[go: up one dir, main page]

KR101689587B1 - Process for Preparing Silicon Ink, and Solar Cell using Thereof - Google Patents

Process for Preparing Silicon Ink, and Solar Cell using Thereof Download PDF

Info

Publication number
KR101689587B1
KR101689587B1 KR1020100049504A KR20100049504A KR101689587B1 KR 101689587 B1 KR101689587 B1 KR 101689587B1 KR 1020100049504 A KR1020100049504 A KR 1020100049504A KR 20100049504 A KR20100049504 A KR 20100049504A KR 101689587 B1 KR101689587 B1 KR 101689587B1
Authority
KR
South Korea
Prior art keywords
formula
ink
cyclopentasilane
produce
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020100049504A
Other languages
Korean (ko)
Other versions
KR20110130065A (en
Inventor
조규진
강휘원
김동환
Original Assignee
주식회사 지본
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지본 filed Critical 주식회사 지본
Priority to KR1020100049504A priority Critical patent/KR101689587B1/en
Publication of KR20110130065A publication Critical patent/KR20110130065A/en
Application granted granted Critical
Publication of KR101689587B1 publication Critical patent/KR101689587B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 액상 방법에 의해 Si 전구체를 합성 한 후 단일벽 탄소나노튜브 (SWNT) 또는 그라핀 나노리본 (GNR)을 첨가하여 폴리실란 잉크를 제조하는 방법에 관한 것이다. 더욱 상세하게는 Si 전구체를 3단계 합성 공정을 통하여 합성하고, 합성된 용액에 단일벽 탄소나노튜브 또는 그라핀 나노리본을 분산시킨 후 이를 이용하여 포토 폴리머리제이션에 의해 폴리 실란을 형성하고 잉크를 제조하는 방법을 제공한다. 또한 제조된 잉크를 이용하여 잉크젯 또는 스핀 코팅 방법으로 박막을 형성하여 태양 전지를 제조하는 방법을 제공한다.The present invention relates to a method for producing a polysilane ink by synthesizing a Si precursor by a liquid phase method and then adding single-walled carbon nanotubes (SWNT) or graphene nanoribbons (GNR). More specifically, a Si precursor is synthesized through a three-step synthesis process, and single-walled carbon nanotubes or graphene nanoribbons are dispersed in the synthesized solution. Polysilanes are formed by photopolymerization using the dispersion, The method comprising: The present invention also provides a method of manufacturing a solar cell by forming a thin film by ink jet or spin coating method using the ink thus prepared.

Description

실리콘 잉크의 제조 방법 및 이를 이용한 실리콘 태양전지{Process for Preparing Silicon Ink, and Solar Cell using Thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a silicon ink,

본 발명은 시클로펜타실란을 제조하고 단일벽 탄소나노튜브(SWNT)와 그라핀 나노리본(GNR)을 첨가하여 광경화 반응을 이용하여 폴리실란 잉크를 제조하고 제조된 폴리실란 잉크를 이용한 박막의 태양전지에 관한 것이다. 기존에 태양전지의 경우 웨이퍼나 진공증착에 의해 태양전지를 제조하였으나, 이 방법은 많은 비용과 많은 시간이 소요가 되는 단점이 있다. 따라서 본 발명에서는 이러한 문제를 해결 하여 저비용, 고효율의 초저가 태양 전지를 인쇄 방법으로 제공한다.
The present invention relates to a process for producing a polysilane ink using a photocuring reaction by preparing cyclopentasilane and adding a single-walled carbon nanotube (SWNT) and a graphene nanoribbon (GNR) Battery. Conventionally, a solar cell was manufactured by a wafer or a vacuum deposition method in the case of a solar cell, but this method has a disadvantage that it is expensive and takes a long time. Therefore, the present invention solves this problem and provides a low-cost, high-efficiency ultra-low-cost solar cell as a printing method.

실리콘 태양 전지의 경우 그린에너지의 한 종류로 태양에너지를 전기에너지로 변환 실생활에 사용하고 있다. 태양 전지의 사용 용도로는 일반 발전소 건립용, 주택 발전용, 휴대용 전지 등 여러 분야에 적용이 되고 있다. In the case of silicon solar cells, it is a type of green energy that is used in real life to convert solar energy into electrical energy. The use of solar cells has been applied to various fields such as construction of general power plants, home power generation, and portable batteries.

기존의 실리콘 태양 전지의 경우 웨이퍼 및 진공 증착에 의해 태양 전지를 제조하였다. 실리콘의 경우 도핑에 따라 진성 반도체, p-형 반도체, n-형 반도체로 나누어지며, p형 웨이퍼 위에 증착을 통하여 실리콘 태양 전지를 제조하였다. 이러한 경우 공정 시간이 매우 길게 형성되고, 태양 전지 하나 제조 하는데 고비용이 소용 되는 단점이 있다. In the case of conventional silicon solar cells, solar cells were fabricated by wafer and vacuum deposition. Silicon is divided into intrinsic semiconductors, p-type semiconductors and n-type semiconductors by doping, and silicon solar cells are fabricated by deposition on p-type wafers. In this case, the process time is very long, and there is a disadvantage that a high cost is consumed for manufacturing a solar cell.

본 발명은 이러한 문제를 해결 하고자 안출된 것으로서, 습식 방법을 이용하여 실리콘 전구체를 합성하고, 합성된 전구체에 단일벽 탄소나노튜브 (SWNT)와 그라핀 나노리본 (GNR)을 첨가하여 광으로 고분자화하여 폴리실리콘 잉크를 제조 하는 방법에 관한 것이다. 또한 전구체를 이용하여 3족과 5족을 합성 단계에서 각각 도핑하여 p-형과 n-형 실리콘 잉크를 제조 하고, 이를 이용하여 박막의 태양 전지를 제조하는 방법에 관한 것이다.DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide a method of synthesizing a silicon precursor using a wet method and adding single wall carbon nanotubes (SWNT) and graphene nanoribbons (GNR) to the synthesized precursor, To a method for producing a polysilicon ink. Also, the present invention relates to a method for preparing a thin film solar cell by preparing p-type and n-type silicon inks by doping Group 3 and Group 5 in a synthesis step using a precursor.

본 발명에서 폴리실리콘 잉크를 제조하는 방법에 단일벽 탄소나노튜브 (SWNT)와 그라핀 나노리본(GNR)을 첨가하여 복합 실리콘 잉크로 제공하고, 제조된 잉크를 이용한 태양전지 제조에 관한 것으로, 기존의 결정성 Si나 진공증착 방식의 비정질 박막 Si를 대체하기 위한 차세대 태양전지 및 인쇄 전자의 소재로 사용 할 수 있다.
The present invention relates to a method for producing a polysilicon ink, which comprises adding a single-walled carbon nanotube (SWNT) and a graphene nanoribbons (GNR) to provide a composite silicone ink and manufacturing solar cells using the produced ink, And can be used as materials for next-generation solar cells and printing electrons to replace crystalline Si or vacuum-deposited amorphous thin film Si.

본 발명에 따른 태양전지용 실리콘 잉크의 제조 방법은 a) 화학식 2의 디클로로디페닐실란과 리튬을 반응시켜 화학식 3의 데카페닐 치환 시클로펜타실란을 제조하는 단계; b) 화학식 3의 데카페닐 치환 시클로펜타실란에 염화알루미늄을 첨가한 후 염화수소 가스 또는 브롬화수소 가스 분위기에서 반응시켜 화학식 4의 염소화 또는 브롬화된 시클로펜타실란을 제조하는 단계; c) 화학식 4의 염소화 또는 브롬화된 시클로펜타실란과 리튬알루미늄하이드라이드로 환원반응하여 화학식 1의 시클로펜타실란을 제조하는 단계; 및 d) 상기 화학식 1의 시클로펜타실란에 단일벽 탄소나노튜브 또는 그라핀 나노리본을 첨가하여 분산한 후 광경화하여 폴리실란 잉크를 제조하는 단계;를 포함하는 특징이 있다.A method for producing a silicon ink for a solar cell according to the present invention comprises the steps of: a) reacting dichlorodiphenylsilane of Formula 2 with lithium to prepare decaphenyl-substituted cyclopentasilane of Formula 3; b) reacting decaphenyl-substituted cyclopentasilane of formula (3) with aluminum chloride and reacting in a hydrogen chloride gas or hydrogen bromide gas atmosphere to prepare chlorinated or brominated cyclopentasilane of formula (4); c) reduction reaction with chlorinated or brominated cyclopentasilane of formula (4) and lithium aluminum hydride to produce cyclopentasilane of formula (1); And d) adding a single-walled carbon nanotube or graphene nanoribbons to the cyclopentasilane of Formula 1, and dispersing and then curing the polysilane ink to form a polysilane ink.

(화학식 1)(Formula 1)

Figure 112010033984215-pat00001
Figure 112010033984215-pat00001

(화학식 2)(2)

Figure 112010033984215-pat00002
Figure 112010033984215-pat00002

(화학식 3)(Formula 3)

Figure 112010033984215-pat00003
Figure 112010033984215-pat00003

(화학식 4)(Formula 4)

Figure 112010033984215-pat00004
Figure 112010033984215-pat00004

특징적으로, 상기 a) 단계에서 PBr3를 디클로로디페닐실란의 10 내지 90 중량%를 더 첨가하여 n-형 실리콘 잉크를 제조한다.Characteristically, in step a), PBr 3 is added in an amount of 10 to 90% by weight of dichlorodiphenylsilane to prepare an n-type silicon ink.

특징적으로, a) 단계에서 BBr3를 디클로로디페닐실란의 10 내지 90 중량%를 더 첨가하여 p-형 실리콘 잉크를 제조한다.Characteristically, in step a), BBr 3 is further added in an amount of 10 to 90% by weight of dichlorodiphenylsilane to prepare p-type silicon ink.

본 발명에 따른 제조방법에 있어, d) 단계에서의 분산은 초음파 분산인 것이 바람직하다.In the production process according to the present invention, the dispersion in step d) is preferably an ultrasonic dispersion.

본 발명에 따른 태양전지의 제조방법은 상술한 제조방법으로 제조된 태양전지용 실리콘 잉크를 전극 상에 잉크젯, 그라비아, 옵셋 또는 플렉소 방법으로 박막의 Si 층을 제조하는 특징이 있다.
The method for manufacturing a solar cell according to the present invention is characterized in that a silicon ink for a solar cell manufactured by the above-described manufacturing method is manufactured by forming an Si layer of thin film on an electrode by inkjet, gravure, offset or flexo method.

본 발명에 의해 만들어진 탄소나노튜브 (SWNT)와 그라핀 나노리본 (GNR)복합 폴리 실리콘 잉크를 사용하여 태양전지를 제조 할 경우 기존의 증착 방식에 비하여 공정이 단순화되며, 단가 측면에서 저렴하게 제조가 가능하다. 또한 단순 실리콘 잉크를 사용함으로써 인쇄 또는 코팅시 발생되는 균열 및 표면 거칠기에 의해 변화가 심하던 광효율 특성을 탄소나노튜브 (SWNT)와 그라핀 나노리본 (GNR)을 이용하여 극복하여 생산성 증대와 초저가 태양전지 개발에 기여 할 수 있다.
The manufacturing process of the solar cell using the carbon nanotube (SWNT) and the graphene nanoribbon (GNR) composite polysilicon ink made by the present invention simplifies the process compared with the conventional deposition method, It is possible. In addition, by using simple silicon ink, it is possible to overcome the light efficiency characteristics, which were changed by cracks and surface roughness during printing or coating, by using carbon nanotubes (SWNT) and graphene nanoribbons (GNR) It can contribute to development.

도 1은 실시예 1에 따라 제조된 시클로펜타실란의 FT-IR 스펙트럼
도 2는 실시예 1에 따라 제조된 시클로펜타실란의 NMR 스펙트럼
도 3은 실시예 5에 따라 제조된 태양전지의 효율 그래프
1 shows the FT-IR spectrum of the cyclopentasilane prepared according to Example 1
2 shows the NMR spectra of the cyclopentasilane prepared according to Example 1
3 is a graph showing the efficiency of a solar cell manufactured according to Example 5

이하 첨부한 도면들을 참조하여 본 발명의 제조방법을 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. The manufacturing method of the present invention will be described in detail with reference to the accompanying drawings. The following drawings are provided by way of example so that those skilled in the art can fully understand the spirit of the present invention. Therefore, the present invention is not limited to the following drawings, but may be embodied in other forms, and the following drawings may be exaggerated in order to clarify the spirit of the present invention. Also, throughout the specification, like reference numerals designate like elements.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Hereinafter, the technical and scientific terms used herein will be understood by those skilled in the art without departing from the scope of the present invention. Descriptions of known functions and configurations that may be unnecessarily blurred are omitted.

본 발명은 액상 합성 방법에 의해 실리콘 전구체를 제조하고 탄소나노튜브 (SWNT)와 그라핀 나노리본(GNR)을 용액에 분산 한 후 광경화 반응을 이용하여 실리콘 잉크를 제조하고, 제조된 실리콘 잉크를 이용하여 박막의 태양전지를 제조하는 방법을 제공한다.The present invention relates to a process for producing a silicon ink by preparing a silicon precursor by a liquid phase synthesis method and dispersing carbon nanotubes (SWNT) and graphene nanoribbons (GNR) in a solution, followed by photocuring reaction, To provide a thin film solar cell.

본 발명에 따른 태양전지용 실리콘 잉크의 제조 방법은 하기의 단계를 특징으로 한다.A method for producing a silicon ink for a solar cell according to the present invention is characterized by the following steps.

a) 화학식 2의 디클로로디페닐실란과 리튬을 반응시켜 화학식 3의 데카페닐 치환 시클로펜타실란을 제조하는 단계;a) reacting dichlorodiphenylsilane of Formula 2 with lithium to produce decaphenyl substituted cyclopentasilane of Formula 3;

b) 화학식 3의 데카페닐 치환 시클로펜타실란에 염화알루미늄을 첨가한 후 염화수소 가스 또는 브롬화수소 가스 분위기에서 반응시켜 화학식 4의 염소화 또는 브롬화된 시클로펜타실란을 제조하는 단계;b) reacting decaphenyl-substituted cyclopentasilane of formula (3) with aluminum chloride and reacting in a hydrogen chloride gas or hydrogen bromide gas atmosphere to prepare chlorinated or brominated cyclopentasilane of formula (4);

c) 화학식 4의 염소화 또는 브롬화된 시클로펜타실란과 리튬알루미늄하이드라이드로 환원반응하여 화학식 1의 시클로펜타실란을 제조하는 단계; 및c) reduction reaction with chlorinated or brominated cyclopentasilane of formula (4) and lithium aluminum hydride to produce cyclopentasilane of formula (1); And

d) 상기 화학식 1의 시클로펜타실란에 단일벽 탄소나노튜브 또는 그라핀 나노리본을 첨가하여 분산한 후 광경화하여 폴리실란 잉크를 제조하는 단계.
d) adding single-walled carbon nanotubes or graphene nanoribbons to the cyclopentasilane of Formula 1, and dispersing and then photo-curing the polysilane inks.

(화학식 1)(Formula 1)

Figure 112010033984215-pat00005
Figure 112010033984215-pat00005

(화학식 2)(2)

Figure 112010033984215-pat00006
Figure 112010033984215-pat00006

(화학식 3)(Formula 3)

Figure 112010033984215-pat00007
Figure 112010033984215-pat00007

(화학식 4)(Formula 4)

Figure 112010033984215-pat00008
Figure 112010033984215-pat00008

상세하게는 본 발명에 따른 실리콘 잉크에 채용되는 시클로펜타실란 화합물은 하기의 반응식 1에 기재된 단계를 거처 제조된다.Specifically, the cyclopentasilane compound employed in the silicone ink according to the present invention is prepared through the steps described in the following Reaction Scheme 1.

(반응식 1)(Scheme 1)

Figure 112010033984215-pat00009
Figure 112010033984215-pat00009

상세하게는, 실리콘 잉크의 합성에서 1단계 반응으로 리튬 1~20 중량부 바람직하게는 1~10 중량부와 디클로로디페닐실란 30~100 중량부, 바람직하게는 40~80 중량부를 테트라하이드로퓨란(THF)등의 유기용매 용해시킨 후 아르곤 분위기에서 5~24시간, 바람직하게는 10~20시간 교반하여 데카페닐 치환 시클로펜타실란을 제조한다. Specifically, 1 to 20 parts by weight, preferably 1 to 10 parts by weight of lithium and 30 to 100 parts by weight, preferably 40 to 80 parts by weight of dichlorodiphenylsilane are dissolved in tetrahydrofuran ( THF), and the mixture is stirred in an argon atmosphere for 5 to 24 hours, preferably 10 to 20 hours to prepare decaphenyl-substituted cyclopentasilane.

2 단계 반응에서 상기 제조된 데카페닐 치환 시클로펜타실란에 염화알루미늄 3~20 중량부, 바람직하게는 5~15 중량부를 첨가 후 염화수소 가스(HCl), 브롬화수소 가스(HBr) 분위기에서 5~24시간, 바람직하게는 10~20시간 반응하여 염소화 또는 브롬화된 시클로펜타실란을 제조한다. In the second step reaction, 3 to 20 parts by weight, preferably 5 to 15 parts by weight, of aluminum chloride is added to the prepared decaphenyl-substituted cyclopentasilane, and the mixture is reacted in a hydrogen chloride gas (HCl) or hydrogen bromide gas (HBr) atmosphere for 5 to 24 hours , Preferably 10 to 20 hours, to prepare a chlorinated or brominated cyclopentasilane.

이렇게 제조된 것을 이용하여 3단계 반응에서는 리튬알루미늄하이드라이드 1~10 중량부, 바람직하게는 1~5 중량부를 첨가하여 5~20시간, 바람직하게는 8~15시간 반응하여 시클로펜타실란을 합성하게 된다. In the three-step reaction, 1 to 10 parts by weight, preferably 1 to 5 parts by weight, of lithium aluminum hydride is added and reacted for 5 to 20 hours, preferably 8 to 15 hours to synthesize cyclopentasilane do.

이렇게 합성된 시클로펜타실란에 탄소나노튜브(SWNT) 또는 그라핀 나노리본 (GNR) 1~ 0.1 중량%를 초음파로 분산 한 후 자외선을 가함으로써 광 경화 반응에 의해 폴리실란을 얻게 되며, 이를 이용하여 잉크로 제조하여 인쇄에 적용할 수 있다.After 1 to 0.1 wt% of carbon nanotubes (SWNT) or graphene nanoribbons (GNR) are dispersed by ultrasonication in the thus synthesized cyclopentasilane and then irradiated with ultraviolet rays, polysilane is obtained by photo-curing reaction. And can be applied to printing by making ink.

n-형(type) 또는 p-형(type)의 실리콘 잉크는 하기 반응식 2와 반응식 3에 도시된 바와 같이 1단계 반응에서 디클로로디페닐실란의 중량을 기준으로 10~90중량%의 PBr3나 BBr3을 첨가함으로서 제조가 가능하다.An n-type or p-type silicon ink is prepared by reacting 10 to 90% by weight of PBr 3 , based on the weight of dichlorodiphenylsilane, in a one-step reaction as shown in the following Reaction Schemes 2 and 3 It is possible to prepare by adding BBr 3 .

(반응식 2)(Scheme 2)

Figure 112010033984215-pat00010
Figure 112010033984215-pat00010

(반응식 3)(Scheme 3)

Figure 112010033984215-pat00011

Figure 112010033984215-pat00011

(실시예 1) 실리콘 잉크의 제조(Example 1) Production of silicone ink

리튬 3g 과 디클로로디페닐실란 60g을 테트라하이드로퓨란 200g에 용해시킨 후 아르곤 분위기에서 10시간 교반하여 데카페닐 치환 시클로펜타실란 40g을 수득하였다. 수득된 상기 데카페닐 치환 시클로펜타실란에 알루미늄클로라이드 15g을 첨가 후 염화수소 가스(HCl) 15시간 반응하여 염소화된 사이클로펜타실란을 12g 수득한 후, 제조된 염소화된 시클로펜타실란에 리튬알루미늄하이드라이드 2g을 첨가하여 10시간 반응하여 시클로펜타실란을 5g 수득하였다. 3 g of lithium and 60 g of dichlorodiphenylsilane were dissolved in 200 g of tetrahydrofuran and stirred in an argon atmosphere for 10 hours to obtain 40 g of decaphenyl-substituted cyclopentasilane. After 15 g of aluminum chloride was added to the obtained decaphenyl-substituted cyclopentasilane, 12 g of chlorinated cyclopentasilane was obtained by reacting with hydrogen chloride gas (HCl) for 15 hours. Then, 2 g of lithium aluminum hydride was added to the chlorinated cyclopentasilane And the mixture was reacted for 10 hours to obtain 5 g of cyclopentasilane.

제조된 잉크를 이용하여 도 1 및 도 2에 도시된 바와 같이 FT-IR과 NMR을 이용하여 Si 전구체 합성을 확인하였다.
Synthesis of Si precursor was confirmed using FT-IR and NMR as shown in Figs. 1 and 2 using the prepared ink.

(실시예 2) p형 또는 n 형 실리콘 잉크의 제조(Example 2) Production of p-type or n-type silicon ink

리튬과 디클로로디페닐실란에 BBr3 0.5g 또는 PBr3 0.5g를 추가로 첨가하는 것 이외에 상기 실시예 1과 동일한 방법에 의하여 p형 또는 n 형의 Si 잉크를 제조하였다.
A p-type or n-type Si ink was prepared in the same manner as in Example 1 except that 0.5 g of BBr 3 or 0.5 g of PBr 3 was further added to lithium and dichlorodiphenylsilane.

(실시예3)(Example 3)

상기 실시예 1에서 제조된 잉크에 SWNT(단일벽 탄소나노튜브)를 0.2중량%를 첨가하여 반도체 잉크를 제조하였다. 제조된 잉크를 100mW UV를 10초간 조사를 통해 반도체 잉크를 제조 하였다. 제조된 잉크를 이용하여 p-Si 웨이퍼 위에 SWNT가 첨가된 잉크를 스핀 코팅하여 막을 형성 후 500 ℃에서 30분간 열처리하여 박막을 제조하였다. 상부(top) 전극으로는 실버 잉크를 사용하여 상부 전극을 형성 하고 효율을 측정하였다.
A semiconductor ink was prepared by adding 0.2 wt% of SWNT (single wall carbon nanotubes) to the ink prepared in Example 1 above. The prepared ink was irradiated with 100 mW UV for 10 seconds to prepare a semiconductor ink. The prepared ink was spin-coated with ink containing SWNT on a p-Si wafer to form a film, and then the film was heat-treated at 500 ° C for 30 minutes to prepare a thin film. As the top electrode, silver ink was used to form the upper electrode and the efficiency was measured.

(실시예 4)(Example 4)

실시예 1에서 제조된 잉크에 그라핀 나노리본(GRN)을 0.2 중량%를 첨가하여 반도체 잉크를 제조한 것 이외에는, 실시예 3과 모든 공정에 의하여 박막을 형성한 후 효율을 측정하였다.
The efficiency was measured after forming a thin film according to Example 3 and all the processes except that 0.2 wt% of graphene nanoribbons (GRN) was added to the ink prepared in Example 1 to prepare a semiconductor ink.

(실시예 5)(Example 5)

실시예 2에서 제조된 p형 잉크에 SWNT(단일벽 탄소나노튜브)을 0.2 중량%를 첨가하여 p형 반도체 잉크를 제조한 것 이외에는, 실시예 3과 동일한 방법에 의하여 박막을 형성한 후 효율을 측정하였다.
A thin film was formed in the same manner as in Example 3, except that 0.2 wt% of SWNT (single wall carbon nanotube) was added to the p-type ink prepared in Example 2 to produce a p-type semiconductor ink. Respectively.

(실시예 6)(Example 6)

실시예 2에서 제조된 n형 잉크에 그라핀 나노리본(GRN)을 0.2 중량%를 첨가하여 n형 반도체 잉크를 제조한 것 이외에는, 실시예 3과 동일한 방법에 의하여 박막을 형성한 후 효율을 측정하였다.
A thin film was formed in the same manner as in Example 3 except that 0.2 wt% of graphene nanoribbons (GRN) was added to the n-type ink prepared in Example 2 to prepare an n-type semiconductor ink, Respectively.

(실시예 7)(Example 7)

p-Si 웨이퍼 위에 실시예 6에서 제조된 n형 반도체 잉크를 스핀 코팅하여 n-Si막을 형성 후 500 ℃에서 30분간 열처리 후 박막을 제조하였다. 상부 전극으로는 실버 잉크를 이용하여 상부 전극을 형성하였다. 그 후 솔라 시뮬레이터(solar simulator)를 이용하여 효율을 측정하였으며, 측정된 효율은 도 3에 도시한바와 같다.
The n-type semiconductor ink prepared in Example 6 was spin-coated on a p-Si wafer to form an n-Si film, and then the thin film was prepared by heat treatment at 500 ° C for 30 minutes. The upper electrode was formed using silver ink as the upper electrode. Then, the efficiency was measured using a solar simulator, and the measured efficiency was as shown in FIG.

(실시예 8)(Example 8)

투명전극(ITO전극)위에 실시예 5에서 제조된 p형 반도체 잉크를 스핀 코팅하여 p-Si박막을 제조하였다. 제조된 박막을 500 ℃로 30분간 열처리 후, 열처리된 p-Si박막 상부로 다시 실시예 3에서 제조된 잉크를 스핀 코팅을 이용하여 인트린직(intrinsic) Si(i-Si) 박막을 제조하였고, 제조된 인트린직 박막을 500 ℃로 30분간 열처리후 그 위에 다시 실시예 6에서 제조된 n형 반도체 잉크를 스핀코팅하여 n-Si 박막을 형성하였다. 형성된 박막을 500 ℃로 30분간 열처리를 하였다. 그 후 실버 잉크를 이용하여 상부 전극을 형성 하였다. 이후 솔라 시뮬레이터를 이용하여 효율을 측정 하였다.
The p-type semiconductor ink prepared in Example 5 was spin-coated on a transparent electrode (ITO electrode) to produce a p-Si thin film. The prepared thin film was heat-treated at 500 ° C. for 30 minutes, and then the intrinsic Si (i-Si) thin film was formed on the heat-treated p-Si thin film by spin coating the ink prepared in Example 3, The prepared intrinsic thin film was heat-treated at 500 ° C for 30 minutes, and then the n-type semiconductor ink prepared in Example 6 was spin-coated thereon to form an n-Si thin film. The formed thin film was subjected to heat treatment at 500 DEG C for 30 minutes. Then, an upper electrode was formed using silver ink. Then, the efficiency was measured using a solar simulator.

(실시예 9)(Example 9)

투명전극(ITO전극) 위에 실시예 5에서 제조된 p형 반도체 잉크를 스핀코팅을 하고, 실시예 3에서 제조된 잉크를 잉크젯 인쇄하고, 다시 실시예6에서 제조된 n형 반도체 잉크를 잉크젯 인쇄한 것을 제외하고 실시예 8과 동일하게 실리콘 태양 전지를 제조하였다. 이후 솔라 시뮬레이터를 이용하여 효율을 측정 하였다.
The p-type semiconductor ink prepared in Example 5 was spin-coated on the transparent electrode (ITO electrode), and the ink prepared in Example 3 was subjected to inkjet printing, and again the n-type semiconductor ink prepared in Example 6 was inkjet printed A silicon solar cell was prepared in the same manner as in Example 8. [ Then, the efficiency was measured using a solar simulator.

(실시예 10)(Example 10)

n-Si, i-Si 및 p-Si 박막을 모두 잉크젯을 이용하여 인쇄 방식으로 제조한 것을 제외하고 실시예 8과 동일하게 실리콘 태양 전지를 제조하였다. 이후 솔라 시뮬레이터를 이용하여 효율을 측정 하였다.A silicon solar cell was prepared in the same manner as in Example 8 except that the n-Si, i-Si and p-Si thin films were all manufactured by a printing method using an ink jet. Then, the efficiency was measured using a solar simulator.

이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Those skilled in the art will recognize that many modifications and variations are possible in light of the above teachings.

따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
Accordingly, the spirit of the present invention should not be construed as being limited to the embodiments described, and all of the equivalents or equivalents of the claims, as well as the following claims, belong to the scope of the present invention .

Claims (5)

a) 화학식 2의 디클로로디페닐실란과 리튬을 반응시켜 화학식 3의 데카페닐 치환 시클로펜타실란을 제조하는 단계;
b) 화학식 3의 데카페닐 치환 시클로펜타실란에 염화알루미늄을 첨가한 후 염화수소 가스 또는 브롬화수소 가스 분위기에서 반응시켜 화학식 4의 염소화 또는 브롬화된 시클로펜타실란을 제조하는 단계;
c) 화학식 4의 염소화 또는 브롬화된 시클로펜타실란과 리튬알루미늄하이드라이드로 환원반응하여 화학식 1의 시클로펜타실란을 제조하는 단계;
d) 상기 화학식 1의 시클로펜타실란에 단일벽 탄소나노튜브 또는 그라핀 나노리본을 첨가하여 분산한 후 광경화하여 폴리실란 잉크를 제조하는 단계;
를 포함하는 태양전지용 실리콘 잉크의 제조 방법.
(화학식 1)

(화학식 2)
Figure 112010033984215-pat00013

(화학식 3)
Figure 112010033984215-pat00014

(화학식 4)
Figure 112010033984215-pat00015
a) reacting dichlorodiphenylsilane of Formula 2 with lithium to produce decaphenyl substituted cyclopentasilane of Formula 3;
b) reacting decaphenyl-substituted cyclopentasilane of formula (3) with aluminum chloride and reacting in a hydrogen chloride gas or hydrogen bromide gas atmosphere to prepare chlorinated or brominated cyclopentasilane of formula (4);
c) reduction reaction with chlorinated or brominated cyclopentasilane of formula (4) and lithium aluminum hydride to produce cyclopentasilane of formula (1);
d) adding a single-walled carbon nanotube or graphene nanoribbons to the cyclopentasilane of Formula 1, dispersing and then curing to produce a polysilane ink;
Wherein the method further comprises the steps of:
(Formula 1)

(2)
Figure 112010033984215-pat00013

(Formula 3)
Figure 112010033984215-pat00014

(Formula 4)
Figure 112010033984215-pat00015
제 1항에 있어서,
a) 단계에서 PBr3를 디클로로디페닐실란의 10 내지 90 중량%를 더 첨가하여 n-형 실리콘 잉크를 제조하는 것을 특징으로 하는 태양전지용 실리콘 잉크의 제조 방법.
The method according to claim 1,
wherein in step (a), 10 to 90% by weight of dichlorodiphenylsilane is further added to PBr 3 to produce an n-type silicon ink.
제 1항에 있어서,
a) 단계에서 BBr3를 디클로로디페닐실란의 10 내지 90 중량%를 더 첨가하여 p-형 실리콘 잉크를 제조하는 것을 특징으로 하는 태양전지용 실리콘 잉크의 제조 방법.
The method according to claim 1,
wherein in step (a), BBr 3 is further added in an amount of 10 to 90% by weight of dichlorodiphenylsilane to produce a p-type silicon ink.
제 1항에 있어서,
d) 단계에서의 분산은 초음파 분산인 것을 특징으로 하는 태양전지용 실리콘 잉크의 제조 방법.
The method according to claim 1,
wherein the dispersion in step d) is an ultrasonic dispersion.
제1항 내지 제4항에서 선택된 어느 한 항의 제조방법에 의하여 제조된 태양전지용 실리콘 잉크를 전극 상에 잉크젯, 그라비아, 옵셋 또는 플렉소 방법으로 박막의 Si 층을 제조하는 것을 특징으로 하는 태양전지의 제조방법.

A silicon ink for a solar cell produced by a manufacturing method according to any one of claims 1 to 4, wherein a thin Si layer is formed on the electrode by an ink jet, gravure, offset or flexo process Gt;

KR1020100049504A 2010-05-27 2010-05-27 Process for Preparing Silicon Ink, and Solar Cell using Thereof Active KR101689587B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100049504A KR101689587B1 (en) 2010-05-27 2010-05-27 Process for Preparing Silicon Ink, and Solar Cell using Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100049504A KR101689587B1 (en) 2010-05-27 2010-05-27 Process for Preparing Silicon Ink, and Solar Cell using Thereof

Publications (2)

Publication Number Publication Date
KR20110130065A KR20110130065A (en) 2011-12-05
KR101689587B1 true KR101689587B1 (en) 2016-12-26

Family

ID=45498959

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100049504A Active KR101689587B1 (en) 2010-05-27 2010-05-27 Process for Preparing Silicon Ink, and Solar Cell using Thereof

Country Status (1)

Country Link
KR (1) KR101689587B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162785A (en) * 2021-12-30 2022-03-11 北京珺政慧通科技有限公司 Coating process of alpha-aluminum trihydride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173180B2 (en) 2001-08-14 2007-02-06 Jsr Corporation Silane composition, silicon film forming method and solar cell production method
JP2010018696A (en) 2008-07-10 2010-01-28 Toray Ind Inc Carbon nanotube dispersing solution, organic semiconductor composite solution, organic semiconductor thin film and organic field-effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173180B2 (en) 2001-08-14 2007-02-06 Jsr Corporation Silane composition, silicon film forming method and solar cell production method
JP2010018696A (en) 2008-07-10 2010-01-28 Toray Ind Inc Carbon nanotube dispersing solution, organic semiconductor composite solution, organic semiconductor thin film and organic field-effect transistor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. F. Zhang 외 6명. Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes, nano-micro letters, Vol. 2, 22-25, 2010.03.20

Also Published As

Publication number Publication date
KR20110130065A (en) 2011-12-05

Similar Documents

Publication Publication Date Title
CN100392008C (en) Silane composition, method for forming silicon film, and method for manufacturing solar cell
CN1199241C (en) Method for forming silicon film
Şenocak et al. Synthesis and organic solar cell performance of BODIPY and coumarin functionalized SWCNTs or graphene oxide nanomaterials
CN101927983B (en) CuInSe2 nanometer material and its preparation method and application
Idumah Phosphorene polymeric nanocomposites for electrochemical energy storage applications
Chen et al. Methoxy groups on bifluorenylidene-based hole transporting materials result in highly efficient and stable dopant-free inverted perovskite solar cells
Wang et al. Enhanced photovoltaic performance with carbon nanotubes incorporating into hole transport materials for perovskite solar cells
Myagmarsereejid et al. Sulfur-functionalized titanium carbide Ti3C2T x (MXene) nanosheets modified light absorbers for ambient fabrication of Sb2S3 solar cells
JP2003171556A (en) Method for forming silicon film and composition therefor
KR101689587B1 (en) Process for Preparing Silicon Ink, and Solar Cell using Thereof
CN103172838B (en) A kind of conjugated polymers and the application in hybrid solar cell thereof
CN102856499B (en) A kind of SnO 2with the preparation method of P3HT hybrid heterojunctions thin-film solar cells
CN108455591A (en) A kind of preparation method of hydrogen substitution graphite list alkynes
CN109336852B (en) A kind of non-fullerene electron transport material and its synthesis method and use
Kaur et al. Graphene/macrocylic Yb nanocomposite as counter electrode in dye sensitized solar cell
US20140000696A1 (en) Low-bandgap ruthenium-containing complexes for solution-processed organic solar cells
Han et al. Robust and efficient carbon-based planar perovskite solar cells with a CsPbBr3–MoS2 hybrid absorber
JP4419357B2 (en) Silane composition and method for producing solar cell using the same
JP2010258194A (en) Method for manufacturing photoelectric conversion device
CN110600612B (en) Hole transport layer for p-i-n type perovskite cells based on self-assembly engineering
Charekhah et al. Amorphous silicon particles/polyaniline composites for hybrid photovoltaic solar cell: an experimental feasibility study
CN112745351B (en) Preparation and application of a novel hole transport material based on N-P=X resonance structure
CN108666429A (en) A method for preparing perovskite thin films with high charge transport properties
CN103346261A (en) A TiO2 and MEH-PPV hybrid composite heterojunction thin film solar cell and its preparation and application
CN103613522A (en) Diacenaphthequinone thioether and preparation method and application thereof

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100527

PG1501 Laying open of application
N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20140415

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20150527

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20100527

Comment text: Patent Application

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20160927

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20161220

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20161221

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20191209

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20191209

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20201214

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20211130

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20231128

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20241125

Start annual number: 9

End annual number: 9