[go: up one dir, main page]

KR101787119B1 - 방사선 촬상 장치 및 방사선에 의한 촬상 방법, 및 데이터 처리 장치 - Google Patents

방사선 촬상 장치 및 방사선에 의한 촬상 방법, 및 데이터 처리 장치 Download PDF

Info

Publication number
KR101787119B1
KR101787119B1 KR1020127003460A KR20127003460A KR101787119B1 KR 101787119 B1 KR101787119 B1 KR 101787119B1 KR 1020127003460 A KR1020127003460 A KR 1020127003460A KR 20127003460 A KR20127003460 A KR 20127003460A KR 101787119 B1 KR101787119 B1 KR 101787119B1
Authority
KR
South Korea
Prior art keywords
image
radiation
plane
dimensional
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020127003460A
Other languages
English (en)
Other versions
KR20120059498A (ko
Inventor
아키토시 카츠마타
코이치 오가와
츠토므 야마카와
마사히로 츠지타
타츠야 나가노
카즈히데 키토
Original Assignee
다카라 텔레시스템즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다카라 텔레시스템즈 가부시키가이샤 filed Critical 다카라 텔레시스템즈 가부시키가이샤
Publication of KR20120059498A publication Critical patent/KR20120059498A/ko
Application granted granted Critical
Publication of KR101787119B1 publication Critical patent/KR101787119B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • A61B6/512Intraoral means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/501Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the head, e.g. neuroimaging or craniography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • G03B42/04Holders for X-ray films
    • G03B42/042Holders for X-ray films for dental applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

방사선 촬상 장치로서의 파노라마 촬상 장치가 제공된다. 이 파노라마 촬상 장치는, 방사선으로서의 X선을 방출하는 X선관(31), X선이 입사 했을 때에 해당 X선에 대응한 디지털 전기량의 프레임 데이터로 출력하는 검출기(32), 이들 쌍을 피검체에 대해서 이동시키는 이동 수단(23, 24)을 구비한다. 이 장치는 더욱, X선관과 검출기의 쌍을 이동시키고 있는 동안에, 검출기로부터 출력되는 프레임 데이터를 수집하는 수단(12, 41, 52~57)과, 그 수집 데이터를 이용하여 피검체의 촬상 부위의 초점을 최적화하고, 한편, 해당 촬상 부위의 실제의 크기 및 형상을 반영시킨 3차원 최적 초점 화상을 작성하는 수단(12, 56)을 구비한다.

Description

방사선 촬상 장치 및 방사선에 의한 촬상 방법, 및 데이터 처리 장치{RADIATION IMAGE PICKUP DEVICE AND IMAGE PICKUP METHOD BY RADIATION, AND DATA PROCESSING DEVICE}
본 발명은, 방사선 촬상 장치 및 방사선에 의한 촬상 방법, 및 데이터 처리 장치와 관련되고, 특히, 촬상 대상을 다수의 방향으로부터 스캔하여 얻은 방사선 데이터를 터모신테시스법(tomosynthesis)에 의거하여 처리하여 단층상 데이터를 재구성하고, 그 단층상 데이터를 이용하여 촬상 대상의 내부 구조의 3차원 위치를 분류하는 방사선 촬상 장치 및 방사선에 의한 촬상 방법, 및 방사선 촬상용의 데이터 처리 장치에 관한 것이다.
근래, 터모신테시스법에 의거한 피검체의 단층촬영법이 활발히 행해지게 되었다. 이 터모신테시스법의 원리는 상당히 오래 전부터 알려져 있지만(예를 들면 특허 문헌 1을 참조), 근래에는, 이 터모신테시스법에 의거한 화상 재구성의 간편함을 향수하려고 하는 단층촬영법도 제안되고 있다(예를 들면 특허 문헌 2 및 특허 문헌 3을 참조). 또, 치과용 및 맘모그래피(mammography)에서 그 예가 다수 볼 수 있게 되었다(예를 들면 특허 문헌 4, 특허 문헌 5, 특허 문헌 6을 참조).
터모신테시스법을 치과용으로 응용하는 경우, 통상, 만곡한 치열을 2차원 평면상에 전개한 파노라마 화상을 얻는 파노라마 촬상 장치로서 실용화되고 있다. 이 파노라마 촬상 장치는, 통상, 피검체의 구강부의 주위에 X선관과 세로길이의 폭에 걸쳐 화소를 가지는 X선검출기와의 쌍을, 그 회전 중심이 상정된 치열에 따른 일정 궤도를 그리도록, 그 회전 중심을 복잡하게 이동시키면서 회전시키는 기구를 구비한다. 이 일정 궤도는, 표준의 형상 및 사이즈로 간주되는 치열에 따라 미리 설정한 3D 기준 단층면에 초점을 맞히기 위한 궤도이다. 이 회전 중에, 일정 간격으로, X선관으로부터 조사된 X선이 피검체를 투과하여 X선검출기에 의해 디지털량의 프레임 데이터로서 검출된다. 이 때문에, 3D 기준 단층면에 초점을 맞춘 프레임 데이터가 일정 간격마다 수집된다. 이 프레임 데이터를 터모신테시스법으로 재구성하고, 3D 기준 단층면의 파노라마 화상을 얻는다.
하지만, 이런 종류의 종래의 파노라마 촬상 장치의 경우, 각각의 피검체의 치열이 3D 기준 단층면을 따르지 않는 것이나, 치열의 위치 결정의 어려움을 배려하고 있지 않는다. 당연하게, 치열의 형상이나 사이즈에는 개체 차이가 있고, 턱부의 크기도 개인에 따라 다르기 때문에 적절한 위치 결정도 어렵다. 이 결과, 재구성된 파노라마 화상에 초점 흐림이 있고, 정밀한 조사를 만족할 수 없는 것도 많다. 이 때문에, 충치나 치조농루 등의 정밀한 조사에는, 별도, 구내 촬영법에 의한 촬영이나 치과용의 CT스캐너에 의한 촬영이 필요하였다. 파노라마 촬상을 다시 하거나 다른 모댈리티(modality)에 의한 X선 촬영을 실시하거나 하면, 피검체로의 X선 피폭량도 증가하게 된다.
이러한 문제를 극복하고자 하여, 특허 문헌 7에 기재된 장치가 제공되고 있다. 이 공보에 기재된 파노라마 촬상 장치의 경우, 팬텀을 이용하여 치열의 깊이 방향의 위치와 게인(프레임 데이터의 상호 가산을 위한 거리 정보)을 사전에 계측하고 있다. 또, 수집한 프레임 데이터를 이용하여 터모신테시스법에 근거하여 3D 기준 단층면의 초점 최적화 화상을 형성한다. 게다가 이 초점 최적화 화상 상에서 ROI를 이용하여 부분 영역을 지정하고, 이 부분 영역의 전후 방향(X선관과 X선검출기를 연결한 치열의 전후 방향)의 임의 위치에서의 최적 초점 화상을 기수집 종료 프레임 데이터와 게인을 이용하여 터모신테시스법에 근거하여 요구한다. 이와 같이, 3D 기준 단층면에 초점을 맞춘 데이터 수집은 1회 실시하고, 그 후의 부분 영역의 최적 초점 화상은 수집 종료 프레임 데이터를 이용할 수 있다.
특허 문헌 1 : 일본 특개소 57-203430 특허 문헌 2 : 일본 특개평 6-88790 특허 문헌 3 : 일본 특개평 10-295680 특허 문헌 4 : 일본 특개평 4-144548 특허 문헌 5 : 일본 특개 2008-110098 특허 문헌 6 : 미국 특허 공개 US2006/0203959 A1 특허 문헌 7 : 일본 특개 2007-136163
하지만, 이 특허 문헌 7에 기재된 파노라마 촬상 장치의 경우, 촬상 대상인 치아의 상하 방향의 곡선이나 휘어진 상태에 배려하고 있지 않다. 치열을 형성하는 각 치아는 상하 방향으로 같은 위치에는 없는 것이 통상이다. 치아는, 치근부로 나아갈수록, 구강부 내측으로 구부러지고 있는 케이스가 많다. 즉, 하나의 단층면 상에서 각 치아 전역에 초점을 맞추는 것은 어렵다. 이 점에서, 각 치아의 상하 방향의 전역에 걸쳐 초점을 맞추고, 그 묘출능을 올릴 필요가 있었다. 즉, 이 파노라마 촬상 장치에서, 각각의 부분 영역에 대해서는, 그 전후 방향의 임의의 위치에서 초점을 맞춘 재구성은 가능하지만, 치열 전체에 초점을 맞춘 1장의 파노라마 화상을 얻는 것은 어렵다. 반대로, 최적 초점의 부분 화상을 연결하여 전체의 파노라마 화상을 표현하려고 해도, 이러한 부분 화상의 이음매에 어긋남이 생겨 연결되지 않는다고 하는 문제도 있었다.
상술한 부적당은, 화상의 종횡 방향(치열의 상하 방향 및 폭 방향)의 확대율이 스캔 중의 회전 중심의 위치의 변화에 따라 다른 것에 의해 조장된다. 확대율은, 치아의 실제의 크기와, 그 치아의 음영이 검출기의 X선 입사면에 만드는 확대된 투영상의 크기와의 비를 말한다. 이것은 X선관의 X선조사원은 점으로 간주될 만큼 작기 때문에, 그 점 형상의 X선원으로부터 X선이 방사상으로 조사되는 것에 의한다. 단, 터모신테시스법에 근거하여 3D 단층면에 있는 치열을 재구성 하는 경우, 가로 방향에 대해서는, 화상은 어느 위치에서도 등배가 되지만, 종방향에 대해서는 확대가 그대로 남는다. 이 결과, 재구성된 파노라마 화상은 실제의 치열보다도 세로길이의 화상이 된다. 게다가, 이러한 확대, 즉 세로길이가 되는 정도는, 전치부 부근의 위치와 양쪽의 어금니부(이른바 어금니) 부근의 위치와의 사이에 치아의 종방향의 형상의 변화에 차이가 있고, 이것이 파노라마 화상상에서 치아 상호간의 왜곡이 되고 있다. 하물며, 치열이 3D 기준 단층면에 전체적으로도 혹은 부분적으로도 따르지 않은 경우, 종횡 방향의 확대로 인한 치열 부위 간의 화상왜곡은 한층 현저하게 된다.
때문에, 디지털량으로 프레임 데이터 수집을 실시하고, 그 프레임 데이터로부터 파노라마 화상을 재구성하는 종래의 파노라마 촬상 장치에서는, 적어도 앞니를 중심으로 종횡비가 같게 되도록 세로 방향의 사이즈를 줄이는 계수를 재구성 화상에 곱한 후 처리를 하는 것이 많다. 다만, 이 경우에서도, 파노라마 화상에서의 어금니부의 치아의 높이는 그 실치수 보다 작게 줄어들어 묘출된다. 즉, 여전히, 확대율의 서로 다름에 수반하는 치아 각각에 화상왜곡이 있었다.
이와 같이, 종래에서는, 확대율로 인한 문제는 해결되지 않고, 파노라마 화상 전역의 최적 초점화는 달성되지 않았다. 이 때문에, 종래의 파노라마 화상에 묘출된 치아나 잇몸으로부터 정밀도가 높은 독영(讀影)이나 진찰을 실시하는 것은 곤란한 경우가 많다. 특히, 보다 정확한 길이나 거리를 구하는 것은 곤란하였다. 이 때문에, 임플란트 치료 등에서, 임플란트 매설부의 위치를 정밀도 좋게 결정하는 것은 어렵다.
이것을 조금이라도 보상하기 위해서, 어떠한 기준 위치를 나타내는 마커를 치열의 소망한 위치에 설치한 상태로 촬상하고, 화상상에서 기준 위치를 참조하여 보정 함으로써 정밀도를 유지하는 방법도 알려져 있다. 그러나, 이 경우, 촬영과 진단의 순서가 번잡하게 된다. 조작자의 조작상의 부담도 크기 때문에, 스크리닝(screening) 등의 예방적인 진찰에 간단하게 적용할 수 있는 방법은 아니었다. 따라서, 스크리닝 등의 예방적인 치료로부터 임플란트 치료 등의 복잡한 치료까지 폭넓게 사용할 수 있는 파노라마 화상으로의 니즈는 지극히 높았다.
또, 치열 전체의 전후 방향에서의 구조를 진찰하는 데에는 3차원의 파노라마 화상이 적절하다. 하지만, 종래, 상술의 여러가지 부적당을 해소하면서, 그러한 니즈에 적합한 화상은 제공되지 않았다.
본 발명은, 상기 사정을 고려한 것으로, 촬상 부위의 실제 상태(위치, 형상)를 3차원적으로 보다 고정밀도로 묘출한 상태로 화상 전역을 최적 초점화하고, 한편 확대율의 서로 다름에 따른 화상의 왜곡을 대부분 배제한 3차원 최적 초점 화상을 제공할 수 있는 방사선 촬상법을 제공하는 것을, 그 목적으로 한다.
상술한 목적을 달성하기 위해서, 본 발명은 방사선 촬상 장치, 데이터 처리 장치, 방사선을 이용한 촬상 방법, 및, 컴퓨터용의 프로그램을 그 카테고리로서 제공한다.
이 중, 방사선 촬상 장치는, 방사선을 방출하는 방사선 방출원과, 상기 방사선이 입사 했을 때에 해당 방사선에 대응한 디지털 전기량의 2차원 데이터를 프레임 단위로 출력하는 방사선 검출기와, 상기 방사선 방출원과 상기 방사선 검출기의 쌍, 해당 방사선 검출기, 또는, 대상물을 나머지의 요소에 대해서 이동시키는 이동 수단과, 상기 이동 수단에 의한 이동의 사이에, 상기 방사선 검출기로부터 출력되는 상기 데이터를 프레임 단위로 수집하는 데이터 수집 수단과, 상기 데이터 수집 수단에 의해 수집된 상기 데이터를 이용하여 상기 대상물의 촬상 부위의 초점을 최적화하고, 한편, 해당 촬상 부위의 실제의 크기 및 형상을 반영시킨 3차원 최적 초점 화상으로서 작성하는 화상 작성 수단을 구비한 것을 요지로 한다.
또, 데이터 처리 장치는, 방사선을 방출하는 방사선 방출원과, 상기 방사선이 입사 했을 때에 해당 방사선에 대응한 디지털 전기량의 2차원 데이터를 프레임 단위로 출력하는 방사선 검출기와, 상기 방사선 방출원과 상기 방사선 검출기의 쌍, 해당 방사선 검출기, 또는, 대상물을 나머지의 요소에 대해 이동시키는 이동 수단과, 상기 이동 수단에 의한 이동의 사이에, 상기 방사선 검출기로부터 출력되는 상기 데이터를 프레임 단위로 수집하는 데이터 수집 수단을 구비한 시스템으로부터 출력되는 상기 데이터를 처리하는 장치이고, 상기 데이터를 입력하여 격납하는 데이터 격납 수단과, 상기 데이터 격납 수단에 의해 격납되고 있는 상기 데이터를 이용하여 상기 대상물의 촬상 부위의 초점을 최적화하고, 한편, 해당 촬상 부위의 실제의 크기 및 형상을 반영시킨 3차원 최적 초점 화상으로서 작성하는 화상 작성 수단을 구비한 것을 요지로 한다.
게다가 방사선을 이용한 촬상 방법은, 방사선원과 이 방사선원으로부터 방사선이 입사 했을 때에 해당 방사선에 대응한 디지털 전기량의 2차원 데이터를 프레임 단위로 출력하는 방사선 검출기와의 쌍, 해당 검출기, 또는, 촬상하는 대상물을 나머지의 요소에 대해서 상대적으로 이동시키면서, 해당 이동 중에 상기 방사선 검출기로부터 출력되는 상기 데이터를 프레임 단위로 수집하는 데이터 수집 단계와, 상기 데이터 수집 단계에서 수집된 상기 데이터를 이용하여 상기 대상물의 촬상 부위의 초점을 최적화하고, 한편, 해당 촬상 부위의 실제의 크기 및 형상을 반영시킨 3차원 최적 초점 화상으로서 작성하는 화상 작성 단계를 구비한 것을 요지로 한다.
더욱이 또, 컴퓨터용의 프로그램은, 메모리에 미리 격납되고, 한편, 해당 메모리로부터 독출 가능한 프로그램이고, 방사선을 방출하는 방사선 방출원과, 상기 방사선이 입사 했을 때에 해당 방사선에 대응한 디지털 전기량의 2차원 데이터를 프레임 단위로 출력하는 방사선 검출기와, 상기 방사선 방출원과 상기 방사선 검출기의 쌍, 해당 검출기, 또는, 대상물을 나머지의 요소에 대해서 이동시키는 이동 수단과, 상기 이동 수단에 의한 이동의 사이에, 상기 방사선 검출기로부터 출력되는 상기 데이터를 프레임 단위로 수집하는 데이터 수집 수단을 구비한 시스템으로부터 출력되는 상기 데이터를 컴퓨터로 처리시키는 프로그램이다. 이 프로그램은, 상기 컴퓨터를, 상기 데이터를 이용하여 상기 대상물의 촬상 부위의 소망한 기준 단층면을 상기 검출기의 검출면에 투영 시킨 투영 화상을 기준면 화상으로서 재구성 하는 단계와, 상기 기준 단층면을 따르는 복수의 단층면을, 해당 기준 단층면에 대향한 방향으로 설정하는 단계와, 상기 복수의 단층면의 각각의 화소치를, 상기 기준 단층면의 화소치를 이용하여 연산하는 단계와, 상기 기준 단층면과 상기 화소치가 부여된 상기 복수의 단층면과의 화상 데이터를 이용하여 상기 촬상 부위의 최적 초점화 된 샘플 위치를 분류하는 단계와, 상기 분류된 샘플 위치에, 상기 X선관으로부터 해당 각 샘플 위치를 통해 상기 검출기를 접하는 시선상에 존재하고 한편 상기 기준면 화상의 대응하는 샘플점의 화소치에 근거하는 화소를 부여하는 단계와, 상기 화소치가 부여된 상기 샘플 위치에서의 상기 기준 단층면 및 상기 복수의 단층면이 가지는 화소치의 주파수 특성의 패턴 인식에 의해 상기 촬상 부위의 위치를 결정하는 단계와, 상기 결정된 촬상 부위의 위치 가운데 특이점을 제거하는 단계와, 상기 특이점이 제거된 상기 촬상 부위의 위치를 연결하여 해당 촬상 부위의 실제의 크기 및 형상을 반영시킨 3차원 최적 초점 화상으로서 작성하는 단계를 기능적으로 실행시킨다.
이상과 같이, 본 발명에 방사선 촬상 장치, 데이터 처리 장치, 방사선에 의한 촬상 방법, 및 컴퓨터용의 프로그램에 의하면, 수집 데이터를 이용하여 대상물의 촬상 부위의 초점을 최적화하고, 한편, 그 촬상 부위의 실제의 크기 및 형상을 반영시킨 3차원 최적 초점 화상으로서 작성된다. 즉, 촬상 대상의 실제 상태(위치, 형상)를 3차원적으로 보다 고정밀도로 묘출한 상태로 화상 전역을 최적 초점화하고, 한편, 확대율의 서로 다름에 따른 화상의 일그러짐을 대부분 배제한 3차원 최적 초점 화상이 3차원 파노라마 화상으로서 제공된다.
도 1은, 본 발명의 하나의 실시 형태와 관련되는 방사선 촬상 장치로서의 X선에 의한 파노라마 촬상 장치의 전체 구성의 개략을 나타내는 사시도.
도 2는, 실시 형태와 관련되는 파노라마 촬상 장치가 대상으로 하는 피검체의 치열, 그 치열로 설정되는 3D 기준 단층면, 및 X선관과 검출기와의 쌍이 회전할 때의 회전 중심의 궤적을 설명하는 도.
도 3은, 파노라마 촬상 장치에서의 X선관, 3D 기준 단층면, 및 검출기의 지오미트리(geometry)를 설명하는 사시도.
도 4는, 파노라마 촬상 장치의 전기적인 구성의 개략을 설명하는 블럭도.
도 5는, 파노라마 촬상 장치의 컨트롤러 및 화상 프로세서가 협동하여 실행하는 촬상을 위한 처리의 개요를 나타내는 플로차트.
도 6은, X선관, 3D 기준 단층면, 회전 중심, 및 검출기의 위치 관계를 설명하는 도.
도 7은, 프레임 데이터와 파노라마 화상의 사상 위치와의 관계를 설명하는 그래프.
도 8은, 기준 파노라마 화상의 일례를 모식적으로 나타내는 도.
도 9는, 기준 파노라마 화상에 ROI를 설정했을 때의 화상의 일례를 모식적으로 나타내는 도.
도 10은, 화상 프로세서가 실행하는 치아의 실재하는 위치, 형상을 분류하는 처리의 개요를 설명하는 플로차트.
도 11은, X선관과 검출기의 쌍의 회전 중심의 변화에 수반하는 3D 파노라마 화상상의 Z축 방향의 동일 위치로부터 X선관으로의 투영 각도의 차이를 설명하는 도.
도 12는, 3D 기준 화상의 일례를 모식적으로 나타내는 도.
도 13은, 3D 기준 단층면에 부가하는 복수의 평행한 단층면을 설명하는 사시도.
도 14는, X선관과 검출기의 쌍의 회전 중심의 변화에 수반하는, 3D 파노라마 화상상의 Z축 방향의 동일 위치로부터 X선관에 투영 했을 때의 복수의 단층면상의 위치의 차이를 설명하는 도.
도 15(1)는 도 15(2)와 협동하여 3D 기준 화상상의 위치마다 최적 초점의 단층면을 특정하는 처리를 설명하는 도.
도 15(2)는 도 15(1)와 협동하여 3D 기준 화상상의 위치마다 최적 초점의 단층면을 특정하는 처리를 설명하는 도.
도 16은, 최적 초점 위치의 특정 처리에서의 주파수 해석의 결과를 예시하는 그래프.
도 17은, 최적 초점 위치의 특정 처리에서의 최적 초점의 단층면의 위치의 일례를 나타내는 그래프.
도 18은, 단층면 위치에 따라 바뀌는 주파수 특성 패턴을 예시하는 그래프.
도 19는, 치아의 실재하는 위치가 3D 기준 단층면으로부터 어긋나 있는 상태를 설명하는 도.
도 20은, 치아를 3D 기준 단층면의 위치로부터 그 실재하는 위치로 쉬프트 시키는 상태를 확대율의 대소에 따라 설명하는 도.
도 21은, 치아를 3D 기준 단층면의 위치로부터 그 실재하는 위치로 쉬프트 시키는 상태를 확대율의 대소에 따라 설명하는 도.
도 22는, 치아를 3D 기준 단층면의 위치로부터 그 실재하는 위치로 쉬프트 시키는 상태를 확대율의 대소에 따라 설명하는 도.
도 23은, 위치 분류 처리를 위해서 3D 기준 화상상의 처리점을 이동시키는 처리를 설명하는 사시도.
도 24는, 처리점 마다 특정되는 최적 초점의 단층면 위치의 분류와, 그 이상한 분류를 설명하는 사시도.
도 25는, 최적 초점의 단층면 위치의 분류와 스무딩(smoothing)으로부터 작성된 3D 오토 포커스 화상을 모식적으로 나타내는 도.
도 26은, 3D 오토 포커스 화상을 3D 기준 단층면에 투영하는 처리의 개념을 설명하는 도.
도 27은, 3D 기준 단층면에 투영된 화상과 거기에 설정된 ROI를 모식적으로 설명하는 모식도.
도 28은, 3D 오토 포커스 화상을 기준 파노라마 화상의 2차원의 면에 투영하는 처리의 개념을 설명하는 도.
도 29는, 2D 참조 화상과 거기에 설정된 ROI를 모식적으로 설명하는 도.
도 30은, 변형예로서 설명되는 랜드마크(landmark)와 그 사용예를 설명하는 도.
도 31은, 각종의 랜드마크의 주파수 특성의 프로파일을 설명하는 도.
도 32는, 다른 변형예로서 설명되는 랜드마크와 그 사용예를 설명하는 도.
도 33은, 더 다른 변형예로서 설명되는 랜드마크와 그 사용예를 설명하는 도.
이하, 첨부 도면을 참조하여, 본 발명의 실시 형태를 설명한다.
도 1~29를 참조하여, 본 발명과 관련되는 3차원 위치 분류 장치, 방사선 촬상 장치, 및 방사선을 이용한 촬상 방법 중 하나의 실시 형태를 설명한다. 이러한 장치 및 방법은, 본 실시 형태에서는, X선을 이용한 치과용의 파노라마 촬상 장치로서 실시되고 있으므로, 이하, 이 파노라마 촬상 장치를 상술한다.
도 1에, 이러한 파노라마 촬상 장치(1)의 외관을 나타낸다. 이 파노라마 촬상 장치(1)는, 피검체의 악부를 X선으로 스캔하고, 그 디지털량의 X선 투과 데이터로부터 악부에 있는 3차원 구조의 치열의 실제의 위치(실재 위치)를 분류하고, 한편, 그 치열의, 후술하는 확대율의 격차(차이)를 보상한 파노라마 화상을 작성한다. 이 기본 성능에 더해, 이 파노라마 촬상 장치(1)는, 이러한 파노라마 화상으로부터 더욱 여러 가지의 형태의 표시 및 계측을 실시할 수 있는 등, 획기적인 성능을 제공할 수 있다. 또, 피검체에 있어서는 X선의 피폭량을 줄일 수 있고, 한편, 조작자에게 있어서는 사용하기 편리한 촬상 장치를 제공할 수 있다. 상술의 기본 성능을 얻으려면, 터모신테시스법(tomosynthesis)을 사용하고 있다.
이 파노라마 촬상 장치(1)의 구성의 개요를 설명한다. 도 1에 도시한 바와 같이, 이 파노라마 촬상 장치(1)은, 피검체(환자) P로부터 데이터를 예를 들면 피검체 P의 입위(standing position)의 자세로 수집하는 케이스(11)와, 이 케이스(11)가 실시하는 데이터의 수집을 제어하고, 그 수집한 데이터를 취입하여 파노라마 화상을 작성하고, 한편, 조작자(의사, 기사 등)와의 사이에 인터랙티브(interactive)로 또는 자동적으로 파노라마 화상의 후처리를 행하기 위한, 컴퓨터로 구성되는 제어 연산 장치(12)를 구비한다.
케이스(11)는, 스탠드부(13)와 이 스탠드부(13)에 대해서 상하동 가능한 촬영부(14)를 구비한다. 촬영부(14)는, 스탠드부(13)의 지주에 소정 범위에서 상하동 가능하게 장착되고 있다.
여기서, 설명의 편의를 위해, 파노라마 촬상 장치에 대해서는, 스탠드부(13)의 긴 방향, 즉 상하 방향을 Z축으로 하는 XYZ 직교좌표계를 설정한다. 또한 후술하는 2차원의 파노라마 화상에 대해서는, 그 횡축 방향을 j축, 종축 방향을 i축(=Z축)이라고 표기한다.
촬영부(14)는, 측면으로부터 보아, 대략 コ자형을 이루는 상하동 유닛(23)과, 이 상하동 유닛(23)에 회전(회동) 가능하게 지지되는 회전 유닛(24)을 구비한다. 상하동 유닛(23)은, 스탠드부(13)에 설치된, 도시하지 않는 상하 구동 기구(예를 들면, 모터 및 랙(rack) & 피니언(pinion))를 통해, 높이 방향의 소정 범위로 넘어 Z축 방향(종축 방향)으로 이동 가능하게 되어 있다. 이 이동을 위한 지령이, 제어, 연산 장치(12)로부터 상기 상하동구동 기구로 나온다.
상하동 유닛(23)은, 전술한 것처럼, 그 일방의 측면으로부터 보아 대략 コ자형을 이루고, 상하 각각의 측의 상측 암(23A) 및 하측 암(23B)과, 그 상측, 하측 암(23A, 23B)을 연결하는 세로 암(23C)이 일체로 형성되고 있다. 세로 암(23C)이, 전술한 스탠드부(13)에 상하동 가능하게 지지되고 있다. 이 암(23A~23C) 중, 상측 암(23A)과 세로 암(23C)이 협동하여 촬영 공간(실공간)을 형성하고 있다. 상측 암(23A)의 내부에는, 회전 구동용의 회전 구동 기구(30A)(예를 들면, 전동 모터 및 감속 기어 등)가 설치되어 있다. 이 회전 구동 기구(30A)는, 제어, 연산 장치(12)로부터 회전 구동용의 지령을 받는다. 회전 구동 기구(30A)의 출력축, 즉 전동 모터의 회전축은, 상측 암(23A)으로부터 하측(Z축 방향 하측)으로 돌출하도록 배치되어 있고, 이 회전축에, 회전 유닛(24)이 회전 가능하게 결합되고 있다. 즉, 회전 유닛(24)은, 상하동 유닛(23)에 수하(垂下, pendency )되어 있고, 회전 구동 기구(30A)의 구동에 부세(biasing)되어 회전한다.
또, 회전 구동 기구(30A)는 이동 기구(30B)에 연결하고 있다. 이 이동 기구(30B)는 도시하지 않는 전동 모터, 기어 등으로 구성되어 있다. 이 이동 기구(30B)나, 제어, 연산 장치(12)로부터 회전 구동용의 지령을 받아 동작하고, 회전 구동 기구(30A), 즉 회전 유닛(24)을 XY면을 따라 이동 가능하게 구성되어 있다. 이것에 의해, 후술하는 X선관 및 검출기의 쌍의 회전 중심의 궤적을, XY면에 따른 소정 범위에서 2차원적으로 일정 궤도를 따라 이동시킬 수 있다.
한편, 하측 암(23B)은, 상측 암(23A)과 동일 방향으로 소정 길이를 가지고 연장하여 설치 되어 있고, 그 첨단부에 친레스트(25, chin rest)가 형성되고 있다. 이 친레스트(25)에는, 바이트 블록(26)(또는 단순히 바이트라 칭한다)이 착탈 자유롭게 장착된다. 피검체 P는, 이 바이트 블록(26)을 동반한다. 이 때문에, 친레스트(25) 및 바이트 블록(26)이 피검체 P의 구강부의 고정 기능을 달성한다.
회전 유닛(24)은, 그 사용 상태에서, 그 일방의 측면으로부터 보아 대략 コ자형으로 형성된 외관을 가지고, 그 개방단측을 하측으로 향해 회전 자유롭게 상측 암(23A)의 모터 출력 축으로 장착되고 있다. 자세하게는, 가로 방향, 즉 XY평면 내에서 평행으로 회전(회동)하는 가로 암(24A)과, 이 가로 암(24A)의 양단부에서 하방(Z축 방향)으로 연장한 좌우의 세로 암(제1 세로 암, 제2 세로 암)(24B, 24C)을 구비한다. 이 가로 암(24A) 및 좌우의 제1, 제2 암(24B, 24C)은 촬영 공간(실공간)에 위치하고, 제어 연산 장치(12)의 제어 하에서 구동 및 동작하게 되어 있다.
제1 세로 암(24B)의 내부의 하단부에 방사선 방출원으로서의 X선관(31)이 장비 되고 있다. 이 X선관(31)은, 예를 들면 회전 양극 X선관으로 구성되어 있고, 그 타겟(양극)으로부터 X선을 제2 세로 암(24C)을 향해 방사상에 방사시킨다. 이 타겟으로 충돌시키는 전자선의 초점은, 지름 0.5 mm~1 mm 정도로 작고, 따라서, 이 X선관(31)은 점형상의 X선원을 가진다. X선관(31)의 X선 출사측에는, 검출기(32)에 입사하는, 비교적으로 가는 빔형상의 X선을 실제의 수집용의 창(예를 들면 5.0 mm 폭의 창)으로 짜내는 슬릿 형상의 콜리메이터(33)가 장착되고 있다. 또한, 방사선 방출원을 구성하는 요소에는, 이 콜리메이터(33)를 포함하여도 무방하다.
한편, 제2 세로 암(24C)의 내부의 하단부에 방사선 검출 수단으로서의, X선 검출 소자를 2차원 형상(예를 들면, 64×1500의 매트릭스 형상)으로 배치한 디지털형 X선 검출기(32)가 장비 되고 있고, 이 입사창으로부터 입사하는 X선을 검출한다. 이 검출기(32)는, 일례로서 CdTe로 만들어진, 종장(세로가 긴)형의 검출부(예를 들면, 가로 6.4mm × 세로 150 mm)을 가지고 있다. 또한 본 실시 형태는 터모신테시스법을 채용하고 있기 때문에, 검출기(32)는 그 횡(폭) 방향에도 복수의 X선 검출 소자를 가지는 것이 필수이다.
이 검출기(32)는, 그 종방향을 Z축 방향으로 일치시켜 종방향에 배치된다. 이 검출기(32)의 가로 방향의 유효폭은, 전술한 콜리메이터(33)에 의해 예를 들면 약 5.0 mm로 설정된다. 이 검출기(32)는, 예를 들면 300 fps의 프레임 레이트(1 프레임은, 예를 들면, 64 × 1500 화소)로 입사 X선을, 해당 X선의 양에 따라 디지털 전기량의 화상 데이터로서 수집할 수 있다. 이하, 이 수집 데이터를 「프레임 데이터」라 칭한다.
촬영시에는, X선관(31) 및 검출기(32)는, 피검체 P의 구강부를 사이에 두고 서로 대치하도록 위치하고, 그 쌍 마다, 일체로 구강부의 주위를 회전하도록 구동된다. 다만, 이 회전은 단순한 원을 그리는 회전은 아니다. 즉, X선관(31) 및 검출기(32)의 쌍은, 그 쌍의 회전 중심 RC가, 도 2에 도시한 것과 같이, 대략 말굽형의 치열의 내측에서 원호를 2개 연결한 것 같은 산 형상의 일정한 궤도를 그리도록 하여 회전 구동된다. 이 일정한 궤도는, 구강부의 표준적인 형상 및 사이즈인 치열에 따른 단층면(이하, 3D 기준 단층면) SS에 X선 초점을 맞추고 한편 그 3D 기준 단층면 SS를 추종하도록 미리 설계된 궤도이다. 이 3D 기준 단층면 SS에 X선 초점을 추종시킬 때, X선관(31) 및 검출기(32)는 3D 기준 단층면 SS로부터 보았을 때에 반드시 동일한 각속도로 회전하는 것은 아니다. 즉, 이 회전은, 「치열에 따른 이동」이라고도 칭할 수 있는 회전이며, 각속도를 적당하게 바꾸면서 회전하고 있다.
그런데, X선관(31) 및 검출기(32)는 피검체 P의 구강부를 사이에 두고 대치하도록 위치하면서 이동할 필요가 있다. 하지만, 그 대치 상태는, X선관(31) 및 검출기(32)는 반드시 정대하는 것을 요구하는 것은 아니다. 장치의 설계의 형편에 따라서는, X선관(31)과 검출기(32)는 서로 독립하여 회전 이동하고, 피검체 P의 구강부를 사이에 두면서도, X선 조사가 비스듬하게 되는 회전 위치를 포함하도록 하여도 무방하다.
3D 기준 단층면 SS를 Z축 방향으로부터 보았을 때의 XY면상의 궤적은, 상술한 것과 같은, 대략 말굽형을 이루고 있기 때문에, 도 2에 일례를 도시한다. 이 3D 기준 단층면 SS의 궤적은, 예를 들면 문헌 「R. Molteni, “A universal test phantom for dental panoramic radiography” MedicaMudi, vol. 36, no. 3, 1991」에 의해도 알려져 있다. 이 3D 기준 단층면 SS의 공간 위치 정보는 미리 ROM(61)에 격납되어 있다.
또한, 이 3D 기준 단층면 SS는, 이와 같이 공지의 면으로 설정하여도 무방하지만, 피검자 개인에 맞추어 미리 설정해 두어도 무방하다. 그러한 설정법으로서, 카메라에 의해 촬영된 표면형상으로부터 작성된 소망한 3차원 단면, MRI(자기 공명 이메징) 장치, CT(컴퓨터 토모그래피) 스캐너, 또는 초음파 진단 장치를 포함한 의료용 모댈리티에 의해 촬영된 피검자의 소망한 3차원 단면, 또는, 해당 의료용 모댈리티에 의해 촬상된 해당 피검자의 3차원 데이터로부터 결정한 소망한 3차원 단면 중 어느 하나라도 무방하다. 이러한 3D 기준 단층면 SS는 공지의 수법을 사용하여 설정하고, 미리 ROM(61)에 격납해 두면 무방하다.
X선관(31), 3D 기준 단층면 SS, 검출기(32), 회전축 AXz, 및, 이 회전축 AXz가 관통하는 회전 중심 RC의 기하학적인 위치 관계는 도 3에 도시하게 된다. 3D 기준 단층면 SS는 검출기(32)의 입사구(X선 검출면 Ldet : 도 6 참조)에 평행이며, Z축 방향에 따른 만곡한 단면인 2차원에 전개했을 때에는 홀쪽한 구형 형상의 단면으로서 설정되어 있다.
도 4에, 이 파노라마 촬상 장치의 제어 및 처리를 위한 전기적인 블럭도를 도시한다. 동일 도면에 도시한 바와 같이, X선관(31)은 고전압 발생기(41) 및 통신 라인(42)을 통해 제어 연산 장치(12)에 접속되고, 검출기(32)는 통신 라인(43)을 통해 제어 연산 장치(12)에 접속되고 있다. 고전압 발생기(41)는, 스탠드부(13), 상하동 유닛(23), 또는 회전 유닛(24)에 구비할 수 있고, 제어 연산 장치(12)로부터의 제어 신호에 의해, X선관(31)에 대한 관전류 및 관전압 등의 X선 폭사 조건, 및, 폭사 타이밍의 스케줄에 따라 제어된다.
제어 연산 장치(12)는, 예를 들면 대량의 화상 데이터를 취급하기 때문에, 대용량의 화상 데이터를 격납 가능한, 예를 들면 퍼스널 컴퓨터로 구성된다. 즉, 제어 연산 장치(12)는, 그 주요한 구성요소로서, 내부 버스(50)를 통해 서로 통신 가능하게 접속된 인터페이스(51, 52, 62), 버퍼메모리(53), 화상 메모리(54), 프레임 메모리(55), 화상 프로세서(56), 컨트롤러(CPU)(57), 및 D/A 변환기(59)를 구비한다. 컨트롤러(57)에는 조작기(58)가 통신 가능하게 접속되고, 또, D/A 변환기(59)는 모니터(60)에도 접속되고 있다.
이 중, 인터페이스(51, 52)는 각각 고전압 발생기(41), 검출기(32)에 접속되어 있고, 컨트롤러(57)와 고전압 발생기(41), 검출기(32)와의 사이에서 교환되는 제어 정보나 수집 데이터의 통신을 매개한다. 또, 다른 인터페이스(62)는, 내부 버스(50)와 통신 라인을 연결하는 것으로, 컨트롤러(57)가 외부의 장치와 통신 가능하게 되어 있다. 이것에 의해, 컨트롤러(57)는, 외부에 있는 구내 X선 촬영 장치에 의해 촬영된 구내 화상도 취입되는 것과 동시에, 본 촬영 장치로 촬영한 파노라마 화상을 예를 들면 DICOM(Digital Imaging and Communications in Medicine) 규격에 의해 외부의 서버로 송출할 수 있게 되어 있다.
버퍼 메모리(53)는, 인터페이스(52)를 통해 수신한, 검출기(32)로부터의 디지털량의 프레임 데이터를 일시적으로 기억한다.
또, 화상 프로세서(56)는, 컨트롤러(57)의 제어 하에 놓여져 있고, 장치측이 제공하는 소정의 3D 기준 단층면의 파노라마 화상의 작성 및 그 파노라마 화상의 후이용을 위한 처리를 조작자와의 사이에 인터랙티브에 실행하는 기능을 가진다. 이 기능을 실현하기 위한 프로그램은, ROM(61)에 미리 격납되고 있다. 이 때문에, 이 ROM(61)은, 본 발명과 관련되는 프로그램을 격납하는 기록 매체로서 기능한다. 또한 이 프로그램은 미리 ROM(61)에 격납해 두어도 무방하지만, 경우에 따라서는, 외부 시스템으로부터 통신회선이나 운반 가능한 메모리를 통해, 도시하지 않는 RAM 등의 기록 매체에 인스톨 하도록 하여도 무방하다.
상술한 3D 기준 단층면은, 본 실시 형태에서는, 장치측에서 미리 준비되어 있다. 또한 3D 기준 단층면은, 장치측에서 미리 준비된 복수의 단층면으로부터 촬영 전에 선택하도록 하여도 무방하다. 즉, 3D 기준 단층면으로서의 고정한 단면인 것에는 변화는 없지만, 이러한 선택 동작에 의해, 3D 기준 단층면의 위치를, 치열의 깊이(전후) 방향의 일정 범위에서 변경 가능하게 하여도 무방하다.
화상 프로세서(56)에 의해 처리되는 또는 처리 도중의 프레임 데이터 및 화상 데이터는 화상 메모리(54)에 읽고쓰기 가능하게 격납된다. 화상 메모리(54)에는, 예를 들면 하드 디스크 등의 대용량의 기록 매체(불휘발성 또한 읽고쓰기 가능)가 사용된다. 또, 프레임 메모리(55)는, 재구성된 파노라마 화상 데이터, 후처리되는 파노라마 화상 데이터 등을 표시하기 위해 사용된다. 프레임 메모리(55)에 기억되는 화상 데이터는, 소정 주기로 D/A 변환기(59)로 호출되어 아날로그 신호로 변환되고, 모니터(60)의 화면에 표시된다.
컨트롤러(57)는, ROM(61)에 미리 격납되고 있는 제어 및 처리의 전체를 담당하는 프로그램에 따라, 장치의 구성요소의 전체의 동작을 제어한다. 이러한 프로그램은, 조작자로부터 각각 제어 항목에 대해 인터랙티브로 조작 정보를 받아들이도록 설정되어 있다. 이 때문에, 컨트롤러(57)는, 후술하는 것과 같이, 프레임 데이터의 수집(스캔) 등을 실행 가능하게 구성되어 있다.
이 때문에, 환자는, 도 1에 도시한 바와 같이, 입위 또는 좌위의 자세로 친레스트(25)의 위치에 턱을 두어 바이트 블록(26)을 입에 무는 것과 동시에, 헤드레스트(28)에 이마를 꽉 누른다. 이것에 의해, 환자의 머리 부분(악부)의 위치가 회전 유닛(24)의 회전 공간의 거의 중앙부에서 고정된다. 이 상태에서, 컨트롤러(57)의 제어의 원(source), 회전 유닛(24)이 환자 두부의 주위를 XY면에 따라, 및/또는, XY면에 오블리크(oblique)한 면을 따라 회전한다(도 1 중의 화살표 참조).
이 회전 동안에, 컨트롤러(57)로부터의 제어를 원인으로, 고전압 발생기(41)가 소정 주기의 플러스모드로 폭사용의 고전압(지정된 관전압 및 관전류)을 X선관(31)에 공급시키고, X선관(31)을 플러스모드로 구동시킨다. 이것에 의해, X선관(31)으로부터 소정 주기에 펄스 형상의 X선이 폭사된다. 이 X선은, 촬영 위치에 위치하는 환자의 악부(치열 부분)를 투과하여 검출기(32)에 입사 한다. 검출기(32)는, 전술한 바와 같이, 매우 고속의 프레임 레이트(예를 들면 300 fps)로 입사 X선을 검출하고, 대응하는 전기량의 2차원의 디지털 데이터(예를 들면 64 × 1500 화소)를 프레임 단위로 순차 출력한다. 이 프레임 데이터는, 통신 라인(43)을 통해, 제어 연산 장치(12)의 인터페이스(52)를 통해 버퍼 메모리(53)에 일시적으로 보관된다. 이 일시 보관된 프레임 데이터는, 그 후, 화상 메모리(53)에 전송 되어 보관된다.
이 때문에, 화상 프로세서(56)는, 화상 메모리(53)에 보관된 프레임 데이터를 이용하여 3D 기준 단층면 SS에 초점을 맞춘 단층상을 파노라마 화상(기준 파노라마 화상)으로서 재구성(작성) 한다. 즉, 이 기준 파노라마 화상은, 「3D 기준 단층면 SS에 치열이 존재하고 있다고 가정했을 때의 파노라마 화상」인 것으로 정의된다. 또, 이 화상 프로세서(56)는, 이 기준 파노라마 화상을 이용하여 3차원(3D) 기준 화상 및 3차원(3D) 오토 포커스 화상을 작성하는 등의 처리를 실시한다. 이 처리의 개요를 도 5에 도시한다. 3D 기준 화상은, 「3D 기준 단층면 SS에 치열이 존재하고 있다고 가정했을 때 3차원 화상」으로서 정의된다. 3D 오토 포커스 화상은, 「3D 기준 화상으로부터 프레임 데이터 또는 기준 파노라마 화상의 데이터를 이용하여 치열을 자동적으로 최적 초점화한 표면 화상(의사적인 3D 표면 화상)」으로서 정의된다. 즉, 이 3D 오토 포커스 화상은, 흐림이 적고, 한편, 치열의 실재 위치 및 그 실제의 사이즈를 정밀도 좋게 표현한 최적 초점화 된 표면 화상이다.
특히, 3D 오토 포커스 화상은, 피검체 각각에 따라 다른 것이 대부분이라고 하는 사실을 고려한 화상이다. 실제문제로서 각각의 피검체의 치열은 3D 기준 단층면 SS(도 6 참조)에 따르고 있는 것은 없고, 3D 기준 단층면 SS로부터 부분적으로 또는 전체적으로 어긋나 있거나, 그 면으로부터 기울어지거나 한다. 이 때문에, 3D 오토 포커스 화상은, 각각의 피검체의 치열의 실제의 3차원 공간 위치 형상을 자동적으로, 한편 정밀도 좋게 분류함과 함께, 그 분류 결과로부터 실제의 치열 형상을 자동적으로 묘출하는 것으로 작성된다.
X선관(31)(점 형상의 X선원으로서 기능한다)으로부터 조사된 X선은 피검체 P의 구강부를 투과하고, Z축 방향으로 일정한 길이를 가지는 세로길이의 검출기(32)에 의해 검출된다. 이 때문에, X선의 조사 방향은 도 3, 6에 도시한 바와 같이 오블리크가 된다. 따라서, 치아의 실제의 크기와 그 치아의 음영이 검출기(32)의 X선 입사면 Ldet에 작성하는 투영 형상의 크기와의 비(본 실시예에서는, 이 비를 「확대율」이라고 한다)는, 회전 중심 RC의 위치에 따라 변화한다. 즉, 도 6의 예(단, 치아의 높이에만 대해 설명하는 예)로 말하면, 치아의 실제의 높이 P1real과 X선 입사면Ldet 상의 높이 P1det와의 비가 회전 중심 RC의 위치에 따라 바뀐다. 이 회전 중심 RC의 위치는, 도 2에 예시한 것과 같이, 1회의 스캔(데이터 수집)의 동안에 변화하도록, 그 궤도가 미리 설정되어 있다. 이 이유는 이하와 같다. 도 6에 도시한 바와 같이, X선관(31)과 검출기(32)와의 사이의 거리 Dall은 일정하게 유지되고, 한편, 회전 중심 RC로부터 X선관(31) 및 검출기(32)에 이르는 거리 D1, D2도 일정하게 유지된다. 그 한편, 3D 기준 단층면 SS에 초점을 맞춘 스캔을 실시하기 때문에, 1회의 스캔의 동안에, 회전 중심 RC의 위치의 궤도는, 말굽 형상으로 만곡하고 있는 치열에 대해서, 일례로서 전술과 같이 산 형상(도 2 참조)으로 변화하도록 설계되고 있다.
구체적으로는, 회전 중심 RC로부터 3D 기준 단층면 SS까지의 거리 D3와 검출기(32)에서 3D 기준 단층면 SS까지의 거리 D4(D3 + D4 = D2)가 스캔이 진행되는 것에 따라 변화한다. 이것에 따라, 회전 중심 RC는 치열에 가까워지거나 멀어지거나 하므로, X선관(31)도 치열에 가까워지거나 멀어지거나 한다. X선관(31)의 X선원은 점 형상이라 간주되기 때문에, 높이에 대해 말하면, 동일 높이의 치아이라도, X선관(31)이 치열에 가까울수록 검출면 Ldet로의 투영상은 커진다. 즉, 확대율은 크다. 도 2의 예로 말하면 전치를 스캔할 때의 편이 어금니부를 스캔할 때와 비교하여, 회전 중심 RC가 치열에 가깝게 되고, 그 만큼, 확대율은 커진다. 예컨대, 도 2로 말하면, 전치부를 스캔하는, 예를 들면 X선 조사 방향 0도 시의 거리 d1은, 어금니부를 스캔하는, 예를 들면 X선 조사 방향 60도, 75도 시의 거리 d2, d3에 대해서, d1<d2, d1<d3, d2<d3의 관계에 있다. 도 2에 도시하는 회전 중심 RC의 궤적은 어디까지나 일례이지만, 이 회전 중심 RC가 치열에 가까워지고 멀어지는 것은, 3D 기준 단층면 SS에 초점을 맞추어 스캔하는 파노라마 촬상 장치의 경우, 통상, 적합한 사항이다.
이와 같이 확대율은 치열의 어느 치아의 부분을 스캔하는지에 따라 바뀌므로, 구강부의 구조나 시계열적인 변화를 정량적으로 해석하려고 할 때 중대한 장해가 된다.
이것에 더하여, 상술한 확대율의 문제는 치열이 3D 기준 단층면 SS에 따르고 있는 것으로 가정하여 설명했지만, 실제는 그렇지 않는 것이 대부분이다. 피검체의 실제의 치열은, 그 전체이든 부분적이든, 3D 기준 단층면 SS의 위치에는 없는 것이 대부분 있으므로, 촬상에는 그것도 고려해야 한다.
종래의 파노라마 화상은, 상술한 확대율로 인한 문제 및 실제의 치열의 3D 기준 단층면 SS로부터의 차이를 고려하지 않고 작성되고 있다. 이 때문에, 종래의 파노라마 화상으로부터 정량적인 구조 해석은 매우 곤란하고, 피검체 마다의 여러가지 형상이나 위치에 있는 치열이라도, 또, 동일 피검체의 치열 내의 치아의 위치의 여하와 무관하게, 고정밀도로 촬상할 수 있는 파노라마 촬상 장치가 바람직하고 있었다.
때문에, 본 실시예와 관련되는 파노라마 촬상 장치는, 동일한 치열이라도 확대율이 그 부분마다 다른 것으로 인한 화상의 일그러짐을 해소하면서, 실제의 피검체의 치열의 3차원 공간 위치(형상을 포함한다)를 자동적으로 또한 정밀도 좋게 분류하는 것을 특징 중 하나로 하고 있다. 이것에 의해, 종래에는 없는 지극히 위치(형상)의 분류 정밀도가 높은 3차원 파노라마 화상을 제공할 수 있다.
본 실시예에서는, 단층면의 화상을 얻기 위해서 터모신테시스법(tomosynthesis)을 이용하고 있다. 즉, 스캔에 의해 일정 레이트로 수집되는 프레임 데이터(화소 데이터) 중, 3D 기준 단층면의 XY면에 투영 되는 궤적의 각 위치에 대해 정해지는 복수의 프레임 데이터를, 그 위치에 따라 양만 서로 쉬프트 시켜 상호 가산하는 처리(쉬프트 & 애드)를 이용된다. 이 때문에, 본 실시예에서 말하는 「최적 초점」은, 「초점이 제일 맞고 있어, 초점 흐림이 적다」라고 하는 의미이며, 주목하는 부위가 그 이외의 부위 보다 해상도가 좋은, 또는, 화상의 전체의 해상도가 보다 높은 것을 말한다.
기준 파노라마 화상이 작성되면, 그 데이터는 화상 메모리(54)에 보관되는 것과 동시에, 모니터(60)에 적당한 모양으로 표시된다. 이 중, 표시 모양 등에 대해서, 조작기(58)로부터 주는 조작자의 의사가 반영된다.
(화상 처리)
계속해서, 도 5를 이용하여, 컨트롤러(57) 및 화상 프로세서(56)에 의해 협동하여 실행되는 처리를 설명한다. 이 처리에는, 상술한 것과 같이, 스캔에 의해 데이터 수집, 프레(pre) 처리로서의 기준 파노라마 화상의 재구성, 및 메인의 처리로서의 3차원 오토 포커스 화상(표면 화상)의 작성 및 그 3차원 오토 포커스 화상을 이용한 각종 모양에 따라 표시나 계측 등이 포함된다.
<데이터 수집 및 기준 파노라마 화상의 재구성>
우선, 컨트롤러(57)는, 피검체 P의 위치 결정 등 촬영의 준비가 끝나면, 컨트롤러(57)는, 3D 기준 단층면 SS의 위치 정보를 ROM(61)로부터 독출한다(단계 S0). 이 3D 기준 단층면 SS는 전술한 바와 같이, 통계적으로 정한 단면이라도 무방하고, 피검자 각자에 대해 미리 설정해 둔 단면이라도 무방하다.
다음으로, 컨트롤러(57)는, 조작기(58)를 통해 주어지는 조작자의 지시에 응답하여, 데이터 수집을 위한 스캔을 지령한다(단계 S1). 이것에 의해, 회전 구동 기구(30A), 이동 기구(30B), 및, 고전압 발생기(41)가 미리 설정되어 있는 제어 스케줄에 따라 구동한다. 이 때문에, X선관(31) 및 검출기(32)의 쌍을 피검체 P의 악부의 주위로 회전시키면서, 그 회전 동작의 사이에, X선관(31)에 펄스 형상(또는 연속파)의 X선을 소정 주기로(또는 연속적으로) 폭사시킨다. 이 때, X선관(31) 및 검출기(32)의 쌍은, 전술한 바와 같이 3D 기준 단층면 SS(도 6 참조)를 최적 초점화하도록 소정의 구동 조건 하에서 회전 구동된다. 이 결과, X선관(31)으로부터 폭사된 X선은 피검체 P를 투과하여 검출기(32)에 의해 검출된다. 따라서, 전술한 바와 같이, 검출기(32)로부터 예를 들면 300 fps의 레이트로 X선 투과량을 반영한 디지털량의 프레임 데이터(화소 데이터)가 출력된다. 이 프레임 데이터는 버퍼 메모리(53)에 일시 보관된다.
이 스캔의 지령이 끝나면, 처리의 지시는 화상 프로세서(56)에게 건네진다. 화상 프로세서(56)는, 3D 기준 단층면 SS의 공간 위치에 대응한 터모신테시스법에 근거하는 쉬프트 & 애드에 따라 기준 파노라마 화상 PIst를 재구성 함과 함께, 그 재구성한 화상의 각 화소치를 기억한다(단계 S2). 또한, 이 재구성 처리에서, 종래와 같이, 전치의 중심으로 종횡의 확대율이 같게 되도록 계수를 곱하는 처리도 실행된다.
이 재구성의 방법은 공지이지만, 약간 설명하여 둔다. 이 재구성에 사용하는 프레임 데이터 세트는, 예를 들면 도 7에 나타내는 파노라마 화상의 가로 방향의 사상 위치와 그 사상 위치의 화상을 작성하기 위해서 상호 가산하는 프레임 데이터 세트와의 관계를 나타내는 사상 특성으로부터 구한다. 이 사상 특성을 나타내는 곡선은, 프레임 데이터 방향(횡축)에서 양사이드의 어금니부에 따라 경사가 급격한 양곡선 부분과 전치부에 따라 경사가 어금니부의 그것보다 완만한 곡선 부분으로 구성되고 있다. 이 투영 특성상에서, 도시한 바와 같이, 파노라마 화상의 가로 방향에서의 소망한 사상 위치를 지정한다. 이것에 따라, 그 사상 위치의 화상을 작성하기 위해서 사용하는 프레임 데이터 세트와 그 쉬프트량(중합한 정도 : 즉 경사도)이 구해진다. 때문에, 그러한 프레임 데이터(화소치)를 그 지정한 쉬프트량으로 쉬프트 시키면서 서로 가산하고, 지정한 사상 위치의 세로 방향의 화상 데이터를 구한다. 파노라마 화상의 가로 방향의 전범위에 걸쳐, 상기 사상 위치의 지정과 쉬프트 & 애드를 실시하는 것으로, 3D 기준 단층면 SS에 초점을 맞혔을 때의 기준 파노라마 화상 PIst가 재구성된다.
화상 프로세서(56)는 다음으로, 이 기준 파노라마 화상 PIst를 모니터(60)로 표시시킨다(단계 S3). 이 기준 파노라마 화상 PIst의 예를 도 8에 모식적으로 나타낸다.
이 기준 파노라마 화상 PIst는, 프레임 데이터를 쉬프트 시키면서 서로 가산한 화상이므로, 구형 형상의 2차원 화상이다. 확대율에 대해 말하면, 앞니의 중심으로 종횡의 확대율의 비가 같게 되도록 계수를 곱하는 처리를 실시하고 있으므로, 종래와 동일하게, 확대율로 인한 전치부의 종횡의 화상 왜곡은 어느 정도 개선되고 있다. 그러나, 어금니부로 나아가는 것에 따라 치아의 종횡비는 무너진다. 즉, 어금니부의 치아는 실치수 보다 줄어들어 묘출된다. 종래는, 많은 경우, 이러한 왜곡이 있는 파노라마 화상으로 만족하고 있었다.
<기준 파노라마 화상상에서의 ROI 설정>
다음으로, 화상 프로세서(56)는 조작자는 조작기(58)를 사용하여 기준 파노라마 화상 PIst에 ROI(관심 영역)가 설정하는지를 판단한다(단계 S4). 여기서 설정하는 ROI는, 독영자가 특히 관심을 기울이는 예를 들면 구형 형상의 부분 영역이다. 물론, ROI는 반드시 구형이 아니라도 무방하다. 또한, 이 ROI는, 후술하는 오토 포커스에 의해 작성한 파노라마 화상에 대해 설정하여도 무방하고, 이 처리도 후술 된다.
이 단계 S4의 판단이 YES가 되면, 화상 프로세서(56)는 조작자의 조작 정보에 근거하여 기준 파노라마 화상 PIst에 ROI를 설정한다(단계 S5). 다음으로, ROI에 의해 설정된 부분 영역의 부분 화상을 절출하고, 그 부분 화상을 예를 들면 확대하여 표시한다(단계 S6). 이 부분 화상은, 예를 들면 도 9에 도시한 바와 같이, 원의 기준 파노라마 화상 PIst에 중첩하여 표시된다. 또, 이 1개 이상의 부분 화상을 윗니, 아랫니의 치열의 모식적으로 도시한 바와 같이 블록을 소정 순서로 나열한, 이른바 템플릿에 수집되도록 표시하여도 무방하다.
다음으로, 화상 프로세서(56)는 처리를 종료시키는지를 판단한다. 이 판단은 조작자로부터의 소정의 조작 정보가 있는지에 따른다(단계 S7). 아직 처리를 종료시키지 않다고 판단했을 경우(단계 S7, NO), 단계 S4까지 복귀하여 상술한 처리를 반복한다. 한편, 처리 종료의 판단을 할 수 있었을 경우, 도 5에 나타내는 처리를 종료시킨다.
한편, 화상 프로세서(56)는, 단계 S4의 판단으로 NO가 되는 경우, 즉 ROI를 설정하지 않는다고 판단했을 경우, 다음의 판단으로 이행한다. 즉, 메인의 처리로서의 3D 오토 포커스 화상을 작성하는지를, 조작자의 조작 정보로부터 판단한다(단계 S8). 이 작성도 실시하지 않는다고 판단했을 경우(단계 S8, NO), 단계 S7에 복귀하여 처리 종료인지를 전술한 것과 동일하게 판단한다.
<최적 초점의 단면 위치의 특정>
이것에 대해서, 3D 오토 포커스 화상을 작성한다고 판단했을 경우(단계 S8, YES), 단계 S9의 서브루틴 처리로 이행한다. 이 단계 S9에서 실행되는 처리는, 본 발명의 특징 중 하나를 이루기 때문에 , Z축 방향으로 오블리크인 X선 조사 방향에 기인한 치열의 사이즈의 일그러짐을 보정하면서 수행하는, 자동적인 치열의 실존 위치, 형상의 분류 처리이다.
이 실재 위치, 형상의 분류를 위한 서브루틴 처리를 도 10에 나타낸다.
우선, 화상 프로세서(56)는, X선 조사 방향을 고려하여 3D 기준 단층면 SS의 화상을 작성한다(단계 S51). 구체적으로는, 기준 파노라마 화상 PIst(구형)를 3D 기준 단층면 SS(만곡면)에 평행한 만곡면에 좌표 변화하여 3D 파노라마 화상을 작성한다. 그리고, 이 3D 파노라마 화상의 화소 각각을 X선 조사 방향 DRx에 따라 3D 기준 단층면 SS에, 단층면 변경의 연산에 의해 프레임 데이터를 구하고, 이것을 좌표 변환하기 때문에, 투영하고, 그 만곡한 3D 기준 단층면 SS의 투영 화상을 작성한다. 이 투영상의 화소치는 화상 메모리(54)에 보관된다.
여기서 수행되는 투영은, 도 11에 설명한 바와 같이, 회전 중심 RC(RC1, RC2)의 위치, 즉 X선관(31)의 위치로 향한 오블리크인 투영 방향에 따라 수행된다. 도 11의 예로 말하면, 3D 파노라마 화상상의 높이 방향(Z축 방향)에서의 동일 위치 Pn의 화소이라도, X선관(31)의 위치의 틀림에 따라 3D 기준 단층면 SS의 화상상이 다른 위치 SS1, SS2에 투영된다.
이 투영 처리에 의해 작성되는 투영 화상을 3D 기준 화상 PIref라고 부르기로 한다. 이 3D 기준 화상 PIref는, 기준 파노라마 화상 PIst의 위치마다, 전술한 확대율을 고려한 경사 방향의 투영에 의해 작성되고 있다. 전치부의 치아의 확대율이 큰 것이, 그 확대는 상술의 투영에 의해 열매 사이즈에 시정되고, 한편, 어금니부의 치아의 확대율이 작은 것이, 그 확대도 상술의 투영 보다 열매 사이즈에 시정된다. 이 때문에, 3D 기준 화상 PIref는 치아의 실치수로 표시된 화상이며, 스캔 중에 회전 중심 RC가 이동하는 것에 의한 확대율의 대소에 의한 왜곡이 제거된 화상이다. 다만, 이 3D 기준 화상 PIref는 치열이 3D 기준 단층면 SS에 따라 존재한다고 가정했을 때의 화상이기도 한다. 피검체 P의 실제의 치아는 3D 기준 단층면 SS에 따르고 있는 것은 드물기 때문에, 후술하는 한층 더 실재 위치의 분류 처리가 필요하게 된다.
화상 프로세서(56)는, 그 3D 기준 화상 PIref를 모니터(60)에 표시시켜, 조작자의 참조로 제공한다(단계 S52). 이 모습을 도 12에 나타낸다.
이 후, 화상 프로세서(56)는, 3D 기준 단층면 SS에, 그 면에 평행한 복수의 만곡한 단층면을 부가한다(단계 S53). 이 모습을 도 13에 나타낸다. 동일 도에는, 3D 기준 단층면 SS의 X선 조사 방향 DRx(치열의 깊이 방향)의 전후 각각 복수의 단층면이 부가되고 있다. 일례로서 3D 기준 단층면 SS의 전측에 복수의 단층면 SFm~SF1를 간격 D1(예를 들면 0.5 mm)로 설정하고, 그 후 측에 복수의 단층면 SR1~SRn을 간격 D2(예를 들면 0.5 mm)로 설정하고 있다. 간격 D1, D2는 동일하여도, 서로 상이하고 있더라도 무방하다. 또, 부가하는 단층면은, 3D 기준 단층면 SS의 전후에 1매씩(m, n=1)이라도 무방하고, 전후의 어느 쪽이라도 1매 또는 복수 매이라도 무방하다.
또한, 이 가상적으로 부가하는 단층면 SFm~SF1, SR1~SRn의 위치 데이터는, 3D 기준 단층면 SS의 위치 데이터와 함께 미리 ROM(61)에 격납되고 있기 때문에, 이것을 화상 프로세서(56)의 워크 에리어에 독출하는 것으로, 이러한 부가가 실행된다. 단층면 SFm~SF1, SS, SR1~SRn의 높이는 X선 조사 방향 DRx의 최대의 기울기와 치열의 높이를 고려하여 적당하게 설정되어 있다. 또, 분류 처리의 때 마다, 부가하는 단층면의 위치(간격 D1, D2) 및 매수를 인터랙티브로 변경하도록 하여도 무방하다.
다음으로, 화상 프로세서(56)는, 단계 S51에서 수행하는 것과 동시에, X선 조사 방향 DRx의 각도를 고려하여, 기준 파노라마 화상 PIst를, 부가한 단층면 SFm~SF1, SR1~SRn 각각, 단층면 변경의 연산에 의해 프레임 데이터를 구하고, 이것을 좌표 변환하는 것으로 투영한다(단계 S54). 이 결과, 부가 단층면 SFm~SF1, SR1~SRn 각각의 투영 화상이 작성된다. 이러한 투영상의 화소치는 화상 메모리(54)에 보관된다.
여기서 작성되는 투영 화상을 3D 부가 화상 PIsfm …, PIsf1, PIsr1, …, PIsrn라고 부른다. 이러한 3D 부가 화상 PIsfm, …, PIsf1, PIsr1, …, PIsrn도, 각각, 기준 파노라마 화상 PIst의 위치마다, 전술한 확대율을 고려한 경사 방향의 투영에 의해 작성되고 있다. 이것을 도 14의 예로 말하면, 3D 파노라마 화상 상의 높이 방향(Z축 방향)에서의 같은 위치 Pn의 화소이라도, X선관(31)의 위치의 틀림에 따라 3D 부가 화상 PIsfm, …, PIsf1, PIsr1, …, PIsrn 각각의 위에서 다른 위치로 투영된다.
이 때문에, 이러한 3D 부가 화상 PIsfm, …, PIsf1, PIsr1, …, PIsrn도 치아의 실치수로 표시된 화상이고, 스캔 중에 회전 중심 RC가 이동하는 것에 의한 확대율의 대소에 의한 왜곡이 제거된 화상이다. 다만, 이러한 3D 부가 화상 PIsfm, …, PIsf1, PIsr1, …, PIsrn는 치열이 각각의 부가 단층면 SFm~SF1, SR1~SRn에 따라 존재한다고 가정했을 때의 화상이기도 하다.
또한, 이 작성된 복수 매의 3D 부가 화상 PIsfm, …, PIsf1, PIsr1, …, PIsrn는 그대로 3차원 화상으로서 또는, 좌표 변환한 다음 직사각형 형상의 2차원 화상으로서 모니터(60)에 표시시키도록 하여도 무방하다.
이 후, 화상 프로세서(56)는 3D 기준 화상 PIref, 즉 3D 기준 단층면 SS에서의 초기 위치 P(x, y, z)=P(0,0,0)를 지정한다(단계 S55 : 도 15(A) 참조). 이것이 끝나면, 3D 기준 화상 PIref에서, 지정한 위치 P(x, y, z)를 중심으로 하는 일정 길이의 선분 Lc를 지정한다(단계 S56 : 도 15(B) 참조). 이 선분 Lc는 2n개(n=1, 2, 3, … ; 예를 들면 128) 분의 화소에 상당하는 길이를 가진다. 또한 선분 Lc는 만곡하는 3D 기준 단층면 SS의 일부를 따라 만곡하고 있어도 무방하고, 직선으로 간주할 수 있는 범위로 설정하여도 무방하다.
다음으로, 화상 프로세서(56)는, 지정된 선분 Lc(x, y, z)의 화상 상의 상하에 복수 개의 동일 길이의 선분 Ladd를 가상적으로 부가한다(단계 S57 : 도 15(C) 참조).
게다가 상술한 선분 Lc 및 복수의 선분 Ladd의 각각을 구성하는 2n 개분의 화소 각각의 화소치 Pij를 화상 메모리(54)로부터 독출하고, 이것을 각 선분에 할당한다(단계 S58). 이 화소치 Pij는, 전술한 단계 S51, S54에서 이미 취득하여 보관하고 있던 값이다.
다음으로, 복수의 선분 Lc 및 Ladd의 대응하는 화소의 화소치 Pij 서로를 가산하고, 선분 Lc(x, y, z)를 구성하는 주파수 해석용의 2n 개의 화소치 Pij*를 구한다(단계 S59 : 도 15(D) 참조). 이 가산으로부터 선분 L(x, y, z)의 원의 화소치에 통계적 노이즈가 혼입하고 있는 경우에서도, 그 화소치의 변화에 대해 후술하는 주파수 해석을 수행할 때의 통계적 노이즈를 저감시킬 수 있다.
그 다음으로, 화상 프로세서(56)는, 부가한 3D 부가 화상 PIsfm, …, PIsf1, PIsr1, …, PIsrn의 각각 두고, 상술의 3D 기준 화상 PIref 상에서 현재 지정되고 있는 선분 Lc(x, y, z)이, 현재 지정되고 있는 위치 P(x, y, z)를 통과하는 X선 조사 방향 DRx에서 대향하는 선분 Lfm~Lf1, Lr1~Lrn의 위치를 특정한다(단계 S60 : 도 15(E) 참조). 이 때, 선분 Lc의 현재의 중심 위치 P(x, y, z) 및 그 길이, 및, 스캔 중의 X선관(31)의 회전 위치를 알 수 있기 때문에, 선분 Lc의 양단과 X선관(31)을 연결할 수 있는, Z축 방향으로부터 보았을 때에 부채형이 되는 X선 조사 범위 RA를 연산할 수 있다. 이 때문에, 위치 P(x, y, z)가 지정되면, 그 X선 조사 범위 RA에 위치하는 선분 Lfm~Lf1, Lr1~Lrn의 위치를 특정할 수 있다.
또한, 3D 기준 화상 PIref 상에 위치 P(x, y, z)를 지정하는 단계 S60의 처리는 전부의 위치 지정이 끝날 때까지 반복된다. 이 때문에, 실효적으로는, 가상한 단층면 SFm~SF1, SS, SR1~SRn를, 위치가 원근하는 X선관(31)으로부터 조사된 X선은 범위 H1~H2(Z축 방향의 범위)로 부채형으로 투과하게 된다(도 15(F)). 이 때문에, 단층면 SFm~SF1, SS, SR1~SRn 그 자체를, 그 높이가 스캔 방향마다 바뀌는 한편 서로 평행한 대략 말굽형의 단면으로서 설정하여도 무방하다.
상술한 바와 같이 선분 Lfm~Lf1, Lr1~Lrn가 정해지면, 화상 프로세서(56)는, 그러한 선분의 화소치 Pij*를 화상 메모리(54)로부터 독출한다(단계 S61).
도 15(E)에 도시한 바와 같이, X선관(31)은 점원이기 때문에, X선 조사 범위 RA는 부채형(Z축 방향으로부터 보았을 때에)이 되고 있다. 이 때문에, 선분 Lfm~Lf1, Lr1~Lrn 각각의 화소수는 2n개로부터 어긋나 버리고 있다. 때문에, 화상 프로세서(56)는, 부가한 선분 Lfm~Lf1, Lr1~Lrn의 화소수가 기준이 되는 선분 Lc(x, y, z)의 화소수 2n개와 동일하게 되도록, 선분 Lfm~Lf1, Lr1~Lrn 각각의 화소수에 간격 D1, D2에 따른 계수를 곱한다(단계 S62). 따라서, 도 15(G)에 모식적으로 도시한 바와 같이, 모든 선분 Lfm~Lf1, Lc, Lr1~Lrn는 서로 평행으로 한편 동일한 2n개의 화소로 구성된다.
이 후, 화상 프로세서(56)는, 준비된 모두 선분 Lf1~Lfm, Lc, Lr1~Lrn의 화소의 값의 변화를 주파수 해석한다(단계 S63). 이 결과, 선분 Lf1~Lfm, Lc, Lr1~Lrn 각각에 대해, 도 15(H)에 도시한 바와 같이, 횡축에 주파수 및 종축에 푸리에 계수(진폭치)로 하는 해석 결과를 얻을 수 있다.
또한, 이 주파수 해석에는 고속 푸리에 변환(FFT)을 이용하고 있지만, 웨이블릿(wavelet) 변환을 이용하여도 무방하다. 또, 그러한 주파수 해석법으로 대신하여, 엣지 묘출을 위한 일차 미분 연산을 실시하는 소벨 필터를 이용하여 등가인 처리를 실시하여도 무방하다. 이 필터를 사용하는 경우, 엣지의 최대가 되는 단층면의 위치를 최적 초점 위치라고 간주할 수 있다.
다음으로, 모든 선분 Lf1~Lfm, Lc, Lr1~Lrn에 대한 주파수 해석의 결과로부터 노이즈를 제거한다(단계 S64). 도 16에는, 1개의 선분에 대한 주파수 해석 특성을 예시한다. 해석한 최고 주파수측의 일정 범위의 영역의 주파수 성분의 계수는 제외하고, 그 나머지의 고주파수 성분의 계수를 채용한다. 그 이유는, 최고 주파수측의 일정 범위의 영역의 주파수 성분은, 노이즈 성분이기 때문이다.
게다가 화상 프로세서(56)는, 각각의 선분에 대한 주파수 해석 특성의 계수를 2승 가산 함과 동시에, 그 2승 가산치를 종축으로 하고, 한편, 초기 위치 P(x, y, z)=P(0,0,0)를 X선 조사 방향 DRx에 관통하는 복수의 단층면 SFm~SF1, SS, SR1~SRn의 위치를 횡축으로 한 프로파일로서 연산한다(단계 S65). 이 프로파일의 일례를 도 17에 나타낸다. 동 도면에서 단면 위치는, 복수의 단층면 SF1~SFm, SS, FR1~FRn의 X선 조사 방향 DRx(치열의 깊이 방향)의 위치이다.
도 18에는, 물질이 에나멜질, 해면골, 공기, 바이트 블록인 경우의 복수 종류의 프로파일 PR1, PR2, PR3, PR4의 전형적인 패턴이 예시되고 있다. 가령, 현재 지정하고 있는 위치 P(x, y, z)를 통과하는 X선 조사 방향 DRx 중 어느 하나의 위치에 에나멜질의 물질, 즉 치아가 존재하고 있는 경우, 그 프로파일 PR1는 샤프한 피크를 가진다. 또, 이러한 X선 조사 방향 DRx에 해면골이 존재하고 있는 경우, 그 프로파일 PR2는 완만한 철곡선(凸曲線)이 된다. 동일하게, 이러한 X선 조사 방향 DRx에 공기 밖에 존재하고 있는 경우, 그 프로파일 PR3는 특정의 피크를 가지지 않는 경향을 나타내는 곡선이 된다. 게다가 이러한 X선 조사 방향 DRx에 바이트 블록이 존재하고 있는 경우, 그 프로파일 PR4는, 2개의 샤프한 피크를 가진다. 이 중, X선 조사 방향 DRx의 내측(X선관의 옆)에 상당하는 피크가 에나멜질의 물질에 대한 피크를 나타내고, 외측(검출기의 옆)에 상당하는 피크가 바이트 블록에 대한 피크를 나타낸다. 도 18에 나타내는 프로파일 PR1~PR4의 패턴을 나타내는 데이터는, 참조 프로파일로서 예를 들면 ROM(61)에 참조 테이블로서 미리 기억되고 있다.
때문에, 화상 프로세서(56)는, 이러한 참조 테이블을 이용하여, 현재 지정하고 있는 위치 P(x, y, z)를 통과하는 X선 조사 방향 DRx에서의, 치아에 대한 최적 초점의 위치를 특정한다(단계 S66).
즉, 이전의 단계 S65에서 구한 프로파일이 참조 프로파일 PR1~PR4 중 어느 하나에 해당하는지, 패턴 인식의 수법으로 판단한다. 우선, 구한 프로파일이 참조 프로파일 PR2, PR4인 경우에는 처리의 대상에서 제외한다. 한편, 구한 프로파일이 참조 프로파일 PR1(에나멜질)에 해당하는 경우, 그 피크를 나타내는 단면 위치, 즉, 복수의 단층면 SF1~SFm, SS, FR1~FRn 중 어느 하나의 위치가 최적 초점인 것으로 특정한다. 게다가 구한 프로파일이 참조 프로파일 PR4에 해당하는 경우, 그 내측(X선관의 옆)에 피크를 나타내는 단면 위치(에나멜질의 위치), 즉, 복수의 단층면 SFm~SF1, SS, FR1~FRn 중에서 어느 하나의 위치가 최적 초점으로서 특정한다.
이러한 위치의 특정 처리에 의해, 지금 지정하고 있는 위치 P(x, y, z)에 묘출되고 있는 치아의 부분이, 실제로는, 깊이 방향의 어느 위치에 있을까를 결정한 것이 된다. 즉, 3D 기준 단층면 SS상에 따른 3D 기준 화상 PIref에 묘출된 치아의 부분은 실제로는, 그 단층면 SS의 전측에 있을지도 모르고, 후측에 있을지도 모른다. 이 실재 위치가 상술의 특정 처리에 의해 정확하게 결정된다. 다른 말로 하면, 3D 기준 단층면 SS상에 있다고 가정하여 묘출된 3D 기준 화상 PIref의 치아의 부분이, 상술의 특정 처리에 의해, 실재하는 위치로 쉬프트 된다고 말할 수 있다.
이 결과, 도 19~도 22에 도시한 바와 같이, 위치 P(x, y, z)의 1회의 지정마다, 3D 기준 단층면 SS(3D 기준 화상 PIref)에서의 위치 P1이 P1real(또는 P2가 P2real)로 쉬프트 된다. 특히, 복수의 부가 단층면 SFm~SF1, FR1~FRn으로 설정하는 선분 Lfm~Lf1, Lr1~Lrn의 위치가 X선 조사 방향 DRx의 오블리크 각도 θ를 고려하여 설정되어 있다. 이 때문에, 쉬프트 되는 위치 P1real는, 오블리크 각도 θ가 작은 경우(도 20(A), 도 21(A) 참조) 보다 큰 경우(도 20(B), 도 21(B) 참조)가 낮아진다. 따라서, 이 쉬프트 위치 P1real는, 오블리크인 X선 조사 각도 θ, 즉 확대율의 대소에 의한 일그러짐이 보상되고 있다. 또한, 도 22에 도시한 바와 같이, 치아가 3D 기준 단층면 SS에 따라 실재하는 경우, P1=P1real가 되고, 치아가 위치하는 것으로 가정하고 있던 3D 기준 단층면 SS가 실재 위치로서 정해진다. 이 경우는 쉬프트량=0의 쉬프트가 실행된 것이 된다.
화상 프로세서(56)는, 단계 S65에서, 이러한 특정한, 치아의 실재 위치를 나타내는 데이터를 위치 P(x, y, z) 마다, 그 워크 에리어에 기억한다.
이와 같이 하여, 3D 기준 화상 PIref(즉 3D 기준 단층면 SS)로 현재 지정되고 있는 위치 P(x, y, z), 즉, 지금의 경우, 최초로 지정한 초기 위치 P(0,0,0)를 통과하는 깊이 방향에서 치아의 일부분(에나멜질)이 존재하고 있는지의 특정(필터링)하고, 및, 그러한 치아의 일부분이 존재하고 있는 경우에, 그 깊이 방향에서의 최적 초점 위치의 특정이 완료한다.
이것이 끝나면, 화상 프로세서(56)는, 예를 들면 도 23에 도시한 바와 같이, 3D 기준 화상 PIref 상에 미리 설정한 모든 판단 위치 P에 대해 상술한 특정 처리가 완료하는지를 판단한다(단계 S67). 이 판단은, 현재 처리하고 있는 위치 P(x, y, z)가 최종의 위치 P(p, q, r)가 아닌지를 판정하는 것으로 실시한다. 이 판단이 NO가 되고, 모든 판단 위치 P에 대해 특정 처리가 완료하고 있지 않는 경우, 화상 프로세서(56)는, 그 판단 위치 P(x, y, z)를 1개분 쉬프트 시키고(단계 S68), 그 처리를 전술한 단계 S55로 되돌리고, 상술한 일련의 특정 처리를 반복한다.
또한, 도 23에 도시한 바와 같이, 복수의 판단 위치 P는 3D 기준 화상 PIref(즉 3D 기준 단층면 SS)에 따라 소정 간격으로 2차원적으로 미리 배치되고 있다. 동일 도의 예에서는, 3D 기준 화상 PIref의 종축 방향 i 및 횡축 방향 j에 따라 종횡 동일한 소정 간격 d를 비워 배치되고 있다. 다만, 이 소정 간격 d는 종축 방향 i 및 횡축 방향 j 각각에서 서로 상위시켜도 무방하다. 단계 S68의 처리에서의 쉬프트의 방향은, 3D 기준 화상 PIref에 따른 세로, 가로, 및 기울기 중 어느 하나의 방향이라도 무방하다. 도 23에 도시한 바와 같이, 3D 기준 화상 PIref의 종축 방향 i에 따라 쉬프트 시킨 후, 횡축 방향 j로 쉬프트하고 또 종축 방향 i에 따라 쉬프트 시키는 것을 규칙적으로 반복하여도 무방하다(도면의 부호 SC를 참조). 그 반대로, 횡축 방향 j로 쉬프트 시킨 후, 종축 방향 i로 쉬프트 시키는 것을 반복하여도 무방하다. 더욱이 경사 방향으로 쉬프트 시켜도 무방하다.
그 한편, 복수의 판단 위치 P의 모두에서 상술한 일련의 판단이 종료하면, 상술한 반복 판단 중에서 전술한 단계 S67에서의 판단이 YES가 된다. 즉, 3D 기준 단층면 SS의 깊이 방향에서의 판단 위치 P 마다 최적 초점의 단면 위치의 검출(최적 초점 위치의 유무의 판단을 포함한다)의 처리가 완료한 것이 된다. 이 경우, 최적 초점의 단면 위치의 결합 처리로 이행한다.
<최적 초점의 단면 위치를 결합하는 처리>
상술한 단계 S67의 판단이 YES가 되면, 화상 프로세서(56)는 단계 S65에서 특정하여 기억하고 있던 최적 초점의 단면 위치를 나타내는 데이터를 독출한다(단계 S68). 이 단면 위치의 데이터는, 각각의 판단 위치 P(x, y, z)를 통과하는 X선 조사 방향 DRx의 위치이다. 이 모습을 도 24에 모식적으로 나타낸다. 동 도면에서, 검은 동그라미는 3D 기준 화상 PIref(3D 기준 단층면 SS)의 판단 위치 P(x, y, z)를 나타낸다. 여기서, 만곡한 3D 기준 화상 PIref의 세로 방향 및 가로 방향을 (i, j)으로 나타낸다. 도 24에서, 흰 동그라미로 도시한 바와 같이, 예를 들면, i, j=0, 0의 판단 위치 P(x00, y00, z00)에 대한 최적 초점 단면 위치는 내측(X선관의 옆)에 하나에 따른 단층면 SR1의 위치이며, 그 근처의 i, j=0, 1의 판단 위치 P(x01, y01, z01)에 대한 최적 초점 단면 위치도 내측으로 하나에 따른 단층면 SR1의 위치이며, 그 근처의 i, j=0, 2의 판단 위치 P(x02, y02, z02)에 대한 최적 초점 단면 위치는 내측으로 2개에 따른 단층면 SR2의 위치라고 하는 것과 같은 정도가 된다. 또한 도 24는, 도면을 보기 쉽게 하기 위해, Z축 방향(세로 방향) 중 하나의 위치에서의 단계 S68를 나타내고 있지만, 이 Z축 방향의 다른 위치 각각에 대해서도 단계 S68의 처리가 실행된다.
다음으로, 화상 프로세서(56)는 노이즈의 제거를 실시한다(단계 S70). 도 24의 예에서 예를 들면, 화상의 종횡 방향의 위치 i, j=0, 5의 판단 위치 P(x05, y05, z05)에 대한 최적 초점 단면 위치가 외측(검출기의 옆)에 m개에 의한 단층면 SFm의 위치이다. 이러한 경우, 화상 프로세서(56)는, 단면 위치끼리의 차분을 예를 들면 임계치 판단에 걸린 노이즈이고 이상(異常)이라고 간주한다. 이 경우, 인접하는 단면끼리의 위치의 데이터를 매끄럽게 연결되도록 예를 들면 평활화하고, 그 평활화 한 새로운 위치 데이터로 치환하고, 또는, 선택적으로 검출기의 외측에 가까운 데이터를 우선시키는, 등의 처리를 실시한다. 또한, 이러한 치환에 의한 보상을 실시하지 않고, 단지, 이상 데이터를 처리 대상에서 제외하도록 하여도 무방하다. 이 이상 데이터의 배제에 Z축 방향의 데이터의 이상을 가미하는 일도 당연히 가능하다.
이 후, 화상 프로세서(56)는, 노이즈 제거한 위치(즉 에나멜질의 위치)를 결합하고, 이 결합한 위치의 데이터를 3차원적으로 스무딩하고, 에나멜질을 트레이스(trace) 한 표면 화상을 작성한다(단계 S71). 게다가 이 화상 프로세서(56)는, 이 표면 화상을, 그 부위 모두가 자동적으로 최적 초점 처리에 부가된 3차원 파노라마 화상을, 3D 오토 포커스 화상 PIfocus로서 모니터(60)에 소정의 뷰 각도로 표시시킨다(단계 S72).
이것에 의해, 도 25에 도시한 바와 같이, 소망한 뷰 각도로 본, 피검체 P의 구강부의 치열의 구조체가 가장 명료하게 보이는 윤곽에 따라 할 수 있는 3D 오토 포커스 화상 PIfocus를 제공할 수 있다. 동 도면에서, 만곡하고 있는 말굽형의 범위는, 3D 오토 포커스 화상 PIfocus를 표시하기 위한 범위이고, 실선 부분이 치열의 실제의 위치 및 형상을 나타내고 있다. A-A′′선 및 B-B′′선으로 도시한 바와 같이, 잇몸(치조골)의 부분이나 아랫턱동, 악관절, 경동맥 등은, 치아(주로 에나멜질)의 단부로부터 일정 거리로 한 단층 거리를 키프(keep)하여, 단층면을 만들어 3D 단층면 투영하는 방법도 가능하다. 이 경우는, 이러한 부위가 최적 초점이 되어 있는 것은 보증할 수 없지만, 3D의 파노라마 화상으로서는, 위화감을 기억하지 않는 화상으로서 재구성 가능하다. 물론, 이러한 부위도 최적 초점면의 계산에 고민을 더해, 그대로 계산하여 이용하는 방법도, 진단의 목적에 따라서는 있을 수 있는 것은 말할 필요도 없다.
이와 같이, 3D 오토 포커스 화상 PIfocus는, 치열에 따라 만곡하면서도, 그 표면은 울퉁불퉁 하고 있고, 이 「울퉁불퉁」에 의해 각각의 치아의 실제의 위치 및 그 형상(윤곽)을 화소치의 농담으로 나타내고 있다. 그 외의 부분도 위화감이 없는 화상으로서 표현할 수 있다.
이와 같이 각각의 피검체 P의 치열의 실재 위치 형상을 나타내는 3D 오토 포커스 화상 PIfocus가 작성된다.
<여러 가지의 표시 처리>
이 후, 화상 프로세서(56)는, 그 3D 오토 포커스 화상 PIfocus를 다른 모양으로 관찰할 기회를 조작자에게 준다. 즉, 화상 프로세서(56)는, 조작자로부터 조작 정보에 근거하여, 그 3D 오토 포커스 화상 PIfocus를 다른 모양으로 인터랙티브로 표시하는지를 판단한다.
그 일례로서 화상 프로세서(56)는, 3D 오토 포커스 화상(3차원 파노라마 화상) PIfocus의 부분 영역을 관찰하는지를 판단한다(도 5, 단계 S10). 이 단계 S10의 판단이 YES가 되면, 게다가 그 부분 영역의 관찰을 3D 기준 단층면 SS로 실시하는지, 또는, 기준 파노라마 화상의 구형면(2차원)에서 실시하는지, 조작자로부터의 정보를 기초로하여 판단한다(단계 S11). 이 단계 S11에서 3D 기준 단층면 SS를 사용한다고 판단되면, 화상 프로세서(56)는, 3D 오토 포커스 화상 PIfocus를 3D 기준 단층면 SS에, 그 각각의 화소를 통과하는 X선 조사 방향 DRx에 따라 재투영 한다(단계 S12). 이 재투영의 모습을 도 26에 나타낸다. 이 재투영은 예를 들면 3D 기준 단층면의 일화소를, 대응하는 3차원의 화소를 서브 픽셀로 단락지어 재투영하는 서브 픽셀법에 의해 실행된다.
이 3D 기준 단층면 SS로의 재투영상은, 3D 참조 화상 PIproj-3D로서, 모니터(60)에 표시된다(단계 S13). 이 3D 참조 화상 PIproj-3D의 일례를 도 27에 나타낸다.
한편, 단계 S11에서 기준 파노라마 화상 PIst의 구형면을 사용한다고 판단되면, 화상 프로세서(56)는 3D 오토 포커스 화상 PIfocus를 그 구형면, 즉 기준 파노라마 화상의 면에 재투영 한다(단계 S14). 이 재투영도, 표준 파노라마 화상면의 일화소를, 대응하는 3차원의 화소를 서브 픽셀로 단락지어 재투영하는, 이른바, 종래 주지의 서브 픽셀법에 의해 실행된다. 이 재투영의 개념을 도 28에 나타낸다. 이 재투영상은, 2D 참조 화상 PIproj-2D로서 모니터(60)에 표시된다(단계 S15). 이 2D 참조 화상 PIproj-2D의 일례를 도 29에 나타낸다.
때문에, 조작자는, 이 3D 참조 화상 PIproj -3D 또는 2D 참조 화상 PIproj -2D에 소망한, 예를 들면 구형의 ROI(관심 영역)를 설정한다(단계 S16 : 도 27 및 도 29를 참조). 이 ROI에 의해 지정된 부분 영역의 화상은 예를 들면 확대되어, 예를 들면 현재 표시되고 있는 3D 참조 화상 PIproj -3D 또는 2D 참조 화상 PIproj -2D에 중첩 표시된다(단계 S17). 물론, 이 표시는, 파노라마 화상과는 별개의 단독 화상이라도 무방하고, 동 파노라마 화상과의 분할 표시이라도 무방하고, 치열을 모방한 복수의 블록으로 이루어지는 템플릿의 하나로 얻은 표시이라도 무방하다.
이 후, 화상 프로세서(56)는 이러한 일련의 처리를 종료하는지를 조작 정보로부터 판단하고(단계 S18), 이 판단이 YES의 경우는 처리를 전술한 단계 S7로 되돌린다. 이것에 대해, NO의 경우는 처리를 단계 S10으로 되돌려 상술한 처리를 반복한다.
그 한편, 전술한 단계 S10에서 부분 화상의 관찰을 하지 않는다고 판단하는 경우, 화상 프로세서(56)는, 현재 표시되고 있는 3D 오토 포커스 화상 PIfocus를 회전, 이동, 및/또는 확대 축소하여 표시하는지를 인터랙티브로 판단한다(단계 S19). 이 판단이 YES가 되는 경우, 지령 정보에 따라 3D 오토 포커스 화상 PIfocus를 회전, 이동, 및/또는 확대 축소하고, 그 화상을 표시한다(단계 S20, S21). 이 후, 처리는 단계 S81에게 건네지고, 전술과 같은 처리를 반복한다.
물론, 표시 모양의 종류는 상술한 것으로 한정되지 않고, 예를 들면 컬러화 등, 그 외의 여러가지 모양을 채용하여 얻는다.
조작자가 처리의 종료를 지시하고 있는 경우, 화상 프로세서(56)는 단계 S18, S7를 거쳐, 이러한 처리를 종료시킨다.
또한, 상술한 단계 S16의 설정 처리를 실시한 후, 단계 S17의 표시 처리를 실시하지 않고, 단계 S19의 처리로 이행하도록 하여도 무방하다. 그 경우, 설정한 ROI는, 회전, 이동, 확대 축소한 화상과 함께 단계 S21에서 표시된다.
(작용 효과)
본 실시예와 관련되는 파노라마 촬상 장치에 의하면, 이하와 같이 현저한 작용 효과를 얻을 수 있다.
우선, 종래의 파노라마 촬상 장치로 작성하는 파노라마 화상과는 상이하고, 적어도 치열부의 전역에 초점을 맞춘 화상이 3D 오토 포커스 화상 PIfocus(3차원 파노라마 화상)로서 제공된다. 이 화상에 의하면, 각 치아가 상하 방향으로 만곡하고 있는 경우이라도, 그 실존의 위치 및 형상이 그 상하방향의 부위(샘플 점) 마다 최적 초점화 되고 있다. 게다가, 이 최적 초점화의 처리는, 조작자가 1회, 그 취지의 지령을 내리는 것만으로 자동적으로 실행되고, 그 3D 오토 포커스 화상 PIfocus가 표시된다. 즉, 오토 포커스 기능이 발휘된다. 게다가, 이 3D 오토 포커스 화상 PIfocus를 회전시켜 표시시키거나, ROI에 의한 영역을 확대 표시하면서 표시를 시키거나, 화상 관찰의 배리에이션도 많다. 이것에 의해, 독영자에게 있어, 치열 전체의 정밀한 조사가 지극히 용이하게 되고, 한편, 그 정밀한 조사의 정밀도도 높아진다. X선 촬영의 재시도도 대부분 필요가 없어지므로, 이러한 재시도 촬영에 수반하는 X선 피폭량의 증대도 없다. 이 때문에, 본 실시예의 파노라마 촬상 장치는 스크리닝에도 적합하다.
게다가, 스캔 중의 회전 위치, 즉 X선관(31) 및 검출기(32)의 쌍의 회전 중심 RC의 위치의 변화에 따라 확대율의 변화도, 3D 오토 포커스 화상 PIfocus를 작성하는 처리 중에서 보상되고 있다. 이 때문에, 확대율의 변화에 기인한 일그러짐이 시정되고, 실치수 사이즈 및 실제의 형상을 정확하게 반영시킨 화상을 제공할 수 있다.
종래의 파노라마 촬상 장치의 경우, 파노라마 화상으로 진단했을 경우, 확대율의 변화에 따라, 어금니부로부터 전치부에 걸쳐 확대율의 변화가 발생하고 있고, 화상 상에서 거리나 길이의 측정 파악의 정밀도 저하의 요인이 되어 있었다. 이것에 대해, 본 실시예에 의하면, 그러한 문제가 해소되고, 실치수를 지극히 충실히 반영시킨 고정밀의 화상 또는 계측 정보를 제공할 수 있다. 이 때문에, 촬상 대상인 치열의 상세한 구조 관찰에도 적합하다.
특히, 3D 오토 포커스 화상 PIfocus를 3D 기준 단층면 혹은 기준 파노라마 화상의 2차원 구형면에 재투영하는 경우에도, 표시된 화상에 있는 정도의 일그러짐은 있지만, 3차원 오토 포커스 화상과의 위치적인 대응은 취할 수 있다. 이 때문에, 예를 들면 치아의 세로 방향의 길이 등, 거리를 정확하게 계측할 수 있다.
게다가 본 실시예와 관련되는 파노라마 촬상 장치에 의하면, 데이터 수집시(스캔시)의 X선관(31) 및 검출기(32)의 위치를 치열에 대해서 3차원적으로 사전에 파악하고 있기 때문에, 종래와 같이 팬텀(phantom)을 이용하여 단층 거리 정보를 사전에 계측하여 둔다고 하는 수고가 불필요하다. 따라서, 그 만큼, 조작자에게 있어 조작성도 좋고, 또 화상 프로세서(56)의 처리 부담도 경감되고 있다.
따라서, 치열의 실제 상태(위치, 형상)를 3차원적으로 보다 고정밀도로 묘출한 상태로 화상 전역을 최적 초점화하고, 한편, 확대율의 서로 다름에 따라 화상의 일그러짐을 대부분 배제한 3차원 파노라마 화상을 제공할 수 있다.
(변형예)
상술한 실시 형태에서는, 피검자의 구강부의 치열의 최적 초점화한 3차원 화상을 얻는 예를 설명했지만, 이것을 더욱 전개할 수 있다. 일례로서 구강부에, 적당한 X선 흡수율을 가지는 방사선 흡수재로 이루어지는 랜드마크(마커)를 설치하고, 이 설치 상태로 전술한 실시 형태와 동일하게 데이터를 수집하고, 그 랜드마크의 위치를 인식함과 함께, 그 랜드마크를 포함한 면에 초점을 맞춘 화상을 작성하는 것이다.
도 30(A)에 랜드마크의 일례를 나타낸다. 동 도면에 나타내는 클립(70)은, 2개의 사각형의 랜드마크로서의 소편(71)을 가지고, 이 2개의 소편(71)을 용수철 기구 부착의 선재(72)로 서로 상이하게 대향하도록 연결하고 있다. 이 소편(71)은, 구강부의 X선 흡수율 보다 높은 적당한 재료로 형성되고, X선에 대한 랜드마크로서 기능한다.
이 클립(70)을 피검자의 치열의 일부에 설치한 상태를 도 30(B)(C)에 나타낸다. 2개의 소편(71)은, 치아(치열)의 전후에 엇갈림에, 즉, 치열에 따른 방향에서 위치가 다르도록 잇몸을 사이에 두어 선재(72)에 의해 고정 배치된다. 이 배치 상태에서, 전술한 도 10의 오토 포커스의 처리를 통해, 2개의 소편(71)의 3차원적인 위치를 파악함과 함께, 각각의 소편(71)의 3차원적인 위치를 포함한 단면을 최적 초점화한 2개의 화상을 작성한다. 이 화상 작성에서 채용하는 주파수 특성 패턴은, 도 31에 도시한 바와 같이, 해면골의 주파수 특성 PR2의 양측 각각의 옆에 소편(71)의 주파수 특성의 피크가 나타나는 2개의 프로파일 RR5이다. 화상 프로세서(56)는, 이 2개의 프로파일 RR5를 각별하게 참조하고, 전술한 실시 형태와 동일한 재구성 처리를 실시한다. 이것에 의해, 2개의 소편(71) 각각의 3차원 위치 P1real(P1′real : 도 20~22 참조)와 그것들을 각별하게 포함한 단면 CR1, CR2의 2개의 최적 초점 화상(부분상이어도 무방하다)을 얻을 수 있다.
이 2개의 최적 초점 화상을 작성하는 단계에서 2개의 소편(71)의 위치의 상호 간의 치열 전후 방향의 거리 DBN가 위치 정보 P로부터 알 수 있고, 한편, 그러한 소편(71)의 가로 방향(즉 치열에 따른 방향)의 편차량은 클립의 설계로부터 기존 LBN이기 때문에, 화상 프로세서(56)는, 2개의 소편(71)에 의해 낀 치조골의 두께를 연산할 수 있다. 이것에 의해, 치조골의 진단은 물론, 관찰하고 싶은 치조골의 단면을 그 두께 방향의 어디로 설정할까 등의 판단에도 유효하다.
게다가 도 32에 다른 랜드마크를 나타낸다. 이 랜드마크는, 피검자의 얼굴의 표면에 밀착하여 덮을 수 있는, 메쉬 형상의 신축 자유로운 마스크(80)이다. 이 마스크(80)를 형성하는 선재 각각의 X선 흡수율이 구강부의 그것과는 다르므로, 마스크(80)를 얼굴에 밀착시키는 것으로, 얼굴 표면에 X선 마커로 격자 모양의 선을 그은 것과 등가이다. 이 선은 단지 병행인 라인 형상으로 하여도 무방하다. 또한 이 얼굴 표면에 두는 랜드마크로서 도 33에 도시한 바와 같이, 바륨(barium) 등의 X선 흡수제를 얼굴 표면에 선상에 혹은 격자 모양에 바르도록 하여도 무방하다. 도 33에 나타내는 격자 모양의 라인(81)은, X선에 대한 랜드마크가 되고 있다. 게다가 얼굴 표면에 두는 다른 랜드마크로서는, 일례로서 속건성(速乾性)이 있는 화장 별로 입상의 X선 흡수제를 혼합하고, 이 화장제를 안면에 도포하도록 하여도 무방하다. 이것에 의해, 입상의 X선 흡수제를 랜드마크로서 얼굴 표면에 둘 수 있다.
상술한 메쉬 형상의 랜드마크(80), X선 흡수제의 도포에 의한 랜드마크(81), 및 입상의 랜드마크의 경우, 그 주파수 특성의 프로파일은 도 31의 그래프 PR6와 같이 된다. 화상 프로세서(56)는, 이 프로파일 PR6를 채용하여 전술한 오토 포커스의 재구성 처리를 실시한다. 이것에 의해, 이 랜드마크 각각의 3차원적 위치와 함께, 그러한 3차원적 위치를 따른 면의 최적 초점화 화상, 즉 얼굴의 표면의 X선 투과상을 얻을 수 있다. 이 화상을, 전술한 3D 오토 포커스 화상에 중합 표시하는 것으로, 세펄라머트리(cephalometry)의 대용 화상을 제공할 수 있다.
한편, 전술한 치과용의 파노라마 촬상 장치에서, X선관 및 검출기의 쌍을 천정에 설치하여도 무방하다. 또, 장치 전체를 소형화 및 가동형(모빌 구조)으로 하여, 검진차로의 탑재나, 가정으로의 반입에 의한 촬영이 가능한 것 같은 구조에도 할 수 있다.
본 발명과 관련되는 방사선 촬상 장치에서 채용 가능한 검출기는, 상술한 CdTe를 이용한 디지털 검출기에 한정하지 않고, 공지의 포톤 카운팅형의 검출기이라도 무방하다. 이 포톤 카운팅형의 검출기로서는, 예를 들면 일본특허공개 2004-325183에 개시된 것이 알려져 있다.
또, 본 발명과 관련되는 방사선 촬상 장치로 사용되는 검출기는 항상 같은 종류의 것일 필요는 없다. 촬상 대상의 종류에 따라 발생시키는 X선의 에너지를 변경할 필요가 있으므로, 거기에 맞춘 X선 흡수 계수가 되도록 X선 검출 소자의 재료를 선택하도록 하여도 무방하다. X선의 발생 에너지가 큰 경우에는, LaBr3, CdTe, CZT, GOS 등을 재료로 하는 X선 검출 소자를 구비한 검출기를 선택하면 무방하다. 또, X선의 발생 에너지가 작게 종료하는 경우, Si, CdTe, CZT, CsI 등을 재료로 하는 X선 검출 소자를 구비한 검출기를 선택하면 무방하다.
또, 3차원 파노라마 화상(표면 화상)을 표시하는 모양에만 한정되지 않는다. 예를 들면, 도 17에 도시하는, 단층면의 위치에 대한 진폭의 2승 가산치의 프로파일로부터, 그 초점이 맞고 있다고 생각되는 폭을 단층면과 주파수 특성 그래프로부터 구하여 각 치아 및 치조골의 두께를 추정, 즉 깊이 방향의 두께를 계측 하도록 하여도 무방하다. 이 계측 정보를 얻는 구성을, 예를 들면 상술한 포톤 카운팅형의 검출기와 조합하여, 제1 소구치(小臼齒) 부근의 치조골 부근에서 실시하면, 골염량을 정량적으로 계측 할 수 있다.
또, 본 발명과 관련되는 촬상을, 구강부의 아랫턱동 부근에서도 실시하면, 아랫턱동의 입체적인 구조에 관한 화상 정보도 어느 정도, 제공할 수 있다. 이 화상 상에서 좌우 차이를 관찰하는 것으로 아랫턱동염(축농증) 등의 병변부를 종래 보다 고정밀도로 발견할 수도 있다. 동일하게, 본 발명과 관련되는 촬상을 경동맥 부근에 주목하여 실시하면, 동맥 경화의 일요인이라 할 수 있는 경동맥의 석회화 등도 선명히 입체적으로 표시할 수 있어, 종래 보다 높은 정밀도의 진단 정보를 제공할 수 있다.
게다가, 본 발명과 관련되는 방사선 촬상 장치는, 치과용의 파노라마 촬상 장치에 실시하는 것으로 한정되지 않고, 터모신테시스법을 이용하여 대상물의 내부의 3차원적인 형상(위치)을 파악하는 것에 넓게 실시할 수 있다. 그러한 응용으로서 예를 들면 의료용으로서는, 터모신테시스법을 이용한 맘모그래피, 폐암 검사용 스캐너로의 용도가 있다. 게다가 본 발명과 관련되는 방사선 촬상 장치는, 감마 카메라나 SPECT 등의 에미션 CT(ECT)로 불리는 핵의학 진단 장치에도 적용할 수 있다. 그 경우, 방사선원으로서 피검체에 투여한 RI(radioisotope)로부터 방사되는 감마선이, 검출기에 설치한 특정 방향으로 도공을 가지는 콜리메이터를 통해 수집된다. 이 경우, RI 및 콜리메이터가 방사선 방출원을 구성하고 있다.
게다가 본 발명과 관련되는 방사선 촬상 장치에서의 검출기의 수는, 반드시 1개로 한정되는 것은 아니고, 2개 이상의 검출기를 동시에 또는 병행하여 가동시키는 모댈리티에도 적용할 수 있다.
또, 본 발명과 관련되는 방사선 촬상 장치는, 산업용으로서 벨트 컨베이어로 운반되는 제조물이나 상품의 내용물과 그 위치 정보의 취득, 플랫 패널 디스플레이에 접속되는 플렉서블 기판의 3차적 배선 구조, 주물의 포어스(pores)의 입체적인 분포와 크기의 정보의 취득, 공항에서의 수화물 검사의 내용물의 위치 정보의 취득 등의 용도가 있다. 대상물은, 직선적, 원형, 곡면상등 여러가지 방향에 따라 이동시킬 수 있다. 즉, 3D 기준 단층면도 평면상, 원통 형상, 곡면상을 이루는 단층면이라도 무방하다.
특히, 상술한 산업용의 응용의 경우, 경우에 따라서는, 촬상 대상물을 X선관 및 검출기의 쌍에 대해서 상대적으로 이동시키도록 하여도 무방하다. 게다가 촬상계의 설계에 따라서는, 검출기 만을 촬상 대상물 또는 피검체, 및, 방사선원에 대해서 이동시키도록 하여도 무방하다.
산업상의 이용 가능성
본 발명에 의하면, 촬상 대상의 실제 상태(위치, 형상)를 3차원적으로 보다 고정밀도로 묘출한 상태로 화상 전역을 최적 초점화하고, 한편, 확대율의 서로 다름에 따라 화상의 일그러짐을 대부분 배제한 3차원 파노라마 화상을 제공할 수 있는 방사선 촬상법을 제공할 수 있어, 산업상의 이용성은 지극히 크다.
1 치과용의 파노라마 촬상 장치(방사선 촬상 장치)
12 컴퓨터
14 촬영부
31 X선관(방사선관)
32 검출기
33 콜리메이터
41 고전압 발생기
53 버퍼 메모리
54 화상 메모리
55 프레임 메모리
56 화상 프로세서
57 컨트롤러
58 조작기
60 모니터
61 ROM

Claims (21)

  1. 점상(点狀)의 선원(線源)을 가지고, 이 선원에서 방사상으로 방사선을 방출하는 방사선 방출원(31, 41)과,
    상기 방사선이 입사 했을 때에 해당 방사선에 대응한 디지털 전기량의 2차원 데이터를 프레임 단위로 출력하는 방사선 검출기(32)와,
    상기 방사선 방출원과 상기 방사선 검출기의 쌍, 해당 방사선 검출기, 또는, 촬상하고 싶은 대상물을, 해당 방사선 방출원, 해당 방사선 검출기, 및 해당 대상물 중 나머지의 요소에 대해서 이동시키는 이동 수단(14, 30A)과,
    상기 이동 수단에 의해 상기 방사선 방출원과 상기 방사선 검출기의 쌍, 해당 방사선 검출기, 또는, 상기 대상물을 상기 나머지의 요소에 대해서 상대적으로 이동시키고 있는 동안에, 상기 방사선 검출기로부터 출력되는 상기 데이터를 프레임 단위로 프레임 데이터로서 수집하는 데이터 수집 수단(53, 52)과,
    상기 데이터 수집 수단에 의해 수집된 상기 데이터로부터, 상기 대상물의 촬상 부위에 상기 방사선의 상기 방사상의 방향에 따라 투영하고 또한 해당 촬상 부위에 대한 초점을 최적화한 3차원 최적 초점 화상으로서 작성하는 화상 작성 수단(54, 56)
    을 구비하고,
    상기 방사선 방출원은, 상기 방사선을 조사하는 방사선원(31)을 가지고,
    상기 방사선원과 상기 방사선 검출기를 상기 대상물을 사이에 두어 서로 대치하도록 배치하고,
    상기 이동 수단은, 상기 방사선원과 상기 방사선 검출기의 쌍을 상기 대상물에 설정된 가상의 소망의 기준 단층면(SS)에 상기 방사선에 의한 스캔의 초점이 맞도록 이동시키는 수단이고,
    상기 데이터 수집 수단은, 상기 이동 수단에 의해 상기 방사선원과 상기 방사선 검출기의 쌍을 이동시키면서, 해당 이동 중에 상기 방사선 검출기로부터 출력되는 상기 프레임 데이터를 수집하는 수단이고,
    상기 화상 작성 수단은,
    상기 데이터로부터, 상기 방사선의 상기 방사상의 방향에 따라 투영한, 상기 기준 단층면 상의 상기 촬상 부위의 화상을 기준면 화상으로서 작성하는 기준면 화상 작성수단(56(S51))과,
    상기 프레임 데이터로부터, 상기 방사선의 상기 방사상의 각 방향에 따라 투영한, 상기 기준 단층면에 가상적으로 부가되며 또한 해당 기준 단층면에 평행한 단층면 상의 상기 촬상 부위의 화상을 부가면 화상으로서 작성하는 부가면 화상 작성수단(56(S53, S54))과,
    상기 기준면 화상의 데이터, 상기 부가면 화상의 데이터, 및 상기 프레임 데이터를 이용하여 상기 3차원 최적 초점 화상을 작성하는 최적 초점 화상 작성 수단(56(S55∼S72))
    을 구비하는 것을 특징으로 하는 방사선 촬상 장치.
  2. 삭제
  3. 제1항에 있어서,
    상기 방사선원은, 상기 방사선으로서의 X선을 발생하는 X선관이고,
    상기 방사선 검출기는, 상기 X선을 검출하는 검출기이고,
    상기 대상물의 촬상 부위는, 피검체의 치열이고,
    상기 기준 단층면은, 상기 치열에 설정되며, 해당 치열에 따라 만곡한 구형 형상의 3차원(3D) 기준 단층면이며,
    상기 기준면 화상은 파노라마 화상인, 것을 특징으로 하는 방사선 촬상 장치.
  4. 제3항에 있어서,
    상기 최적 초점 화상 작성 수단은,
    상기 3D 기준 단층면 및 상기 부가면 각각의 면상에서, 상기 방사상의 방향에 위치하는 복수의 샘플 위치 각각을 중심으로 하는 일정 길이의 선분을 분류하는 위치 분류 수단(S55∼S60, S67, S68)과,
    상기 3D 기준 단층면 및 상기 부가면의 화상 데이터를 기준으로, 상기 위치 분류 수단에 의해 분류된 상기 복수의 선분 각각으로, 상기 각 샘플 위치를 통해 상기 방사상의 방향에 존재하고 한편 상기 파노라마 화상의 대응하는 샘플 점의 화소치에 근거하는 화소를 주는 화소치 부여 수단(S61, S67, S68)과,
    상기 화소치 부여 수단에 의해 화소치가 부여된 상기 복수의 선분 각각의 상기 3D 기준 단층면 및 상기 복수의 부가면이 가지는 화소치가 나타내는 특성을 패턴 인식하는 것에 의해 상기 치열을 결정하는 치열 결정 수단(56(S62∼S66, S67, S68))과,
    상기 치열 결정 수단에 의해 결정된 상기 치열의 상기 샘플 점의 노이즈를 제거하는 노이즈 제거 수단(S70, S71)
    을 구비하는 것을 특징으로 하는 방사선 촬상 장치.
  5. 제4항에 있어서,
    상기 노이즈 제거 수단은, 상기 샘플 점의 각각에서 주파수 특성에 근거하여 동종의 특성을 나타내는 물질마다 분류하는 분류 수단(S70)과, 이 분류 수단에 의해 분류된 물질 마다 해당 각 물질을 매끄럽게 연결하는 스무딩 수단(S71)
    을 구비한 것을 특징으로 하는 방사선 촬상 장치.
  6. 제3항에 있어서,
    상기 3차원 기준 단층면의 상기 파노라마 화상을 표시하는 파노라마 화상 표시 수단과,
    상기 파노라마 화상 표시 수단에 의해 표시된 파노라마 화상상에서, 조작자에게 ROI(관심 영역)를 설정시키는 ROI 설정 수단과,
    상기 ROI를 설정된 영역의 화상을 상기 파노라마 화상으로부터 절출하여 표시하는 부분 화상 표시 수단
    을 구비하는 것을 특징으로 하는 방사선 촬상 장치.
  7. 제3항에 있어서,
    상기 최적 초점 화상 작성 수단에 의해 작성된 상기 최적 초점 화상을 표시하는 최적 초점 화상 표시 수단과,
    상기 최적 초점 화상 표시 수단에 의해 표시된 최적 초점 화상 상에서, 조작자에게 ROI(관심 영역)를 설정시키는 경우, 상기 최적 초점 화상을, 만곡한 상기 3차원 기준 단층면에 상기 X선의 방사상의 조사 방향에 따라 투영하고, 한편, 이 투영한 화상을 파노라마 화상으로서 작성하는 작성 수단과,
    상기 작성 수단에 의해 작성된 파노라마 화상 상에서, 조작자에게 ROI(관심 영역)를 설정시키는 ROI 설정 수단과,
    상기 ROI를 설정된 영역의 화상을 상기 파노라마 화상으로부터 절출하여 표시하는 부분 화상 표시 수단
    을 구비하는 것을 특징으로 하는 방사선 촬상 장치.
  8. 제6항에 있어서,
    상기 최적 초점 화상 작성 수단에 의해 작성된 상기 최적 초점 화상을 표시하는 최적 초점 화상 표시 수단과,
    상기 최적 초점 화상 표시 수단에 의해 표시된 최적 초점 화상 상에서, 조작자에게 ROI(관심 영역)를 설정시키는 경우, 상기 최적 초점 화상을 2차원의 단층면에 상기 X선의 방사상의 조사에 따라 투영하고, 한편, 이 투영한 화상을 파노라마 화상으로서 작성하는 작성 수단과,
    상기 작성 수단에 의해 작성된 파노라마 화상 상에서, 조작자에게 ROI(관심 영역)를 설정시키는 ROI 설정 수단과,
    상기 ROI가 설정된 영역의 화상을 상기 파노라마 화상으로부터 절출하여 표시하는 부분 화상 표시 수단
    을 구비하는 것을 특징으로 하는 방사선 촬상 장치.
  9. 제3항에 있어서,
    상기 기준면 화상 작성 수단에 의해 작성된 파노라마 화상 및 상기 최적 초점 화상 작성 수단에 의해 작성된 최적 초점 화상 중 적어도 하나를 3차원적으로 표시하는 3차원 표시 수단을 구비하는 것을 특징으로 하는 방사선 촬상 장치.
  10. 제9항에 있어서,
    상기 3차원 표시 수단은, 상기 파노라마 화상 및 상기 최적 초점 화상 중 적어도 하나를, 회전 및 이동 중 적어도 하나에 의해 표시 가능하게 구성되어 있는 것을 특징으로 하는 방사선 촬상 장치.
  11. 점상의 선원을 갖고, 이 선원에서 방사상으로 방사선을 조사하는 방사선 방출원(31, 41)과,
    상기 방사선 방출원에 대상물을 통해 대치하여 촬영 공간을 형성하도록 배치되고, 상기 방사선이 입사했을 때에 해당 방사선에 대응한 디지털 전기량의 2차원 데이터를 프레임 단위로 출력하는 방사선 검출기(32)와,
    상기 방사선 방출원과 상기 방사선 검출기의 쌍을 상기 대상물에 대해, 상기 촬영 공간에 설정된 가상의 소망의 3차원 기준 단층면(SS)에 상기 방사선에 의한 스캔의 초점이 맞도록 이동시키는 이동 수단(14, 30A, 57)과,
    상기 이동 수단에 의해 상기 방사선 방출원과 상기 방사선 검출기의 쌍을 상기 대상물에 대해서 이동시키고 있는 동안에, 상기 방사선 검출기로부터 출력되는 상기 데이터를 프레임 단위로 수집하는 데이터 수집 수단(57(S0, S1), 53, 52)을 구비한 시스템으로부터 출력되는 상기 데이터를 처리하는 데이터 처리 장치에서,
    상기 데이터를 입력하여 격납하는 데이터 격납 수단(53)과,
    상기 선원에서 방사상으로 방사되는 상기 방사선의 각 조사 방향에 따라 상기 3차원 기준 단층면에 투영된 상기 대상물의 촬상 부위의 화상을, 상기 데이터 격납 수단에 격납되어 있는 상기 데이터에 근거하여 기준면 화상으로서 작성하는 기준면 화상 작성 수단(57(S2, S3), 56(S51))과,
    상기 선원에서 방사상으로 투영되는 상기 방사선의 각 조사 방향에 따라 투영된 화상이며, 상기 촬영 공간에서 상기 3차원 기준 단층면에 거리를 두고 가상적으로 부가된 3차원 부가 단층면 상의 촬상 부위의 화상을 상기 데이터에 근거하여 부가 단층면 화상으로서 작성하는 부가 단층면 화상 작성 수단(56(S53, S54))과,
    상기 3차원 기준 단층면 및 상기 3차원 부가 단층면의 각각의 면상에서, 상기 선원에서 방사상으로 방사되는 상기 방사선의 각 조사 방향이 해당 면에 교차하는 각 샘플 점의 위치를 중심으로 한 일정 길이의 복수의 선분을 특정하는 선분 특정 수단(56(S55~S60, S67, S68))과,
    상기 선분 특정 수단에 의해 분류된 상기 복수의 선분 각각에, 상기 기준면 화상 및 상기 부가 단층면 화상의 화상 데이터에 근거하여 화소치를 주는 화소치 부여 수단(S61, S67, S68)과,
    상기 3차원 기준 단층면의 상기 샘플 점 마다, 상기 기준면 화상 및 상기 부가 단층면 화상의 상기 복수의 선분의 화소치에 근거하여, 해당 3차원 기준 단층면 및 해당 3차원 부가 단층면 내의 초점이 최적화된 최적 초점 단층면을 결정하는 면 결정 수단(56(S62∼S66, S67, S68, S69))과,
    상기 3차원 기준 단층면의 상기 샘플 점 마다, 상기 최적 초점 단층면의 위치 정보에 기초하여 해당 샘플 점의 화소의 위치를 상기 방사선의 각 조사 방향에 따라 이동하는 동시에, 해당 이동한 화소를 연결하여 상기 촬상 부위의 3차원 최적 초점 화상을 작성하는 최적 초점 화상 작성 수단(56(S70, S71))
    을 구비하는 것을 특징으로 하는 데이터 처리 장치.
  12. 제11항에 있어서,
    상기 시스템은, 상기 방사선 방출원에 상기 방사선으로서의 X선을 발생하는 X선관을 이용하고, 상기 방사선 검출기에 상기 X선을 검출하는 검출기를 이용하며, 상기 3차원 기준 단층면을 실공간에서 만곡한 구형 형상의 3차원(3D) 기준 단층면으로 하고, 상기 대상물의 촬상 부위를 피검체의 치열로 한 치과용의 파노라마 촬상 장치이고,
    상기 3차원 부가 단층면은, 상기 방사선의 상기 조사 방향에서의 상기 3차원 기준 단층면의 전후 각각에 복수 씩 배치되며 또한 해당 3차원 기준 단층면에 평행한 복수의 3차원 부가 단층면으로 구성되고,
    상기 면 결정 수단은,
    상기 화소치 부여 수단에 의해 화소치가 부여된 상기 기준면 화상 및 상기 부가 단층면 화상의 상기 복수의 선분의 화소치의 변화 특성을 해석하는 해석 수단(56(S63))과,
    상기 화소치의 상기 변화 특성의 프로파일을 미리 복수의 물질마다 기억시키고 있는 기억 수단(61)과,
    상기 해석 수단에 의해 해석된 상기 화소치의 변화 특성을, 상기 기억 수단에 기억시키고 있는 상기 프로파일에 참조하여 상기 최적 초점 단층면을 인식하는 인식 수단(56(S65))을 구비하고
    상기 최적 초점 화상 작성 수단은,
    상기 면 결정 수단에 의해 결정된 면 중 특이한 위치에 있는 면을 노이즈로서 샘플 점 마다 제거하는 노이즈 제거 수단(56(S70)),
    상기 노이즈가 제거된 상기 샘플 점 마다의, 상기 특이한 위치에 있는 상기 면의 위치 정보에 대해서 해당 샘플 점의 화소를 결합하고, 또한 스무딩화하여 상기 3차원 최적 초점 단층 화상을 작성하는 스무딩 수단(56, (S71))
    을 구비하는 것을 특징으로 하는 데이터 처리 장치.
  13. 점상의 선원을 갖고, 이 선원에서 방사상으로 X선을 발생하는 X선관과, 상기 X선이 입사했을 때에 해당 X선의 강도에 대응한 디지털 전기량의 2차원 데이터를 프레임 단위로 출력하는 검출기와의 쌍을, 상기 X선관과 상기 검출기와의 사이에 형성되는 촬영 공간에서 가상의 소망의 3차원 기준 단층면에 상기 X선에 의한 스캔의 초점이 맞춰지도록 대상물에 대해 이동하면서, 해당 이동 중에 상기 검출기로부터 출력되는 상기 데이터를 프레임 단위로 수집하고(S0, S1),
    상기 선원에서 방사상으로 방사되는 상기 X선의 각 조사 방향에 따라 상기 3차원 기준 단층면에 투영된, 대상물의 촬상 부위의 화상을 상기 데이터를 기준으로 기준면 화상으로서 작성하고(S2, S3, S51),
    상기 선원에서 방사상으로 투영되는 상기 X선의 각 조사 방향에 따라 투영된 화상이며, 상기 촬영 공간에서 상기 3차원 기준 단층면에 거리를 두고 가상적으로 부가된 3차원 부가 단층면 상의 상기 촬상 부위의 화상을 상기 데이터에 근거하여 부가 단층면 화상으로서 작성하고(S53, S54),
    상기 3차원 기준 단층면 및 상기 3차원 부가 단층면의 각각의 면상에서 상기 선원에서 방사상으로 방사되는 상기 X선의 각 조사 방향이 해당 면에 교차하는 각 샘플 위치를 중심으로 한 일정 길이의 복수의 선분을 특정하고(S55~S60, S67, S68),
    상기 특정된 상기 복수의 선분 각각에, 상기 기준면 화상 및 상기 부가 단층면 화상의 화상 데이터에 근거한 화소치를 주고(S61, S67, S68),
    상기 3차원 기준 단층면의 샘플 점 마다, 상기 기준면 화상 및 상기 부가 단층면 화상의 상기 복수의 선분의 화소치에 근거하여, 해당 3차원 기준 단층면 및 해당 3차원 부가 단층면 내의 초점이 최적화된 최적 초점 단층면을 결정하고(S62~S66, S67, S68, S69),
    상기 3차원 기준 단층면의 상기 샘플 점마다, 상기 최적 초점 단층면의 위치 정보에 기초하여 해당 샘플 점의 화소의 위치를 상기 X선의 각 조사 방향에 따라 이동하는 동시에, 해당 이동한 화소를 연결하여 상기 촬상 부위의 3차원 최적 초점 화상을 작성하는(S70, S71)
    것을 구비하는 것을 특징으로 하는 방사선을 이용한 촬상 방법.
  14. 제13항에 있어서,
    상기 3차원 부가 단층면은, 상기 X선의 상기 조사 방향에서의 상기 3차원 기준 단층면의 전후 각각에 복수 씩 배치되며 또한 해당 3차원 기준 단층면에 평행한 복수의 3차원 부가 단층면으로 구성되고,
    상기 결정하는 단계는,
    상기 화소치가 부여된 상기 기준면 화상 및 상기 부가 단층면 화상의 상기 복수의 선분의 화소치의 변화 특성을 분석하고,
    기억 수단에 미리 기억시키고 있는, 복수의 물질 각각의 상기 화소치의 상기 변화 특성의 프로파일을 참조하고, 상기 변화 특성이 해석된 상기 화소치의 변화 특성에서 상기 최적 초점 단층면을 인식하고,
    상기 최적 초점 화상을 작성하는 단계는,
    상기 결정된 면 중 특이한 위치에 있는 면을 상기 샘플 점 마다 제거하고,
    상기 특이한 위치에 있는 상기 면이 삭제된 나머지의 상기 면에 대해, 상기 샘플 점 마다의 해당 면의 위치 정보에 대한 해당 샘플 점의 화소를 결합하고, 또한 스무딩화하여 상기 3차원 최적 초점 화상을 작성하는
    것을 특징으로 하는 방사선을 이용한 촬상 방법.
  15. 방사선을 방사상으로 방출하는 점상의 선원을 갖는 방사선 방출원과, 입사하는 상기 방사선에 대응한 디지털 전기량의 프레임 데이터를 출력 가능한 방사선 검출기를 촬영 공간에 구비하고, 그 촬영 공간의 3차원적으로 가상적으로 배치된 만곡한 기준 단층면에 위치 맞추기를 하는 만곡 부위를 갖는 대상물을 통해 상기 방사선 방출원과 상기 방사선 검출기를 서로 대향시키고, 또한, 그 기준 단층면을 초점화하도록 해당 방사선 방출원과 해당 방사선 검출기의 쌍을 해당 대상물 주위에 회전시키고, 일정한 프레임 레이트에서 해당 방사선 검출기로 출력되는 상기 프레임 데이터를 처리하는 데이터 처리 장치에 있어서,
    상기 프레임 데이터에 근거하여 상기 기준 단층면의 화상을 작성하는 기준면 화상 작성 수단과,
    상기 기준 단층면의 상기 화상과 상기 프레임 데이터에 근거하여, 해당 화상상에서 종횡으로 분포시킨 복수의 지정 위치 각각에 상당하는 상기 만곡 부위의 최적 초점화된 위치를, 해당 각 지정 위치를 지나는 상기 방사선의 방사상의 조사 방향에 따라 탐색하는 최적 초점 위치 탐색 수단과,
    상기 최적 초점화된 위치의 화소를 결합하여 상기 만곡 부위의 상기 촬영 공간에서의 실재 상태를 나타내는 최적 초점 화상을 작성하는 최적 초점 화상 작성 수단
    을 구비하는 것을 특징으로 하는 데이터 처리 장치.
  16. 제15항에 있어서,
    상기 방사선 방출원은, 상기 방사선으로서의 X선을 발생하는 X선관이고,
    상기 방사선 검출기는, 상기 X선을 검출하는 검출기이고,
    상기 대상물의 만곡 부위는, 피검체의 구강부의 치열이고,
    상기 기준 단층면은, 상기 치열에 따라 설정된, 만곡한 직사각형 형상의 3차원 기준 단층면이고,
    상기 기준면 화상 작성 수단은, 상기 화상으로서, 상기 프레임 데이터에 근거하여 터모신테시스법에 의해 상기 기준 단층면에 따른 파노라마 화상을 작성하는 수단인
    것을 특징으로 하는 데이터 처리 장치.
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
KR1020127003460A 2009-07-30 2010-07-29 방사선 촬상 장치 및 방사선에 의한 촬상 방법, 및 데이터 처리 장치 Active KR101787119B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009178415 2009-07-30
JPJP-P-2009-178415 2009-07-30
PCT/JP2010/062842 WO2011013771A1 (ja) 2009-07-30 2010-07-29 放射線撮像装置及び放射線による撮像方法

Publications (2)

Publication Number Publication Date
KR20120059498A KR20120059498A (ko) 2012-06-08
KR101787119B1 true KR101787119B1 (ko) 2017-11-15

Family

ID=43529423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127003460A Active KR101787119B1 (ko) 2009-07-30 2010-07-29 방사선 촬상 장치 및 방사선에 의한 촬상 방법, 및 데이터 처리 장치

Country Status (6)

Country Link
US (2) US9113799B2 (ko)
EP (1) EP2465436A4 (ko)
JP (2) JP5731386B2 (ko)
KR (1) KR101787119B1 (ko)
CN (1) CN102469977B (ko)
WO (1) WO2011013771A1 (ko)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057779A1 (en) * 2010-10-29 2012-05-03 Analogic Corporation Object identification using sparse spectral components
US10039441B2 (en) 2010-12-22 2018-08-07 Trophy Digital detector
CN102670228A (zh) * 2011-03-14 2012-09-19 上海西门子医疗器械有限公司 一种ct机
EP2688479B1 (en) 2011-03-21 2018-08-29 Carestream Dental Technology Topco Limited A method for tooth surface classification
US20120260465A1 (en) * 2011-04-14 2012-10-18 Hunter Christopher Glynn R Wireless headset pincher holding device that suspends or secures a wireless headset to a user by clipping it to the shirt collar, shirt pocket or article of clothing in a way that will prevent damage, theft, annoyance, and loss of the wireless headset
JP6080766B2 (ja) * 2011-09-28 2017-02-15 タカラテレシステムズ株式会社 画像処理装置及び画像処理方法
JP6040502B2 (ja) * 2011-10-17 2016-12-07 朝日レントゲン工業株式会社 歯科用x線撮影装置
US9743893B2 (en) 2011-12-21 2017-08-29 Carestream Health, Inc. Dental imaging with photon-counting detector
EP3845130A1 (en) * 2011-12-21 2021-07-07 Carestream Dental Technology Topco Limited Dental imaging with photon-counting detector
WO2014037770A1 (en) * 2012-09-07 2014-03-13 Trophy Apparatus for partial ct imaging
KR101382735B1 (ko) * 2012-10-12 2014-04-08 전남대학교산학협력단 산업용 고해상도 모바일 x-선 ct 시스템 및 이를 이용한 3차원 영상 획득 방법
KR102018813B1 (ko) * 2012-10-22 2019-09-06 삼성전자주식회사 3차원 영상 제공 방법 및 장치
JP6218334B2 (ja) * 2012-11-30 2017-10-25 株式会社日立製作所 X線ct装置及びその断層画像撮影方法
US9001962B2 (en) * 2012-12-20 2015-04-07 Triple Ring Technologies, Inc. Method and apparatus for multiple X-ray imaging applications
CN103099631B (zh) * 2013-02-22 2015-02-25 合肥美亚光电技术股份有限公司 一种立式x光摄影设备
JP5805688B2 (ja) * 2013-03-07 2015-11-04 株式会社モリタ製作所 医療用x線撮影装置
US20140270059A1 (en) * 2013-03-14 2014-09-18 General Electric Company High resolution models of a target object
CN103297694B (zh) * 2013-05-20 2016-09-14 深圳市金立通信设备有限公司 一种全景拍摄的方法及设备
JP6164521B2 (ja) * 2013-05-24 2017-07-19 朝日レントゲン工業株式会社 X線撮影装置
JP6182807B2 (ja) * 2013-06-25 2017-08-23 朝日レントゲン工業株式会社 X線撮影装置及びx線画像選択方法
EP3037039B1 (en) * 2013-08-20 2018-07-18 Vatech Co. Ltd. X-ray imaging device
WO2015038986A1 (en) * 2013-09-13 2015-03-19 Baek Seung H Dental x-ray imaging system having higher spatial resolution
CN105611876B (zh) * 2013-09-30 2018-11-30 富士胶片株式会社 乳房厚度测定装置和乳房厚度测定方法
FI125761B (en) * 2013-12-18 2016-02-15 Planmeca Oy Generation of panoramic images of teeth
CN106030293B (zh) 2014-01-23 2019-11-26 株式会社蛟簿 X射线检查装置以及x射线检查方法
KR101813472B1 (ko) * 2014-04-17 2017-12-29 쎄플라 쏘씨에타 쿠퍼라티바 구강외 치과 방사선영상을 획득하기 위한 두개 고정기
EP3209212B1 (en) * 2014-09-16 2021-01-13 Sirona Dental, Inc. Methods, systems, apparatuses, and computer programs for processing tomographic images
DE102014113433B4 (de) * 2014-09-17 2016-07-14 Carl Zeiss Ag Vorrichtung und Verfahren zur dreidimensionalen Abbildung eines Objekts
US10687768B2 (en) * 2014-09-18 2020-06-23 Vatech Co., Ltd. X-ray image forming device
WO2016060449A1 (ko) * 2014-10-13 2016-04-21 주식회사 바텍 X선 파노라마 영상촬영장치
KR102368907B1 (ko) * 2015-01-30 2022-03-03 주식회사 바텍 구강 내 x선 촬영용 x선 발생장치 및 이를 포함하는 구강 내 x선 촬영 시스템
CN105741239B (zh) * 2014-12-11 2018-11-30 合肥美亚光电技术股份有限公司 牙齿全景图像的生成方法、装置及用于拍摄牙齿的全景机
US10278654B2 (en) * 2015-02-25 2019-05-07 J. Morita Manufacturing Corporation Medical X-ray photographing apparatus and X-ray photographing method
KR20170119676A (ko) * 2015-02-27 2017-10-27 트로피 Cbct 이미징 디바이스를 위한 교합 블록
KR102377626B1 (ko) * 2015-03-27 2022-03-24 주식회사바텍 엑스선 영상 처리 시스템 및 그 사용 방법
US10724971B2 (en) * 2015-11-05 2020-07-28 Shimadzu Corporation Display device and x-ray CT device
KR102473815B1 (ko) 2016-10-18 2022-12-05 주식회사 바텍 엑스선 영상 표시 장치 및 그 방법
EP3311750A1 (en) 2016-10-18 2018-04-25 Vatech Co. Ltd. Producing panoramic radiograph
US11195309B2 (en) * 2016-11-25 2021-12-07 Teledyne Dalsa B.V. Method for reconstructing a 2D image from a plurality of X-ray images
CN110290749A (zh) * 2016-12-22 2019-09-27 特罗菲公司 一种具有改进的患者定位的牙齿成像设备
JP6240951B2 (ja) * 2017-01-06 2017-12-06 朝日レントゲン工業株式会社 X線撮影装置及びx線画像選択方法
EP3618718A4 (en) 2017-05-03 2020-11-11 Turner Innovations, LLC THREE-DIMENSIONAL X-RAY IMAGING SYSTEM
CN111432729B (zh) * 2017-12-28 2023-09-05 株式会社森田制作所 X射线ct拍摄装置
JP6738363B2 (ja) 2018-03-09 2020-08-12 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
KR102215249B1 (ko) * 2018-09-04 2021-02-15 주식회사 바텍 엑스선 파노라마 영상 장치
KR102182649B1 (ko) * 2018-11-01 2020-11-24 오스템임플란트 주식회사 파노라마 영상 생성 방법, 파노라마 영상 생성 장치 및 컴퓨터 판독 가능한 기록 매체
EP3649957B1 (en) * 2018-11-07 2023-07-19 DENTSPLY SIRONA Inc. Device and method for editing a panoramic radiography image
DK3666225T3 (da) * 2018-12-11 2022-09-12 Sirona Dental Systems Gmbh Fremgangsmåde til frembringelse af en grafisk gengivelse af en tandtilstand
US11376128B2 (en) 2018-12-31 2022-07-05 Depuy Ireland Unlimited Company Acetabular orthopaedic prosthesis and method
JP7207064B2 (ja) * 2019-03-25 2023-01-18 株式会社島津製作所 X線撮影装置
CN111833244B (zh) * 2019-04-11 2024-06-11 深圳市深图医学影像设备有限公司 一种牙科全景图像生成方法、装置及计算机可读存储介质
US12171666B2 (en) 2019-12-10 2024-12-24 Depuy Ireland Unlimited Company Metal reinforced acetabular shell liner
US11291549B2 (en) 2019-12-11 2022-04-05 Depuy Ireland Unlimited Company Ceramic acetabular shell liners with augments
US11628066B2 (en) 2019-12-11 2023-04-18 Depuy Ireland Unlimited Company Ceramic acetabular shell liner with a metal ring having a lead-in surface
CN113124790B (zh) * 2021-05-11 2024-09-27 杭州康博机械设备有限公司 使用x射线成像技术检测圆管尺寸的设备及方法
EP4129191A1 (de) * 2021-08-06 2023-02-08 DENTSPLY SIRONA Inc. Optimierung extraoraler panoramaaufnahmen durch modellbasiertes vorwissen über die kieferbogenform des patienten
CN113898852A (zh) * 2021-09-30 2022-01-07 中南兰信(南京)辐射技术研究院有限公司 数字γ辐射探测器
JP7557904B1 (ja) 2023-11-20 2024-09-30 株式会社吉田製作所 パノラマx線断層画像生成装置、パノラマx線断層撮影装置およびプログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136163A (ja) 2005-10-21 2007-06-07 Axion Japan:Kk パノラマ画像撮影装置及びパノラマ撮影における画像処理方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054402B2 (ja) 1997-04-25 2008-02-27 株式会社東芝 X線断層撮影装置
JPS57203430A (en) 1981-05-16 1982-12-13 Tokyo Shibaura Electric Co X-ray tomograph hotographing apparatus
JP2824602B2 (ja) 1990-10-05 1998-11-11 株式会社モリタ製作所 デジタルパノラマx線撮影装置
JPH0688790A (ja) 1992-09-07 1994-03-29 Toshiba Corp ラミノグラフィー装置
DE19912854A1 (de) * 1999-03-22 2000-10-05 Sirona Dental Systems Gmbh Verfahren zur Korrektur des Vergrößerungsfaktors bei digitalen Röntgenaufnahmen
DE10084386T1 (de) * 1999-03-25 2002-02-28 Nihon University Tokio Tokyo Verfahren und Vorrichtung für die Röntgen-Computertomographie
WO2002028285A1 (en) * 2000-10-04 2002-04-11 Nihon University Medical x-ray ct image display method, display device, medical x-ray ct device and recording medium recording program implementing this display method
JP3926120B2 (ja) * 2001-02-16 2007-06-06 株式会社モリタ製作所 被写体のx線撮影位置設定手段、この手段を備えたx線撮影装置
DE10392506B4 (de) * 2002-04-11 2017-04-06 J. Morita Manufacturing Corporation Röntgen-CT-Gerät
JP2004325183A (ja) 2003-04-23 2004-11-18 M & C:Kk 放射線検出方法、放射線検出器、及び、この検出器を搭載した放射線撮像システム
KR101163808B1 (ko) 2004-09-24 2012-07-09 아이캣 코포레이션 인체정보 추출장치, 인체촬영정보의 기준면 변환방법 및단면정보 검출장치
US8295432B2 (en) 2005-05-02 2012-10-23 Oy Ajat Ltd Radiation imaging device with irregular rectangular shape and extraoral dental imaging system therefrom
US7742560B2 (en) 2005-05-02 2010-06-22 Oy Ajat Ltd. Radiation imaging device with irregular rectangular shape and extraoral dental imaging system therefrom
US7336763B2 (en) 2005-05-02 2008-02-26 Oy Ajat Ltd Dental extra-oral x-ray imaging system and method
US7676022B2 (en) 2005-05-02 2010-03-09 Oy Ajat Ltd. Extra-oral digital panoramic dental x-ray imaging system
KR100766332B1 (ko) * 2005-08-08 2007-10-11 주식회사바텍 파노라마, 씨티 및 두부계측 겸용 엑스선 촬영장치
US7840789B2 (en) 2005-06-03 2010-11-23 University Of Maryland Data hiding in compiled program binaries for supplementing computer functionality
JP4632891B2 (ja) * 2005-07-22 2011-02-16 株式会社モリタ製作所 X線ct撮影装置およびx線ct撮影方法
DE112006002694B4 (de) * 2005-10-17 2023-02-23 J. Morita Mfg. Corp. Medizinisches, digitales Röntgenbildgerät und medizinischer und digitaler Röntgenstrahlungssensor
JP2007136162A (ja) 2005-10-18 2007-06-07 Oji Paper Co Ltd 液吸収性シートおよびその製造方法
EP1961383A4 (en) * 2005-10-21 2011-02-23 Axion Japan Co Ltd PANORAMIC IMAGE CAPTURE DEVICE AND IMAGE PROCESSING METHOD FOR PANORAMIC IMAGE CAPTURE
JP4746482B2 (ja) * 2006-05-25 2011-08-10 株式会社吉田製作所 断層面画像生成装置、断層面画像生成方法および断層面画像生成プログラム
JP2008086659A (ja) * 2006-10-04 2008-04-17 Axion Japan:Kk 画像処理方法及びパノラマ画像撮影装置
JP4851298B2 (ja) 2006-10-31 2012-01-11 富士フイルム株式会社 放射線断層画像生成装置
GB0701076D0 (en) * 2007-01-19 2007-02-28 E2V Tech Uk Ltd Imaging apparatus
JP4503654B2 (ja) * 2007-02-22 2010-07-14 株式会社モリタ製作所 歯顎顔面のx線ct画像の表示方法、x線ct断層撮影装置、およびx線画像表示装置
US7787586B2 (en) * 2007-02-22 2010-08-31 J. Morita Manufacturing Corporation Display method of X-ray CT image of maxillofacial area, X-ray CT apparatus and X-ray image display apparatus
JP4739278B2 (ja) * 2007-05-11 2011-08-03 株式会社モリタ製作所 X線ct撮影装置
JP5539729B2 (ja) * 2007-11-16 2014-07-02 株式会社モリタ製作所 X線ct撮影装置
CN101965153B (zh) * 2008-02-20 2014-08-06 图像科学国际有限公司 可调整扫描仪
US7715525B2 (en) * 2008-03-13 2010-05-11 Oy Ajat Limited Single sensor multi-functional dental extra-oral x-ray imaging system and method
US8502980B2 (en) 2008-03-28 2013-08-06 Konica Minolta Sensing, Inc Spectral characteristic measuring system, spectral characteristic measuring instrument, and data processing device
US7876878B2 (en) * 2008-12-23 2011-01-25 Apteryx, Inc. Automatic spatial adjustment of a pan-oral x-ray source in response to the actual dentition of a patient
US9084568B2 (en) * 2009-08-05 2015-07-21 Telesystems Co., Ltd. Radiation imaging apparatus and imaging method using radiation
US8588364B2 (en) * 2009-08-19 2013-11-19 J. Morita Manufacturing Corporation Medical X-ray apparatus
JP5528052B2 (ja) * 2009-10-17 2014-06-25 株式会社テレシステムズ 放射線撮像装置及び同装置に用いるファントム装置
US9408579B2 (en) * 2010-05-11 2016-08-09 Takara Telesystems Corp. Radiation imaging apparatus and phantom used for the same
JP5878121B2 (ja) * 2010-07-13 2016-03-08 株式会社テレシステムズ X線断層像撮影装置
JP5711200B2 (ja) * 2011-11-02 2015-04-30 株式会社モリタ製作所 パノラマx線断層撮影装置および画像処理装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136163A (ja) 2005-10-21 2007-06-07 Axion Japan:Kk パノラマ画像撮影装置及びパノラマ撮影における画像処理方法

Also Published As

Publication number Publication date
WO2011013771A1 (ja) 2011-02-03
US9113799B2 (en) 2015-08-25
US20160015332A1 (en) 2016-01-21
EP2465436A4 (en) 2016-08-17
JP5731386B2 (ja) 2015-06-10
JP2015144898A (ja) 2015-08-13
KR20120059498A (ko) 2012-06-08
JP6007386B2 (ja) 2016-10-12
CN102469977B (zh) 2015-04-01
JPWO2011013771A1 (ja) 2013-01-10
US20120230467A1 (en) 2012-09-13
EP2465436A1 (en) 2012-06-20
US9629590B2 (en) 2017-04-25
CN102469977A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
KR101787119B1 (ko) 방사선 촬상 장치 및 방사선에 의한 촬상 방법, 및 데이터 처리 장치
JP5696305B2 (ja) 放射線撮像装置及び放射線による撮像方法
KR101819257B1 (ko) X선 단층상 촬영 장치
KR101523422B1 (ko) 방사선 촬상 장치 및 동장치에 이용하는 팬텀
US9907520B2 (en) Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging
US9743893B2 (en) Dental imaging with photon-counting detector
CN104066376B (zh) 用于数字放射线照相的设备和方法
US20170311910A1 (en) Dental imaging with photon-counting detector
JP4537129B2 (ja) トモシンセシス用途における対象物を走査するためのシステム
JP2009529394A (ja) ラドンデータから画像関数を再構成する方法
JP2007181623A (ja) X線ct装置
JP2008012319A (ja) トモシンセシス・イメージング・システムでのアーティファクトを低減する方法及びシステム
EP2793702B1 (en) Dental imaging with photon-counting detector
JP5528052B2 (ja) 放射線撮像装置及び同装置に用いるファントム装置
JP5384293B2 (ja) X線ct装置
Ye Advanced Image Reconstruction for Limited View Cone-Beam CT

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20120209

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20150722

Comment text: Request for Examination of Application

PN2301 Change of applicant

Patent event date: 20160420

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20160712

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170110

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20170914

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20171011

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20171011

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20201005

Start annual number: 4

End annual number: 4