDSOQIARSA-N Met-Leu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(O)=O)=CNC2=C1 OCRSGGIJBDUXHU-WDSOQIARSA-N 0.000 description 1
- MQASRXPTQJJNFM-JYJNAYRXSA-N Met-Pro-Phe Chemical compound CSCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MQASRXPTQJJNFM-JYJNAYRXSA-N 0.000 description 1
- BJEYSVHMGIJORT-NHCYSSNCSA-N Phe-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=CC=C1 BJEYSVHMGIJORT-NHCYSSNCSA-N 0.000 description 1
- NOFBJKKOPKJDCO-KKXDTOCCSA-N Phe-Ala-Tyr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O NOFBJKKOPKJDCO-KKXDTOCCSA-N 0.000 description 1
- INHMISZWLJZQGH-ULQDDVLXSA-N Phe-Leu-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 INHMISZWLJZQGH-ULQDDVLXSA-N 0.000 description 1
- AXIOGMQCDYVTNY-ACRUOGEOSA-N Phe-Phe-Leu Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 AXIOGMQCDYVTNY-ACRUOGEOSA-N 0.000 description 1
- MCIXMYKSPQUMJG-SRVKXCTJSA-N Phe-Ser-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O MCIXMYKSPQUMJG-SRVKXCTJSA-N 0.000 description 1
- KLYYKKGCPOGDPE-OEAJRASXSA-N Phe-Thr-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O KLYYKKGCPOGDPE-OEAJRASXSA-N 0.000 description 1
- KIQUCMUULDXTAZ-HJOGWXRNSA-N Phe-Tyr-Tyr Chemical compound N[C@@H](Cc1ccccc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O KIQUCMUULDXTAZ-HJOGWXRNSA-N 0.000 description 1
- DZZCICYRSZASNF-FXQIFTODSA-N Pro-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1 DZZCICYRSZASNF-FXQIFTODSA-N 0.000 description 1
- SSSFPISOZOLQNP-GUBZILKMSA-N Pro-Arg-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O SSSFPISOZOLQNP-GUBZILKMSA-N 0.000 description 1
- OBVCYFIHIIYIQF-CIUDSAMLSA-N Pro-Asn-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O OBVCYFIHIIYIQF-CIUDSAMLSA-N 0.000 description 1
- FKYKZHOKDOPHSA-DCAQKATOSA-N Pro-Leu-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O FKYKZHOKDOPHSA-DCAQKATOSA-N 0.000 description 1
- 244000088401 Pyrus pyrifolia Species 0.000 description 1
- 235000011400 Pyrus pyrifolia Nutrition 0.000 description 1
- 235000001630 Pyrus pyrifolia var culta Nutrition 0.000 description 1
- 241000290143 Pyrus x bretschneideri Species 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 108010070996 Salicylate 1-monooxygenase Proteins 0.000 description 1
- 101710168963 Salicylate synthase Proteins 0.000 description 1
- KKKVOZNCLALMPV-XKBZYTNZSA-N Ser-Thr-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O KKKVOZNCLALMPV-XKBZYTNZSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 101000981271 Solanum lycopersicum NAC domain-containing protein 2 Proteins 0.000 description 1
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 1
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 1
- CEXFELBFVHLYDZ-XGEHTFHBSA-N Thr-Arg-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O CEXFELBFVHLYDZ-XGEHTFHBSA-N 0.000 description 1
- MEBDIIKMUUNBSB-RPTUDFQQSA-N Thr-Phe-Tyr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O MEBDIIKMUUNBSB-RPTUDFQQSA-N 0.000 description 1
- NDXSOKGYKCGYKT-VEVYYDQMSA-N Thr-Pro-Asp Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O NDXSOKGYKCGYKT-VEVYYDQMSA-N 0.000 description 1
- KERCOYANYUPLHJ-XGEHTFHBSA-N Thr-Pro-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O KERCOYANYUPLHJ-XGEHTFHBSA-N 0.000 description 1
- IEZVHOULSUULHD-XGEHTFHBSA-N Thr-Ser-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O IEZVHOULSUULHD-XGEHTFHBSA-N 0.000 description 1
- 108010064997 VPY tripeptide Proteins 0.000 description 1
- SMKXLHVZIFKQRB-GUBZILKMSA-N Val-Ala-Met Chemical compound C[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](C(C)C)N SMKXLHVZIFKQRB-GUBZILKMSA-N 0.000 description 1
- CVIXTAITYJQMPE-LAEOZQHASA-N Val-Glu-Asn Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O CVIXTAITYJQMPE-LAEOZQHASA-N 0.000 description 1
- FOADDSDHGRFUOC-DZKIICNBSA-N Val-Glu-Phe Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N FOADDSDHGRFUOC-DZKIICNBSA-N 0.000 description 1
- URIRWLJVWHYLET-ONGXEEELSA-N Val-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)C(C)C URIRWLJVWHYLET-ONGXEEELSA-N 0.000 description 1
- PWCJARIQERIIGF-BZSNNMDCSA-N Val-Met-Trp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N PWCJARIQERIIGF-BZSNNMDCSA-N 0.000 description 1
- QWCZXKIFPWPQHR-JYJNAYRXSA-N Val-Pro-Tyr Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 QWCZXKIFPWPQHR-JYJNAYRXSA-N 0.000 description 1
- KRAHMIJVUPUOTQ-DCAQKATOSA-N Val-Ser-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N KRAHMIJVUPUOTQ-DCAQKATOSA-N 0.000 description 1
- JVGDAEKKZKKZFO-RCWTZXSCSA-N Val-Val-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)N)O JVGDAEKKZKKZFO-RCWTZXSCSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 108010044940 alanylglutamine Proteins 0.000 description 1
- 108010087924 alanylproline Proteins 0.000 description 1
- 108010045514 alpha-lactorphin Proteins 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 108010038850 arginyl-isoleucyl-tyrosine Proteins 0.000 description 1
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004173 biogeochemical cycle Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000105 evaporative light scattering detection Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 108010066198 glycyl-leucyl-phenylalanine Proteins 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 108010018006 histidylserine Proteins 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 1
- 229940097277 hygromycin b Drugs 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 230000002015 leaf growth Effects 0.000 description 1
- 108010057821 leucylproline Proteins 0.000 description 1
- 108010009298 lysylglutamic acid Proteins 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 108010068488 methionylphenylalanine Proteins 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 101150077549 nac gene Proteins 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 108010064486 phenylalanyl-leucyl-valine Proteins 0.000 description 1
- 108010018625 phenylalanylarginine Proteins 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 239000012883 rooting culture medium Substances 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 108010071207 serylmethionine Proteins 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 108010073969 valyllysine Proteins 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
The invention discloses a pear sugar transport gene PbSWEET4 and application of a recombinant expression vector thereof. A structural gene PbSWEET4 separated from Dangshan pear and having sugar discharge function, the nucleic acid sequence of the gene is shown in a sequence table SEQ ID No.1, and the corresponding amino acid sequence is shown in a sequence table SEQ ID No. 2. The gene PbSWEET4 is transformed into diploid forest strawberries and subjected to functional verification, wild strawberries are used as a control, the sucrose content of leaves of obtained transgenic strawberry plants is obviously reduced, and the leaves show the phenomenon of premature senility. The cloned PbSWEET4 gene is shown to be a functional structural gene of coding sugar transporter, has the function of discharging soluble sugar, plays a role in negative regulation in the accumulation of leaf sugar, and simultaneously participates in the regulation of the senescence process of leaves.
Description
Technical Field
The invention belongs to the field of plant genetic engineering, and relates to a pear sugar transporter PbSWEET4, a recombinant expression vector and application thereof. In particular to a sweet potato family member PbSWEET4 gene which is related to the sugar transport of pears and is obtained by separating and cloning from Dangshan pear and application thereof.
Background
Pears (Pyrus) are perennial deciduous fruit trees of the genus Pyri (Rosaceae), are widely planted worldwide, and have important economic and social values. The edible quality of the pear fruit is an important factor for determining the value of the pear fruit, so that the improvement of the edible quality of the pear has important significance. The eating quality of the pear fruits is influenced by a plurality of factors, wherein sugar is one of important indexes constituting the fruit quality, and the sugar content of the pear fruits is increased, so that the sugar content is important for improving the pear quality. In recent years, the main cultivated varieties of Chinese pears have the problems of reduced sugar content, light flavor and the like due to variety degradation or poor management and the like, and the quality and the economic value of the fruits are seriously influenced. Therefore, quality improvement of sugar content of pear fruits has become one of the important targets of modern pear breeding. However, most of the research on sugar content of pear fruits focuses on the evaluation of sugar content of different pear varieties, and the functional research on sugar-related genes needs to be enhanced.
Sugars are first synthesized by leaf via photosynthesis, and then transported via phloem to the sink in the symplast or apoplast pathways (Oparka, 1990). Leaves are essential for the growth of most plants as the main locus for sugar production by plants. Leaf senescence is the final stage of leaf development and is also an important component of the life cycle of deciduous fruit trees. This process involves a series of ordered changes, including degradation of macromolecules (e.g., proteins), transport of nutrients to actively growing organs (e.g., young leaves, developing seeds and fruits), and the like. Leaf senescence determines the yield and quality of the fruit. If senescence occurs too early, the plants absorb CO2Will reduce, eventually leading to a reduction in photosynthetic efficiency (Wingler et al, 2006). On the other hand, the nutrient cycle associated with senescence is inhibited (Himelblau and Amasino,2001), which has a major influence on the development of the fruit. In Arabidopsis, inhibition of the expression of AtTOR (rapamycin target protein) and SID2 (deletion of the salicylate synthase gene) resulted in premature leaf senescence and reduced seed yield, while transgenic plants overexpressing NaHG (expressing salicylate hydroxylase and capable of hydrolyzing salicylic acid) also exhibited leaf senescence and seed reduction (Deprost et al, 2007; Abreu and Munne-Bosch, 2009). In addition, transgenic tomato plants overexpressing SlNAP2(NAC gene family senescence-promoting gene) exhibited premature leaf senescence, which in turn led to decreased fruit yield and soluble sugar content (Ma et al, 2018). RNA interference INVINH1 (invertase inhibitor) increased cell wall invertase activity in transgenic tomatoes delayed leaf senescence while increasing seed weight and sugar content (Jin et al, 2009). In conclusion, leaf development is crucial for the yield and quality of the fruit. However, the current research on the regulation mechanism of the influence of leaf senescence on fruit quality is still relatively deficient. Therefore, the method further discusses the relationship between leaf senescence and sugar metabolism, and has important theoretical and practical significance for revealing the mechanism of influence of leaf senescence on fruit quality and improving the fruit quality of pears.
It is well known that sugars may be involved in signal transduction, maintenance of osmotic pressure, constitute a carbon skeleton, or be stored in particular forms in fruits. In addition to this, sugars play an important role in stress. Sugar content is determined by a combination of processes such as synthesis, degradation, transport and storage, with transport being the more critical process (Katz et al, 2007). At present, three eukaryotic classes of sugar transporters have been found, respectively: glucose transporters (GLUT), sodium glucose transporters (SGLTs) and SWEET (Chen et al, 2015), where SWEET is a newly discovered class of sugar transporters. At present, no report related to the SWEET function in pears is found.
Disclosure of Invention
The invention aims to provide a SWEET gene with sugar excretion and aging promotion functions.
Another purpose of the invention is to provide the application of the gene.
The purpose of the invention can be realized by the following technical scheme:
a structural gene PbSWEET4 with sugar discharge function separated from pear belongs to the SWEET gene family. The nucleic acid sequence of the gene is shown as a sequence table SEQ ID No.1, and comprises an open reading frame of 918 bp; 305 amino acids are coded, the coded amino acid sequence is shown in a sequence table SEQ ID No.2, the isoelectric point is 7.17, and the molecular weight is 34.2 KDa.
The invention relates to a recombinant expression vector containing the PbSWEET4 gene.
The recombinant expression vector, preferably pMDC32, is obtained by inserting the gene PbSWEET4 of claim 1 into pMDC32 through Gateway reaction.
A host bacterium containing the PbSWEET4 gene.
The primer pair of the cDNA sequence of the PbSWEET4 gene is cloned, the sequence of an upstream primer PbSWEET4-F1 is shown as SEQ ID No.3, and the sequence of a downstream primer PbSWEET4-R1 is shown as SEQ ID No. 4.
The recombinant expression vector of PbSWEET4 disclosed by the invention is applied to promotion of pear leaf sugar excretion and senescence.
The application comprises the steps of constructing a plant overexpression vector of the pear sugar transport gene PbSWEET4 and converting diploid forest strawberries, taking wild strawberries as a control, and obviously reducing the sucrose content of leaves of obtained transgenic strawberry plants and showing the phenomenon of premature senility of the leaves.
Advantageous effects
Compared with the prior art, the invention has the following advantages and effects:
the discovery of the PbSWEET4 gene provides new genetic resources for promoting molecular breeding of pear sugar transport and realizing green agriculture, and the development and utilization of the genetic resources are beneficial to reducing agricultural cost and realizing agricultural friendliness.
2. The plant overexpression vector of the PbSWEET4 gene is constructed, the pear PbSWEET4 gene is transformed into diploid strawberries by utilizing an agrobacterium-mediated genetic transformation method, and the obtained transgenic plants are analyzed by biological functions, so that the cloned PbSWEET4 gene promotes the discharge of strawberry phyllospheres and simultaneously promotes leaf senescence. The gene can be used for regulating the soluble sugar of the leaves of the transgenic plants and the senescence by the over-expression of the gene.
Description of the drawings:
FIG. 1 is the expression pattern analysis of the cloned pear PbSWEET4 gene in the development process of different pear varieties leaf blades. (A) The method comprises the following steps 'abundance' (Pyrus pyrifolia N.cv.Hosui); (B) the method comprises the following steps 'Korla bergamot pear' (Pyrussikangensis Yu); (C) the method comprises the following steps 'pear' (Pyrus bretschneideri Rehd. cv. Yali); (D) 'Nanguo' (Pyrus ussuriensis Maxim). The expression patterns of the PbSWEET4 gene in leaves of different degrees of development (1-4 in the figure represent the degree from young to mature) were analyzed using ` Fengshui `, ` Korla bergamot `, ` Duck `, and ` Nanguo ` pears as test material.
FIG. 2 shows the qualitative analysis result of GUS staining of transgenic Arabidopsis thaliana under the control of 2kb promoter of the cloned pear PbSWEET4 gene in different developmental stages. (A) The method comprises the following steps Seeding for 14 days; (B) the method comprises the following steps 18 days after sowing; (C) the method comprises the following steps 30 days after sowing; (D) the method comprises the following steps 42 days after sowing.
FIG. 3 is a diagram showing the result of subcellular localization of the cloned pear PbSWEET4 gene in tobacco epidermal cells. (A) The method comprises the following steps 35S imaging YFP (control) under fluorescence; (B) the method comprises the following steps 35S imaging YFP (control) in the light field; (C) the method comprises the following steps (A) Imaging after the superposition; (D) the method comprises the following steps 35S, imaging YFP-PbSWEET4 under fluorescence; (E) the method comprises the following steps 35S, imaging YFP-PbSWEET4 in a bright field; (F) the method comprises the following steps (D) And (E) imaging after superposition.
FIG. 4 shows the effect of over-expression of PbSWEET4 gene on strawberry leaf growth. (A) The method comprises the following steps Identification of PbSWEET4 transgenic plants. (B) The method comprises the following steps The over-expression PbSWEET4 gene plant is compared with the wild type; (C) the method comprises the following steps The over-expressed PbSWEET4 gene plant is compared with wild type leaf.
FIG. 5 shows the effect of over-expression of PbSWEET4 gene on soluble sugar and chlorophyll content of strawberry leaves. (A) The method comprises the following steps The influence of the overexpression of the PbSWEET4 gene in strawberry plants on soluble sugar of leaves; (B) the method comprises the following steps The influence of the overexpression of the PbSWEET4 gene in strawberry plants on leaf chlorophyll. Shows that the difference between the strain of the PbSWEET4 gene and the wild control reaches a significant level (P is less than or equal to 0.05).
Detailed Description
The present invention is described in detail below with reference to specific examples. From the following description and examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
Example 1 analysis of the expression pattern of the pear PbSWEET4 gene during the development of pear leaves.
RNA was extracted from leaves of Dangshan pear, genomic DNA contamination of the RNA was removed by DNase I (Invitrogen) digestion using the CTAB method (Gasic et al, 2004), and first strand cDNA was synthesized using 1. mu.g of RNA using a TOYOBO reverse transcription kit (purchased from Takara, Inc., according to the kit instructions). The reverse transcribed first strand cDNA was used for real-time fluorescent quantitative PCR (qRT-PCR) of PbSWEET 4. Using pear PbTublin (Pbr042345.1) as an internal reference, the nucleotide sequences of the primers were as follows:
forward primer TUB-F: 5'-TGGGCTTTGCTCCTCTTAC-3' (SEQ ID No.5)
Reverse primer TUB-R: 5'-CCTTCGTGCTCATCTTACC-3' (SEQ ID No.6)
A gene-specific qRT-PCR Primer pair was designed in the open reading frame of the PbSWEET4 gene using Primer 5.0, the nucleotide sequences of the primers were as follows:
forward primer PbSWEET4-F2: 5'-GAGTGCCGTTATGTGGTTTGC-3' (SEQ ID No.7)
Reverse primer PbSWEET4-R2: 5'-TCCTGCTTTCGGTTTCGGTA-3' (SEQ ID No.8)
The qRT-PCR was performed using SYBR Green kit (purchased from Roche, Inc., according to the kit instructions). The 20 mu LqRT-PCR reaction system comprises: 10 μ L of 2 XSSYBR Premix ExTaq, 0.25 μ L of forward primer, 0.25 μ L of reverse primer, 0.3 μ L of LcDNA, 9.2 μ L of sterile double distilled water. PCR was performed using a 96-well qRT-PCR plate (purchased from Roche) using a qRT-PCR instrument (model: LightCycler 480, Roche). The qRT-PCR reaction program was: pre-denaturation at 95 ℃ for 10min, denaturation at 95 ℃ for 15 sec, annealing at 60 ℃ for 15 sec, extension at 72 ℃ for 20 sec, 40 thermal cycles. Each sample was repeated 3 times, and the average Ct value of each cDNA sample was calculated and then passed 2-ΔΔCtThe method (Livak and Schmittgen,2001) calculates the relative expression level of PbSWEET4 gene.
Previous research results show that the expression level of PbSWEET4 is high in the late development stage of leaves (Li et al, 2017), and in order to verify whether the phenomenon is ubiquitous in pear leaves, the expression pattern of PbSWEET4 in pear leaves of different varieties is detected. FIG. 1 is a diagram of the expression pattern of PbSWEET4 in different varieties of pear leaves at different developmental stages. As shown, PbSWEET4 showed the same expression pattern in four different pear varieties as leaf development progressed: the expression level was lower in young leaves and significantly increased in mature leaves (FIG. 1). Based on the above results, we speculate that PbSWEET4 may be related to leaf development.
Example 2 cloning and vector construction of the Pear PbSWEET4 Gene and its promoter
1. The method for extracting the total RNA of the pear leaves and synthesizing the cDNA is the same as the example 1. The forward primer sequence for amplifying PbSWEET4 is PbSWEET 4-F1: 5' -ATGGCTACAGTAGCAGACAGTCAC (SEQ ID No.3), reverse primer sequence PbSWEET 4-R1: 5' -TCACACTGCTGATGGTGTTTCAT (SEQ ID No. 4). High fidelity DNA polymerase for gene cloning (Super-Fidelity DNA Polymerase (P505-d1)) was purchased from Novowed Biotech. The reaction system for amplification was 50. mu.L, which included 200ng of cDNA, 25. mu.L of 2 XPPhanta Max Buffer, 1. mu.L of 10mM dNTP, 1. mu.L of Phanta Max Super-Fidelity DNA Polymerase, 2. mu.L of 10. mu.M of each of the above primers, plus ddH2O to 50. mu.L. The PCR reaction was performed on an Eppendorf amplification apparatus according to the following procedure: pre-denaturation at 95 ℃ for 3 min, denaturation at 95 ℃ for 15 sec, annealing at 60 ℃ for 15 sec, extension at 72 ℃ for 1 min, 35 thermal cycles, extension at 72 ℃ for 5 min, and storage at 4 ℃.
After the PCR products were detected by 1% agarose gel electrophoresis, specific PCR amplification fragments were recovered using a rapid agarose gel DNA recovery kit (purchased from china, japan biotechnology limited), referred to for use instructions, the recovered purified DNA was inserted into TOPO vectors using TA cloning techniques, transformed into DH5 α escherichia coli (escherchia) competent cells (purchased from basque science limited, china) using a heat shock method, and cultured in LB solid medium containing 100 μ g/mL spectinomycin, positive clones were screened, propagated and sequenced (completed by biologics engineering gmbh), correctly sequenced plasmids were recombined by LR enzyme with PbSWEET4 full length vector into pMDC32 (for strawberry transformation) and pEarlyGate104 (for subcellular localization) over-expression vectors, again named as escherichia coli competent cells using a heat shock method, and cultured in solid medium containing 50 μ g/mL isoelectric sequencing, the results of PbSWEET gate104 (for subcellular localization) overexpression sequence, the results of PbSWEET potato gene expression were found in PbSWEET potato competent cells, and the results of the PbSWEET potato gene amplification were found in PbSWEET potato gene expression vector, expressed as PbSWEET potato 16. the PbSWEET potato gene expression vector, the PbSWEET potato gene expression vector was found in PbSWEET potato gene expression, and the PbSWEET potato gene expression was found in PbSWEET potato gene expression, and the expression of PbSWEET potato gene expression, the expression of PbSWEET potato gene expression was found in PbSWEET potato gene expression, expressed as PbSWEET potato gene expression, expressed by PbSWEET potato gene expression, expressed in PbSWEET potato gene expression, expressed as PbSWEET potato 16. SWEET potato, expressed by PbSWEET potato, expressed as PbSWEET potato gene, expressed by PbSWEET potato gene, expressed in PbSWEET potato.
2. The leaf of Dangshan pear was extracted by CTAB method (Chenling poplar et al, 2014)Extracting DNA, and amplifying the promoter (2kb) at the upstream of PbSWEET4 gene. The forward primer for amplifying the PbSWEET4 promoter was pPbSWEET 4-F3: 5' -TAGCTGAGGATGGTCAATGGGTTTA (SEQ ID No.9), the reverse primer was pPbSWEET 4-R3: 5' -ACCCTTTCCAGAAAATCAGCACACTGA (SEQ ID No. 10). High fidelity DNA polymerase for promoter cloning: (Super-Fidelity DNA Polymerase (P505-d1)) was purchased from Novowed Biotech. The reaction system for amplification was 50. mu.L, which included 200ng of cDNA, 25. mu.L of 2 × Phanta Max Buffer, 1. mu.L of 10mM dNTP, 1. mu.L of Phanta Max Super-Fidelity DNA Polymerase, 2. mu.L of 10. mu.M of the above primer, and ddH2O to 50. mu.L. The PCR reaction was performed on an eppendorf amplification machine according to the following procedure: pre-denaturation at 95 ℃ for 3 min, denaturation at 95 ℃ for 15 sec, annealing at 60 ℃ for 15 sec, extension at 72 ℃ for 2 min, 35 thermal cycles, extension at 72 ℃ for 5 min, and storage at 4 ℃.
PCR products were detected by 1% agarose gel electrophoresis, and then specifically amplified fragments were recovered using a rapid agarose gel DNA recovery kit (purchased from Japan Biotechnology Ltd., China) using TA cloning technology to insert the recovered and purified DNA into TOPO vectors, transformed into competent cells of DH5 α E.coli (Escherichia coli) (purchased from Baische technologies Ltd., China) using a heat shock method, and cultured in LB solid medium containing 100. mu.g/mL spectinomycin, screening positive clones, expanded and sequenced (completed by Biotechnology Ltd.), plasmids with correct sequencing recombined PbSWEET4 promoter sequence into pMDC107 overexpression vector using LR enzyme, transformed into E.coli again using a heat shock method, and cultured in LB solid medium containing 50. mu.g/mL kanamycin, and screened as nutritional clones, and amplified and sequenced nucleic acid sequences as expressed in SEQ ID No. PbSWEET4, expressed in pMDC107, and pBlue-TOP vector containing 50. kanamycin.
Example 3 qualitative analysis of GUS staining of transgenic Arabidopsis thaliana under the control of 2kb promoter of the pear PbSWEET4 Gene at different developmental stages
PbSWEET4 promoter vector pMDC107-pPbSWEET4 was constructed in the same manner as in example 1. The final recombinant vector was transformed into Agrobacterium strain GV3101 by freeze-thaw method, then cultured in LB solid medium with 50. mu.g/mL kanamycin, 100. mu.g/mL rifampicin, and the correctly identified Agrobacterium strain was propagated using 10mL sterile centrifuge tubes until OD600The value is about 1-1.2, and the mixture is centrifuged at 6000rpm for 10min to collect bacterial liquid. The vector was then transformed into wild type Arabidopsis plants by the dipping method (Clough and Bent, 1998). Four stages from complete development of 4 rosette leaves (14 days after sowing) to complete maturation of arabidopsis thaliana (42 days after sowing) were stained with GUS staining solution (purchased from solibao, china) according to the instructions. Finally, the plants were eluted with 25%, 50%, 70%, 95% ethanol and observed.
GUS reveals GUS activity at each stage of Arabidopsis plant development. The staining degree is increased continuously along with the development of Arabidopsis leaves, which indicates that GUS activity in mature leaves is higher than that in young leaves (FIG. 2), and shows that the PbSWEET4 promoter has higher activity in old leaves, which is consistent with the expression pattern of PbSWEET4 in the leaf development process.
Example 4 subcellular localization of PbSWEET4 Gene
The pEarlyGate104-PbSWEET4 vector was constructed in the same manner as in example 1. The final recombinant vector was transformed into Agrobacterium strain GV3101 by freeze-thaw method, then cultured in LB medium with 50. mu.g/mL kanamycin, 100. mu.g/mL rifampicin, and the correctly identified Agrobacterium strain was propagated using 10mL sterile centrifuge tubes until OD600The value is about 1-1.2, and the mixture is centrifuged at 6000rpm for 10min to collect bacterial liquid. The specific procedure according to the method of Sperschneider (Sperschneider et al, 2017) was as follows: the harvested Agrobacterium was resuspended in the infection solution (10mM MgCl)210mM EMS, pH5.7, 200mM acetosyringone) to obtain the final OD600Is 0.8-1.2. Then, the resuspended suspension was placed on a shaker at room temperature (25 ℃) for 4 hours, after which the resuspension was injected into the back of 3-4 weeks old leaflet tobacco leaves using a 1mL syringe. Culturing the injected tobacco at 22 deg.C for 3-4 days, and observing the injection with confocal laser scanning microscope (Zeiss LSM 700, Germany)The epidermal cells of the tobacco leaves are photographed and the tablets are preserved.
FIG. 3 is a subcellular localization map of PbSWEET 4. YFP signals were observed on the cell membrane of the 35S-PbSWEET4-YFP fusion vector, whereas the empty control showed fluorescence in the cytoplasm and nucleus (FIG. 3). Our results indicate that PbSWEET4 encodes a membrane protein.
Example 5 genetic transformation of strawberry
The agrobacterium-mediated strawberry genetic transformation method refers to the method of Slovin et al (Slovin et al, 2009), and the specific operation steps are as follows:
1. and (3) disinfection and sterilization of stems and petioles: first sterilized in 70% ethanol for 30 seconds, then washed 3 times with sterile water, then sterilized with 1% sodium hypochlorite (20% bleach) for 10 minutes, and finally washed 4 times with sterile water.
2. Culturing agrobacterium tumefaciens: pMDC32-PbSWEET4 vector was constructed as in example 1, the final recombinant vector was transformed into Agrobacterium strain GV3101 by freeze-thaw method, then cultured in LB medium with 50. mu.g/mL kanamycin, 100. mu.g/mL rifampicin, then the correctly identified Agrobacterium strain was cultured in 50mL liquid medium with 10mL sterile centrifuge tubes overnight at 28 ℃ at 220rpm until OD600The value is about 0.5.
3. Infection transformation: the pre-cultured Agrobacterium was centrifuged at 6000rpm for 10min to collect the bacterial liquid, which was then resuspended to OD in a coculture broth (1 XMS, pH 5.8, 2% sucrose, 50. mu.M acetosyringone)600At 0.1, the resuspended agrobacteria were transferred to a sterile conical flask, and the explants were immersed in a co-cultivation medium with added inoculum and incubated for 20 minutes at room temperature. Then, the cells were blotted with a sterile filter paper and transferred to a solid medium (Table 1), and cultured in a dark environment at 25 ℃ for two days.
Hygromycin selection for resistant shoots: transgenic shoots were selected on selection medium containing 4mg/L hygromycin B. Explants were regenerated under a cold white fluorescent lamp under a 16 hour light, 8 hour dark photoperiod. Explants were checked daily for contamination and subcultured every 2 weeks.
Rooting induction and transplanting: when the strawberry explants formed different shoot buds, the whole mass was transferred to hormone-free rooting medium consisting of 0.5 × MS medium (pH 5.8), 1% glucose and 1% agar powder. Roots form within days to a month and individual plants can then be dissected from the sprouts. And taking out the strawberry regenerated plant with good root system growth from the rooting culture medium, washing the root system with tap water, transplanting the strawberry regenerated plant into nutrient soil, and growing the strawberry regenerated plant under natural illumination at 25 ℃.
TABLE 1 culture media for strawberry genetic transformation System
Example 6 identification of PbSWEET4 transgenic strawberry plants and determination of physiological indices
1. Screening of Positive plants
Strawberry regeneration plants were obtained according to the method described above in example 5, and total DNA of wild-type strawberries and transgenic strawberry leaves was extracted according to the method described in example 1.
The identification steps of the positive plants are as follows: the positive seedlings were identified by PCR amplification of the above DNA with PbSWEET4 amplification primers (forward primer 1 and reverse primer 1, shown as SEQ ID No.7 and SEQ ID No.8), and the DNA of the strawberry leaves that were not infected and transformed was used as a control. The PCR reaction procedure and system were carried out as described in example 1. As shown in FIG. 4-A, the strawberry leaves which are not infected and transformed do not amplify the target band, and the regenerated strawberry plants which can amplify the target band are preliminarily identified as positive transgenic strawberry lines.
Effect of PbSWEET4 Gene overexpression on strawberry plant growth
The PbSWEET4 transgenic strawberry plants at the same growth stage exhibited a premature leaf senescence phenotype, mainly manifested by yellowing of the leaf edges, compared to wild-type strawberry plants (fig. 4). The cloned pear PbSWEET4 gene is shown to be capable of making leaves senesce early.
Influence of PbSWEET4 gene overexpression on soluble sugar content of strawberry leaves
Soluble sugar content of leaves of PbSWEET4 transgenic strawberry plants was determined using wild type strawberry leaves as a control.
The extraction steps of the soluble sugar are as follows: referring to Liu Lun et al (Liu et al, 2016), the specific procedures were as follows: accurately weighing 5.0g of leaves in a precooled mortar, grinding the leaves into powder by using liquid nitrogen, transferring the powder to a 10mL test tube, adding 8mL of 80% ethanol, carrying out water bath at 37 ℃ for 25 minutes (shaking and mixing the powder every 5 minutes), carrying out ultrasonic wave full extraction for 10 minutes, centrifuging the mixture at 12000rpm for 10 minutes, transferring the supernatant to a 25mL volumetric flask, repeating the steps for three times and fixing the volume. Taking 2mL of the extracting solution, evaporating to dryness by using a rotary evaporator (model: RE-3000, Shanghai Yangrong biochemical instrument factory), dissolving by using 1mL of sterile double distilled water, and finally filtering by using a water filter with the diameter of 0.45 mu m, wherein the filtrate is used for determining the content of the soluble sugar. The content of soluble sugar is determined by high performance liquid chromatography (UPLC ACQUITY H-class (Waters)), the mobile phase is acetonitrile (1% ammonia water): water 85:15, flow rate 0.2mL/min, column temperature 45 ℃, sample injection time 15 minutes, sample injection volume 2 uL; the detector is ELSD, the carrier gas is nitrogen, the pressure is 25Psi, the drift tube is 55 ℃, and the atomizer is 25 ℃; the chromatographic column is UPLC ACQUITY BEH Amide 1.7um2.1 x 100 mm. The amount of each carbohydrate was calculated from the peak area of the sample and the standard curve for each carbohydrate. Analysis results show that compared with wild strawberry leaves, the sucrose content of the transgenic strawberry is obviously reduced.
Effect of PbSWEET4 gene overexpression on strawberry leaf chlorophyll
Chlorophyll is degraded with aging of leaves (Hortenstein, 2006), so in order to further verify the effect of the PbSWEET4 gene on leaf aging, wild strawberry leaves were used as a control, and chlorophyll content (i.e., SPAD value) of 30 transgenic strawberry leaves was measured by using a chlorophyll meter (purchased from Konika Mingta, model SPAD-502) and a box plot was plotted (FIG. 5). The analysis result shows that the chlorophyll content of the PbSWEET4 transgenic strawberry leaf is obviously lower than that of the wild control.
Comprehensive analysis shows that the sucrose content and the chlorophyll content in the leaves of the over-expressed strawberry strain of PbSWEET4 are obviously reduced, and the premature senility of the leaves of the plant appears, which shows that the PbSWEET4 gene of pear has the functions of promoting sugar discharge and simultaneously promoting the leaf senescence.
Primary references
1.Abreu,M.E.,and S.Munne-Bosch.(2009).Salicylic acid deficiency inNahG transgenic lines and sid2 mutants increases seed yield in the annualplant Arabidopsis thaliana.Journal of Experimental Botany 60(4):1261-1271.
2.Chandran,D.(2015).Co-option of developmentally regulated plantSWEET transporters for pathogen nutrition and abiotic stress tolerance.IubmbLife 67,461-471.
3.Chen,L.Q.(2014).SWEET sugar transporters for phloem transport andpathogen nutrition.New Phytologist 201,1150-1155.
4.Chen,L.Q.,Cheung,L.S.,Feng,L.,Tanner,W.,and Frommer,W.B.(2015).Transport of sugars.Annual Review of Biochemistry 84,865-894.
5.Clough,S.J.,and Bent,A.F.(1998).Floral dip:a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana.Plant Journal16,735-743.
6.Deprost,D.,L.Yao,R.Sormani,M.Moreau,G.Leterreux,M.Nicolai,M.Bedu,C.Robaglia,and C.Meyer.(2007).The Arabidopsis TOR kinase links plant growth,yield,stress resistance and mRNA translation.Embo Reports 8,864-870.
7.Gasic,K.,Hernandez,A.,and Korban,S.S.(2004).RNA extraction fromdifferent apple tissues rich in polyphenols and polysaccharides for cDNAlibrary construction.Plant Molecular Biology Reporter 22,437-438.
8.Himelblau,E.,and Amasino,R.M.(2001).Nutrients mobilized from leavesof Arabidopsis thaliana during leaf senescence.Journal of Plant Physiology158,1317-1323.
9.Hortensteiner,S.(2006).Chlorophyll degradation duringsenescence.Annual Review of Plant Biology 57,55-77.
10.Jin,Y.,Ni,D.A.,and Ruan,Y.L.(2009).Posttranslational elevation ofcell wall invertase activity by silencing its inhibitor in tomato delays leafsenescence and increases seed weight and fruit hexose level.Plant Cell 21,2072-2089.
11.Li,J.M.,Qin,M.F.,Qiao,X.,Cheng,Y.S.,Li,X.L.,Zhang,H.P.,and Wu,J.(2017).A new Insight into the evolution and functional divergence of SWEETtransporters in Chinese White Pear(Pyrus bretschneideri).Plant Cell Physiol58,839-850.
12.Liu,L.,Chen,C.X.,Zhu,Y.F.,Xue,L.,Liu,Q.W.,Qi,K.J.,Zhang,S.L.,andWu,J.(2016).Maternal inheritance has impact on organic acid content inprogeny of pear(Pyrus spp.)fruit.Euphytica 209,305-321.
13.Livak,K.J.,and Schmittgen,T.D.(2001).Analysis of relative geneexpression data using real-time quantitative PCR and the 2(T)(-Delta Delta C)method.Methods 25,402-408.
14.Ma,X.M.,Y.J.Zhang,V.Tureckova,G.P.Xue,A.R.Fernie,B.Mueller-Roeber,and S.Balazadeh.(2018).The NAC transcription factor SlNAP2 regulates leafsenescence and fruit yield in tomato.Plant Physiology 177,1286-1302.
15.Oparka,K.J.1990.What is phloem unloading.Plant Physiology 94,393-396.
16.Slovin,J.P.,Schmitt,K.,and Folta,K.M.(2009).An inbred line of thediploid strawberry Fragaria vesca f.semperflorens for genomic and moleculargenetic studies in the Rosaceae.Plant Methods 5,15.
17.Sperschneider,J.,Catanzariti,A.M.,DeBoer,K.,Petre,B.,Gardiner,D.M.,Singh,K.B.,Dodds,P.N.,and Taylor,J.M.(2017).LOCALIZER:subcellularlocalization prediction of both plant and effector proteins in the plantcell.Sci Rep-Uk 7,44598.
18.Katz E,Fon M,Lee YJ,et al(2007).The citrus fruit proteome:insightsinto citrus fruit metabolism.Planta,226,989-1005.
19.Wingler,A.,Purdy,S.,MacLean,J.A.,and Pourtau,N.2006.The role ofsugars in integrating environmental signals during the regulation of leafsenescence.Journal of Experimental Botany 57,391-399.
20. Chen forest poplar, Song Ming Shu, Charles Koreana and Li Shi Ming (2014). A general extraction method of improved plant genome DNA, plant classification and resource bulletin 36, 375-.
Sequence listing
<110> Nanjing university of agriculture
<120> pear sugar transporter PbSWEET4 and application thereof
<160>11
<170>SIPOSequenceListing 1.0
<210>1
<211>918
<212>DNA
<213> Dangshan' pear (Pyrus)
<400>1
atggctacag tagcagacag tcaccatcct ttggcattta catttggagt tctaggaaat 60
ctagtctcaa ccatggttta cttagcccca gtgccgacat tttatcgaat ttacaggaaa 120
aaatcgacag aaggattcca ctcggtgcca tatctggtag caatgttcag ttccatgctt 180
tggttctatt atgcgtcgct aaaaaagaat gctatgctgc tcatcaccat taactcattc 240
ggaagttttg cagagatgac ctacatcgtc atcttcgttg tgtatgcacc aagggatgct 300
aggaagctta cagtgaaatt atttggtatt atgaacgtgg gacttttcac cttgatcctt 360
gtcgtgtctc actttctagt gagtcgtgcg taccgggtcc cagttcttgg atggattaat 420
gttgccattt ctaccagtgt ttttgctgcg cccttaagca ttgtggcaca agttatccga 480
acaagaagtg tcgaattcat gccatttagg ttatcatttt tcctcactct gagtgccgtt 540
atgtggtttg catatggatt gttcctcaag gacatatgta ttgcaattcc aaacgttctg 600
ggttttgtgt tgggactgct tcagatgctg ctgtatgcga tgtaccgaaa ccgaaagcag 660
gagatactag aagatcatga gaaaaagcta ccggctgcta caccagatca cgtgaacaac 720
attgtgatca tagccacatt agcagcttcc gaggttcatc cggtggatgc tcaaccgaac 780
aatcgcaatg atgatggtga cgttaataat aacgcggtcg ttacagaggc aaaggagcat 840
gaacaaacgg atgatcatcg tcatgtggaa aatgcttccg tcgagcttca acctaatgaa 900
acaccatcag cagtgtga 918
<210>2
<211>305
<212>PRT
<213> Dangshan' pear (Pyrus)
<400>2
Met Ala Thr Val Ala Asp Ser His His Pro Leu Ala Phe Thr Phe Gly
1 5 10 15
Val Leu Gly Asn Leu Val Ser Thr Met Val Tyr Leu Ala Pro Val Pro
20 25 30
Thr Phe Tyr Arg Ile Tyr Arg Lys Lys Ser Thr Glu Gly Phe His Ser
35 40 45
Val Pro Tyr Leu Val Ala Met Phe Ser Ser Met Leu Trp Phe Tyr Tyr
50 55 60
Ala Ser Leu Lys Lys Asn Ala Met Leu Leu Ile Thr Ile Asn Ser Phe
65 70 75 80
Gly Ser Phe Ala Glu Met Thr Tyr Ile Val Ile Phe Val Val Tyr Ala
85 90 95
Pro Arg Asp Ala Arg Lys Leu Thr Val Lys Leu Phe Gly Ile Met Asn
100 105 110
Val Gly Leu Phe Thr Leu Ile Leu Val Val Ser His Phe Leu Val Ser
115 120 125
Arg Ala Tyr Arg Val Pro Val Leu Gly Trp Ile Asn Val Ala Ile Ser
130 135 140
Thr Ser Val Phe Ala Ala Pro Leu Ser Ile Val Ala Gln Val Ile Arg
145 150 155 160
Thr Arg Ser Val Glu Phe Met Pro Phe Arg Leu Ser Phe Phe Leu Thr
165 170 175
Leu Ser Ala Val Met Trp Phe Ala Tyr Gly Leu Phe Leu Lys Asp Ile
180 185 190
Cys Ile Ala Ile Pro Asn Val Leu Gly Phe Val Leu Gly Leu Leu Gln
195 200 205
Met Leu Leu Tyr Ala Met Tyr Arg Asn Arg Lys Gln Glu Ile Leu Glu
210 215 220
Asp His Glu Lys Lys Leu Pro Ala Ala Thr Pro Asp His Val Asn Asn
225 230 235 240
Ile Val Ile Ile Ala Thr Leu Ala Ala Ser Glu Val His Pro Val Asp
245 250 255
Ala Gln Pro Asn Asn Arg Asn Asp Asp Gly Asp Val Asn Asn Asn Ala
260 265 270
Val Val Thr Glu Ala Lys Glu His Glu Gln Thr Asp Asp His Arg His
275 280 285
Val Glu Asn Ala Ser Val Glu Leu Gln Pro Asn Glu Thr Pro Ser Ala
290 295 300
Val
305
<210>3
<211>24
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
atggctacag tagcagacag tcac 24
<210>4
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>4
tcacactgct gatggtgttt cat 23
<210>5
<211>19
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>5
tgggctttgc tcctcttac 19
<210>6
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>6
tcctgctttc ggtttcggta 20
<210>7
<211>21
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>7
gagtgccgtt atgtggtttg c 21
<210>8
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
tcctgctttc ggtttcggta 20
<210>9
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>9
tagctgagga tggtcaatgg gttta 25
<210>10
<211>27
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>10
accctttcca gaaaatcagc acactga 27
<210>11
<211>2000
<212>DNA
<213> Dangshan' pear (Pyrus)
<400>11
ccctttccag aaaatcagca cactgaccta cagttctggc ttttggggtg aggaaaagaa 60
acttattttt cccaaatttg tcaaaatatc aacctaccta gcttagatta ctaatcaagc 120
acttggttga atatactgct caaattaaaa gtctgaaaaa cgcacgtatc aattagctct 180
taatttagct gtatttatct ttccaaatta gaaaatgtct caagttcaca tttcttgtta 240
tttcctcatt aatcaatgac gagttgttag tctagttatg aaacttgttt aaattttatc 300
atgcttacgt cgcgccttct cattgatcaa taacgagttg ttactctaat attattaaag 360
taacataact tataaaggat ctaaactcca gaaaaataaa agtatatcgc aaccaaatca 420
cacaaattaa tgaacgtcga tggaaatagc catgtacata tctagcaatc tgtccaaagg 480
ctcccagggt gtccacctag cattctcgaa tcccagccaa atgatagaga caagaacgag 540
taacaacatc atgattgtct tgtggctcat ctttaattat tcttttgtca taacttaaaa 600
cctccctccc tccgtcccca tctcataacc gcaaaaaata tgaaaaaagc tggccaggct 660
gcttggattg tggaatttga ttacttgaag aagaaaaaag tcagtcagat gaacccccga 720
tgcacacgaa accctctaaa tattgcatga acattgaagc actaccaaac aaacattcaa 780
cggcatagaa caaaagcttt gtgaacaata ttgtaaatct ttgagtgtgt gacttggaaa 840
gattgtttgt tgtaattgaa atattgtcag gttgtgttat tcaattcaat ttataataag 900
tatatttatt tgtgaggctc tacaagttga acatatcaaa tttgttgtct atattcttaa 960
gaaattatta ttgtcatttc aagaatttaa ttgtgcaatc caaactttct atatttaaaa 1020
aaatttatga gaagtgcata attaattttt ttagattgct aataataata atttattatt 1080
attataacac gtcgtggcaa gtgttccgag agtatatata tacaactata ttgtctgcgt 1140
gtgacttgtg agaatttaca agtgacaact agggctgaag cctgacgcgc caaggcgtgt 1200
ttcgtttagg gttttagaag atggagagaa acggtccaaa caatggccat acagtatgca 1260
ctagtgcttg gaattagaga tatagaagtc acgtgaatcg ggctctactc tggacagctt 1320
tgcggtctta gaagagatga gtaacgtaaa aaatcatatt cttattttag ttggaagaag 1380
ccacttgttt tttttttcaa agagcgtgga attcatgttt gattagaaaa aactcataaa 1440
aaattagtaa attagtgtcg attaaccaaa actataacta tataactctt cctaattcgc 1500
agttatggtg aaattaatta tttgaataat tatggtgatg atttggggga ctaccctaat 1560
tcctatccaa agtagtgtca agaagtgtgg tgaataatgc tctgcttttt ttttcttttt 1620
ttcttttttt ttgtggccgt tggatggagg ttacgcacac gtgatagagg ggcacgtgga 1680
acttggattt gtggttcatt gaatgagttc gttgagtagc ttttcattgt acgggaacat 1740
gacctggtac accaaatgtt ataatactag tgatttgata ttaaattttt ttttcccaat 1800
cacttgtatt atgacacttg atgtattaga cagtgttccc ggcacattga aaaaattctc 1860
gagagcatgg tacaccacct actaatcctc catctgtcat gcagccacaa tgagttcaat 1920
acgcacaccc tatttctttt tctttcactt tttgtgtgta tataaacaag ctgcgtaaac 1980
ccattgacca tcctcagcta 2000
Claims (9)
1. A gene PbSWEET4 with sugar discharge function separated from pear is characterized in that the nucleic acid sequence is shown in a sequence table SEQ ID No.1, the cDNA full-length sequence is 918bp, and comprises an open reading frame of 918 bp.
2. The protein encoded by PbSWEET4 according to claim 1, wherein the amino acid sequence is represented by SEQ ID No.2 of the sequence Listing, which encodes 305 amino acids, has isoelectric point of 7.17 and molecular weight of 34.2 KDa.
3. A recombinant expression vector comprising the gene of claim 1.
4. The recombinant expression vector of claim 3, which is obtained by inserting the gene PbSWEET4 of claim 1 into pMDC32 through Gateway reaction, starting from pMDC 32.
5. A host bacterium containing the gene according to claim 1.
6. The cDNA sequence primer pair for cloning the gene PbSWEET4 as claimed in claim 1, characterized in that the sequence of the primer PbSWEET4-F1 is shown as SEQ ID No.3, and the sequence of the downstream primer PbSWEET4-R1 is shown as SEQ ID No. 4.
7. The use of the gene PbSWEET4 as defined in claim 1 for regulating soluble sugar in leaves and senescence.
8. The use according to claim 7, characterized in that a plant overexpression vector containing the pear sugar transporter gene PbSWEET4 is constructed and diploid forest strawberries are transformed, wild strawberries are used as a control, the leaf sucrose content of the obtained transgenic strawberry plants is obviously reduced, and the leaves show the phenomenon of premature senescence.
9. Use of the recombinant expression vector of claim 3 or 4 for reducing soluble sugar content in strawberry leaves and promoting leaf senescence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010083362.7A CN111154772B (en) | 2020-02-09 | 2020-02-09 | Pear sugar transport gene PbSWEET4 and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010083362.7A CN111154772B (en) | 2020-02-09 | 2020-02-09 | Pear sugar transport gene PbSWEET4 and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111154772A true CN111154772A (en) | 2020-05-15 |
CN111154772B CN111154772B (en) | 2022-10-04 |
Family
ID=70565371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010083362.7A Active CN111154772B (en) | 2020-02-09 | 2020-02-09 | Pear sugar transport gene PbSWEET4 and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111154772B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114561400A (en) * | 2022-03-07 | 2022-05-31 | 安徽农业大学 | Nitrate transporter gene FaNRT1.1 of strawberry and its application |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1505331A (en) * | 1975-04-18 | 1978-03-30 | Amchem Prod | Method of enhancing the growth regulating effect in a plant of an ethylene-providing compound |
CN1626659A (en) * | 2003-12-08 | 2005-06-15 | 北京师范大学 | Proteinoid gene of transportation carrier of paddy rice and sucrose, coding protein and application |
JP2005185101A (en) * | 2002-05-30 | 2005-07-14 | National Institute Of Agrobiological Sciences | Plant full-length cDNA and use thereof |
WO2007112430A2 (en) * | 2006-03-28 | 2007-10-04 | Cornell Research Foundation, Inc. | Use of nap gene to manipulate leaf senescence in plants |
CN102550652A (en) * | 2012-01-10 | 2012-07-11 | 合肥工业大学 | New application of sodium bisulfide as hydrogen sulfide donor in promoting storage and preservation of fruits and vegetables |
EP2659899A2 (en) * | 2012-03-23 | 2013-11-06 | Innovacos Corporation | Lipophilic carrier composition for solubilizing lipophilic bioactive botanical extracts, methods of solubilizing lipophilic bioactive botanical extracts, and methods of using solubilized lipophilic bioactive botanical extracts |
WO2015056070A1 (en) * | 2013-10-18 | 2015-04-23 | Itc Limted | Tissue specific plant promoter and uses thereof |
CN105848471A (en) * | 2013-12-27 | 2016-08-10 | 丰田自动车株式会社 | Transgenic plant and method for producing sugar-containing exudate by using transgenic plant |
CN107267522A (en) * | 2017-06-23 | 2017-10-20 | 南京农业大学 | Pears transcription factor PyMYB114 and its recombinant expression carrier and application |
CN107400671A (en) * | 2017-04-25 | 2017-11-28 | 南京农业大学 | Pear fruit saccharide transporter gene PbTMT4 and its application |
US9840715B1 (en) * | 2011-09-13 | 2017-12-12 | Monsanto Technology Llc | Methods and compositions for delaying senescence and improving disease tolerance and yield in plants |
CN107723294A (en) * | 2017-03-15 | 2018-02-23 | 中国热带农业科学院热带生物技术研究所 | A kind of sugarcane saccharide transporter ShSWEET2 genes and its application |
CN108467868A (en) * | 2018-05-10 | 2018-08-31 | 华南农业大学 | The application of soybean sucrose transporter important gene GmSWEET6 |
CN110669782A (en) * | 2019-10-10 | 2020-01-10 | 南京农业大学 | Application of soybean sugar transporter gene GmSWEET39 |
CN112795574A (en) * | 2021-01-26 | 2021-05-14 | 中国科学院武汉植物园 | Sugar Transporter Gene Controlling Sorbitol Content in Apple Fruit and Its Application |
CN112876550A (en) * | 2021-02-05 | 2021-06-01 | 南京农业大学 | Pear PbrSTONE gene and application thereof |
CN113056562A (en) * | 2018-10-02 | 2021-06-29 | 齐米科技股份有限公司 | Export of oligosaccharides using substrate import |
-
2020
- 2020-02-09 CN CN202010083362.7A patent/CN111154772B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1505331A (en) * | 1975-04-18 | 1978-03-30 | Amchem Prod | Method of enhancing the growth regulating effect in a plant of an ethylene-providing compound |
JP2005185101A (en) * | 2002-05-30 | 2005-07-14 | National Institute Of Agrobiological Sciences | Plant full-length cDNA and use thereof |
CN1626659A (en) * | 2003-12-08 | 2005-06-15 | 北京师范大学 | Proteinoid gene of transportation carrier of paddy rice and sucrose, coding protein and application |
WO2007112430A2 (en) * | 2006-03-28 | 2007-10-04 | Cornell Research Foundation, Inc. | Use of nap gene to manipulate leaf senescence in plants |
US9840715B1 (en) * | 2011-09-13 | 2017-12-12 | Monsanto Technology Llc | Methods and compositions for delaying senescence and improving disease tolerance and yield in plants |
CN102550652A (en) * | 2012-01-10 | 2012-07-11 | 合肥工业大学 | New application of sodium bisulfide as hydrogen sulfide donor in promoting storage and preservation of fruits and vegetables |
EP2659899A2 (en) * | 2012-03-23 | 2013-11-06 | Innovacos Corporation | Lipophilic carrier composition for solubilizing lipophilic bioactive botanical extracts, methods of solubilizing lipophilic bioactive botanical extracts, and methods of using solubilized lipophilic bioactive botanical extracts |
WO2015056070A1 (en) * | 2013-10-18 | 2015-04-23 | Itc Limted | Tissue specific plant promoter and uses thereof |
CN105848471A (en) * | 2013-12-27 | 2016-08-10 | 丰田自动车株式会社 | Transgenic plant and method for producing sugar-containing exudate by using transgenic plant |
CN107723294A (en) * | 2017-03-15 | 2018-02-23 | 中国热带农业科学院热带生物技术研究所 | A kind of sugarcane saccharide transporter ShSWEET2 genes and its application |
CN107400671A (en) * | 2017-04-25 | 2017-11-28 | 南京农业大学 | Pear fruit saccharide transporter gene PbTMT4 and its application |
CN107267522A (en) * | 2017-06-23 | 2017-10-20 | 南京农业大学 | Pears transcription factor PyMYB114 and its recombinant expression carrier and application |
CN108467868A (en) * | 2018-05-10 | 2018-08-31 | 华南农业大学 | The application of soybean sucrose transporter important gene GmSWEET6 |
CN113056562A (en) * | 2018-10-02 | 2021-06-29 | 齐米科技股份有限公司 | Export of oligosaccharides using substrate import |
CN110669782A (en) * | 2019-10-10 | 2020-01-10 | 南京农业大学 | Application of soybean sugar transporter gene GmSWEET39 |
CN112795574A (en) * | 2021-01-26 | 2021-05-14 | 中国科学院武汉植物园 | Sugar Transporter Gene Controlling Sorbitol Content in Apple Fruit and Its Application |
CN112876550A (en) * | 2021-02-05 | 2021-06-01 | 南京农业大学 | Pear PbrSTONE gene and application thereof |
Non-Patent Citations (12)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114561400A (en) * | 2022-03-07 | 2022-05-31 | 安徽农业大学 | Nitrate transporter gene FaNRT1.1 of strawberry and its application |
Also Published As
Publication number | Publication date |
---|---|
CN111154772B (en) | 2022-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102428186B (en) | Transgenic plants comprising constructs encoding phosphoenolpyruvate carboxykinase and/or pyruvate ortho phos phate dikinase | |
JP6103607B2 (en) | Plant suitable for high-density planting and use thereof | |
CN110628808B (en) | Arabidopsis AtTCP5 gene and application thereof in regulating plant height | |
JP2019533436A (en) | Ciliary process-specific promoter for manipulation of cannabinoids and other compounds in the glandular trichome | |
JP3431177B2 (en) | Plasmids producing transgenic plants altered in habit and yield | |
CN106834314B (en) | Millet anti-stress gene SiRLK35 and its encoded protein and its application | |
KR100275200B1 (en) | C3 planrs expressing photosynthetic enzyme of c4 plants | |
CN112626082A (en) | Application of corn gene ZmSCL14 in regulation and control of plant root development | |
CN108715852B (en) | Tomato fruit mature gene Sl0658 and application thereof | |
CN105646686A (en) | Gene for regulating and controlling synthesis of plant flavonol and application | |
CN111154772B (en) | Pear sugar transport gene PbSWEET4 and application thereof | |
CN114395566B (en) | Application of sweet potato ERF transcription factor IbERF4 in promoting the synthesis of chlorogenic acids in plants | |
CN113637686B (en) | Application of Potato StABL1 Gene in Regulating Potato Maturity | |
CN112458102B (en) | Peach heat shock transcription factor PpHF 5 and application thereof | |
Shi et al. | Application of the phosphomannose-isomerase/mannose selection system in the Agrobacterium-mediated transformation of Lonicera hypoglauca Miq. | |
Lin et al. | Structural feature of RrGGP2 promoter and functional analysis of RrNAC56 regulating RrGGP2 expression and ascorbate synthesis via stress-inducible cis-elements in Rosa roxburghii Tratt | |
KR101231141B1 (en) | Composition for promoting plant growth comprising IDS gene | |
KR100990369B1 (en) | Mutants of the AtPPH1 and AtPPH2 genes that increase plant stress resistance and transgenic plants that promote growth in which the genes are introduced | |
KR101857606B1 (en) | Use of Mutated Anthranilate Synthase Gene Resistant to 5-Methyltryptophan for Selection Marker of Plant Transformation | |
CN116200421B (en) | A gene for increasing the lycopene content of tomato fruit and its application | |
KR101509032B1 (en) | Method for producing transgenic plant with inhibited photorespiration and increased resistance to stress using the gene from cyanobacteria and the plant thereof | |
CN116254288B (en) | Application of a Chunlan MIR156b gene in regulating plant flowering time | |
CN118910090B (en) | Maize gene GRMZM5G845366 and its application in regulating crop height and yield | |
CN109628468A (en) | A kind of Chunlan CgWRKY53 gene and its application | |
KR100833476B1 (en) | APTFP Transgenic Plants with Improved Growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |