[go: up one dir, main page]

KR101683534B1 - electrolyte for lithium secondary battery and lithium secondary battery containing the same - Google Patents

electrolyte for lithium secondary battery and lithium secondary battery containing the same Download PDF

Info

Publication number
KR101683534B1
KR101683534B1 KR1020150097786A KR20150097786A KR101683534B1 KR 101683534 B1 KR101683534 B1 KR 101683534B1 KR 1020150097786 A KR1020150097786 A KR 1020150097786A KR 20150097786 A KR20150097786 A KR 20150097786A KR 101683534 B1 KR101683534 B1 KR 101683534B1
Authority
KR
South Korea
Prior art keywords
carbonate
secondary battery
electrolyte
lithium
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020150097786A
Other languages
Korean (ko)
Inventor
신재욱
석혜정
유승일
박세웅
Original Assignee
파낙스 이텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파낙스 이텍(주) filed Critical 파낙스 이텍(주)
Priority to KR1020150097786A priority Critical patent/KR101683534B1/en
Application granted granted Critical
Publication of KR101683534B1 publication Critical patent/KR101683534B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to an electrolyte for a secondary battery and a secondary battery including the same. A non-aqueous electrolyte for a secondary battery according to the present invention is decomposed prior to an organic solvent when the battery is charged at an initial stage, thereby a solid electrolyte interface (SEI) coat is effectively and stably formed on the surface of a cathode. Therefore, an anode resistance of a high frequency region and a cathode resistance of a low frequency region are reduced to improve a lifetime characteristic at room temperature. Decomposition on the surface of the anode and the cathode at high temperature is suppressed and electric resistance is reduced to improve battery characteristics and has excellent high temperature output.

Description

이차전지 전해액 및 이를 포함하는 이차전지{electrolyte for lithium secondary battery and lithium secondary battery containing the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery and a secondary battery including the same,

본 발명은 이차전지 전해액 및 이를 포함하는 이차전지에 관한 것으로, 상세하게는 비수성 유기용매, 알칼리금속염 및 1,3-디티올-2-티온 유도체, 인산계 리튬염, 카보네이트 화합물 또는 이들의 혼합물인 첨가제를 포함함으로써, 고주파 영역의 음극저항과 저주파 영역의 양극 저항을 동시에 줄여 전지의 성능을 향상시킬 수 있는 것을 특징으로 한다.The present invention relates to a secondary battery electrolyte and a secondary battery comprising the same. More particularly, the present invention relates to a non-aqueous organic solvent, an alkali metal salt and a 1,3-dithiol-2-thione derivative, a phosphoric acid-based lithium salt, The anode resistance of the high-frequency region and the anode resistance of the low-frequency region can be reduced at the same time, thereby improving the performance of the battery.

최근 휴대전자기기들이 광범위하게 보급되고 있고, 이에 따라 이러한 휴대전자기기들이 박막화, 소형화 및 경량화되고 있다. 이에 따라 그 전원으로 사용되는 이차전지도 소형으로 경량이면서 장시간 충방전이 가능하며 고율특성을 높이고자하는 노력이 집중되고 있다.[0002] Recently, portable electronic devices have been widely used, and these portable electronic devices are becoming thinner, smaller, and lighter. As a result, the secondary battery used as the power source is also small and lightweight, and can be charged and discharged for a long period of time.

이차 전지는 음극(anode) 재료나 양극(cathode) 재료에 따라 납축전지, 니켈-카드뮴(Ni-Cd) 전지, 니켈-수소(Ni-MH) 전지, 리튬 전지 등이 있으며, 전극 재료의 고유특성에 의해 전위와 에너지 밀도가 결정된다. 이 중에서도 리튬 이차 전지는 리튬의 낮은 산화/환원 전위와 분자량으로 인해 에너지 밀도가 높기 때문에 노트북, 캠코더 또는 휴대폰 등의 휴대용 전자기기의 구동 전원으로 많이 사용되고 있다. The secondary battery is classified into a lead-acid battery, a nickel-cadmium battery, a nickel-hydrogen (Ni-MH) battery and a lithium battery according to an anode material and a cathode material. The potential and the energy density are determined. Among them, lithium secondary batteries are widely used as driving power sources for portable electronic devices such as notebook computers, camcorders, and mobile phones because of their high energy density due to the low oxidation / reduction potential and molecular weight of lithium.

그러나 리튬 이차 전지는 연속 충전 시 발생되는 전지의 안전성 저하가 큰 문제가 된다. 전지의 안정성에 영향을 미칠 수 있는 원인 중의 하나는 양극의 구조 붕괴에 따른 발열로, 이차전지 그중에서도 비수전해액 이차전지의 작용 원리에 따른 전지 안정성에 대해 살펴보면 다음과 같다. However, the lithium secondary battery has a serious problem of deterioration of the safety of the battery caused by continuous charging. One of the causes that may affect the stability of the battery is heat generation due to the structural collapse of the anode. Among the secondary batteries, the battery stability according to the working principle of the non-aqueous electrolyte secondary battery is as follows.

즉, 비수전해액 이차 전지의 양극활물질은 리튬 또는 리튬 이온을 흡장 및 방출할 수 있는 리튬 함유 금속 산화물 등으로 이루어지는데, 이와 같은 양극활물질은 과충전 시 리튬이 다량 이탈됨에 따라 열적으로 불안정한 구조로 변형된다. 이러한 과충전 상태에서 외부의 물리적 충격, 예컨대 고온 노출 등으로 인하여 전지 온도가 임계 온도에 이르면 불안정한 구조의 양극활물질로부터 산소가 방출되게 되고, 방출된 산소는 전해액 용매 등과 발열 분해 반응을 일으키게 된다. 특히, 양극으로부터 방출된 산소에 의하여 전해액의 연소는 더욱 가속화되므로, 이러한 연쇄적인 발열 반응에 의하여 열 폭주에 의한 전지의 발화 및 파열 현상이 초래된다.That is, the positive electrode active material of the nonaqueous electrolyte secondary battery is composed of lithium or a lithium-containing metal oxide capable of intercalating and deintercalating lithium ions or the like. Such a positive electrode active material deforms into a thermally unstable structure as a large amount of lithium is released during overcharging . When the battery temperature reaches a critical temperature due to an external physical impact such as high temperature exposure in the overcharged state, oxygen is released from the cathode active material having an unstable structure, and the released oxygen causes an exothermic decomposition reaction with the electrolyte solvent or the like. Particularly, since the combustion of the electrolytic solution is further accelerated by the oxygen released from the anode, such a series exothermic reaction causes ignition and rupture of the battery due to thermal runaway.

또한 음극에 석출한 양극 전이금속이 비수전해질의 분해를 촉진하는 촉매로 작용하여 전지내부에 가스를 발생시키거나 음극의 SEI층이 충/방전이 진행됨에 따라 리튬이온의 이동을 방해하는 등의 문제점으로 인해 전지성능 및 효율이 현저히 감소된다.In addition, the positive electrode transition metal deposited on the negative electrode acts as a catalyst promoting the decomposition of the non-aqueous electrolyte, thereby generating gas inside the battery, or interfering with lithium ion migration as the SEI layer of the negative electrode progresses charge / discharge The cell performance and efficiency are significantly reduced.

따라서 상기와 같은 문제점들을 해결하기 위해 일본공개특허공보 제2013-157305에 2개의 이소시아네이트기를 가지는 화합물을 포함하는 전해액을 제안하고 있으나, 여전히 고온 및 저온에서의 수명특성과 안정성이 우수한 전해액에 대한 연구가 요구되고 있는 실정이다. Therefore, in order to solve the above problems, Japanese Unexamined Patent Application Publication No. 2013-157305 proposes an electrolyte solution containing two isocyanate group-containing compounds. However, researches on electrolytes having excellent lifetime characteristics and stability at high temperature and low temperature It is a fact that is demanded.

일본특허공보 제2013-157305 (2013년 08월 15일)Japanese Patent Publication No. 2013-157305 (Aug. 15, 2013)

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 상세하게는 고주파 영역의 음극저항과 저주파 영역의 양극 저항을 동시에 줄여 상온 수명과 고온 출력을 향상시킬 수 있는 이차전지용 비수성 전해액을 제공하는데 목적이 있다. Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a nonaqueous electrolyte solution for a secondary battery which can simultaneously reduce cathode resistance in a high frequency region and anode resistance in a low frequency region, There is a purpose.

본 발명의 다른 목적은 상기 이차전지용 비수성 전해액을 포함하는 이차전지를 제공하는 것이다. Another object of the present invention is to provide a secondary battery comprising the nonaqueous electrolyte solution for the secondary battery.

본 발명은 이차전지 전해액 및 이를 포함하는 이차전지에 관한 것이다.The present invention relates to a secondary battery electrolyte and a secondary battery including the same.

본 발명의 일 양태는 a)알칼리금속염; b) 비수성 유기용매; c) 하기 화학식 1로 표시되는 1,3-디티올-2-티온 유도체; 및 d) 인산계 리튬염, 카보네이트 화합물 또는 이들의 혼합물인 첨가제;를 포함하는 이차전지 전해액에 관한 것이다.One aspect of the present invention is a composition comprising: a) an alkali metal salt; b) non-aqueous organic solvent; c) a 1,3-dithiol-2-thione derivative represented by the following formula (1); And d) an additive that is a phosphate-based lithium salt, a carbonate compound, or a mixture thereof.

[화학식 1][Chemical Formula 1]

Figure 112015066601919-pat00001
Figure 112015066601919-pat00001

(상기 화학식 1에서 X1, X2는 각각 독립적으로 수소 또는

Figure 112015066601919-pat00002
이고,(Wherein X 1 and X 2 are each independently hydrogen or
Figure 112015066601919-pat00002
ego,

상기 Y는 에스테르기(-C(=O)O-), 카르보닐렌기(-C(=O)-), 에테르기(-O-), 티올기(-S-), 아민기(-N(H)-), 알킬아민기(-N(R)-), 포스핀기(-P(H)-)에서 선택되는 어느 하나이고,Y represents an ester group (-C (= O) O-), a carbonyl group (-C (= O) -), an ether group (-O-), a thiol group (-S-) (H) -), an alkylamine group (-N (R) -) and a phosphine group (-P (H) -)

상기 R1은 수소 또는 (C1-C10)알킬, (C6-C12)아릴, (C1-C10)알케닐이며, Wherein R 1 is hydrogen or (C 1 -C 10) alkyl, (C 6 -C 12) aryl, (C 1 -C 10) alkenyl,

X1 및 X2가 모두

Figure 112015066601919-pat00003
인 경우, R1은 인접한 치환기와 서로 결합하여 고리를 형성할 수 있다.)X 1 and X 2 are both
Figure 112015066601919-pat00003
, R < 1 > may combine with adjacent substituents to form a ring.)

본 발명에서 상기 1,3-디티올-2-티온 유도체는 하기 화학식 2 내지 4에서 선택되는 어느 하나일 수 있다.In the present invention, the 1,3-dithiol-2-thione derivative may be any one selected from the following formulas (2) to (4).

[화학식 2](2)

Figure 112015066601919-pat00004
Figure 112015066601919-pat00004

[화학식 3](3)

Figure 112015066601919-pat00005
Figure 112015066601919-pat00005

[화학식 4][Chemical Formula 4]

Figure 112015066601919-pat00006
Figure 112015066601919-pat00006

(상기 화학식 2 내지 4에서 상기 R2 및 R3는 각각 독립적으로 (C1-C10)알킬, (C2-C10)알케닐, (C6-C12)아릴이고,(Wherein R 2 and R 3 are each independently (C 1 -C 10) alkyl, (C 2 -C 10) alkenyl or (C 6 -C 12) aryl,

R4 및 R5는 각각 독립적으로 (C1-C5)알킬, (C2-C5)알케닐이며,R 4 and R 5 are each independently (C 1 -C 5) alkyl, (C 2 -C 5) alkenyl,

n는 1 내지 5의 정수이다.)and n is an integer of 1 to 5.)

본 발명에서 상기 인산계 리튬염은 리튬 디플루오로 비스옥살라토 포스페이트, 리튬 디플루오로 포스페이트, 리튬 포스페이트, 리튬 테트라플루오로 옥살레이트 포스페이트, 리튬 디플루오로 비스메틸말로네이트 포스페이트 및 리튬 디플루오로 비스에틸말로네이트 포스페이트에서 선택되는 어느 하나 또는 둘 이상일 수 있다.In the present invention, the phosphoric acid-based lithium salt is preferably selected from the group consisting of lithium difluorobisoxalatophosphate, lithium difluorophosphate, lithium phosphate, lithium tetrafluorooxalate phosphate, lithium difluorobismethylmalonate phosphate, and lithium difluoro Bis-ethyl malonate phosphate, and the like.

본 발명에서 상기 카보네이트 화합물은 비닐렌 카보네이트, 비닐에틸렌 카보네이트 또는 이들의 혼합물일 수 있다.In the present invention, the carbonate compound may be vinylene carbonate, vinylethylene carbonate or a mixture thereof.

본 발명에서 상기 비수성 유기용매는 선형 카보네이트계 용매, 환형 카보네이트계 용매, 선형 에스테르계 용매, 환형 에스테르계 용매에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상세하게는 상기 선형 카보네이트계 용매는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸프로필카보네이트, 에틸메틸카보네이트 및 메틸프로필카보네이트에서 선택되는 어느 하나 또는 둘 이상이며, 상기 환형 카보네이트계 용매는 에틸렌카보네이트, 프로필렌카보네이트, 1,2-부틸렌카보네이트, 2,3-부틸렌카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트 및 플루오르에틸렌카보네이트에서 선택되는 어느 하나 또는 둘 이상이며, 상기 선형 에스테르계 용매는 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 아세테이트, 부틸 아세테이트 및 에틸 아세테이트에서 선택되는 어느 하나 또는 둘 이상이며, 상기 환형 에스테르계 용매는 감마부티로락톤, 카프로락톤 및 발레로락톤에서 선택되는 하나 또는 둘 이상일 수 있다.In the present invention, the non-aqueous organic solvent may be any one or more selected from a linear carbonate solvent, a cyclic carbonate solvent, a linear ester solvent, and a cyclic ester solvent. Specifically, the linear carbonate solvent may be dimethyl carbonate , Diethyl carbonate, dipropyl carbonate, ethyl propyl carbonate, ethyl methyl carbonate and methyl propyl carbonate, and the cyclic carbonate solvent is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, Butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate and fluorethylene carbonate, and the linear ester solvent Include methyl propionate, ethyl propionate Onate, propyl acetate, and at least either one or both selected from butyl acetate and ethyl acetate, the cyclic ester solvent may be at least one or more selected from lactone lactone, caprolactone and ballet as gamma -butyrolactone.

본 발명에서 상기 비수성 유기용매는 선형 카보네이트계 용매 : 환형 카보네이트계 용매가 1 : 9 내지 9 : 1의 부피비로 혼합될 수 있다.In the present invention, the non-aqueous organic solvent may be mixed with a linear carbonate solvent: cyclic carbonate solvent in a volume ratio of 1: 9 to 9: 1.

본 발명에서 상기 알칼리금속염은 상기 비수성 유기용매에 0.6 내지 2.0M의 농도로 포함할 수 있으며, 상기 알칼리금속염은 리튬염 또는 나트륨염을 양이온으로 가지고 음이온으로 PF6 -, ClO4 -, BF4 -, SbF6 -, AlO4 -, AlCl4 -, CF3SO3 -, C4F9SO3 -, N(C2F5SO3)2 -, N(C2F5SO2)2 -, N(CF3SO2)2 -, SCN-, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)-(단, x, y는 0 또는 자연수), B(C2O4)2 -, BF2(C2O4), LiPF4(C2O4)-, PF2(C2O4)2 - 및 P(C2O4)3 -를 가지는 군에서 선택되는 하나 또는 둘 이상의 혼합물일 수 있다.In the present invention, the alkali metal salt may be contained in the non-aqueous organic solvent at a concentration of 0.6 to 2.0 M, and the alkali metal salt may include a lithium salt or a sodium salt as a cation and an anion such as PF 6 - , ClO 4 - , BF 4 -, SbF 6 -, AlO 4 -, AlCl 4 -, CF 3 SO 3 -, C 4 F 9 SO 3 -, N (C 2 F 5 SO 3) 2 -, N (C 2 F 5 SO 2) 2 -, N (CF 3 SO 2 ) 2 -, SCN -, LiN (C x F 2x + 1 SO 2) (C y F 2y + 1 SO 2) - ( in this example, x, y is 0 or a natural number), B (C 2 O 4) 2 - , BF 2 (C 2 O 4), LiPF 4 (C 2 O 4) -, PF 2 (C 2 O 4) 2 - , and P (C 2 O 4) 3 - having Or a mixture of two or more thereof.

본 발명에서 상기 이차전지 전해액은 1,3-디티올-2-티온 유도체 0.05 내지 10 중량%, 첨가제 0.01 내지 10 중량% 및 비수성 유기용매 85 내지 99 중량% 포함할 수 있다.In the present invention, the secondary battery electrolyte may contain 0.05 to 10% by weight of 1,3-dithiol-2-thione derivative, 0.01 to 10% by weight of an additive, and 85 to 99% by weight of a non-aqueous organic solvent.

본 발명의 다른 양태는 a) 알칼리금속을 흡장 및 방출할 수 있는 양극활물질을 포함하는 양극; b) 알칼리금속을 흡장 및 방출할 수 있는 음극활물질을 포함하는 음극; c) 제 1항 내지 제 8항에서 선택되는 어느 한 항에 따른 이차전지 전해액; 및 d) 분리막;을 포함하는 이차전지에 관한 것이다.Another aspect of the present invention is a positive electrode comprising: a) a positive electrode comprising a positive electrode active material capable of absorbing and desorbing an alkali metal; b) a negative electrode comprising a negative electrode active material capable of absorbing and desorbing alkali metals; c) a secondary battery electrolyte according to any one of claims 1 to 8; And d) a separator.

본 발명에 따른 이차전지용 비수성 전해액은 전지의 초기 충전 시 유기용매보다 먼저 분해되어 음극 표면에 SEI(Solid electrolyte interface) 피막을 효과적이고 안정적으로 형성시킴으로써 고주파 영역의 음극저항과 저주파 영역의 양극 저항을 동시에 줄여 상온 수명 특성이 개선되며, 고온에서의 음극, 양극 표면의 분해를 억제하고 전기 저항을 줄여 전지 특성이 향상되어 고온 출력이 우수하다.The nonaqueous electrolytic solution for a secondary battery according to the present invention decomposes before the organic solvent at the initial charging of the battery to effectively and stably form a SEI (solid electrolyte interface) coating on the surface of the negative electrode, whereby the anode resistance in the high frequency range and the anode resistance in the low frequency range At the same time, it improves the lifetime characteristics at room temperature and improves the battery characteristics by suppressing the decomposition of the cathode and the anode surface at high temperature and reducing the electric resistance.

도 1은 실시예 4, 6, 9, 비교예 1, 2에 따른 이차전지 전해액을 포함한 이차전지의 교류 임피던스(AC impedance)를 나타낸 것이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing an AC impedance of a secondary battery including a secondary battery electrolyte according to Examples 4, 6, 9, and Comparative Examples 1 and 2. FIG.

이하, 구체예들을 참조하여 본 발명에 따른 이차전지 전해액 및 이를 포함하는 이차전지를 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. Hereinafter, a secondary battery electrolyte according to the present invention and a secondary battery including the same will be described in detail with reference to specific examples. It should be understood, however, that the invention is not limited thereto and that various changes and modifications may be made without departing from the spirit and scope of the invention.

또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.Unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.

본 발명에 기재된 용어 ‘알킬’, ‘알콕시’ 및 그 외 ‘알킬’부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다. 또한 본 발명에 기재된 ‘아릴’은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐(indenyl), 플루오레닐 등을 포함하지만, 이에 한정되지 않는다.The term "alkyl", "alkoxy", and other "alkyl" moieties as described herein includes both linear and branched forms. The 'aryl' described in the present invention is an organic radical derived from aromatic hydrocarbons by the removal of one hydrogen, and includes a single or fused ring containing 4 to 7, preferably 5 or 6 ring atoms, A ring system, and a form in which a plurality of aryls are connected by a single bond. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like.

본 발명에서 사용되는 용어 ‘알케닐’은 2 내지 10개의 탄소 원자 및 1개 이상의 탄소 대 탄소 이중 결합을 함유하는 직쇄, 분지쇄 또는 사이클릭 탄화수소 라디칼을 의미한다.The term " alkenyl " as used herein refers to straight, branched or cyclic hydrocarbon radicals containing from 2 to 10 carbon atoms and at least one carbon to carbon double bond.

본 발명에 기재된 용어 ‘지환족 고리’는 3 내지 12개의 탄소 원자의 완전히 포화 및 부분적으로 불포화된 탄화수소 고리를 의미하며, 아릴 또는 헤테로아릴이 융합되어 있는 경우도 포함되며, 바람직하게 3원 내지 9원 고리 보다 바람직하게는 5원 내지 7원의 고리일 수 있다.The term " alicyclic ring " as used in the present invention means a fully saturated and partially unsaturated hydrocarbon ring of 3 to 12 carbon atoms, including the case where the aryl or heteroaryl is fused, The ring may be more preferably a 5- to 7-membered ring.

본 발명은 상기와 같이 이차전지의 과충전 시 앙극활물질에서의 알칼리금속 이온 이탈을 방지하고, 산소 방출에 따른 발열분해 반응을 억제하기 위해 예의 연구를 거듭하던 중, 전해액에 인산계 리튬염, 카보네이트 화합물 또는 이들의 혼합물인 첨가제를 포함함으로써 상기 첨가제가 유기용매보다 먼저 분해되어 음극 표면에 SEI(Solid electrolyte interface) 피막을 효과적이고 안정적으로 형성하고, 이로 인해 과충전에도 알칼리 금속이온의 이탈을 방지하여 고온에서의 음극, 양극 표면의 분해를 억제하고 동시에 양극 저항을 줄여 상온 수명 특성이 개선되며, 전기 저항을 줄여 전지 특성이 향상되어 높은 고온 출력이 발현되는 것을 발견하여 본 발명을 완성하게 되었다.As described above, in the overcharge of the secondary battery as described above, while the alkaline metal ions are prevented from escaping from the anode active material and the exothermic decomposition reaction due to the oxygen release is suppressed, the electrolytic solution contains a phosphoric acid lithium salt, a carbonate compound Or a mixture thereof, the additive is decomposed earlier than the organic solvent to effectively and stably form a solid electrolyte interface (SEI) coating on the surface of the anode, thereby preventing the alkali metal ion from escaping into the overcharge, The present inventors have found that the decomposition of the surface of the anode and cathode of the anode and the anode of the cathode is reduced and at the same time the anode resistance is reduced to improve the lifetime characteristics at room temperature and the battery characteristics are improved by reducing the electric resistance.

본 발명은 이차전지용 전해액 및 이를 포함하는 이차전지를 제공하는 것으로, 본 발명의 이차전지 전해액은 1,3-디티올-2-티온 유도체에 비수성 유기용매, 알칼리금속염 및 인산계 리튬염, 카보네이트 화합물 또는 이들의 혼합물로 이루어진 첨가제를 포함할 수 있다.The present invention provides an electrolyte for a secondary battery and a secondary battery comprising the same, wherein the electrolyte for a secondary battery according to the present invention comprises a non-aqueous organic solvent, an alkali metal salt and a phosphate-based lithium salt, a carbonate Compounds or mixtures thereof.

본 발명에서 상기 1,3-디티올-2-티온 유도체는 하기 화학식 1로 표시될 수 있다.In the present invention, the 1,3-dithiol-2-thione derivative may be represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112015066601919-pat00007
Figure 112015066601919-pat00007

(상기 화학식 1에서 X1, X2는 각각 독립적으로 수소 또는

Figure 112015066601919-pat00008
이고,(Wherein X 1 and X 2 are each independently hydrogen or
Figure 112015066601919-pat00008
ego,

상기 Y는 에스테르기(-C(=O)O-), 카르보닐렌기(-C(=O)-), 에테르기(-O-), 티올기(-S-), 아민기(-N(H)-), 알킬아민기(-N(R)-), 포스핀기(-P(H)-)에서 선택되는 어느 하나이고,Y represents an ester group (-C (= O) O-), a carbonyl group (-C (= O) -), an ether group (-O-), a thiol group (-S-) (H) -), an alkylamine group (-N (R) -) and a phosphine group (-P (H) -)

상기 R1은 수소 또는 (C1-C10)알킬, (C6-C12)아릴, (C1-C10)알케닐이며, Wherein R 1 is hydrogen or (C 1 -C 10) alkyl, (C 6 -C 12) aryl, (C 1 -C 10) alkenyl,

X1 및 X2가 모두

Figure 112015066601919-pat00009
인 경우, R1은 인접한 치환기와 서로 결합하여 고리를 형성할 수 있다.)X 1 and X 2 are both
Figure 112015066601919-pat00009
, R < 1 > may combine with adjacent substituents to form a ring.)

본 발명에서 상기 1,3-디티올-2-티온 유도체는 고주파 영역의 음극 저항과 저주파 영영의 양극 저항을 동시에 줄여주며, 고온 및 상온에서의 출력특성 및 수명특성이 향상될 수 있다.In the present invention, the 1,3-dithiol-2-thione derivative reduces the anode resistance in the high-frequency region and the anode resistance in the low-frequency region simultaneously, and the output characteristics and lifetime characteristics at high temperature and room temperature can be improved.

본 발명에서 1,3-디티올-2-티온 유도체는 환형 디티올 티온을 포함하는 구조로, 환형 디티올 티온은 음극에서 분해되어 Li2S, 탄소와 황으로 이루어진 화합물로 이루어지는 SEI 피막을 형성하는데 이 피막은 용매의 분해는 억제하나 저항이 다소 큰 단점이 있고, 고온에서의 안정성이 떨어지며, 4.3V이상의 고전압 전지에서 성능이 저하되는 단점을 가지고 있다.In the present invention, the 1,3-dithiol-2-thione derivative includes a cyclic dithiolithione, and the cyclic dithiolithione is decomposed at the cathode to form a SEI film composed of Li 2 S, a compound of carbon and sulfur This film has a disadvantage in that it has a disadvantage in that the decomposition of the solvent is suppressed but the resistance is somewhat large, the stability at a high temperature is low, and the performance is deteriorated in a high voltage battery of 4.3V or more.

본 발명에서 사용되는 환형 디티올 티온은 상기와 같이 치환체를 도입하거나, 지환족 고리를 도입함으로써 SEI 피막을 구성하는 Li, S, C, O 등 원소의 종류 및 원소 간 구성비를 조절하는 것이 가능하여 보다 우수한 피막형성이 가능해진다. 따라서 전해액 내 비수계 유기용매의 분해를 더욱 효율적으로 막아 전지의 상온 및 고온 수명 특성을 개선시킬 수 있다. 즉 본 발명의 이차전지 전해액은 상기 화학식 1의 1,3-디티올-2-티온 유도체를 포함하여 전지의 저항을 낮추고 고체전해질경계면(SEI, solid electrolyte interface) 피막을 보다 효율적으로 형성시켜 기존의 이차전지 전해액보다 전기화학적으로 안정하여 상온뿐만 아니라 고온에서도 전지의 출력특성과 수명 특성을 향상시킬 수 있다.The cyclic dithiolthione used in the present invention can be controlled by introducing a substituent as described above or by introducing an alicyclic ring to thereby adjust the kind and elemental composition ratio of elements such as Li, S, C, and O constituting the SEI film A more excellent film can be formed. Therefore, decomposition of the non-aqueous organic solvent in the electrolyte can be prevented more effectively, thereby improving the room temperature and high temperature service life characteristics of the battery. That is, the electrolyte of the secondary battery of the present invention includes the 1,3-dithiol-2-thione derivative of Formula 1 to lower the resistance of the battery and more efficiently form a solid electrolyte interface (SEI) It is more electrochemically stable than the electrolyte of the secondary battery, so that the output characteristics and lifetime characteristics of the battery can be improved not only at room temperature but also at high temperature.

본 발명에서 상기 화학식 1은 바람직하게 X1 및 X2가 모두

Figure 112015066601919-pat00010
인 것이 좋으며, 상기 Y가 산소 또는 황으로 연결되는 것이 좋다. 더 바람직하게는 Y가 에스테르기, 에테르기, 티올기 중 어느 하나인 것이 좋다.In the present invention, the formula (1) is preferably a compound wherein X 1 and X 2 are both
Figure 112015066601919-pat00010
, And Y is preferably connected to oxygen or sulfur. More preferably, Y is any one of an ester group, an ether group and a thiol group.

또한 상기 R1은 (C1-C10)알킬인 것이 좋으며, 더 바람직하게는 상기 X1 및 X2가 모두

Figure 112015066601919-pat00011
일 때, 각각의 R1은 서로 연결되어 5원 내지 9원의 지환족 고리를 형성하는 것이 좋다.Further, it is preferable that R 1 is (C 1 -C 10) alkyl, more preferably X 1 and X 2 are both
Figure 112015066601919-pat00011
, Each R < 1 > is preferably linked to form an alicyclic ring of 5 to 9 members.

본 발명에서 상기 화학식 1의 1,3-디티올-2-티온 유도체는 저항을 줄여 전지 성능을 향상시키기 위해 하기 화학식 2 내지 4에 선택되는 어느 하나일 수 있다.In the present invention, the 1,3-dithiol-2-thione derivative of the formula (1) may be any one selected from the following formulas (2) to (4) to reduce the resistance and improve the battery performance.

[화학식 2](2)

Figure 112015066601919-pat00012
Figure 112015066601919-pat00012

[화학식 3](3)

Figure 112015066601919-pat00013
Figure 112015066601919-pat00013

[화학식 4][Chemical Formula 4]

Figure 112015066601919-pat00014
Figure 112015066601919-pat00014

(상기 화학식 2 내지 4에서 상기 R2 및 R3는 각각 독립적으로 (C1-C10)알킬, (C2-C10)알케닐, (C6-C12)아릴이고,(Wherein R 2 and R 3 are each independently (C 1 -C 10) alkyl, (C 2 -C 10) alkenyl or (C 6 -C 12) aryl,

R4 및 R5는 각각 독립적으로 (C1-C5)알킬, (C2-C5)알케닐이며,R 4 and R 5 are each independently (C 1 -C 5) alkyl, (C 2 -C 5) alkenyl,

n는 1 내지 5의 정수이다.)and n is an integer of 1 to 5.)

상기 화학식 2 내지 4에서 기재된 (C1-C10)알킬은 (C1-C10)알킬 또는 (C2-C10)알케닐은 바람직하게 (C1-C7)알킬 또는 (C2-C7)알케닐이며, 보다 바람직하게는 (C1-C5)알킬 또는 (C2-C5)알케닐이며, (C6-C12)아릴은 바람직하게 (C6-C10)아릴일 수 있다.(C1-C10) alkyl, (C2-C10) alkyl, (C2-C10) Is (C1-C5) alkyl or (C2-C5) alkenyl, and (C6-C12) aryl is preferably (C6-C10) aryl.

본 발명에서 상기 2 내지 4의 화학식의 일예로는 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate), 1,3-디티올-2-티온(1,3-dithiole-2-thione), 4,5-에틸렌디티오-1,3-디티올-2-티온(4,5-ethylenedithio-1,3-dithiole-2thione) 등을 들 수 있으나, 본 발명이 이에 제한되는 것은 아니다.In the present invention, examples of the formulas 2 to 4 include dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate, dicarboxylate, 1,3-dithiole-2-thione, 4,5-ethylenedithio- 1,3-dithiole-2thione), but the present invention is not limited thereto.

본 발명의 일 실시예에 따른 이차전지 전해액에서, 상기 화학식 1의 1,3-디티올-2-티온 유도체는 상기 전해액 총 중량에 대하여 0.05 내지 10 중량%로 포함될 수 있으며, 보다 바람직하게는 0.5 내지 5 중량%로 포함될 수 있다. 상기 화학식 1의 1,3-디티올-2-티온 유도체의 함량이 0.05 중량% 미만 포함되면 효과적인 SEI 피막을 형성하지 못하여 이차전지의 수명 등의 향상 효과가 미미하고, 10중량% 초과 포함되면, 두껍고 저항이 큰 SEI 피막을 형성하여 충방전 효율의 증가 효과가 미미할 수 있고, 수명 성능이 저하될 수 있다.In the electrolyte of the secondary battery according to an embodiment of the present invention, the 1,3-dithiol-2-thione derivative of Formula 1 may be contained in an amount of 0.05 to 10% by weight based on the total weight of the electrolytic solution, more preferably 0.5 To 5% by weight. When the content of the 1,3-dithiol-2-thione derivative of the formula (1) is less than 0.05% by weight, an effective SEI film is not formed and the effect of improving the lifetime of the secondary battery is insufficient. A thick and high resistance SEI film may be formed, the effect of increasing the charging / discharging efficiency may be insignificant, and the lifetime performance may be deteriorated.

본 발명에서 상기 첨가제는 1,3-디티올-2-티온 유도체를 보조하여 전지의 저항을 낮추고 고체전해질경계면(SEI, solid electrolyte interface) 피막을 보다 효율적으로 형성하기 위한 것으로, 비수성 유기용매 및 인산계 리튬염, 카보네이트 화합물 또는 이들의 혼합물을 포함할 수 있다.In the present invention, the additive is for supporting the 1,3-dithiol-2-thione derivative to lower the resistance of the battery and more effectively form a solid electrolyte interface (SEI) coating, A phosphate-based lithium salt, a carbonate compound, or a mixture thereof.

본 발명에서 상기 인산계 리튬염은 비수성 전해액에 첨가되어, 음극에 견고한 SEI 막을 형성함으로써 저온 출력 특성을 개선시킴은 물론, 고온 사이클 작동 시 발생할 수 있는 양극 표면의 분해를 억제하고 전해액의 산화 반응을 방지할 수 있다.In the present invention, the phosphate-based lithium salt is added to the non-aqueous electrolytic solution to improve the low-temperature output characteristics by forming a solid SEI film on the anode, as well as to suppress the decomposition of the surface of the anode, Can be prevented.

본 발명에서 상기 인산계 리튬염은 본 발명의 목적을 해치지 않는 범위 내에서 종류에 한정하지 않으며, 일예로 리튬 디플루오로 비스옥살라토 포스페이트(Lithium difluoro bis(oxalato) phosphate), 리튬 디플루오로 포스페이트(Lithium difluoro phosphate), 리튬 포스페이트(Lithium phosphate), 리튬 테트라플루오로 옥살레이트 포스페이트(Lithium tetrafluoro oxalate phosphate), 리튬 디플루오로 비스메틸말로네이트 포스페이트(Lithium difluorobis(methylmalonate) phosphate) 및 리튬 디플루오로 비스에틸말로네이트 포스페이트(Lithium difluorobis(ethylmalonate) phosphate)에서 선택되는 어느 하나 이상을 포함할 수 있다.In the present invention, the phosphoric acid-based lithium salt is not limited to the kind within the scope of not impairing the object of the present invention. Examples include lithium difluoro bis (oxalato) phosphate, lithium difluoro Lithium dihydrogen phosphate, lithium difluoro phosphate, lithium phosphate, lithium tetrafluoro oxalate phosphate, lithium difluorobis (methylmalonate) phosphate, and lithium difluoro And lithium difluorobis (ethylmalonate) phosphate).

본 발명에서 상기 카보네이트 화합물은 상기 1,3-디티올-2-티온 유도체를 보조하여 SEI을 형성하는 첨가제로 작용한다. 상기 카보네이트계 화합물로 예를 들면 비닐렌 카보네이트, 비닐에틸렌 카보네이트 등을 들 수 있으며, 이외에도 플루오로에틸렌 카보네이트, 환형 설파이트, 포화 설톤, 불포화 설톤, 비환형 설폰 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the carbonate compound acts as an additive for forming SEI by assisting the 1,3-dithiol-2-thione derivative. Examples of the carbonate compound include vinylene carbonate and vinylethylene carbonate. In addition, fluoroethylene carbonate, cyclic sulfite, saturated sulphone, unsaturated sulphone and non-cyclic sulphone can be used alone or as a mixture of two or more kinds But is not limited thereto.

상기 환형 설파이트로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌 설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 포화 설톤으로는 1,3-프로판 설톤, 1,4-부탄 설톤 등을 들 수 있으며, 불포화 설톤으로는 에텐 설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 등을 들 수 있으며, 비환형 설폰으로는 디비닐 설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 메틸비닐 설폰 등을 들 수 있다.Examples of the cyclic sulfite include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethylethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, Diethyl propyl sulfite, 4,6-diethyl propyl sulfite, and 1,3-butylene glycol sulfite. The saturated sulphone includes, for example, 1,3-propane sultone, and 1,4-butane sultone. Examples of the unsaturated sultone include ethene sultone, 1,3-propene sultone, 1,4-butene sultone, Phenolsaltone, and the like. Examples of the non-cyclic sulfone include divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, and methyl vinyl sulfone.

본 발명에서 상기 첨가제는 전체 전해액 중 0.01 내지 10 중량% 포함될 수 있다. 0.01 중량% 미만 첨가되는 경우 SEI 피막 형성이 어려울 수 있으며, 10 중량% 초과 첨가되는 경우 첨가제 분해에 의한 가스 발생으로 인하여 이차전지의 수명 등의 성능이 저하 될 수 있다.In the present invention, the additive may be contained in an amount of 0.01 to 10% by weight based on the total electrolyte solution. If it is added in an amount less than 0.01% by weight, it may be difficult to form a SEI film. If it is added in an amount exceeding 10% by weight, performance of the secondary battery such as the life of the secondary battery may be deteriorated.

본 발명에서 상기 비수성 유기용매는 당업계에서 이차전지 전해액에 포함되는 것이라면 종류에 한정하지 않으나, 주로 선형 카보네이트계 용매, 환형 카보네이트계 용매, 선형 에스테르계 용매, 환형 에스테르계 용매에서 선택되는 어느 하나 또는 둘 이상을 사용하는 것이 좋다.In the present invention, the non-aqueous organic solvent is not limited to any kind as long as it is included in the electrolyte solution of the secondary battery in the art, but it may be any one selected from linear carbonate solvents, cyclic carbonate solvents, linear ester solvents and cyclic ester solvents Or two or more.

본 발명에서 사용되는 상기 비수성 유기 중 선형 카보네이트계 용매의 일예로는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸프로필카보네이트, 에틸메틸카보네이트 및 메틸프로필카보네이트에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 더 바람직하게는 에틸메틸카보네이트를 사용하는 것이 좋다.Examples of the non-aqueous linear carbonate-based solvent used in the present invention include any one or two or more selected from dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylpropyl carbonate, ethylmethyl carbonate and methylpropyl carbonate. , And more preferably ethyl methyl carbonate.

상기 환형 카보네이트계 용매의 일예로는 에틸렌카보네이트, 프로필렌카보네이트, 1,2-부틸렌카보네이트, 2,3-부틸렌카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트 및 플루오르에틸렌카보네이트에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 더 바람직하게는 에틸렌카보네이트를 사용하는 것이 좋다.Examples of the cyclic carbonate solvent include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate , Vinyl ethylene carbonate, and fluoroethylene carbonate, and more preferably, ethylene carbonate is used.

상기 선형 에스테르계 용매의 일예로는 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 아세테이트, 부틸 아세테이트 및 에틸 아세테이트에서 선택되는 어느 하나 또는 둘 이상일 수 있다.Examples of the linear ester solvents include methyl propionate, ethyl propionate, propyl acetate, butyl acetate, and ethyl acetate.

상기 환형 에스테르계 용매는 감마부티로락톤, 카프로락톤 및 발레로락톤에서 선택되는 하나 또는 둘 이상일 수 있다.The cyclic ester-based solvent may be one or two or more selected from gamma-butyrolactone, caprolactone, and valerolactone.

본 발명에서 상기 비수성 유기용매로 더욱 바람직하게는 선형 카보네이트계 용매 : 환형 카보네이트계 용매가 1 : 9 내지 9 : 1의 부피비로 혼합된 것이 좋다. 이는 환형 카보네이트 용매는 극성이 커서 리튬 이온을 충분히 해리시킬 수 있는 반면, 점도가 커서 이온 전도도가 작은 단점이 있으므로 상기 환형 카보네이트 용매에 극성은 작지만 점도가 낮은 선형 카보네이트 용매를 혼합하여 사용함으로써 리튬 이차전지의 특성을 최적화할 수 있다.In the present invention, the non-aqueous organic solvent is more preferably mixed with the linear carbonate solvent: cyclic carbonate solvent in a volume ratio of 1: 9 to 9: 1. This is because the cyclic carbonate solvent has a large polarity and can sufficiently dissociate lithium ions, but has a disadvantage in that the ionic conductivity is low due to the high viscosity. Therefore, by using a linear carbonate solvent having low polarity but low viscosity in the cyclic carbonate solvent, Can be optimized.

또한 상기 선형 카보네이트계 용매 : 환형 카보네이트계 용매의 부피비로 바람직하게는 2 : 8 내지 8 : 2의 부피비로 사용하는 것이 전지의 수명특성과 보존특성 측면에서 좋다.The volume ratio of the linear carbonate-based solvent to the cyclic carbonate-based solvent is preferably 2: 8 to 8: 2 in terms of volume ratio and storage stability.

본 발명에서 상기 알칼리금속염은 상기 비수성 유기용매 내에서 해리되어 양이온으로 활동하며, 기본적으로 이차전지의 작동을 가능하게 하고, 양극과 음극 사이의 이온 이동을 촉진하는 역할을 수행한다.In the present invention, the alkali metal salt is dissociated in the non-aqueous organic solvent to act as a cation, basically enabling the operation of the secondary battery and promoting ion movement between the anode and the cathode.

본 발명에서는 상기 알칼리금속염의 종류를 한정하는 것은 아니나, 리튬염 또는 나트륨염을 양이온으로 가지고 음이온으로 PF6 -, ClO4 -, BF4 -, SbF6 -, AlO4 -, AlCl4 -, CF3SO3 -, C4F9SO3 -, N(C2F5SO3)2 -, N(C2F5SO2)2 -, N(CF3SO2)2 -, SCN-, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)-(단, x, y는 0 또는 자연수), B(C2O4)2 -, BF2(C2O4), LiPF4(C2O4)-, PF2(C2O4)2 - 및 P(C2O4)3 -를 가지는 군에서 선택되는 하나 또는 둘 이상의 혼합물일 수 있다.In the present invention, but are not limited to a type of the alkali metal salts, as the anion with a lithium salt or a sodium salt of a cation PF 6 -, ClO 4 -, BF 4 -, SbF 6 -, AlO 4 -, AlCl 4 -, CF 3 SO 3 -, C 4 F 9 SO 3 -, N (C 2 F 5 SO 3) 2 -, N (C 2 F 5 SO 2) 2 -, N (CF 3 SO 2) 2 -, SCN -, LiN (C x F 2x + 1 SO 2) (C y F 2y + 1 SO 2) - ( in this example, x, y is 0 or a natural number), B (C 2 O 4 ) 2 -, BF 2 (C 2 O 4 ), LiPF 4 (C 2 O 4 ) - , PF 2 (C 2 O 4 ) 2 - and P (C 2 O 4 ) 3 - .

상기 알칼리금속염은 상기 비수성 유기용매에 0.6 내지 2.0M 범위 내에서 용해되는 것이 바람직하며, 전기전도도와 관련된 성질 및 알칼리금속이온의 이동성과 관련된 점도를 고려할 때 0.8 내지 1.5M 범위 내에서 사용하는 것이 더 바람직하다. 알칼리금속염의 농도가 0.6M 미만이면 전해액의 전기 전도도가 낮아져서 이차전지의 양극과 음극 사이에서 빠른 속도로 이온을 전달하는 전해액의 성능이 떨어지고, 2.0M을 초과하는 경우에는 전해액의 점도가 증가하여 알칼리금속 이온의 이동성이 감소하는 문제점이 있다. 상기 알칼리금속염은 전지 내에서 알칼리금속 이온의 공급원으로 작용하여 기본적인 이차 전지의 작동을 가능하게 한다.The alkali metal salt is preferably dissolved in the non-aqueous organic solvent in the range of 0.6 to 2.0 M, and the use of the alkali metal salt in the range of 0.8 to 1.5 M, considering the properties related to the electric conductivity and the viscosity related to the migration of the alkali metal ion More preferable. When the concentration of the alkali metal salt is less than 0.6M, the electric conductivity of the electrolytic solution is lowered, so that the performance of the electrolytic solution which transfers ions at a high speed between the anode and the cathode of the secondary battery is lowered. When the concentration exceeds 2.0M, There is a problem that the mobility of metal ions is reduced. The alkali metal salt acts as a source of alkali metal ions in the battery, thereby enabling operation of the basic secondary battery.

본 발명의 이차전지 전해액은 통상 -20℃ 내지 60℃의 온도 범위에서 전기화학적으로 안정하므로, 이차 전지에 적용시에 전지의 수명을 연장시킬 수 있고 이차전지의 안전성과 신뢰성을 향상시킨다. 따라서, 상기 이차전지 전해액은 알칼리금속 이온전지, 알칼리금속 폴리머 전지 등 임의의 이차전지에 제한 없이 적용될 수 있다.The secondary battery electrolyte of the present invention is generally electrochemically stable in a temperature range of -20 ° C to 60 ° C so that the life of the secondary battery can be prolonged when applied to the secondary battery and the safety and reliability of the secondary battery can be improved. Accordingly, the secondary battery electrolyte may be applied to any secondary battery such as an alkali metal ion battery, an alkali metal polymer battery, and the like.

본 발명에서 상기 이차전지 전해액은 1,3-디티올-2-티온 유도체 0.05 내지 10 중량%, 첨가제 0.01 내지 10 중량% 및 비수성 유기용매 85 내지 99 중량% 포함될 수 있다. In the present invention, the secondary battery electrolyte may contain 0.05 to 10% by weight of 1,3-dithiol-2-thione derivative, 0.01 to 10% by weight of an additive and 85 to 99% by weight of a non-aqueous organic solvent.

또한 본 발명은 a) 알칼리금속을 흡장 및 방출할 수 있는 양극활물질을 포함하는 양극; b) 알칼리금속을 흡장 및 방출할 수 있는 음극활물질을 포함하는 음극; c) 제 1항 내지 제 8항에서 선택되는 어느 한 항에 따른 이차전지 전해액; 및 d) 분리막;을 포함하는 이차전지를 제공할 수 있다.The present invention also provides a positive electrode comprising: a) a positive electrode comprising a positive electrode active material capable of absorbing and desorbing alkali metals; b) a negative electrode comprising a negative electrode active material capable of absorbing and desorbing alkali metals; c) a secondary battery electrolyte according to any one of claims 1 to 8; And d) a separator.

상기 이차전지는 통상의 방법에 의하여 제조되며, 본 발명의 전해액 첨가제를 포함하는 전해액을 이용하여 제조한 전지는 상온 및 고온 수명 특성이 우수하다.The secondary battery is manufactured by a conventional method, and the battery manufactured using the electrolyte solution containing the electrolyte additive of the present invention is excellent in the room temperature and high temperature service life characteristics.

상기 이차전지의 비제한적인 예로는 리튬 금속 이차 전지, 알칼리금속 이온 이차 전지, 알칼리금속 폴리머 이차 전지 또는 알칼리금속 이온 폴리머 이차 전지 등이 있다.Non-limiting examples of the secondary battery include a lithium metal secondary battery, an alkali metal ion secondary battery, an alkali metal polymer secondary battery, and an alkali metal ion polymer secondary battery.

본 발명의 일 실시예에 따른 양극은 집전체 및 상기 집전체상에 형성되어 있는 양극 활물질층을 포함한다. 양극 활물질층은 알칼리금속을 흡장 및 방출할 수 있는 양극 활물질, 바인더, 도전재 등을 포함할 수 있다. 양극 활물질로는 코발트, 망간, 니켈에서 선택되는 최소한 1종 및 알칼리금속과의 복합 금속 산화물인 것이 바람직하다. 금속 사이의 고용율은 다양하게 이루어질 수 있으며, 이들 금속 외에 Mg, Al, Co, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, Fe, Sr, V 및 희토류 원소로 이루어진 군에서 선택되는 원소가 더 포함될 수 있다. 상기 양극 활물질의 구체적인 예로는 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다:An anode according to an embodiment of the present invention includes a current collector and a cathode active material layer formed on the current collector. The cathode active material layer may include a cathode active material capable of occluding and releasing an alkali metal, a binder, a conductive material, and the like. The positive electrode active material is preferably a composite metal oxide of at least one selected from the group consisting of cobalt, manganese, and nickel and an alkali metal. In addition to these metals, the employment rate of the metals may be varied. In addition to these metals, Mg, Al, Co, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Sr, V, and a rare earth element. Specific examples of the positive electrode active material may include a compound represented by any one of the following formulas:

LiaA1 - bBbD2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); LiaE1 - bBbO2 - cDc(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2 - bBbO4 - cDc(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1 -b- cCobBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1 -b- cCobBcO2 - αFα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b- cCobBcO2 - αF2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b- cMnbBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1 -b- cMnbBcO2 - αFα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b- cMnbBcO2 - αF2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiIO2; LiNiVO4; Li(3-f)J2(PO4)3(0≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0≤ f ≤ 2); 및 LiFePO4.Li a A 1 - b B b D 2 wherein, in the formula, 0.90? A? 1.8, and 0? B? 0.5; Li a E 1 - b B b O 2 - c D c where 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05; LiE 2 - b B b O 4 - c D c where 0? B? 0.5, 0? C? 0.05; Li a Ni 1 -b- c Co b B c D ? Wherein, in the formula, 0.90? A? 1.8, 0? B? 0.5, 0? C? 0.05, 0 <? Li a Ni 1 -b- c Co b B c O 2 - ? F ? Wherein, in the formula, 0.90? A? 1.8, 0? B? 0.5, 0? C? 0.05, 0 <? Li a Ni 1 -b- c Co b B c O 2 - ? F 2 wherein 0.90? A? 1.8, 0? B? 0.5, 0? C? 0.05, 0 <? Li a Ni 1 -b- c Mn b B c D ? Wherein, in the formula, 0.90? A? 1.8, 0? B? 0.5, 0? C? 0.05, 0 <? Li a Ni 1 -b- c Mn b B c O 2 - ? F ? Wherein, in the formula, 0.90? A? 1.8, 0? B? 0.5, 0? C? 0.05, 0 <? Li a Ni 1 -b- c Mn b B c O 2 - ? F 2 wherein 0.90? A? 1.8, 0? B? 0.5, 0? C? 0.05, 0 <? Li a Ni b E c G d O 2 wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, and 0.001 ≤ d ≤ 0.1; Li a Ni b Co c Mn d GeO 2 wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤ 0.5, and 0.001 ≤ e ≤ 0.1; Li a NiG b O 2 (in the above formula, 0.90? A? 1.8, and 0.001? B? 0.1); Li a CoG b O 2 wherein, in the above formula, 0.90? A? 1.8, and 0.001? B? 0.1; Li a MnG b O 2 (in the above formula, 0.90? A? 1.8, 0.001? B? 0.1); Li a Mn 2 G b O 4 wherein, in the above formula, 0.90? A? 1.8, and 0.001? B? 0.1; QO 2; QS 2 ; LiQS 2 ; V 2 O 5 ; LiV 2 O 5 ; LiIO 2 ; LiNiVO 4; Li (3-f) J 2 (PO 4 ) 3 (0? F? 2); Li (3-f) Fe 2 (PO 4) 3 (0≤ f ≤ 2); And LiFePO 4.

상기 화학식에 있어서, A는 Ni, Co, Mn 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; F는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고; Q는 Ti, Mo, Mn 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합일 수 있다. In the above formula, A is Ni, Co, Mn or a combination thereof; B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element or a combination thereof; D is O, F, S, P, or a combination thereof; E is Co, Mn or a combination thereof; F is F, S, P or a combination thereof; G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V or a combination thereof; Q is Ti, Mo, Mn or a combination thereof; I is Cr, V, Fe, Sc, Y or a combination thereof; J may be V, Cr, Mn, Co, Ni, Cu or a combination thereof.

본 발명의 일 실시예에 따른 음극은 집전체 및 상기 집전체상에 형성되어 있는 음극 활물질층을 포함한다. 음극 활물질층은 알칼리금속을 흡장 및 방출할 수 있는 음극 활물질, 바인더, 도전재 등을 포함할 수 있다. 음극 활물질로는 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 재료, 리튬 금속, 리튬과 다른 원소의 합금 등이 사용될 수 있다. 예를 들면, 비결정질 탄소로는 하드카본, 코크스, 1,500℃ 이하에서 소성한 메조카본 마이크로비드(mesocarbon microbead: MCMB), 메조페이스피치계 탄소섬유(mesophase pitch-based carbon fiber: MPCF) 등이 있다. 결정질 탄소로는 흑연계 재료가 있으며, 구체적으로는 천연흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등이 있다. 상기 탄소재 물질은 층간거리(interplanar distance)가 3.35 내지 3.38Å, X-선 회절(X-ray diffraction)에 의한 Lc(crystallite size)가 적어도 20㎚ 이상인 물질이 바람직하다. 리튬과 합금을 이루는 다른 원소로는 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐이 사용될 수 있다.The negative electrode according to an embodiment of the present invention includes a current collector and a negative electrode active material layer formed on the current collector. The negative electrode active material layer may include a negative electrode active material capable of absorbing and desorbing alkali metals, a binder, a conductive material, and the like. As the negative electrode active material, a carbon material such as crystalline carbon, amorphous carbon, carbon composite, or carbon fiber, a lithium metal, an alloy of lithium and other elements, and the like can be used. Examples of the amorphous carbon include hard carbon, coke, mesocarbon microbead (MCMB) calcined at 1,500 ° C or lower, and mesophase pitch-based carbon fiber (MPCF). The crystalline carbon is a graphite-based material, specifically natural graphite, graphitized coke, graphitized MCMB, and graphitized MPCF. The carbonaceous material is preferably a material having an interplanar distance of 3.35 to 3.38 Å and a crystallite size (Lc) of at least 20 nm by X-ray diffraction. Other elements constituting the alloy with lithium may be aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium or indium.

본 발명의 일 실시예에 따른 양극 및/또는 음극은 전극 활물질, 바인더 및 도전재, 필요한 경우 증점제를 용매에 분산시켜 전극 슬러리 조성물을 제조하고, 이 슬러리 조성물을 전극 집전체에 도포하여 제조될 수 있다. 양극 집전체로는 흔히 알루미늄 또는 알루미늄 합금 등을 사용할 수 있고, 음극 집전체로는 흔히 구리 또는 구리 합금 등을 사용할 수 있다. 상기 양극 집전체 및 음극 집전체의 형태로는 포일이나 메시 형태를 들 수 있다.The anode and / or the cathode according to an embodiment of the present invention may be manufactured by dispersing an electrode active material, a binder and a conductive material, if necessary, a thickener in a solvent to prepare an electrode slurry composition, and applying the slurry composition to an electrode current collector have. As the positive electrode current collector, aluminum or an aluminum alloy may be commonly used, and copper or a copper alloy may be used as the negative electrode current collector. The anode current collector and the anode current collector may be in the form of a foil or a mesh.

본 발명의 일 실시예에 따른 바인더는 활물질의 페이스트화, 활물질의 상호 접착, 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충효과 등의 역할을 하는 물질로서, 통상의 당업자에 의해 사용될 수 있는 것이면 모두 가능하다. 예를 들면, 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드(PVdF), 폴리헥사플루오로프로필렌-폴리비닐리덴플루오라이드의 공중합체(PVdF/HFP)), 폴리(비닐아세테이트), 알킬레이티드폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리(에틸아크릴레이트), 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 고무, 아크릴레이티드 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. 바인더의 함량은 전극 활물질에 대하여 0.1 내지 30 중량%, 바람직하게는 1 내지 10 중량%이다. 상기 바인더의 함량이 너무 적으면 전극 활물질과 집전체와의 접착력이 불충분하고, 바인더의 함량이 너무 많으면 접착력은 좋아지지만 전극 활물질의 함량이 그만큼 감소하여 전지용량을 고용량화 하는데 불리하다.The binder according to one embodiment of the present invention acts as a paste for the active material, mutual adhesion of the active material, adhesion to the current collector, buffering effect on expansion and contraction of the active material, and the like. Anything is possible. For example, there may be mentioned polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, diacetylcellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polyethylene oxide, polyvinylpyrrolidone, polyurethane, Polyvinylidene fluoride (PVdF), copolymer of polyhexafluoropropylene-polyvinylidene fluoride (PVdF / HFP)), poly (vinyl acetate), alkylated polyethylene oxide, polyvinyl Butadiene rubber, acrylonitrile-butadiene rubber, acrylonitrile-butadiene rubber, acrylonitrile-butadiene rubber, acrylonitrile-butadiene rubber, acrylonitrile-butadiene rubber, polyacrylonitrile, , Epoxy resin, nylon, and the like can be used, but the present invention is not limited thereto. The content of the binder is 0.1 to 30% by weight, preferably 1 to 10% by weight, based on the electrode active material. If the content of the binder is too small, the adhesive force between the electrode active material and the current collector is insufficient. If the content of the binder is too large, the adhesive force is improved but the content of the electrode active material is reduced accordingly.

본 발명의 일 실시예에 따른 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재로는 흑연계 도전재, 카본 블랙계 도전재, 금속 또는 금속 화합물계 도전재로 이루어진 군에서 선택되는 적어도 하나를 사용할 수 있다. 상기 흑연계 도전재의 예로는 인조흑연, 천연 흑연 등이 있으며, 카본 블랙계 도전재의 예로는 아세틸렌 블랙, 케첸 블랙(ketjen black), 덴카 블랙(denkablack), 써멀 블랙(thermal black), 채널 블랙(channel black) 등이 있으며, 금속계 또는 금속 화합물계 도전제의 예로는 주석, 산화주석, 인산주석(SnPO4), 산화티타늄, 티탄산칼륨, LaSrCoO3, LaSrMnO3와 같은 페로브스카이트(perovskite) 물질이 있다. 그러나 상기 열거된 도전재에 한정되는 것은 아니다. 도전재의 함량은 전극 활물질에 대하여 0.1 내지 10 중량%인 것이 바람직하다. 도전재의 함량이 0.1 중량%보다 적은 경우에는 전기 화학적 특성이 저하되고, 10 중량%을 초과하는 경우에는 중량당 에너지 밀도가 감소한다.The conductive material according to one embodiment of the present invention is used for imparting conductivity to an electrode, and any material can be used as an electron conductive material without causing any chemical change in the battery. As the conductive material, at least one selected from the group consisting of a graphite-based conductive material, a carbon black-based conductive material, and a metal or metal compound-based conductive material may be used. Examples of the black graphite conductive material include artificial graphite and natural graphite. Examples of the carbon black conductive material include acetylene black, ketjen black, denkablack, thermal black, channel black black or the like. Examples of metal or metal compound conductive agents include perovskite materials such as tin, tin oxide, tin phosphate (SnPO 4 ), titanium oxide, potassium titanate, LaSrCoO 3 and LaSrMnO 3 have. However, the present invention is not limited to the above-mentioned conductive materials. The content of the conductive material is preferably 0.1 to 10% by weight based on the electrode active material. When the content of the conductive material is less than 0.1% by weight, the electrochemical characteristics are deteriorated, and when it exceeds 10% by weight, the energy density per weight is decreased.

본 발명의 일 실시예에 따른 증점제는 활물질 슬러리 점도조절의 역할을 할 수 있는 것이라면 특별히 한정되지 않으나, 예를 들면 카르복시메틸 셀룰로오스, 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스 등이 사용될 수 있다.The thickening agent according to an embodiment of the present invention is not particularly limited as long as it can control the viscosity of the active material slurry. For example, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and the like are used .

전극 활물질, 바인더, 도전재 등이 분산되는 용매로는 비수용매 또는 수계용매가 사용된다. 비수용매로는 N-메틸-2-피롤디돈(NMP), 디메틸포름아미드, 디메틸아세트아미드, N,N-디메틸아미노프로필아민, 에틸렌옥사이드, 테트라히드로퓨란 등을 들 수 있다.As the solvent in which the electrode active material, the binder, the conductive material and the like are dispersed, a non-aqueous solvent or an aqueous solvent is used. Examples of the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine, ethylene oxide and tetrahydrofuran.

본 발명의 이차전지는 양극 및 음극 사이에 단락을 방지하고 알칼리금속 이온의 이동통로를 제공하는 분리막을 포함할 수 있으며, 이러한 분리막으로는 폴리프로필렌, 폴리에틸렌, 폴리에틸렌/폴리프로필렌, 폴리에틸렌/폴리프로필렌/폴리에틸렌, 폴리프로필렌/폴리에틸렌/폴리프로필렌 등의 폴리올레핀계 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포 및 부직포를 사용할 수 있다. 또한 다공성의 폴리올레핀 필름에 안정성이 우수한 수지가 코팅된 필름을 사용할 수도 있다.The secondary battery of the present invention may include a separator that prevents a short circuit between the anode and the cathode and provides a path for moving the alkali metal ion. Examples of the separator include a polypropylene, a polyethylene, a polyethylene / polypropylene, a polyethylene / polypropylene / Polyolefin-based polymer membranes such as polyethylene, polypropylene / polyethylene / polypropylene, or multi-membranes thereof, microporous films, woven fabrics and nonwoven fabrics can be used. Further, a film coated with a resin having excellent stability may be used for the porous polyolefin film.

본 발명의 이차전지는 각형 외에 원통형, 파우치형 등 다른 형상으로 이루어질 수 있다.The secondary battery of the present invention may have other shapes such as a cylindrical shape, a pouch shape, and the like.

이하의 실시예를 통하여 본 발명을 구체적으로 설명한다. 단, 하기 실시예는 본 발명의 예시에 불과한 것으로서 본 발명의 범위가 이에 따라 한정되는 것은 아니다.The present invention will be described in detail with reference to the following examples. However, the following examples are only illustrative of the present invention and the scope of the present invention is not limited thereby.

실시예 및 비교예를 통해 제조된 시편의 물성을 다음과 같이 측정하였다.The physical properties of the specimens prepared through Examples and Comparative Examples were measured as follows.

(상온(25℃)에서의 사이클 수명 특성)(Cycle life characteristics at room temperature (25 占 폚)

실시예 및 비교예를 통해 제조된 이차전지를 4.3V까지 1C 충전 후 2C 방전하였다. 이 과정을 300회 반복하여 수명특성(사이클 성능)을 측정하였다. 사이클 성능 평가는 상온(25℃)에서 평가하였으며, 300 사이클에서의 방전용량, 초기 용량대비 백분율 및 비교예 1 대비 증가한 초기 용량 백분율을 측정하였다.The secondary batteries manufactured through Examples and Comparative Examples were charged at 1 C to 4.3 V and then discharged at 2C. This process was repeated 300 times to measure lifetime characteristics (cycle performance). Cycle performance was evaluated at room temperature (25 캜), and the discharge capacity at 300 cycles, the percentage relative to the initial capacity, and the percentage of initial capacity increased relative to Comparative Example 1 were measured.

(고온(70℃)보관 후 출력 특성)(Output characteristics after storage at high temperature (70 ° C))

실시예 및 비교예를 통해 제조된 이차전지를 4.3V까지 1C 충전 후, 고온(70℃)에서 7일 보관하였다. 그리고 4.3V까지 1C 충전 후 1C 방전을 2회 진행한 후 0.2, 1, 2, 4C 각 충전 및 방전에서의 방전 출력을 측정하였다. 출력 특성 평가는 고온(70℃)에서 7일 보관 후 상온(25℃)에서 평가하였으며, 고온(25℃) 보관 후 출력, 비교예 1 대비 증가한 출력을 측정하였다. The secondary batteries prepared in Examples and Comparative Examples were charged at 1 C to 4.3 V and then stored at high temperature (70 ° C) for 7 days. After charging 1C until 4.3V, 1C discharging was performed twice, and discharge output was measured at 0.2, 1, 2, 4C charging and discharging. The output characteristics were evaluated at room temperature (25 ° C.) after storage at high temperature (70 ° C.) for 7 days, and after storage at high temperature (25 ° C.)

(고온(70℃)보관 후 전기 저항 특성)(Electrical resistance characteristics after storage at high temperature (70 ° C))

실시예 및 비교예를 통해 제조된 이차전지를 4.3V까지 1C 충전 후, 고온(70℃)에서 7일 보관하였다. 그리고 4.3V까지 1C 충전 후 1C 방전을 2회 진행한 후 Impedance analyzer를 이용하여 교류 임피던스를 측정하였다. 특성 평가는 고온(70℃)에서 7일 보관 후 상온(25℃)에서 평가하였으며, 고온 보관 후 저항값을 측정하였다. The secondary batteries prepared in Examples and Comparative Examples were charged at 1 C to 4.3 V and then stored at high temperature (70 ° C) for 7 days. After charging 1C until 4.3V, 1C discharging was performed twice and impedance of AC was measured using impedance analyzer. The characteristics were evaluated at room temperature (25 ℃) after storage for 7 days at high temperature (70 ℃), and resistance value was measured after storage at high temperature.

[실시예 1][Example 1]

양극 활물질로서 Li(Ni0.6Co0.2Mn0.2)O2와 바인더로서 폴리비닐리덴 플루오라이드(PVdF) 및 도전재로서 카본블랙을 92:4:4의 중량비로 혼합한 다음, N-메틸-2-피롤리돈에 분산시켜 양극 슬러리를 제조하였다. 이 슬러리를 두께 20㎛의 알루미늄 호일에 코팅한 후 건조, 압연하여 양극을 제조하였다. Li (Ni 0.6 Co 0.2 Mn 0.2 ) O 2 as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder and carbon black as a conductive material were mixed in a weight ratio of 92: 4: 4, And dispersed in pyrrolidone to prepare a positive electrode slurry. This slurry was coated on an aluminum foil having a thickness of 20 mu m, followed by drying and rolling to prepare a positive electrode.

음극 활물질로 결정성 인조 흑연과 도전재로서 아세틸렌블랙 및 바인더로서 폴리비닐리덴 플루오라이드(PVdF)를 92:1:7의 중량비로 혼합하고 N-메틸-2-피롤리돈에 분산시켜 음극 활물질 슬러리를 제조하였다. 이 슬러리를 두께 15㎛의 구리 호일에 코팅한 후 건조, 압연하여 음극을 제조하였다.Acetylene black as a conductive material and polyvinylidene fluoride (PVdF) as a binder were mixed in a weight ratio of 92: 1: 7 and dispersed in N-methyl-2-pyrrolidone as an anode active material to obtain an anode active material slurry . This slurry was coated on a copper foil having a thickness of 15 mu m, followed by drying and rolling to prepare a negative electrode.

상기 제조된 전극들 사이에 두께 20㎛의 폴리에틸렌(PE) 재질의 필름 세퍼레이터를 스택킹(Stacking)하여 권취 및 압축하여 두께 6 ㎜ × 가로 35 ㎜ × 세로 60 ㎜ 사이즈의 파우치를 이용하여 셀(Cell)을 구성하였고, 하기 이차전지 전해액을 주입하여 리튬 이차 전지를 제조하였다.A thickness of 20 mu m Polyethylene (PE) film A separator was stacked and wound and compressed to form a cell using a pouch having a size of 6 mm x 35 mm x 60 mm in size, and the following secondary battery electrolyte was injected to manufacture a lithium secondary battery .

이차전지 전해액으로 LiPF6가 1.0M 용해된 에틸렌 카보네이트(EC) : 에틸메틸 카보네이트(EMC)의 혼합용매(EC : EMC = 3:7 부피비)에 디메틸-2-티옥소-1,3-디티올-4,5-디카르복실레이트(4,5-Ethylenedithio-1,3-dithiole-2-thione 0.5 중량%를 첨가하여 제조하였다. 세로 60 ㎜ 사이즈의 파우치를 이용하여 셀(Cell)을 구성하였고, 하기 이차전지 전해액을 주입하여 리튬 이차 전지를 제조하였다.To a mixed solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) (EC: EMC = 3: 7 by volume) in which LiPF 6 was dissolved in 1.0 M of lithium secondary battery electrolyte, dimethyl-2-thioxo-1,3-dithiol -4,5-dicarboxylate (prepared by adding 0.5% by weight of 4,5-ethylenedithio-1,3-dithiole-2-thione) to form a cell using a pouch having a size of 60 mm , The following secondary battery electrolyte was injected to prepare a lithium secondary battery.

[실시예 2][Example 2]

실시예 1의 이차전지용 전해액에 리튬 디플루오로 비스옥살라토 포스페이트(Lithium difluoro bis(oxalato) phosphate) 1.0중량%를 첨가하는 대신에 리튬 디플루오로 포스페이트(Lithium difluoro phosphate) 1.0중량%를 첨가하는 것을 제외하고는 동일한 방법으로 이차전지를 제조하였다.Instead of adding 1.0% by weight of lithium difluoro bis (oxalato) phosphate to the electrolyte for the secondary battery of Example 1, 1.0% by weight of lithium difluorophosphate was added The secondary battery was fabricated in the same manner as described above.

[실시예 3][Example 3]

실시예 1의 이차전지용 전해액에 리튬 디플루오로 비스옥살라토 포스페이트(Lithium difluoro bis(oxalato) phosphate) 1.0중량%를 첨가하는 대신에 비닐렌 카보네이트(vinylene carbonate) 1.0중량%를 첨가하는 것을 제외하고는 동일한 방법으로 이차전지를 제조하였다.Except that 1.0 wt% of vinylene carbonate was added instead of 1.0 wt% of lithium difluoro bis (oxalato) phosphate to the electrolyte for the secondary battery of Example 1 A secondary battery was manufactured in the same manner.

[실시예 4][Example 4]

실시예 1의 이차전지용 전해액에 리튬 디플루오로 비스옥살라토 포스페이트(Lithium difluoro bis(oxalato) phosphate) 1.0중량%를 첨가하는 대신에 비닐에틸렌 카보네이트(Vinylethylene carbonate) 1.0중량%를 첨가하는 것을 제외하고는 동일한 방법으로 이차전지를 제조하였다.Except that 1.0 wt% of vinylethylene carbonate was added instead of 1.0 wt% of lithium difluoro bis (oxalato) phosphate to the electrolyte for the secondary battery of Example 1 A secondary battery was manufactured in the same manner.

[실시예 5][Example 5]

실시예 1의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 대신에 1,3-디티올-2-티온(1,3-Dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 동일한 방법으로 이차전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 1, Except that 0.25% by weight of 1,3-dithiole-2-thione was added instead of 1,3-dithiole-2-thione.

[실시예 6][Example 6]

실시예 2의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 대신에 1,3-디티올-2-티온(1,3-Dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 2, A secondary battery was prepared in the same manner as in Example 1, except that 0.25 wt% of 1,3-dithiole-2-thione was added instead of 1,3-dithiole-2-thione.

[실시예 7][Example 7]

실시예 3의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 대신에 1,3-디티올-2-티온(1,3-Dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 3, A secondary battery was prepared in the same manner as in Example 1, except that 0.25 wt% of 1,3-dithiole-2-thione was added instead of 1,3-dithiole-2-thione.

[실시예 8][Example 8]

실시예 4의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 대신에 1,3-디티올-2-티온(1,3-Dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 4, A secondary battery was prepared in the same manner as in Example 1, except that 0.25 wt% of 1,3-dithiole-2-thione was added instead of 1,3-dithiole-2-thione.

[실시예 9][Example 9]

실시예 1의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 대신에 4,5-에틸렌디티오-1,3-디티올-2-티온(4,5-Ethylenedithio-1,3-dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 동일한 방법으로 이차전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 1, Except that 0.25 wt% of 4,5-Ethylenedithio-1,3-dithiole-2-thione was added instead of 4-ethylenedithio-1,3-dithiole- A secondary battery was manufactured in the same manner.

[실시예 10][Example 10]

실시예 2의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 대신에 4,5-에틸렌디티오-1,3-디티올-2-티온(4,5-Ethylenedithio-1,3-dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 2, Except that 0.25 wt% of 4,5-Ethylenedithio-1,3-dithiole-2-thione was added instead of 4-ethylenedithio-1,3-dithiole- A secondary battery was produced in the same manner as in Example 1.

[실시예 11][Example 11]

실시예 3의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 대신에 4,5-에틸렌디티오-1,3-디티올-2-티온(4,5-Ethylenedithio-1,3-dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 3, Except that 0.25 wt% of 4,5-Ethylenedithio-1,3-dithiole-2-thione was added instead of 4-ethylenedithio-1,3-dithiole- A secondary battery was produced in the same manner as in Example 1.

[실시예 12][Example 12]

실시예 4의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 대신에 4,5-에틸렌디티오-1,3-디티올-2-티온(4,5-Ethylenedithio-1,3-dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 4, Except that 0.25 wt% of 4,5-Ethylenedithio-1,3-dithiole-2-thione was added instead of 4-ethylenedithio-1,3-dithiole- A secondary battery was produced in the same manner as in Example 1.

[비교예 1][Comparative Example 1]

실시예 1의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%와 리튬 디플루오로 비스옥살라토 포스페이트(Lithium difluoro bis(oxalato) phosphate) 1.0중량%를 첨가하지 않은 것을 제외하고는 동일한 방법으로 이차 전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Example 1, And 1.0% by weight of lithium difluoro bis (oxalato) phosphate were not added to the secondary battery.

[비교예 2][Comparative Example 2]

비교예 1의 이차전지용 전해액에 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트(dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate) 0.5중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지를 제조하였다.0.5% by weight of dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate was added to the electrolyte for the secondary battery of Comparative Example 1, A secondary battery was prepared in the same manner as in Example 1. The results are shown in Table 1. &lt; tb &gt; &lt; TABLE &gt;

[비교예 3][Comparative Example 3]

비교예 1의 이차전지용 전해액에 1,3-디티올-2-티온(1,3-Dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지를 제조하였다.A secondary battery was produced in the same manner as in Example 1, except that 0.25% by weight of 1,3-dithiole-2-thione was added to the electrolyte for a secondary battery of Comparative Example 1 Respectively.

[비교예 4][Comparative Example 4]

비교예 1의 이차전지용 전해액에 4,5-에틸렌디티오-1,3-디티올-2-티온(4,5-Ethylenedithio-1,3-dithiole-2-thione) 0.25중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지를 제조하였다.0.25 wt% of 4,5-ethylenedithio-1,3-dithiole-2-thione was added to the electrolyte for the secondary battery of Comparative Example 1 A secondary battery was manufactured in the same manner as in Example 1.

[비교예 5][Comparative Example 5]

비교예 1의 이차전지용 전해액에 리튬 디플루오로 비스옥살라토 포스페이트(Lithium difluoro bis(oxalato) phosphate) 1.0중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지를 제조하였다.A secondary battery was prepared in the same manner as in Example 1, except that 1.0 wt% of lithium difluoro bis (oxalato) phosphate was added to the electrolyte for the secondary battery of Comparative Example 1.

[비교예 6][Comparative Example 6]

비교예 1의 이차전지용 전해액에 리튬 디플루오로 포스페이트(Lithium difluoro phosphate) 1.0중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지를 제조하였다.A secondary battery was prepared in the same manner as in Example 1, except that 1.0 weight% of lithium difluorophosphate was added to the electrolyte for the secondary battery of Comparative Example 1.

[비교예 7][Comparative Example 7]

비교예 1의 이차전지용 전해액에 비닐렌 카보네이트(vinylene carbonate) 1.0중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지를 제조하였다.A secondary battery was prepared in the same manner as in Example 1, except that 1.0% by weight of vinylene carbonate was added to the electrolyte for the secondary battery of Comparative Example 1.

[비교예 8][Comparative Example 8]

비교예 1의 이차전지용 전해액에 비닐에틸렌 카보네이트(Vinylethylene carbonate) 1.0중량%를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지를 제조하였다.A secondary battery was prepared in the same manner as in Example 1, except that 1.0 wt% of vinylethylene carbonate was added to the secondary battery electrolyte of Comparative Example 1.

[표 1][Table 1]

Figure 112015066601919-pat00015
Figure 112015066601919-pat00015

[표 2][Table 2]

Figure 112015066601919-pat00016
Figure 112015066601919-pat00016

[표 3][Table 3]

Figure 112015066601919-pat00017
Figure 112015066601919-pat00017

상기 표 1과 같이 본 발명의 실시예 1 내지 12에 따른 2차 전지는 300 사이클에서 초기 용량 대비 사이클 용량비가 비교예 1 내지 8에 비해 향상되는 수명특성을 보였다. 그 중에서도 디메틸 2-티옥소-1,3-디티올-4,5-디카르복실레이트 0.5중량%, 비닐렌 카보네이트 0.5중량% 첨가 된 실시예 3의 이차전지가 300사이클에서의 방전용량과 초기 용량대비 백분율 97.29%로 가장 우수한 수명 성능을 보였다.As shown in Table 1, the secondary batteries according to Examples 1 to 12 of the present invention showed life characteristics in which the cycle capacity ratio to the initial capacity was improved in comparison with Comparative Examples 1 to 8 at 300 cycles. Among them, the secondary battery of Example 3, to which 0.5% by weight of dimethyl 2-thioxo-1,3-dithiol-4,5-dicarboxylate and 0.5% by weight of vinylene carbonate was added, And 97.29% as a percentage of capacity.

상기 표 2와 같이 본 발명의 실시예 1 내지 12에 따른 2차 전지는 고온에서 7일 보관 후의 출력 특성이 비교예에 비해 우수한 것을 알 수 있다. 특히 4,5-에틸렌디티오-1,3-디티올-2-티온(4,5-Ethylenedithio-1,3-dithiole-2-thione) 0.25중량%, 리튬 디플루오로 비스옥살라토 포스페이트(Lithium difluoro bis(oxalato) phosphate) 1.0중량% 첨가 된 실시예 9의 이차전지가 고온(70℃)에서 7일 보관 후 출력값 46.22W로 가장 우수한 출력 특성을 보였다.As shown in Table 2, it can be seen that the secondary battery according to Examples 1 to 12 of the present invention has excellent output characteristics after being stored at high temperature for 7 days, as compared with Comparative Examples. Specifically, 0.25 wt% of 4,5-ethylenedithio-1,3-dithiole-2-thione, and lithium difluorobisoxalate phosphate ( Lithium difluoro bis (oxalato) phosphate 1.0% by weight The secondary battery of Example 9, which was stored for 7 days at high temperature (70 ° C), showed the best output characteristics with an output value of 46.22 W.

상기 표 3과 같이 본 발명의 실시예 1 내지 12에 따른 2차 전지는 고온에서 7일 보관 후의 저항 특성이 비교예에 비해 우수한 것을 알 수 있다. 특히 4,5-에틸렌디티오-1,3-디티올-2-티온(4,5-Ethylenedithio-1,3-dithiole-2-thione) 0.25중량%, 리튬 디플루오로 비스옥살라토 포스페이트(Lithium difluoro bis(oxalato) phosphate) 1.0중량% 첨가 된 실시예 9의 이차전지가 고온(70℃)에서 7일 보관 후 저항값 0.029 Z/Ohm로 가장 낮은 전지 저항 특성을 보였다.As shown in Table 3, it can be seen that the secondary batteries according to Examples 1 to 12 of the present invention had better resistance characteristics after being stored at high temperature for 7 days than the comparative example. Specifically, 0.25 wt% of 4,5-ethylenedithio-1,3-dithiole-2-thione, and lithium difluorobisoxalate phosphate ( Lithium difluoro bis (oxalato) phosphate 1.0 wt% The battery of Example 9 showed the lowest cell resistance with a resistance value of 0.029 Z / Ohm after being stored at high temperature (70 ° C) for 7 days.

또한 도 1에서 보는 바와 같이 2-티옥소-1,3-디티올-4,5-디카르복실레이트 화합물, 1,3-디티올-2-티온 화합물과 인산계 리튬염, 비닐리덴 카보네이트계 화합물을 전해액 첨가제로 함께 포함하는 이차전지는 고주파 영역의 음극쪽 저항과 저주파 영역의 양극쪽 저항을 동시에 줄여 주어 전지의 성능을 향상시킴을 알 수 있다.Also, as shown in FIG. 1, the 2-thioxo-1,3-dithiol-4,5-dicarboxylate compound, the 1,3-dithiol-2-thione compound and the phosphoric acid type lithium salt, the vinylidene carbonate type The secondary battery including the compound as an electrolyte additive improves the performance of the battery by simultaneously reducing the resistance of the negative electrode in the high frequency range and the resistance of the positive electrode in the low frequency range.

상기와 같이 본 발명에 따른 이차전지 전해액은 음극 표면에 SEI(Solid electrolyte interface) 피막을 효과적이고 안정적으로 형성시키는 티옥소-1,3-디티올-4,5-디카르복실레이트 화합물, 1,3-디티올-2-티온 화합물에 고온에서의 음극, 양극 표면의 분해를 억제하는 인산계 리튬염, 비닐리덴 카보네이트계 화합물 중 하나 이상 조합하였을 시 상온 수명과 고온에서의 출력 특성 및 전기화학적 특성이 더욱 향상된 것을 알 수 있다.As described above, the electrolyte for a secondary battery according to the present invention comprises a thioxo-1,3-dithiol-4,5-dicarboxylate compound which effectively and stably forms a SEI (solid electrolyte interface) When the 3-dithiol-2-thione compound is combined with at least one of a negative electrode at high temperature, a phosphate-based lithium salt and a vinylidene carbonate compound which inhibits decomposition of the surface of the positive electrode, the output characteristics and electrochemical characteristics Is further improved.

이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있으며, 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the above description does not limit the scope of the present invention, which is defined by the limitations of the following claims.

Claims (11)

a) 알칼리금속염;
b) 비수성 유기용매;
c) 하기 화학식 3 또는 4로 표시되는 1,3-디티올-2-티온 유도체; 및
d) 리튬 디플루오로 비스옥살라토 포스페이트, 리튬 디플루오로 포스페이트, 비닐렌 카보네이트 또는 비닐에틸렌 카보네이트인 첨가제;
를 포함하는 이차전지 전해액.
[화학식 3]
Figure 112016080575129-pat00025

[화학식 4]
Figure 112016080575129-pat00026

(상기 화학식 3 내지 4에서 상기 R4 및 R5는 각각 독립적으로 (C1-C5)알킬이며,
n는 2의 정수이다.)
a) an alkali metal salt;
b) non-aqueous organic solvent;
c) a 1,3-dithiol-2-thione derivative represented by the following formula 3 or 4; And
d) an additive that is lithium difluorobisoxalatophosphate, lithium difluorophosphate, vinylene carbonate or vinylethylene carbonate;
Wherein the secondary battery electrolyte is a lithium secondary battery.
(3)
Figure 112016080575129-pat00025

[Chemical Formula 4]
Figure 112016080575129-pat00026

(In the formula 3 or 4 wherein R 4 and R 5 are each independently alkyl (C1-C5),
n is an integer of 2.)
삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 비수성 유기용매는 선형 카보네이트계 용매, 환형 카보네이트계 용매, 선형 에스테르계 용매, 환형 에스테르계 용매에서 선택되는 어느 하나 또는 둘 이상인 이차전지 전해액.
The method according to claim 1,
Wherein the non-aqueous organic solvent is any one or more selected from a linear carbonate-based solvent, a cyclic carbonate-based solvent, a linear ester-based solvent, and a cyclic ester-based solvent.
제 5항에 있어서,
상기 선형 카보네이트계 용매는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸프로필카보네이트, 에틸메틸카보네이트 및 메틸프로필카보네이트에서 선택되는 어느 하나 또는 둘 이상이며,
상기 환형 카보네이트계 용매는 에틸렌카보네이트, 프로필렌카보네이트, 1,2-부틸렌카보네이트, 2,3-부틸렌카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트 및 플루오르에틸렌카보네이트에서 선택되는 어느 하나 또는 둘 이상이며,
상기 선형 에스테르계 용매는 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 아세테이트, 부틸 아세테이트 및 에틸 아세테이트에서 선택되는 어느 하나 또는 둘 이상이며,
상기 환형 에스테르계 용매는 감마부티로락톤, 카프로락톤 및 발레로락톤에서 선택되는 하나 또는 둘 이상인 이차전지 전해액.
6. The method of claim 5,
Wherein the linear carbonate-based solvent is any one or two or more selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylpropyl carbonate, ethylmethyl carbonate and methylpropyl carbonate,
The cyclic carbonate-based solvent may be at least one selected from the group consisting of ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, Carbonate, and fluoroethylene carbonate,
Wherein the linear ester solvent is at least one selected from methyl propionate, ethyl propionate, propyl acetate, butyl acetate and ethyl acetate,
Wherein the cyclic ester-based solvent is at least one selected from gamma-butyrolactone, caprolactone, and valerolactone.
제 5항에 있어서,
상기 비수성 유기용매는 선형 카보네이트계 용매 : 환형 카보네이트계 용매가 1 : 9 내지 9 : 1의 부피비로 혼합된 것인 이차전지 전해액.
6. The method of claim 5,
Wherein the non-aqueous organic solvent is a linear carbonate-based solvent: a cyclic carbonate-based solvent mixed in a volume ratio of 1: 9 to 9: 1.
제 1항에 있어서,
상기 알칼리금속염은 상기 비수성 유기용매에 0.6 내지 2.0M의 농도로 포함하는 것인 이차전지 전해액.
The method according to claim 1,
Wherein the alkali metal salt is contained in the non-aqueous organic solvent at a concentration of 0.6 to 2.0M.
제 8항에 있어서,
상기 알칼리금속염은 리튬염 또는 나트륨염을 양이온으로 가지고 음이온으로 PF6 -, ClO4 -, BF4 -, SbF6 -, AlO4 -, AlCl4 -, CF3SO3 -, C4F9SO3 -, N(C2F5SO3)2 -, N(C2F5SO2)2 -, N(CF3SO2)2 -, SCN-, LiN(CxF2x+1SO2)(CyF2y+1SO2)-(단, x, y는 0 또는 자연수), B(C2O4)2 -, BF2(C2O4), LiPF4(C2O4)-, PF2(C2O4)2 - 및 P(C2O4)3 -를 가지는 군에서 선택되는 하나 또는 둘 이상의 혼합물인 이차전지 전해액.
9. The method of claim 8,
The alkali metal salt includes a lithium salt or a sodium salt as a cation and an anion such as PF 6 - , ClO 4 - , BF 4 - , SbF 6 - , AlO 4 - , AlCl 4 - , CF 3 SO 3 - , C 4 F 9 SO 3 -, N (C 2 F 5 SO 3) 2 -, N (C 2 F 5 SO 2) 2 -, N (CF 3 SO 2) 2 -, SCN -, LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2) - ( in this example, x, y is 0 or a natural number), B (C 2 O 4 ) 2 -, BF 2 (C 2 O 4), LiPF 4 (C 2 O 4 ) - , PF 2 (C 2 O 4 ) 2 - and P (C 2 O 4 ) 3 - .
제 1항에 있어서,
상기 이차전지 전해액은 1,3-디티올-2-티온 유도체 0.05 내지 10 중량%, 첨가제 0.01 내지 10 중량% 및 비수성 유기용매 85 내지 99 중량%인 이차전지 전해액.
The method according to claim 1,
Wherein the secondary battery electrolyte is 0.05 to 10 wt% of a 1,3-dithiol-2-thione derivative, 0.01 to 10 wt% of an additive, and 85 to 99 wt% of a non-aqueous organic solvent.
a) 알칼리금속을 흡장 및 방출할 수 있는 양극활물질을 포함하는 양극;
b) 알칼리금속을 흡장 및 방출할 수 있는 음극활물질을 포함하는 음극;
c) 제 1항 및 제 5항 내지 제 8항에서 선택되는 어느 한 항에 따른 이차전지 전해액; 및
d) 분리막;
을 포함하는 이차전지.
a) a positive electrode comprising a positive electrode active material capable of occluding and releasing an alkali metal;
b) a negative electrode comprising a negative electrode active material capable of absorbing and desorbing alkali metals;
c) a secondary battery electrolyte according to any one of claims 1 and 5 to 8; And
d) a separator;
And a secondary battery.
KR1020150097786A 2015-07-09 2015-07-09 electrolyte for lithium secondary battery and lithium secondary battery containing the same Active KR101683534B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150097786A KR101683534B1 (en) 2015-07-09 2015-07-09 electrolyte for lithium secondary battery and lithium secondary battery containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150097786A KR101683534B1 (en) 2015-07-09 2015-07-09 electrolyte for lithium secondary battery and lithium secondary battery containing the same

Publications (1)

Publication Number Publication Date
KR101683534B1 true KR101683534B1 (en) 2016-12-07

Family

ID=57572599

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150097786A Active KR101683534B1 (en) 2015-07-09 2015-07-09 electrolyte for lithium secondary battery and lithium secondary battery containing the same

Country Status (1)

Country Link
KR (1) KR101683534B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135889A1 (en) * 2017-01-20 2018-07-26 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
US10700381B2 (en) 2017-01-20 2020-06-30 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN116417569A (en) * 2023-06-12 2023-07-11 蔚来电池科技(安徽)有限公司 Secondary battery and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157305A (en) 2012-01-26 2013-08-15 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2014044896A (en) * 2012-08-28 2014-03-13 Toyota Central R&D Labs Inc Nonaqueous electrolyte air battery and its using method
KR20150050493A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary battery comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157305A (en) 2012-01-26 2013-08-15 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2014044896A (en) * 2012-08-28 2014-03-13 Toyota Central R&D Labs Inc Nonaqueous electrolyte air battery and its using method
KR20150050493A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary battery comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135889A1 (en) * 2017-01-20 2018-07-26 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
US10700381B2 (en) 2017-01-20 2020-06-30 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN116417569A (en) * 2023-06-12 2023-07-11 蔚来电池科技(安徽)有限公司 Secondary battery and device
CN116417569B (en) * 2023-06-12 2023-08-22 蔚来电池科技(安徽)有限公司 Secondary battery and device

Similar Documents

Publication Publication Date Title
CN108428940B (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR102451966B1 (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR102310478B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101581780B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR102188424B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR20110049790A (en) Non-aqueous electrolyte and lithium battery using the same
CN113728483B (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery containing the same
KR20150095248A (en) Electrolyte with additive for lithium secondary battery and lithium secondary battery
KR20180076489A (en) Electrolyte for secondary battery and secondary battery containing the same
KR20150072046A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101542071B1 (en) Electrolyte for long cycle life secondary battery and secondary battery containing the same
KR20240017870A (en) Lithium Secondary Battery
KR101535865B1 (en) electrolyte for secondary battery containing boron-based lithium salt and a secondary battery containing the same
KR20150072188A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101499684B1 (en) Non-aqueous electrolyte for Secondary Batteries and Secondary Batteries containing the same
KR102460822B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101683534B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR20140073654A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101909227B1 (en) Electrolyte for secondary battery and secondary battery containing the same
KR101736771B1 (en) Nonaqueous Electrolyte for secondary battery and secondary battery containing the same
KR102308599B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101581782B1 (en) Electrolyte for high capacity secondary battery and secondary battery containing the same
KR101970725B1 (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR101637999B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR101625848B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20150709

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20160629

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20161124

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20161201

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20161202

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20201014

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20211125

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20221123

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20231115

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20241113

Start annual number: 9

End annual number: 9