[go: up one dir, main page]

KR101654700B1 - Water treatment composition containing diethyl hydroxylamine for power plant boiler system - Google Patents

Water treatment composition containing diethyl hydroxylamine for power plant boiler system Download PDF

Info

Publication number
KR101654700B1
KR101654700B1 KR1020160017204A KR20160017204A KR101654700B1 KR 101654700 B1 KR101654700 B1 KR 101654700B1 KR 1020160017204 A KR1020160017204 A KR 1020160017204A KR 20160017204 A KR20160017204 A KR 20160017204A KR 101654700 B1 KR101654700 B1 KR 101654700B1
Authority
KR
South Korea
Prior art keywords
power plant
corrosion
boiler
water treatment
water
Prior art date
Application number
KR1020160017204A
Other languages
Korean (ko)
Inventor
송요순
김유진
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020160017204A priority Critical patent/KR101654700B1/en
Application granted granted Critical
Publication of KR101654700B1 publication Critical patent/KR101654700B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/06Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/124Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

본 발명은 디에틸히드록실아민(Diethyl Hydroxylamine, DEHA), 헥사메틸렌테트라아민(Hexamethylenetetramine)을 유효성분으로 포함하는 발전소 보일러 수처리 조성물 및 이를 이용한 용존 산소의 제거 방법으로서, 용존 산소에 의한 부식은 물론 이산화탄소 부식을 동시에 해결하고 향후 환경 규제에 대비하여 독성이 낮은 효과가 있을 뿐만 아니라 사용되는 물질이 경제적이며 쉽게 구할 수 있는 장점이 있다.The present invention relates to a water treatment composition for a boiler for a power plant containing diethylhydroxylamine (DEHA) and hexamethylenetetramine as an active ingredient, and a method for removing dissolved oxygen using the same, It is effective not only to solve corrosion at the same time but also to prepare for environmental regulation in the future, and it is economical and easily available.

Description

디에틸히드록시아민을 포함하는 발전소 보일러 계통의 수처리 조성물{Water treatment composition containing diethyl hydroxylamine for power plant boiler system}[0001] The present invention relates to a water treatment composition for a power plant boiler system comprising diethylhydroxyamine,

본 발명은 발전소 보일러 계통수 중의 산소 부식과 이산화탄소 부식을 억제할 수 있는 조성물에 관한 것으로서 용존 산소 제거율이 높고 독성이 낮은 조성물 및 이를 이용한 산소 부식과 이산화탄소 부식을 억제하는 방법에 관한 것이다.The present invention relates to a composition capable of inhibiting oxygen corrosion and carbon dioxide corrosion in power plant boiler system water, which has a high dissolved oxygen removal rate and low toxicity, and a method for inhibiting oxygen corrosion and carbon dioxide corrosion using the same.

보일러는 물을 가열해 필요한 증기 또는 온수를 만드는 장치이며, 사용 목적에 따라 여러 형식의 보일러가 있다. 국내 발전설비는 대부분 고온·고압의 대용량 보일러를 사용하고 있으며, 급수 및 보일러수의 수질관리를 위한 수처리를 시행하고 있다. 수처리는 발전설비의 운전 효율을 높이고 수명을 연장하는데 그 목적을 두고 있다.A boiler is a device that heats water to make necessary steam or hot water. There are various types of boilers depending on the purpose of use. Domestic power generation facilities are mostly using high-capacity, high-pressure boilers and water treatment for water quality control of water supply and boiler water. The purpose of water treatment is to increase the operation efficiency and extend the life span of power generation facilities.

수처리는 계통수에 적절한 약품을 처리하는 것으로서 계통수 수질을 향상시키고 계통 구성재질의 부식을 막는 효과가 있다. 각 발전소에서는 해당 발전소 보일러의 특성 및 조건에 적합한 수처리 방법을 채택하여 사용하고 있다.Water treatment improves the quality of the system water and prevents the corrosion of system components. Each power plant adopts a water treatment method suitable for the characteristics and conditions of the power plant boiler.

보일러 계통의 부식에 의한 보일러 튜브의 손상은 발전설비의 운전정지를 유발하는 가장 큰 원인으로 운전정지에 따른 비용손실과 보수비용 등 막대한 경제적 손실을 초래한다. 발전소 계통 구성재질 부식발생의 주요 원인으로 계통수 중 부식성 이온의 존재, 용존 가스의 존재 등 여러 요인들이 있을 수 있으나 발전소 보일러 계통수 중에 존재하는 용존 산소가 계통 재질의 부식에 가장 큰 영향을 끼치고 있는 것으로 알려져 있다.Damage of the boiler tube due to corrosion of the boiler system is the biggest cause of the operation stoppage of the power generation facility, which causes a great economic loss such as the cost loss due to the operation stoppage and the maintenance cost. There are many factors such as the presence of corrosive ions and the presence of dissolved gas in the system water. However, it is known that the dissolved oxygen present in the boiler system water of the power plant has the greatest influence on the corrosion of the system material. have.

보일러 계통수의 용존 산소를 제거하기 위한 방법으로 기계적 용존 산소 제거방법인 탈기기에 의한 1차적 용존 산소의 제거와 탈기기에서 제거하지 못한 잔여 용존 산소를 제거하기 위한 탈산소제를 사용하는 2차적 화학적 용존 산소 제거방법이 있다.As a method to remove dissolved oxygen in the boiler system, it is necessary to remove the primary dissolved oxygen by deaerator which is a mechanical dissolved oxygen removing method and secondary chemical dissolution using deoxidizer to remove residual dissolved oxygen which is not removed by deaerator There is an oxygen removal method.

현재 대부분 국내 발전용 보일러에서는 탈산소제로 전투기의 연료로도 사용되고 있는 히드라진 (Hydrazine, N2H4)을 사용하고 있으나, 히드라진은 인체 발암성이 높고 호흡기, 피부 등에 영향을 미칠 수 있는 유독성의 물질로 밝혀졌다.Currently, most domestic power generation boilers use hydrazine (N 2 H 4 ), which is also used as fuels for deoxidizing fuels, but hydrazine is toxic substance that has high human carcinogenicity and may affect respiratory, skin, .

히드라진이 유사 발암성물질이라는 사실이 발견된 이후 선진국에서는 히드라진을 사용할 때 극도의 주의를 요구하고 있으며 히드라진의 배출 및 보관에 관해 엄격한 규제를 취하고 있다. 그러나 화학물질안전원에 따르면 2013년 국내 히드라진(히드라진 수화물 형태)의 배출량은 년간 1,992kg으로서 적지 않은 양이며, 히드라진을 포함하는 폐수 및 폐기물은 각각 년간 16,954kg, 56,794kg으로 밝혀져 향후 히드라진 배출에 대한 규제가 엄격해질 것으로 예상된다.Since the discovery that hydrazine is a pseudo-carcinogen, advanced countries require extreme caution when using hydrazine and have strict regulations on hydrazine emissions and storage. However, according to the Chemical Safety Agency, the amount of hydrazine hydrazine (hydrazine hydrate form) in Korea in 2013 is 1,992 kg per year, and the amount of waste water and waste including hydrazine is 16,954 kg and 56,794 kg per year, Regulation is expected to become strict.

미국 등 세계 각국의 보일러 수처리 약품 제조회사들과 발전회사들은 수십 년 전부터 히드라진을 대체할 수 있는 다양한 종류의 대체 탈산소제를 개발하여 발전용 보일러 및 산업용 보일러에 대체 적용해오고 있다.The United States and other countries have developed alternate deoxidizing agents that can replace hydrazine for decades ago and have been applied to power boilers and industrial boilers.

현재 개발되어 상용화되거나 상용화 추진중인 주요 대체 탈산소제로는 카보히드라지드 (Carbohydrazide), 히드로퀴논 (Hydroquinone), 디에틸히드록실아민 (Diethyl hydroxylamine, DEHA), MEKO(Methyl ethyl ketoxime), 아스코르빈산 (Ascorbic Acid) 등이 있다.Major alternative deoxygenators that are currently being developed and commercialized or being promoted for commercial use include Carbohydrazide, Hydroquinone, Diethyl hydroxylamine (DEHA), Methyloethyl ketoxime (MEKO), Ascorbic acid Acid).

상기 대체 탈산소제 중 카보히드라지드는 아래 반응식과 같이 용존 산소와 반응하여 물 및 이산화탄소를 생성한다. 카보히드라지드는 85℃까지는 히드라진보다 용존 산소 제거 속도가 높은 것으로 알려져 있으며, 150℃까지는 가수분해되어 히드라진과 이산화탄소를 생성하며, 200℃ 이상에서는 암모니아, 질소, 수소로 분해된다. 그러나 카보히드라지드는 히드라진과 달리 발암 물질로 인식되지 않고, 히드라진에 비해서 독성도 낮은 것으로 알려져 있다.The carbohydrazide in the alternative deoxygenating agent reacts with dissolved oxygen to produce water and carbon dioxide as shown in the following reaction formula. Carbohydrazide is known to have a higher dissolved oxygen removal rate than hydrazine up to 85 ° C. It hydrolyzes to 150 ° C to generate hydrazine and carbon dioxide, and decomposes to ammonia, nitrogen and hydrogen at temperatures above 200 ° C. Unlike hydrazine, however, carbohydrazide is not recognized as a carcinogen and is less toxic than hydrazine.

(H2N-NH)2CO + 2O2 → 2N2 + 3H2O + CO2 (H 2 N-NH) 2 CO + 2O 2 → 2N 2 + 3H 2 O + CO 2

디에틸히드록실아민 (Diethyl hydroxylamine)은 아래 반응식과 같이 용존 산소와 반응하여 아세트산 및 물을 생성한다. DEHA 또한 카보히드라지드와 마찬가지로 발알 물질로 인식되지 않고, 히드라진에 비해서 독성이 낮다.Diethyl hydroxylamine reacts with dissolved oxygen to produce acetic acid and water as shown in the following reaction formula. DEHA is also not recognized as a carbal substance as carbohydrazide, and is less toxic than hydrazine.

4(C2H5)2NOH + 9O2 → 8CH3COOH + 2N2 + 6H2O4 (C 2 H 5 ) 2 NOH + 9O 2 → 8CH 3 COOH + 2N 2 + 6H 2 O

모르폴린(Morpholine)은 휘발성 아민으로서 C4H9NO 화합물로서 탈산소재를 포함하는 조성물의 대표적인 첨가제다.Morpholine is a typical additive for compositions comprising deacidified materials as C 4 H 9 NO compounds as volatile amines.

한편, 공정 열 교환 및 발전용으로 사용되는 산업용 보일러에서 발생하는 스팀은 이용된 후 응축되어 다시 보일러의 급수로 회수되는 것이 에너지와 물 소비 절약에서 유리하다. 따라서 보일러를 보유하고 있는 현장에서는 가능하면 응축수의 회수율을 높이고자 한다.On the other hand, the steam generated from the industrial boiler used for the process heat exchange and power generation is advantageous in saving energy and water consumption by being condensed after being used and then being recovered to the boiler water supply. Therefore, in the field where the boiler is located, the recovery rate of the condensate should be increased as much as possible.

그런데 이 응축수가 발생하는 열 교환기 및 응축라인에는 보일러의 계통수에 포함되어 있는 탄산나트륨, 중산탄나트륨의 열분해로 인해 발생하는 이산화탄소가 스팀과 함께 이동하여 응축수에 용존 되면서 응축수의 전체적인 pH를 떨어트리게 된다. 또한 앞의 카보히드라지드의 경우 반응에 따른 부산물로서 이산화탄소가 발생되므로 이를 낮출 수 있는 별도의 방안이 필요하다.However, in the heat exchanger and condensation line where the condensate is generated, the carbon dioxide generated due to pyrolysis of sodium carbonate and sodium borate contained in the boiler system water moves together with steam and is dissolved in the condensed water, thereby lowering the overall pH of the condensed water . Further, in the case of the above-mentioned carbohydrazide, carbon dioxide is generated as a by-product of the reaction. Therefore, a separate method for lowering it is needed.

통상적으로 10kgf/㎠ 이하 보일러의 경우 보일러수의 pH는 11~11.8 사이로 유지하는 것이 부식 장애를 방지할 수 있는데 유리하다. 그러나 상기와 같이 이산화탄소의 유입으로 인해 pH가 떨어질 경우 바람직하지 않은 현상이 발생할 수 있다. 그러나 pH가 9 초과일 경우 금속에 부정적인 영향이 나타나는 것으로도 보고가 있었다.Generally, it is advantageous to keep the pH of the boiler water between 11 and 11.8 in the case of boilers below 10kgf / ㎠ to prevent corrosion trouble. However, undesirable phenomenon may occur when the pH is lowered due to the inflow of carbon dioxide as described above. However, it has been reported that when the pH is more than 9, the metal has a negative effect.

이와 같은 현상에 의해서 발생하는 부식을 이산화탄소 부식이라고 하는데, 이산화탄소 부식에 장기간 노출될 경우 강철 재질뿐만 아니라 동합금 재질에 매우 치명적인 결과를 초래하여 심한 경우 열교환기가 파열되는 경우도 발생한다. 또한 DEHA와 산소와의 반응에 의해서 아세트산이 발생하며 이로 인해서 pH가 낮아지며 보일러 계통에 좋지 않은 영향을 미친다.Corrosion caused by this phenomenon is referred to as carbon dioxide corrosion, and if exposed to carbon dioxide corrosion for a long time, it will lead to a very lethal consequence to the material of the copper alloy as well as the steel material, and in some cases, the heat exchanger ruptures in severe cases. In addition, acetic acid is generated by the reaction of DEHA with oxygen, which lowers the pH and adversely affects the boiler system.

[특허문헌 1] 일본 공개특허공보 특개2012-21215[Patent Document 1] Japanese Unexamined Patent Application Publication No. 2012-21215 [특허문헌 2] 등록특허공보 10-0315496호[Patent Document 2] Registered Patent Publication No. 10-0315496

[비특허문헌 1] 박광우, "발전소 보일러계통의 부식방지를 위한 용존산소 제어", 순천대학교 산업대학원 석사학위 논문(2008년 8월).[Non-Patent Document 1] Kwangwoo Park, "Dissolved Oxygen Control for Corrosion Prevention of Power Plant Boiler System", Suncheon University Graduate School of Industry Master's Thesis (August 2008). [비특허문헌 2] Essam Abdul Jalil Saeed and Najwa Sabir Majeed, "Use of hexamine to control properties of water condensate system of medical city hospitals", Baghdad: foundation of technical education, Vol.21, P 120-131, 2008[Non-Patent Document 2] Essam Abdul Jalil Saeed and Najwa Sabir Majeed, "Use of hexamine to control properties of water condensate system of medical city hospitals", Baghdad: Foundation of technical education, Vol.21, P 120-131, 2008

본 발명에서는 용존 산소에 의한 부식은 물론 이산화탄소 부식을 동시에 해결하고 향후 환경 규제에 대비하여 독성이 낮은 발전소 보일러 수처리제 조성물을 제공하고 한다.The present invention provides a water treatment composition for a boiler of a power plant that solves carbon dioxide corrosion as well as corrosion by dissolved oxygen, and is low in toxicity in preparation for future environmental regulations.

본 발명의 제1양태는 디에틸히드록실아민(Diethyl Hydroxylamine, DEHA), 헥사메틸렌테트라아민(Hexamethylenetetramine, 이하 헥사민)을 유효성분으로 포함하는 발전소 보일러 수처리 조성물을 제공한다.The first aspect of the present invention provides a power plant boiler water treatment composition comprising diethylhydroxylamine (DEHA) and hexamethylenetetramine (hexamine) as an active ingredient.

본 발명의 제2양태는 유효성분으로 모르폴린(Morpholine)을 추가적으로 포함하는 것을 특징으로 하는 발전소 수처리 조성물을 제공한다.The second aspect of the present invention provides a water treatment composition for power plants, which further comprises morpholine as an active ingredient.

본 발명의 제3양태는 디에틸히드록실아민(Diethyl Hydroxylamine, DEHA) 0.1~10중량부; 헥사메틸렌테트라아민(Hexamethylenetetramine) 0.1~20중량부; 스케일방지제, 부식억제제, pH 조정제, 킬레이트제를 포함하는 첨가제 0.1~10중량부; 물 60~99.7중량부로 이루어진 발전소 보일러 수처리제 조성물을 실제 발전소 보일러에 적용시 계통수에서 디에틸히드록실아민(Diethyl Hydroxylamine, DEHA)가 0.05~600ppm으로 유지되고, 헥사메틸렌테트라아민이 0.2∼15ppm으로 유지되는 것을 특징으로 하는 발전소 보일러 수처리계의 부식억제방법을 제공한다.A third aspect of the present invention is a method for producing a polyurethane foam, comprising: 0.1 to 10 parts by weight of diethylhydroxylamine (DEHA); 0.1 to 20 parts by weight of hexamethylenetetramine; 0.1 to 10 parts by weight of an additive including a scale inhibitor, a corrosion inhibitor, a pH adjuster, and a chelating agent; When 60 to 99.7 parts by weight of water is applied to a boiler of a power plant boiler, the diethylhydroxylamine (DEHA) is maintained at 0.05 to 600 ppm and the hexamethylenetetraamine is maintained at 0.2 to 15 ppm The present invention provides a corrosion inhibiting method for a boiler water treatment system of a power plant.

본 발명의 제4양태는 모르폴린(Morpholine)을 추가적으로 포함하는 것을 특징으로 하는 발전소 보일러 수처리계의 부식억제방법을 제공한다.A fourth aspect of the present invention provides a method for inhibiting corrosion of a power plant boiler water treatment system, which further comprises morpholine.

이하 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 유효한 탈산소제로서 디에틸히드록실아민(Diethyl Hydroxylamine, DEHA)를 사용한다. DEHA는 지난 20여년간 보일러에서 탈산소제로 사용되어 왔으며, 낮은 독성으로 인해서 많은 곳에서 활용되었다. DEHA는 같은 탈산 효과를 위해서 히드라진에 비해서 40% 많은 양이 필요하나, 낮은 독성과 높은 휘발도, 열분해 경우 발생하는 낮은 암모니아 생성량 때문에 히드라진의 대체물로 많이 사용되었다. DEHA는 아래와 같은 반응을 통해 용존 산소를 제거한다.The present invention uses diethylhydroxylamine (DEHA) as an effective oxygen scavenger. DEHA has been used as a deoxidizer in boilers for over 20 years and has been used in many places due to its low toxicity. DEHA is used as a substitute for hydrazine because of its low toxicity, high volatility and low ammonia production in the case of pyrolysis, although it requires 40% more amount than hydrazine for the same deoxidation effect. DEHA removes dissolved oxygen through the following reaction.

4(C2H5)2NOH + 9O2 → 8CH3COOH + 2N2 + 6H2O4 (C 2 H 5 ) 2 NOH + 9O 2 → 8CH 3 COOH + 2N 2 + 6H 2 O

통상적으로 DEHA는 투입시에는 300~500ppm, 보일러 계통수에서는 80~120ppm을 유지한다.Normally, DEHA maintains 300 ~ 500ppm in the input and 80 ~ 120ppm in the boiler system.

통상적으로 용존 산소에 의한 부식 및 이산화탄소 부식, 낮아진 pH를 높이기 위해서 아민 계통의 물질이 사용된다. 또한 크롬산염, 아질산염, 몰리브덴산염, 중합인산염, 정인산염, 유기인산염, 아연염, 트리플루오로테노일아세톤, 염화벤제토늄, 2-메르캅토티아졸 등의 부식방지제 등이 사용된다.Typically, amine-based materials are used to increase corrosion and carbon dioxide corrosion by dissolved oxygen and lowered pH. In addition, corrosion inhibitors such as chromates, nitrites, molybdates, polymeric phosphates, phosphates, organic phosphates, zinc salts, trifluorothenoyl acetone, benzethonium chloride and 2-mercaptothiazole are used.

추가의 첨가제로서 인산, 폴리아크릴산, 폴리말레인산, 에틸렌디아민테트라아세트산, 아크릴레이트계 중합체, 디에틸렌 트리아민 펜타메틸렌 포스포닉산 등의 스케일 방지제, 수산화나트륨, 수산화칼륨, 탄산나트륨, 제3인산나트륨, 제1인산나트륨, 제1인산칼륨, 제2인산칼륨, 제3인산칼륨, 헥사메타인산나트륨, 트리폴리인산나트륨, 포타슘소르베이트 등의 pH 조정제도 사용될 수 있다.As a further additive, an anti-scale agent such as phosphoric acid, polyacrylic acid, polymaleic acid, ethylenediaminetetraacetic acid, acrylate-based polymer, diethylenetriaminepentamethylenephosphonic acid and the like, or an antioxidant such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium tertiary phosphate PH adjustment systems such as sodium monophosphate, potassium monophosphate, potassium dibasic potassium phosphate, potassium dihydrogenphosphate, sodium hexametaphosphate, sodium tripolyphosphate, and potassium sorbate may be used.

헥사메틸렌테트라아민 (Hexamethylenetetramine)은 아래 구조와 같은 격자 구조를 가지고 있는 화합물로서 물에 쉽게 녹는다. 헥사메틸렌테트라아민은 간단하게 헥사민이라고도 불리며 소량인 경우 체내 복용이 가능하며 비뇨기 소염제로써 의약품 제조에도 사용될 만큼 크게 독성이 없는 물질이고 가격도 저렴하며 구입이 용이한 장점이 있다.Hexamethylenetetramine (Hexamethylenetetramine) is a compound having a lattice structure as shown below and easily dissolves in water. Hexamethylenetetraamine is also known as hexamine, and it can be taken in the body if it is a small amount, and it is a urine antiinflammatory agent, which is not toxic enough to be used for the manufacture of medicines, and is cheap and easy to purchase.

종래 탈산제에서 사용하고 있는 아민 화합물인 디에틸히드록실아민, 싸이클로헥실아민, 디메틸아미노프로필아민 등의 아민은 1차 또는 2차 아민으로서 4차 아민인 헥사메틸렌테트라아민과 아민의 종류에서도 크게 차이가 날 뿐만 아니라 헥사메틸렌테트라아민과 녹는점 280℃, 플리쉬 포인트 250℃보다도 훨씬 낮은 값을 가지고 있다. 이로 인해서 훨씬 더 높은 휘발성을 가지고 있어, 탈산제로서 계속적인 보충이 필요하다는 단점이 있다.Amines such as diethylhydroxylamine, cyclohexylamine, and dimethylaminopropylamine, which are amine compounds used in deoxidizers in the past, differ greatly in the types of hexamethylenetetramines and amines, which are quaternary amines as primary or secondary amines Not only the blade, but also hexamethylenetetramine, has a melting point far lower than 280 ° C and flip point of 250 ° C. As a result, it has a much higher volatility and has a disadvantage of requiring continuous replenishment as a deoxidizer.

Figure 112016014733256-pat00001
Figure 112016014733256-pat00001

물에 용해된 이산화탄소는 탄산염 상태로 부식에 관여하며 아민 계통의 물질은 아래와 같은 반응을 통해 탄산염의 부식을 억제하면서 pH를 높인다. 또한 DEHA의 탈산 중 발생하는 아세트산에도 유사한 기작을 통해서 pH를 높일 수 있다.Carbon dioxide dissolved in water is in the form of carbonate, which is involved in corrosion. Amine-based materials increase the pH while suppressing the corrosion of carbonate through the following reaction. In addition, the pH can be increased through a similar mechanism in acetic acid generated during deoxygenation of DEHA.

R-NH2 + H2O → R-NH3 + + OH- R - NH 2 + H 2 O -> R - NH 3 + + OH -

R-NH3 + + OH- + H2CO3 → R-NH3 + + HCO3 - + H2OR - NH 3 + + OH - + H 2 CO 3 - > R - NH 3 + + HCO 3 - + H 2 O

비특허문헌 2에서는 헥사메틸렌테트라아민만을 사용하여 응축수에서 이산화탄소에 의한 부식 방지를 연구하였으며 헥사메틸렌테트라아민이 이에 대해서 효과가 있는 것으로 밝혀졌다. 또한 헥사메틸렌테트라아민이 승화성이 있기 때문에 탈기기 이후에 투입되어야 하는 것으로 기재하고 있다. 그러나, 상기 연구논문은 탈산제에 대해서는 전혀 언급을 하지 않고 있으며 이에 대한 조합 등을 시사하고 있지 않을 뿐만 아니라 실시예도 기재하고 있지 않다.In non-patent document 2, only corrosion inhibition by carbon dioxide in condensed water was studied using hexamethylenetetramine, and hexamethylenetetramine was found to be effective against this. Further, it is described that hexamethylenetetramine should be added after deaerating because of its sublimation properties. However, the above-mentioned research articles do not mention the deoxidizing agent at all and do not suggest a combination or the like, nor describe the embodiment.

본 발명에서 독성이 적은 DEHA가 탈산제제로서 역할을 하지만 반대로 아세트산을 생성시키는 점에 착안하여 약산인 아세트산을 제거할 수 있으면서 또한 독성이 적고 가격이 저렴하면서도 입수가 쉬운 헥사메틸렌테트라아민을 부가한 디에틸히드록실아민(Diethyl Hydroxylamine, DEHA), 헥사메틸렌테트라아민(Hexamethylenetetramine)을 유효성분으로 포함하는 발전소 보일러 수처리제 조성물 및 이를 이용한 발전소 보일러 수처리계 부식억제방법을 제공하고자 한다.In the present invention, DEHA having a low toxicity acts as a deoxidizing agent. On the other hand, attention is paid to the fact that acetic acid is produced, and hexamethylenetetraamine added with hexamethylenetetraamine, which is capable of removing acetic acid, (EN) Disclosed is a composition for water treatment of a boiler of a power plant comprising ethylhydroxylamine (DEHA) and hexamethylenetetramine as an active ingredient, and a method for inhibiting corrosion of a boiler water treatment system using the same.

본 발명에 따른 조성물 및 방법은 용존 산소에 의한 부식은 물론 아세트산 및 이산화탄소 부식을 동시에 해결하고 향후 환경 규제에 대비하여 독성이 낮은 효과가 있다. 또한 사용되는 물질이 경제적이며 쉽게 구할 수 있는 장점이 있다.The composition and method according to the present invention solve both acetic acid and carbon dioxide corrosion as well as dissolved oxygen, and have low toxicity in preparation for future environmental regulations. Also, the materials used are economical and readily available.

도 1은 시간에 따른 용존 산소의 농도를 측정한 결과다.
도 2는 시간에 따른 pH를 측정한 결과다.
도 3은 시간에 따른 전도도를 측정한 결과다.
FIG. 1 shows the result of measuring the concentration of dissolved oxygen with time.
FIG. 2 shows the result of measuring pH over time.
Fig. 3 shows the result of measuring the conductivity with time.

이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.

[[ 실시예Example ]]

실시예 : 용존 산소, pH, 전도도 측정Examples: Dissolved Oxygen, pH, Conductivity Measurements

탈산소제 첨가에 따른 용존 산소 농도, pH, 전도도를 측정하기 위해서 iSTEK사 Multi Meter K7000-PDC를 사용하였다. 사용한 장치의 규격은 아래의 표와 같다.To measure the dissolved oxygen concentration, pH, and conductivity with the addition of deoxidizing agent, iSTEK Multi Meter K7000-PDC was used. The specifications of the devices used are shown in the table below.

측정항목Metrics K7000-PDC (3 Channel)K7000-PDC (3 Channel) DODO 범위range 0.00 ~ 19.99 ㎎/l0.00 to 19.99 mg / l 분해능Resolution 0.001 / 0.01 / 0.10.001 / 0.01 / 0.1 정확도accuracy ±0.5 ㎎/l± 0.5 mg / l pH
pH
범위range -2.000 ~ 19.999-2,000 ~ 19.999
분해능Resolution 0.001 / 0.01 /0.10.001 / 0.01 / 0.1 정확도accuracy ±0.002 pH± 0.002 pH Buffer 자동인식Buffer automatic recognition 2 / 4 / 7 / 10 / 122/4/7/10/12 전도도conductivity 범위range 0.0 ~ 199,999 ㎲/㎝0.0 to 199,999 ss / cm 분해능Resolution 0.01 / 0.10.01 / 0.1 정확도accuracy ±0.5 %± 0.5%

장치에 사용된 증류수는 역삼투압을 이용한 증류수 제조장치를 사용하였으며 분석에 사용된 화학약품은 아래와 같은 순도를 가지고 있다.The distilled water used in the apparatus was a distilled water producing apparatus using reverse osmosis pressure, and the chemical used in the analysis had the following purity.

분석 시료Analytical sample 판매 회사Sales company phasephase 순도water Carbohydrazide Carbohydrazide sigma-ardrichsigma-ardrich 분말powder 98%98% N,N-DiethylhydroxylamineN, N-Diethylhydroxylamine sigma-ardrichsigma-ardrich 액상Liquid phase ≥98%≥ 98% Hydrazine monohydrateHydrazine monohydrate JUNSEIJUNSEI 액상Liquid phase ≥98%≥ 98% HydroquinoneHydroquinone JUNSEIJUNSEI 분말powder ≥99%≥99% MorpholineMorpholine JUNSEIJUNSEI 액상Liquid phase ≥99%≥99% HexamethylenetetramineHexamethylenetetramine KANTO CHEMICALKANTO CHEMICAL 분말powder ≥99%≥99% Tannic AcidTannic Acid 덕산약품Duksan Pharmaceutical 분말powder 100%100%

용존 산소, pH, 전도도 측정을 위해서 아래의 탈산소제 등의 조성물에 증류수를 부가하여 총 100㎖의 용액을 만든 후 측정을 하였다. 온도는 상온(22℃), 상압에서 진행하였다.To measure dissolved oxygen, pH and conductivity, distilled water was added to a composition such as the following deoxidizer to make a total of 100 ml of solution. The temperature was maintained at room temperature (22 ° C) and normal pressure.

조성물Composition 조성물 함량Composition content 1One Diethylhydroxylamine +
증류수
Diethylhydroxylamine +
Distilled water
1g
1g
5g
5g
10g
10g
22 Diethylhydroxylamine + Hexamethylenetetramine +
증류수
Diethylhydroxylamine + Hexamethylenetetramine +
Distilled water
0.5g
0.5g
0.5 g
0.5 g
2.5g
2.5g
2.5 g
2.5 g
5g
5g
5g
5g
33 Diethylhydroxylamine +
Morpholine +
증류수
Diethylhydroxylamine +
Morpholine +
Distilled water
0.5g
0.5g
0.5 g
0.5 g
2.5g
2.5g
2.5 g
2.5 g
5g
5g
5g
5g

측정 결과 : 용존 산소 농도 측정Measurement result: Dissolved oxygen concentration measurement

도 1, 2, 3의 (a), (b), (c)는 각각 상기 1 내지 3 조성물에 대한 각각의 용존 산소 농도, pH, 전도도를 측정한 결과다. 모든 분석 조성물에 있어서 시간이 경과됨에 따라 용존 산소의 농도는 감소하였으며, 탈산소제의 함량이 높을수록 용존 산소의 감소 속도 또한 대부분 높게 나타났다. DEHA에 헥사민을 부가하였을 경우 용존 산도 농도 큰 변화가 없는 것으로 나타나 헥사민을 DEHA 탈산소제에 적용하는데 문제점이 없는 것으로 보인다. 아민 계열의 모르폴린은 헥사민에 대비해 좀 더 강한 염기로서 반응성이 높아 평형 용존 산도 농도, pH, 전도도에 좀 더 빠른 시간에 도달하는 것을 알 수 있었다. 그러나, 모르폴린은 플래쉬 포인트 및 자연 발화온도가 헥사민에 비하여 낮기 때문에 고온의 발전소 보일러에 적용하기 위해서는 주의가 필요하다. 다른 연구에 의하면 pH가 9 이상인 염기 용액은 금속에 나쁜 영향을 미칠 수 있기 때문에 주의가 필요하며 모르폴린을 포함하는 조성물은 pH가 10 이상인 점에서 금속 소재의 보일러 사용에는 헥사민과의 혼합물이 더 적절한 것으로 파악된다.(A), (b) and (c) of FIGS. 1, 2 and 3 are the results of measuring the dissolved oxygen concentration, pH and conductivity of each of the compositions 1 to 3, respectively. The concentration of dissolved oxygen decreased with time in all analytical compositions, and the rate of decrease of dissolved oxygen was also higher as the amount of deoxidizer was higher. The addition of hexamine to DEHA showed no significant change in dissolved acidity, suggesting that there is no problem in applying hexamine to DEHA deoxygenating agent. The amine type morpholine is a stronger base than hexamine and has a higher reactivity, so that the equilibrium dissolved pH, concentration, pH, and conductivity reach a shorter time. However, since morpholine has a lower flashpoint and spontaneous ignition temperature than hexamine, care must be taken to apply it to high-temperature power plant boilers. Other studies have indicated that base solutions with a pH of greater than 9 may adversely affect metals and that compositions containing morpholine have a pH greater than 10, It seems appropriate.

상기와 같이 DEAH의 탈산 작용 중 발생할 수 있는 아세트산을 제거할 수 있는 헥사민에 의해서 용존 산소의 농도에 큰 변화가 없어 사용에 문제가 없음을 알 수 있었고, 모르폴린을 부가할 경우 반응 시간을 단축시킬 수 있는 효과가 있음을 알 수 있었다.As described above, the concentration of dissolved oxygen was not significantly changed by the hexamine which can remove acetic acid which may occur during deacidification of DEAH, and there was no problem in use. Addition of morpholine shortened the reaction time It can be said that there is an effect that can be made.

Claims (4)

삭제delete 삭제delete 디에틸히드록실아민(Diethyl Hydroxylamine, DEHA) 0.1~10중량부; 헥사메틸렌테트라아민(Hexamethylenetetramine) 0.1~20중량부; 스케일방지제, 부식억제제, pH 조정제, 킬레이트제를 포함하는 첨가제 0.1~10중량부; 물 60~99.7중량부로 이루어진 발전소 보일러 수처리제 조성물을 실제 발전소 보일러에 적용시 계통수에서 디에틸히드록실아민(Diethyl Hydroxylamine, DEHA)이 80~120ppm으로 유지되고, 헥사메틸렌테트라아민이 0.2∼15ppm으로 유지되는 것을 특징으로 하는 발전소 보일러 수처리계의 부식억제방법.
0.1 to 10 parts by weight of diethylhydroxylamine (DEHA); 0.1 to 20 parts by weight of hexamethylenetetramine; 0.1 to 10 parts by weight of an additive including a scale inhibitor, a corrosion inhibitor, a pH adjuster, and a chelating agent; When 60 to 99.7 parts by weight of water is applied to a boiler of a power plant boiler, the diethylhydroxylamine (DEHA) is maintained at 80 to 120 ppm and the hexamethylenetetraamine is maintained at 0.2 to 15 ppm Wherein the corrosion inhibiting method is applied to a boiler water treatment system of a power plant.
제3항에 있어서,
모르폴린(Morpholine)을 추가적으로 포함하는 것을 특징으로 하는 발전소 보일러 수처리계의 부식억제방법.
The method of claim 3,
A method for inhibiting corrosion of a boiler water treatment plant of a power plant, which further comprises morpholine.
KR1020160017204A 2016-02-15 2016-02-15 Water treatment composition containing diethyl hydroxylamine for power plant boiler system KR101654700B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160017204A KR101654700B1 (en) 2016-02-15 2016-02-15 Water treatment composition containing diethyl hydroxylamine for power plant boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160017204A KR101654700B1 (en) 2016-02-15 2016-02-15 Water treatment composition containing diethyl hydroxylamine for power plant boiler system

Publications (1)

Publication Number Publication Date
KR101654700B1 true KR101654700B1 (en) 2016-09-06

Family

ID=56946262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160017204A KR101654700B1 (en) 2016-02-15 2016-02-15 Water treatment composition containing diethyl hydroxylamine for power plant boiler system

Country Status (1)

Country Link
KR (1) KR101654700B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018057556A1 (en) * 2016-09-23 2018-03-29 Fuller Bros. Inc. Methods of reducing oxygen in tire air chambers, compositions and assemblies related thereto
CN115976521A (en) * 2022-12-30 2023-04-18 广东腐蚀科学与技术创新研究院 Composite cooling water corrosion inhibitor and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025131A (en) * 1999-09-18 2001-04-06 한명섭 Corrosion Inhibitor Composition for Acid Cleaning
KR100315496B1 (en) 1997-08-13 2002-01-15 조민호 Method for Inhibiting Corrosion of Boiler Condensation System Using Corrosion Inhibiting Composition
JP2012021215A (en) 2010-07-16 2012-02-02 Kurita Water Ind Ltd Anticorrosive for boiler
KR20130001467A (en) * 2011-06-27 2013-01-04 한국에너지기술연구원 Carbon dioxide absorbents having a protection from corrosion and method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315496B1 (en) 1997-08-13 2002-01-15 조민호 Method for Inhibiting Corrosion of Boiler Condensation System Using Corrosion Inhibiting Composition
KR20010025131A (en) * 1999-09-18 2001-04-06 한명섭 Corrosion Inhibitor Composition for Acid Cleaning
JP2012021215A (en) 2010-07-16 2012-02-02 Kurita Water Ind Ltd Anticorrosive for boiler
KR20130001467A (en) * 2011-06-27 2013-01-04 한국에너지기술연구원 Carbon dioxide absorbents having a protection from corrosion and method for preparing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
[비특허문헌 1] 박광우, "발전소 보일러계통의 부식방지를 위한 용존산소 제어", 순천대학교 산업대학원 석사학위 논문(2008년 8월).
[비특허문헌 2] Essam Abdul Jalil Saeed and Najwa Sabir Majeed, "Use of hexamine to control properties of water condensate system of medical city hospitals", Baghdad: foundation of technical education, Vol.21, P 120-131, 2008

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018057556A1 (en) * 2016-09-23 2018-03-29 Fuller Bros. Inc. Methods of reducing oxygen in tire air chambers, compositions and assemblies related thereto
US10836210B2 (en) 2016-09-23 2020-11-17 Fuller Bros. Inc. Methods of reducing oxygen in tire air chambers, compositions and assemblies related thereto
AU2017332132B2 (en) * 2016-09-23 2023-04-13 Fuller Bros. Inc. Methods of reducing oxygen in tire air chambers, compositions and assemblies related thereto
CN115976521A (en) * 2022-12-30 2023-04-18 广东腐蚀科学与技术创新研究院 Composite cooling water corrosion inhibitor and application thereof
CN115976521B (en) * 2022-12-30 2023-10-20 广东腐蚀科学与技术创新研究院 Composite cooling water corrosion inhibitor and application thereof

Similar Documents

Publication Publication Date Title
TWI515340B (en) Anticorrosive method for boiler
JPS60248287A (en) Deoxidation composition and method
EP3106439B1 (en) Scale removal method for steam generating facilities
JP6160741B2 (en) Boiler anticorrosion method and anticorrosive
KR101938142B1 (en) Water treatment composition containing carbohydrazide for power plant boiler system
CN108352201B (en) Nuclear power plant and method for operating a nuclear power plant
KR101654700B1 (en) Water treatment composition containing diethyl hydroxylamine for power plant boiler system
US20020100896A1 (en) Oxygen scavenger
EP3489387A1 (en) Deoxidizing agent for boilers and method for deoxidizing boiler water system
JP4711902B2 (en) Boiler corrosion control method
RU2500835C1 (en) Inhibitor of carbon-dioxide corrosion for aminat sc-3 steam-condensate plants
KR20190067015A (en) Carbohydrazide containing water treatment coloring composition for power plant boiler system
KR20190067037A (en) Diethylhydroxylamine containing water treatment coloring composition for power plant boiler system
JP6642023B2 (en) Deoxidizer and deoxidizing method
JP6401578B2 (en) Copper anticorrosion composition and copper anticorrosion method
JP6316719B2 (en) Corrosion inhibitor and corrosion control method for boiler water system
JP6414217B2 (en) Synergistically active mixtures used as corrosion inhibitors in oxygen binders and aqueous systems
JP5849409B2 (en) Boiler water treatment agent and boiler water treatment method
JP2022536359A (en) Corrosion inhibitor formulation for geothermal reinjection wells
JP6144399B1 (en) Steam condensate corrosion inhibitor and corrosion inhibition method
RU2515871C2 (en) Inhibitor of carbonic acid corrosion for steam-generating installations of low and medium pressure aminat pk-1
JP5826622B2 (en) Metal anticorrosive
RU2516176C2 (en) Inhibitor of carbonic acid corrosion for steam boilers of low and medium pressure aminat pk-2
CN113046752A (en) Composite corrosion inhibitor ODA-SN-NaSiC and low-conductivity water containing same
EP2179075B1 (en) Inhibition of corrosion in boilers by polyhydroxy benzene addition

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160215

PA0201 Request for examination
PA0302 Request for accelerated examination

Patent event date: 20160414

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20160215

Patent event code: PA03021R01I

Comment text: Patent Application

PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20160509

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20160826

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20160831

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20160831

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20191023

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20191023

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20200729

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20210727

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20220726

Start annual number: 7

End annual number: 7